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The concept of present value lies at the heart of finance in general and actuarial science in 

particular. The importance of the concept is universally recognized. Present values of various 

cash flows are extensively utilized in the pricing of financial instruments, funding of financial 

commitments, financial reporting, and other areas. 

 

A typical funding problem involves a financial commitment (defined as a series of future 

payments) to be funded. A financial commitment is funded if all payments are made when they 

are due. A present value of a financial commitment is defined as the asset value required at the 

present to fund the commitment.  

 

Traditionally, the calculation of a present value utilizes a discount rate – a deterministic return 

assumption that represents investment returns. If the investment return and the commitment are 

certain, then the discount rate is equal to the investment return and the present value is equal to 

the sum of all payments discounted by the compounded discount rates. The asset value that is 

equal to this present value and invested in the portfolio that generates the investment return will 

fund the commitment with certainty. 

 

In practice, however, perfectly certain future financial commitments and investment returns 

rarely exist. While the calculation of the present value is straightforward when returns and 

commitments are certain, uncertainties in the commitments and returns make the calculation of 

the present value anything but straightforward. When investment returns are uncertain, a single 

discount rate cannot encompass the entire spectrum of investment returns, hence the selection of 

a discount rate is a challenge. In general, the asset value required to fund an uncertain financial 

commitment via investing in risky assets – the present value of the commitment – is uncertain 

(stochastic).
1
 

 

While the analysis of present values is vital to the process of funding financial commitments, 

uncertain (stochastic) present values are outside of the scope of this paper. This paper assumes 

that a present value is certain (deterministic) – a present value is assumed to be a number, not a 

random variable in this paper. The desire to have a deterministic present value requires a set of 

assumptions that "assume away" all the uncertainties in the funding problem.  

 

In particular, it is generally necessary to assume that all future payments are perfectly known at 

the present. The next step is to select a proper measurement of investment returns that serves as 

the discount rate for present value calculations. This step – the selection of the discount rate – is 

the main subject of this paper.  

 

One of the main messages of this paper is the selection of the discount rate depends on the 

objective of the calculation. Different objectives may necessitate different discount rates. The 

paper defines investment returns and specifies their relationships with present and future values.  

The key measurements of investment returns are defined in the context of return series and, after 

a concise discussion of capital market assumptions, in the context of return distributions. The 

paper concludes with several examples of investment objectives and the discount rates associated 

with these objectives. 
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1. Investment Returns 

 

This section discusses one of the most important concepts in finance – investment returns. 

 

Let us define the investment return for a portfolio of assets with known asset values at the 

beginning and the end of a time period. If PV is the asset value invested in portfolio P at the 

beginning of a time period, and FV is the value of the portfolio at the end of the period, then the 

portfolio return RP for the period is defined as  

 

 
P

FV PV
R

PV


       (1.1) 

 

Thus, given the beginning and ending values, portfolio return is defined (retrospectively) as the 

ratio of the investment gain over the beginning value. Definition (1.1) establishes a relationship 

between portfolio return RP and asset values PV and FV.  

 

Simple transformations of definition (1.1) produce the following formula: 

 

 
 1 PFV PV R        (1.2) 

 

Formula (1.2) allows a forward-looking (prospective) calculation of the end-of-period asset value 

FV. The formula is usually used when the asset value at the present PV and portfolio return RP 

are known (this explains the notation: PV stands for “Present Value”; FV stands for “Future 

Value”).  

 

While definition (1.1) and formula (1.2) are mathematically equivalent, they utilize portfolio 

return RP in fundamentally different ways. The return in definition (1.1) is certain, as it is used 

retrospectively as a measurement of portfolio performance. In contrast, the return in formula 

(1.2) is used prospectively to calculate the future value of the portfolio, and it may or may not be 

certain. 

 

When a portfolio contains risky assets, the portfolio return is uncertain by definition. Most 

institutional and individual investors endeavor to fund their financial commitments by virtue of 

investing in risky assets. The distribution of uncertain portfolio return is usually analyzed using a 

set of forward-looking capital market assumptions that include expected returns, risks, and 

correlations between various asset classes. Later sections discuss capital market assumptions in 

more detail. 

