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Abstract

Various statistical processes with and without the presence of noise
can be modeled as field theories in the continuum limit. We see that
field theory may form an efficient alternative to the standard AI based
approaches when discovering correlations in many realistic stochastic time
series.

1 Introduction

The use of field theoretic methods in modeling options pricing has been well
studied. There are many potential benefits of applying field theoretic methods
to the equity market(see Kleinert). We make the latter rigorous in this paper,
calculating the general forms of correlation functions in terms of parameters of
the effective field theory. There are parameters that must be fitted to the data-
a finite set of n couplings (’numbers’) as opposed to functional estimation that
is required in ML and neural networks. Clearly the amount of arbitrariness and
the risk of over-fitting is exponentially lesser.

1.1 Connection with Neural Networks

The fashionable way to find correlations in time series is to use neural networks.
Our approach might appear completely independent of it but there is a deep
link between the two. In the literature, it has been often noted that in the
continuum limit, neural networks can be approximated by a renormalization
group flow.

The rest can be found here https://arxiv.org/pdf/1410.3831v1.pdf

1.2 Connection with ARCH, GARCH, ARMA

All classes of autoregressive models are highly specialized instances of the gen-
eral field theory. In particular all the parameters ai,j are simply couplings that
appear in the effective field theory Lagrangian some of which may be eliminated
by simple symmetry checks. Others are fit from observation. A more detailed
discussion appears in a later section.
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2 Pricing as a Field Theory

2.1 Introduction

The effect of Gaussian noise in strongly coupled field theories has been well
studied, both in and outside of a holographic context. An analytic solution can
be obtained for this model. This simplified model is equivalent to the efficient
market hypothesis; in practice, however, options models have been observed to
be non-Gaussian (i.e, options markets have various inefficiencies). We expect the
noise distribution to depend upon an assortment of macroeconomic variables.
Such a noise dependence upon being integrated out yields modified interaction
term(s) in the potential. We are in the regime of an interacting field theory,
where a perturbation theory can be setup in terms of Feynman diagrams. The
exploration of the non-perturbative regime is more non-trivial; however, we shall
see that the presence of gravity duals can simplify this analysis considerably.

2.2 Linear Gaussian Case (Black Scholes)

Nakayama constructed super-symmetric path integrals for the Black Scholes
Merton model. We begin with the Langevin Equation:
∂φ(t)
∂t = ∂V (φ)

∂φ + ση(t)

Where η(t) satisfies
< η(t)η(0) >= δ(t)
The partition function corresponding to this is:

Z =
∫
DXDηJ(φ)δ(∂φ(t)

∂t −
∂V (φ)
∂φ − ση(t))exp(−

∫
dtη

2

2 )

Where J(φ) is the Jacobian associated with the imposition of the delta function
constraint. It can be written as a path integral over Grassman fields:

J(X) =
∫
DψDψ̄exp(= 1

σ2

∫
dtψ̄∂tψ − ∂2V

∂X2 ψ̄ψ)
Once the Gaussian noise is integrated out, we get:
Sbos =

∫
dt 1

2σ (∂tφ− ∂φW )2

One way to write the. field theory is without integrating out the delta function
but instead writing it thus:

δ(...) =
∫
Dφ̃eφ̃(...)

We get the following partition function:

Z =
∫
DφDφ̃Dηexp(φ̃(∂φ(t)

∂t −
∂V (φ)
∂φ − ση(t)) + η2

2 )
Upon explicitly performing the integral over η we get:

Z =
∫
DφDφ̃exp(φ̃(∂φ(t)

∂t −
∂V (φ)
∂φ ) + φ̃2

2σ )
Note that the system has a non-trivial one point function, which can be inter-
preted as a background source field. In the Feynman diagram representation
in the theory, we may have legs that connect to the boundary field denoted
in Figure–. In the Black Scholes Merton model, the super-potential is linear
W (φ) = µφ. This corresponds to the OU process, with Feynman rules given by
1(a), 1(c) and 1(d).

2.3 Nonlinear Extensions of BS

Noise can be formulated as a field theory, and for small enough noise, we have a
path integral system that can be solved by perturbation theory or effective field
theory. The latter can be useful in organizing correlation functions in terms
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Figure 1: A schematic description of the path integral as a weighted sum over
an infinity of possible trajectories of the price q(t) between two specified points

of Feynman diagrams. Tree level here encodes the linear regime, while loop
expansions enter the non-linear regime. The effective action is:
Sbos =

∫
dt 1

2σ2 (∂tφ− ∂φV (φ))2

The Black Scholes Merton model following the efficient market hypothesis cor-
responds to W = µφ. Here we consider the most general distribution given
thus:
V (φ) =

∑∞
i=1 aiφ

i

Where ai are couplings that will in general change will scale ai(Λ, (Mj)) (i.e,
undergo a renormalization group flow) as well as possibly depend on macroe-
conomic variables. We can conduct a perturbative analysis in small coupling
following the general treatment in the Appendix. First let us consider the Feyn-
man rules. They are simply those given in Appendix 1 along with higher point
vertices of the form corresponding to
Vm,n = (∂tφ(t))m(φ(t))n

3 Correlation Functions

The stochastic differential equation for the logarithms of prices reads:
· x = rx + η(t)
Where the noise variable η(t) follows an as yet unspecified distribution. The
constant drift is defined only up to a gauge choice- we choose the gauge where
< η(t) >= 0. Now we can expand the exponential in a power series by Taylor
expanding the Hamiltonian as follows:
H(p) = ia1p+ 1

2!a2p
2 − i 1

3!c3p
3...

Where the drift has here simply been identified with the one point function:
c1 → rx
Our stochastic differential equation now reads:
· (x)(t) = η(t)
Now the probability of a path starting at (xa, ta) and ending at (xb, tb) is given
by the following path integral:

P (xb, tb|xa, ta) =
∫
Dη

∫ x(tb)=xb
xta

Dxexp(−
∫ tb
ta
dtH(η(t)))δ(·x− η)

This expectation value of a quantity f(x(t)) at a particular point is given by
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splitting the path integral into two parts:
< f(x(t)) >=

∫
dxP (xb, tb|x, t)f(x)P (x, t|xa, ta)

The expectation value is the ’one-point function’. This can be generalized to an
n-point function defined by pinning the path integral at the n specified points:
< f1(x1(t1)...fn(xn(tn))) >=

∫ ∏
i dxiP (xb, tb|x1, t1)f(x1)P (xt2)f2(x2)...f(xn)P (xn, tn|xa, ta)

Initially we just focus on the correlation functions of the η variable. A correlation
function can be expressed in terms of parameters of the position or momentum
space Hamiltonian. We can go for one to the other thus:
P (η(t)) =

∫
Dp
2π exp(

∫ tb
ta
dt(ip(t)η(t)−H(p(t))))

For these kinds of actions, correlation functions can be constructed by simple
functional differentiation of the following form:

< η(t1)...η(tn) >= (−i)n
∫
Dη

∫
Dp
2π ( δ

δ(p(t1)) ...
δ

δ(p(tn))e
i
∫ tb
ta
p(t)η(t))e−

∫ tb
ta
H(p(t))

We perform n partial integrations to get:

< η(t1)...η(tn) >= (−i)n
∫
Dη

∫
Dp
2π (ei

∫ tb
ta
p(t)η(t)) δ

δ(p(t1)) ...
δ

δ(p(tn))e
−

∫ tb
ta
H(p(t))

= in δ
δ(p(t1)) ...