 

Given the present value and portfolio return, formula (1.2) calculates the future value. However, 

many investors with future financial commitments to fund (e.g. retirement plans) face a different 

challenge. Future values – the commitments – are usually given, and the challenge is to calculate 

present values. A simple transformation of formula (1.2) produces the following formula: 
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1 P

FV
PV

R



       (1.3) 

 

Formula (1.3) represents the concept of discounting procedure. Given a portfolio, formula (1.3) 

produces the asset value PV required to be invested in this portfolio at the present in order to 

accumulate future value FV. It must be emphasized that return RP in (1.3) is generated by the 

actual portfolio P, as there is no discounting without investing. Any discounting procedure 

assumes that the assets are actually invested in a portfolio that generates the returns used in the 

procedure.  

 

Formulas (1.2) and (1.3) are mathematically equivalent, and they utilize portfolio return in 

similar ways. Depending on the purpose of a calculation in (1.2) or (1.3), one may utilize either a 

particular measurement of return (e.g. the expected return or median return) or the full range of 

returns.
2
 The desirable properties of the future value in (1.2) or present value in (1.3) would 

determine the right choice of the return assumption.  

 

Future and present values are, in a certain sense, inverse of each other. It is informative to look at 

the analogy between future and present values in the context of a funding problem, which would 

explicitly involve a future financial commitment to fund. Think of an investor that has $P at the 

present and has made a commitment to accumulate $F at the end of the period by means of 

investing in a portfolio that generates investment return R. 

 

Similar to (1.2), the future value of $P is equal to 

 

    1FV P R        (1.4) 

 

Similar to (1.3), the present value of $F is equal to 

 

   
1

F
PV

R



        (1.5) 

 

The shortfall event is defined as failing to accumulate $F at the end of the period:  

 

   FV F         (1.6) 

 

The shortfall event can also be defined equivalently in terms of the present value as $P being 

insufficient to accumulate $F at the end of the period: 

 

   P PV        (1.7) 

 

In particular, the shortfall probability can be expressed in terms of future and present values: 

 

  Shortfall Probability =    Pr PrFV F PV P  
 
  (1.8) 
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If the shortfall event happens, then the shortfall size can also be measured in terms of future and 

present values. The future shortfall F FV is the additional amount the investor will be required 

to contribute at the end of the period to fulfill the commitment. The present shortfall PV P is 

the additional amount the investor is required to contribute at the present to fulfill the 

commitment.  

 

Clearly, there is a fundamental connection between future and present values. However, this 

connection goes only so far, as there are issues of great theoretical and practical importance that 

distinguish future and present values. As demonstrated in a later section, similar conditions 

imposed on future and present values lead to different discount rates. 

 

Uncertain future values generated by the uncertainties of investment returns (and commitments) 

play no part in financial reporting. In contrast, various actuarial and accounting reports require 

calculations of present values, and these present values must be deterministic (under current 

accounting standards, at least). Therefore, there is a need for a deterministic discounting 

procedure. 

 

Conventional calculations of deterministic present values usually utilize a single measurement of 

investment returns that serves as the discount rate. Since there are numerous measurements of 

investment returns, the challenge is to select the most appropriate measurement for a particular 

calculation. To clarify these issues, subsequent sections discuss various measurements of 

investment returns. 

 

2. Measurements of Investment Returns: Return Series 

 

This section discusses the key measurements of series of returns and relationships between these 

measurements. Given a series of returns 1, , nr r , it is desirable to have a measurement of the 

series – a single rate of return – that, in a certain sense, would reflect the properties of the series. 

The right measurement always depends on the objective of the measurement. The most popular 

measurement of a series of returns 1, , nr r  is its arithmetic average A defined as the average 

value of the series: 

 

1

1 n

k

k

A r
n 

        (2.1) 

 

As any other measurement, the arithmetic average has its pros and cons. While the arithmetic 

average is an unbiased estimate of the return, the probability of achieving this value may be 

unsatisfactory. As a predictor of future returns, the arithmetic average may be too optimistic.  

 

Another significant shortcoming of the arithmetic return is it does not “connect” the starting and 

ending asset values. The starting asset value multiplied by the compounded arithmetic return 

factor (1 + A) is normally greater than the ending asset value.
3
 Therefore, the arithmetic average 

is inappropriate if the objective is to “connect” the starting and ending asset values. The 
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objective that leads to the arithmetic average as the right choice of discount rate is presented in 

Section 5. 