δ
δ(p(tn))e

−
∫ tb
ta
H(p(t))

We can thus get the lowest order correlation functions. The one point function
vanishes by the definition of the variable η:
< η(t1) >= Z−1

∫
Dηη(t1)exp(−

∫ tb
ta
dtH(η(t))) = 0

For the rest we simply get down delta functions:
< η(t1)η(t2) >= Z−1

∫
Dηη(t1)η(t2)exp(−

∫ tb
ta
dtH(η(t)))

= c21 + c2δ(t1 − t2)

< η(t1)η(t2)η(t3) >= Z−1
∫
Dηη(t1)η(t2)η(t3)exp(−

∫ tb
ta
dtH(η(t)))

< η(t1)η(t2)η(t3)η(t4) >= Z−1
∫
Dηη(t1)η(t2)η(t3)η(t4)exp(−

∫ tb
ta
dtH(η(t)))

3.1 Stochastic Volatility Models

It has been observed in market analysis for decades that ’volatility clusters’.
Regimes of high volatility clump together, as do those of low volatility It is
clear that the above formalism admits a straightforward generalization to models
with time-varying volatility. This has been done in ...The simplest case is one in
which the volatility is a Gaussian variable with mean η and standard deviation
ζ. The stochastic differential equation is:

· x(t) = −v(t)
2 +

√
v(t)η(t)

Where the noise variable is:
< η(t) >= 0, < η(t1)η(t2) >= δ(t1 − t2)
The variance follows the following equation:
· σ(t) = −(σ(t)− σ0) + ε

√
σ(t)ησ(t)

The parameter ησ(t) is the volatility of the volatility. the action is:
Sbos =

∫
dt 1

2σ(t) (∂tφ− ∂φV )2 + ησ(t) + ζσ(t)2

Alternatively, using the auxiliary field formalism, the partition function can be
written as:
Z =

∫
DφDφ̃Dσexp(φ̃(∂φ(t)

∂t −
∂V (φ)
∂φ − ση(t)) + φ̃2

2σ(t) + (σ(t)−η)2

2ζ )

This is a non-linear path integral over σ. It can only be evaluated order by
order, or by treating σ as a background field. It is possible in principle to carry
on making the volatility of the volatility ζ too stochastic, and so on.
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3.2 Multi-scale Volatility

There is ample empirical evidence in the SP 500 that suggests that volatility
has a mean reversion property at at least two time scales- one long and one
short. In principle there may be more. In the canonical approach to stochastic
volatility based on stochastic calculus, the consideration of multi-scale volatility
is cumbersome even for two scales. The stochastic differential equation modeling
it can be written thus:
· x = µ+ σ(t)η(t)
The classical Black Scholes model corresponds to σ(t) being a constant. In a
volatility process with n time scales we will have:
σ(t) = f(v1, ..., vn)
The SDE obeyed by each of these is:
· vi = (mi − vi) + νiη(t)
In field theory, any number of time scales can be introduced in the system. This
can be by introducing an RG flow of σ by promoting σ → σ(k). Or by making
σ a temporally and ’spatially’ varying background field. If there are a finite
number of fixed length scales we wish to introduce in the noise (i.e, volatility
with a finite number of scales), we can simply expand the volatility in a Fourier
basis:
σ =

∑N
i=1 aisin(ωit)

Where the ωis encode all the scales in the system that are fixed by observation
or prior knowledge. The σ acts just as would time dependent couplings in a
regular QFT. The integral will be explicitly performed over the terms in it.

4 Modeling Residual Correlations using Effec-
tive Field Theory

4.1 Motivation

A field theory is a general and useful way to encode correlations up to a very
high degree of non-linearity.It has been used to describe extremely general sta-
tistical systems that are completely classical. Loop corrections in those systems
account for classical-nonlinearity rather than quantum corrections. For classical
statistical field theory, the gauge-gravity correspondence can be interpreted in
these systems as a duality between a strongly non-linear system in d dimensions
and a weakly non-linear (gravitational) system in d+ 1 dimensions. Finance in
particular deals with strongly nonlinear systems which is what makes trading or
any kind of prediction extremely hard- the same reason strongly coupled quan-
tum field theories are hard. Fortunately, physicists have come up with various
solutions for this- one of the most useful being gravity duals. Indeed a gravity
dual for linear Black Scholes was constructed by Nakayama, with a prescription
of how to extends to non-linearity. We can expect a similar approach to work
for equities. In fact the case of N equities where N is large is even simpler since
large N methods may prove useful.
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4.2 Connection to RG Flows

Here we will encode the nonlinear dependence of the factors on the price by
considering the factors as slowly evolving background fields. The most rigorous
known formalism to encode correlations between fluctuations across different
timescales is the renormalization group. In the context of quantum theory, one
observes that as one ’zooms in’ or out of the time series, the theory that one uses
to describe the phenomena changes. As we vary the length scale Λ at which
the system is observed, certain parameters in the theory (couplings) change
continuously.

4.3 Effective Field Theory of Noise

First we construct a field theory Lagrangian. There is no reason to expect
locality or unitarity or any other notion of renormalizability a priori. For N
equities the most general local Lagrangian reads:
L =

∫
dt

∑
i,jMijφ(t)i∂tφ(t)j + σijφ

i(t)φj(t) + ...λijk(α(t))φiφjφk + ...
Where all sums above run from 1 to N equities. We have ignored higher order
corrections as we are solely interested in two and three point functions. Here the
coupling tensors are to be fixed by observation. They will contain modes that
vary more slowly with time- for instance, they may update quarterly. These will
depend upon the fundamental factors (the α) and such dependence can be fixed
using fitting algorithms or machine learning. If we are concerned with regimes
where these do not change these may be numerically fixed from the data. In the
large N limit we get: There is also no reason to assume any symmetry just from
the Lagrangian. However it is time translation invariant. However, consider the
fact that the Lagrangian is invariant under the transformations:
φi → αφ, λijk → α−3λijk,Mij → α−2Mij

This is precisely the generalised conformal symmetry introduced in ... Just by
GCS, we find the

5 Multi-Investor Models and The Power of Large
N

A problem involving multiple investors can be recast as a large N problem. In
the limit of N very large, the behavior of a dynamical system is described in
terms of mean field theory. At any finite value of N , the behavior of observables
in a system is given by its mean field value plus contributions suppressed by or-
ders of 1/N . Physically speaking, there may be investors with differing degrees
of experience and agendas who make the noise fluctuate on different scales. The
simplest stochastic differential equation can be written as:
· x(t) = rx +

∑N
i ηi

The sum runs over different groups of investors, each creating noise following a
unique Levy distribution with noise falling off as:
|x|−1−λi

Their individual probability distributions are:
Pλ(ηλ) = exp(−

∫ tb
ta
dtI(ip(t)ηλ(t)−Hλ(ηλ(t)))

With Hamiltonian:
Hλ(p) =

σ2
λ|p|

λ

2
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The overall probability of returning (xb, tb) given (xa, ta) is:

g(xb, tb|xa, ta) =
∏
λ(
∫
Dηλ

∫
Dxexp(−

∫ tb
ta
Hλ(ηλ(t))))δ(·x(t)−

∑
i ηi)

We rewrite the delta function in its Fourier representation as in previous sec-
tions:
G(xb, tb|xa, ta) =

∫
Dp
2π

∏
λ(
∫
Dηλ)

∫
Dxe

∫ tb
ta
dt(p(t)·x(t)−Hλ(ηλ(t))e−i

∑
λ

∫∞
−∞ dtp(t)ηλ(t)

Mixed correlation functions can be generated here by the usual functional dif-
ferentiation:
< η1(t1)...ηn(tn) >= (−i)n

∫
Dη

∫
Dp
2π ( δ

δ(p(t1)) ...
δ

δ(p(tn))e
i
∫ tb
ta
p(t)η(t))e−

∫ tb
ta
H(p(t))

6 Symmetry Based Methods

There are two primary tools that have recently become popular in theoretical
physics, that enable us to solve for the nonlinear behavior of a system by ex-
ploiting its symmetries. One is the Operator Product Expansion and the other
involves the construction of ’duals’ that live in a space of one dimension higher.
The general way to construct a gravity dual is by considering the scaling sym-
metries of the system. First there are hints of a Lifschitz scaling W → λW and
t→ λzt in certain markets. In markets that possess even a weakly broken Lifs-
chitz symmetry, it is relatively simple to construct a gravity dual and calculate
two or three point functions. In markets where this symmetry is absent, we
have to work with less constraining symmetries such as GCS.

6.1 Lifschitz Gravity Dual

Gravity duals for Lifschitz theories are well known. Through the coset construc-
tion, one can prove that the unique metric that respects the given symmetry is
the following:

ds2 = −L
2z

r2z dt
2 + L2

r2 (2dtdx+ dx2 + dr2)
Explicitly, we see that Lifschitz symmetries hold. The additional symmetries
are translations, rotations, and Galilean boosts. We do not have an analogue of
special conformal transformations for general z. We wish to express this metric
as the solution of some action describing Einstein gravity coupled to matter
fields. As shown in ’Lifschitz’ the action can be written as that of a massive
Maxwell field:
S =

∫
d6x
√
−g(R− 2Λ− 1

4FµνF
µν)

This can be solved for the vector field A and the metric gµν .Indeed we will
recover the asymptotically Lifschitz solution.

6.1.1 Philosophy

The general philosophy behind holography is that a nonlinear system with N
strongly interacting degrees of freedom should have a weakly coupled (linear)
dual in the large N limit. The dual called a ’gravity’ dual merely satisfies the
requirement that it is general coordinate invariant. In the abstract sense one
does not have to link it to gravity or string theory. The market consists of
N time interacting series where N is large- we also know that the time series
have highly nonlinear correlations. Hence we start out assuming tha. Then it is
reasonable to assume that δρ being an effective scalar field is dual to a scalar in
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the bulk. Thereafter we calculate all possible terms in the two, three and four
point functions. Finally we compare our result with LSS.

6.2 Towards a Large-N Dual

We now consider free massive and massless scalar field on this background. calar
field on this background. Often even when we wish to measure the correlation
function of a part of the boundary stress tensor (sourced by the bulk metric) or a
vector, we use a massive scalar field as a proxy. Therefore this assumption may
be valid. From the boundary action perspective this is equivalent to introducing
a non-normalizable ’source’ coupling of the form
Sbound = Sbound +

∫
φ(δρ)

Such that functional differentiation with respect to φ gives us factors of ρ in the
correlation function:
δnZ
δφn =< (δρ)1...(δρ)n >
We can then try all possible interaction vertices and both the massive and
massless cases. This approach may be helpful in the case of LSS, where we
know how the correlators at least at low k. The action is given by:
I = 1

2

∫
d6√g(gmn∂mφ∂nφ+M2φ2)

The field equations are expressed thus:

ud+z∂u(u−(d+z)∂uφ) + (u2z∂2
t + ∂2)φ− M2

u2 φ = 0
Fourier transforming in time and spatial coordinates (but not u) we get:

uD+z∂µ(u−(4+z)∂uφ)− (u2zω2 + k2)φ− M2

u2 φ− M2

u2 φ(ω, k) = 0
We can solve this equation separately in the massless case. Imposing regularity
for M = 0, the following solution is obtained:

φ(0)(ω, k)e−
1
2ωx

2

U(k
2+ω(1−d−z)

4ω , 1
2 (1− d− z), ωx2)

Where φ(0)(ω, k) is arbitrary and indeed determined by boundary conditions,
while U is the hypergeometric Kummer function. For the massive case, we have
the following:
φ = φ0(ω, k)e−1/2ωx2

x2cU(a, b, ωx2)
Where a, b and c are:

a = 1
2 −

1
4

√
(1 + d+ z)2 + 4M2 + k2

4ω

b = 1− 1
2

√
(1 + d+ z)2 + 4M2L2

c = 1
4 (1 + d+ z)− 1

4

√
(1 + d+ z)2 + 4M2

We now carry out the asymptotic expansion near the boundary at u = 0 as is
common in AdS/CFT. The scalar field near the boundary can be expressed in
the following form:
φ = u∆−(φ0(t, x, u) + ...) + u∆+(φ(t, x, u) + ...)
Assuming non degenerate roots we can expand thus:
φ = u∆−(φ0(t, x) + ...) + u∆+(φ̃(0)(t, x))
Where δ± are the roots of:
∆(∆− d− 1− z) = M2

The exact form of the expansion u will depend upon the value of z. For instance
for 0 < z < 1 we will get the following:
φ(t, x, u) = φ0 + u2φ(2)(t, x) + u2+2η + ...+ u4φ4(t, x) + ...
We will consider this case in this work, as they cover the cases of physical interest
(n between −3 and 1). The equations of motion can be solved perturbatively
for φn. All this will contribute to the one point function. We should be able
to fix the renormalization conditions to send this to either ρ0 or zero for the
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purpose of calculating density correlators. We focus on the two point function.
Expanding the solution in terms of the confluent hypergeometric function, we
simply throw away the divergent terms as u → ε.The result for the two point
function is:
< O(ω, k, z)O(ω, k, z) >= −(3 + z)ω(3+z)/2 Γ((3+z)/2)

Γ( 1
2 (3+z))

Γ(k2/4ω+ 5+z
4 )

Γ(k2/4− 1
4 (1+z))

Now we turn to the calculation of higher point functions that can come from a
variety of bulk indices.

6.2.1 Bulk Vertices

We can consider the following three point interactions in the bulk that satisfy
both Lorentz invariance and are relevant:
L3,1 = φ1(x1)φ2(x2)φ(x3)
L3,2 = ∂µφ1(x1)∂µφ2(x2)φ(x3)
The corresponding three point functions:
G3,1(X,Y, Z) =

∫
da
ud+3K1(a;X)K2(a;Y )K3(a;Z)

G3,2(X,Y, Z) =
∫

da
ud+3 ∂µK1(a;X)∂µK2(a;Y )K3(a;Z)

Where the bulk-to-boundary K is given by, in the massless case:

K = φ(0)(ω, k)e−
1
2ωx

2

U(k
2+ω(1−d−z)

4ω , 1
2 (1− d− z), ωx2)

And in the massive case:
K = φ0(ω, k)e−1/2ωx2

x2cU(a, b, ωx2)
Where a, b and c are:

a = 1
2 −

1
4

√
(1 + d+ z)2 + 4M2 + k2

4ω

b = 1− 1
2

√
(1 + d+ z)2 + 4M2L2

c = 1
4 (1 + d+ z)− 1

4

√
(1 + d+ z)2 + 4M2

For z=2 the calculation using holography was done in a similar vein in ’Gravity
duals’. Results match the functions derived in the previous section for the two
point case. Therefore the two approaches are consistent Similarly for other
ranges of z we can perform similar calculations. For four point functions we can
have the φ4 vertex or contribution from the three point vertices. We can write
these down explicitly as follows:
G4,1(X,Y, Z, V ) =

∫
da
ud+3K1(a;X)K2(a;Y )K3(a;Z)K4(a;V )

G4,2(X,Y, Z) =
∫

da
ud+3K1(a;X)K2(a;Y )G(a; b)K ′1(b;Z)K ′2(b; z)

Here G is a bulk-to-bulk propagator which can be calculated in a similar manner
to the bulk-to-boundary propagator. All these diagrams are in Figures 10-12.
The integrals could be evaluated explicitly but we are simply here interested in
which of them if any, reproduce the LSS results at small k. The idea now is to
use these functional forms to fit the parameters from data.

7 From Correlation Functions to Trading Strat-
egy

Consider our observables. In a given time frame, we have the time series of a
vector of N stocks along with corresponding α factors {pt, αt}t=0

t=−T . the prices
update on a time scale τ1 and the α factors on another time scale τ2 with:
τ1 << τ2
A trading strategy is generally defined as maximizing a utility function:
u(x) := E(π(x))− (γ/2)V (π(x))
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We argue that correlation functions can be used to construct much more robust
trading strategies than those constructed using absolute covariance matrices,
etc. The following functions can be fit from observation:
< φ(0)φ(t) >,< φ(0)φ(t1)φ(t2) >, ...
For n = N +K we will construct all n-point functions. This is because they by
definition account for the time translation invariance of the system, and their
observed values can be We would ideally look for spikes in the three point func-
tion at a given configuration (Pi, ti) with α factors updated. We can construct
operators with specific spikes in their correlation functions. The space of such
functions will correspond to the space of viable trading strategies if the spikes
outweigh the transaction costs.

7.1 Pairs Trading

For markets in which pair trading strategies to hold, it is simple to construct a
field theory. In such markets, there exist equities such that certain fixed linear
combinations of them are Gaussian. Say we are concerned with M co-integrated
groups each with nM equities. Here we would have:∏nM
i=1

∫
Dηiδ(

∑mN
i αiφi − ηi)exp( η

2
i

σ2 )
with the usual Fourier transform representation we get:∏nM
i=1

∫
DpDηie

p(
∑mN
i αiφi−ηi)exp(

η2i
σ2 )

We now have to read off a series of correlation coefficients from the data.

7.2 Prices as ’collider’ experiments

The aim of conducting experiments in a particle physics collider is to uncover the
’couplings’ (or scale-dependent correlations) of different particles in the system.
The experiment cannot be repeated. The market or any time series data is akin
to the latter- every data point in the historical time series is a certain fixed
measurement that can provide information on the correlation structure of the
market.
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Figure 2: Feynman Diagrams for Generalized OU

8 Appendix

8.1 Perturbative Methods and Feynman Diagrams

Now let us compute correlation functions. The perturbation method essentially
follows SDEs. It is an expansion in small noise. We write the functions integral
thus:
Z =

∫
Dφexp(iSeff + Jφ+ J̃ φ̃)

Where the effective action can be split in the free and interacting parts:
S = Sfree + SI
Correlation functions can be calculated by functionally differentiating with re-
spect to the currents:
<

∏m
i=1 φ(ti)

∏n
j=1 φ̃(tj) >=

∏m
i=1

δ
δJ(ti)

∏n
j=1 Z(φ, φ̃, J, J̃)|J,J̃=0

We can see that the n-point correlation function is just the n-th moment of the
price. We can get the cumulant from this by simply dividing the corresponding
moment by Z. We can perturbatively expand the partition function around the
free part:
Z =

∫
DφeSfree(1 + Sint +

∫
dtJφ) + 1

2! (Sint +
∫
dtJφ+ J̃ φ̃) + 1

3!S
3
int)

The interacting part of the above action can most generally be written as:
Sint =

∑∞
m,n=1

vm,n
m!n!φ

mφ̃n

Where vm,n are interaction veritces. These will each correspond to a particular
tree level Feynman diagram. Interaction between different moments can give
rise to ‘loops’ in the same manner as in quantum field theory. The only differ-
ent is that loop corrections account for quantum effects in the latter case, and
non-linearities in the former. So far this discussion was extremely general. We
specialize to markets in the next section.

8.2 Generalized Ornstein Unhelbeck Process

Let us consider an Ornstein Unhelbeck process with a trilinear vertex added on.
It is given by the SDE:

˙x(t) + ax(t) + bx(t)2 −
√
Dη(t)

The corresponding action is:

11



Figure 3: Feynman Rules for Generalized OU

S(x, x̃) =
∫

(x̃(ẋ(t) + ax(t) + bx(t)2 − yδ(t− t0))− D
2

˜x(t)
2
dt)

The Feynman rules are the following: a) The inverse propagator is given thus:
G(t− t′) = ( ddt + a)−1δ(t− t′)
The one point function or mean is simply:
< x(t) >= ye−a(t−t0)H(t− t0)
The Green’s function is:
< x(t1x(t2)) >= e−a(t1−t2)H(t1−t2)
Where H is the left discontinuous Heaviside step function. Higher point func-
tions can be derived by simply functionally differentiating with respect to the
currents. These follow the same diagrammatics as the corresponding QFT. The
diagrams in FFigure 2 represent the tree level contributions to the mean or one
point function and the variance or two point function.

8.3 From Noise to Action

While analyzing more general non-Gaussian noise distributions, it will often be
useful to write the form of the noise in momentum space
D =

∫
dp2πeipzD

Here we analyze how for a given noise profile, one can fix the coefficients of the
potential. A form of noise that is considered sufficiently general to capture the
behavior of stock and equity markets is the Levy distribution.
Lλσ2(z) =

∫∞
−∞

dp
2πL

λ
σ2(p)

Where
Lλσ2(p) = exp(−σp2)
Non-gaussianities in noise can also be modeled using a Boltzmann distribution.
In fact this suggests a notion of temperature in the noise. This may actb as an
order parameter that characterizes phase transitions in the market. The Levy
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Distribution is given by:
Lλσ2(z) =

∫∞
−∞

dp
2π e

ipzLλσ2(p)
Where
Lλσ2(p2) = exp(−(σ2p2)λ/2/2)
The Hamiltonian is read off from above:
H(p) = 1

2 (σ2p2)
λ
2

The Gaussian distribution corresponds to the special case λ = 2. The large z
or small momentum expansion yields:
Lλσ2(z) ≈

∫∞
−∞

dp
2π e

ipz(1− 1
2 (σ2p2)λ/2)

Upon performing the integral:
Lλσ2(z) ≈ λ

|z|1+λ

8.4 Generalized Central Limit Theorem

The central limit theorem states that the convolution of infinitely many distribu-
tions of finite width approaches a Gaussian distribution or a Levy distribution.
After a number t of convolutions of a distribution with Hamiltonian H(p), we
get:
D(x, t) =

∫
dp
2π e

ipz−tH(p)

For large t we simply use the saddle point approximation:
tH ′(p∗) = ix
First let us assume that for small p, the Hamiltonian goes as p2. We now expand
around the saddle point to get:
D(z, t) ≈ eip∗z−tH(p∗)

∫
dp
2π e
−(p−p∗)z−t∂2H(p)(p−p∗)2/2

D(z, t) = eip
∗z−tH(p∗)
√

2πσ2
e−z

2/2tσ2

= eσ
2p∗2/2−tH(p∗)
√

2πσ2
e−(z−tσ2p∗)2/2tσ2

We get a Gaussian here. On the other hand if H(p) starts off as |p|λ then the
saddle point is governed by this term. We will get the Levy distribution up to
a possible drift term:
H(p) = −irp+Hλ,σ,β(p)
Where Hλ,σ,β is a Levy distribution with the following explicit form Empirically
a lot of pricing time series fits this form. The specific parameters can be inferred
from the data.

8.5 Gamma Distribution

The normalized Gamma distribution is:
Dµ,ν = 1

Γ(ν)µ
νzν−1e−µz

This corresponds to the Hamiltonian:
H = νlog(1− ip/µ)

8.6 Boltzmann Distribution

At extremely high frequencies, the returns in NASDAQ 100 and SP 500 the
Boltzmann distribution provides an ideal fit:
B(z) = 1

2T e
−|z|/T
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In Fourier space this is expressed thus:
B(p) =

∫∞
−∞ dzeipz 1

2T e
−|z|/T = 1

1+(Tp)2 = e−H(p)

The Hamiltonian is:
H(p) = log(1 + (Tp)2)
Apart from a set of extremely rare events, all events follow the Boltzmann law.
The Boltzmann distribution allows us a measure of volatility to the market-the
temperature T. This is observed to change very slowly with time, contingent
on broader economic and political factors. Indeed the years corresponding to
economic crises have precisely corresponded with those years where the market
displayed an abnormally high temperature.

8.7 Student Distribution

The Student distribution is another one that has been proposed to account for
heavy tails observed in finance:

Dδ(z) = Nδ
1√

2πσ2
e
−z2/2σ2

δ

Where exδ is an approximation to an exponential distribution that corresponds
to the latter in the limit δ → 0:
exδ = (1− δz)−1/δ

The normalization is given by:

Nδ =
√
δΓ(1/δ)

Γ(1/δ−1/2)
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