 

Clearly, it would be desirable to “connect” the starting and ending asset values – to find a single 

rate of return that, given a series of returns and a starting asset value, generates the same future 

value as the series. This observation suggests the following important objective.  

 

Objective 1: To "connect" the starting and ending asset values. 

 

The concept of geometric average is specifically designed to achieve this objective. If A0 and An 

are the starting and ending asset values correspondingly, then, by definition, 

 

   0 11 1 n nA r r A       (2.2) 

 

The geometric average G is defined as the single rate of return that generates the same future 

value as the series of returns. Namely, the starting asset value multiplied by the compounded 

return factor  1
n

G is equal to the ending asset value: 

 

 0 1
n

nA G A       (2.3) 

 

Combining (2.2) and (2.3), we get the standard definition of the geometric average G: 

 

 
1

1

1 1
n

n
k

k

G r


         (2.4) 

 

Let us re-write formulas (1.2) and (1.3) in terms of present and future values. If An is a future 

payment and 1, , nr r  are the investment returns, then the present value of An is equal to the 

payment discounted by the geometric average: 

 

     
0

11 1 1

n n

n

n

A A
A

r r G
 

  
   (2.5) 

 

Thus, the geometric average connects the starting and ending asset values (and the arithmetic 

average does not). Therefore, if the primary objective of discount rate selection is to connects the 

starting and ending asset values, then the geometric average should be used for the present value 

calculations. 

 

To present certain relationships between arithmetic and geometric averages, let us define 

variance V as follows:
 4

 

 

 
2

1

1 n

k

k

V r A
n 

       (2.6) 
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If V = 0, then all returns in the series are the same, and the arithmetic average is equal to the 

geometric average. Otherwise (if V > 0), the arithmetic average is greater than the geometric 

average (A > G).
5
 

 

There are several approximate relationships between arithmetic average A, geometric average G, 

and variance V. These relationships include the following relationships that are denoted (R1) – 

(R4) in this paper. 

 

2G A V        (R1) 

 

   
2 2

1 1G A V        (R2) 

 

   
21

1 1 exp 1
2

G A V A
 

     
 

   (R3) 

 

    
1 2

2
1 1 1 1G A V A




        (R4) 

 

These relationships produce different results, and some of them work better than the others in 

different situations. Relationship (R1) is the simplest, popularized in many publications, but 

usually sub-optimal and tends to underestimate the geometric return.
6
 Relationships (R2) – (R4) 

are slightly more complicated, but, in most cases, should be expected to produce better results 

than (R1). 

 

The geometric average estimate generated by (R4) is always greater than the one generated by 

(R3), which in turn is always greater than the one generated by (R2).
7
 Loosely speaking, 

 

    (R2) < (R3) < (R4) 

 

In general, “inequality” (R1) < (R2) is not necessarily true, although it is true for most practical 

examples. If 4A V , then the geometric average estimate generated by (R1) is less than the one 

generated by (R2).
8
 

 

There is some evidence to suggest that, for historical data, relationship (R4) should be expected 

to produce better results than (R1) – (R3). See Mindlin [2010] for more details regarding the 

derivations of (R1) – (R4) and their properties. 

 

Example 2.1. 2n  , 1 1%r   , 2 15%r  . Then arithmetic mean A, geometric mean G, and 

variance V are calculated as follows. 

 

     
1

1% 15% 7.00%
2

A      
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      1 1% 1 15% 1 6.70%G       

 

     
2

2

1

1
0.64%

2
k

k

V r A


    

 

Note that    
2 2

1 1G A V    , so formula (R2) is exact in this example. 

 

Given $1 at the present, future value FV is 

 

      1 1 1% 1 15% 1.1385FV       

 

If we apply arithmetic return A to $1 at the present for two years, we get 

 

     
2

1 7% 1.1449   

 

which is greater than future value FV = 1.1385. 

 

If we apply geometric return G to $1 at the present for two years, we get 

 

     
2

1 6.70% 1.1385   

 

which is equal to future value FV, as expected. 

 

Given $1 in two years, present value PV is 

 

    
  

1
0.8783

1 1% 1 15%
PV  

 
 

 

If we discount $1 in two years using geometric return G, we get 

 

    
 

2

1
0.8783

1 6.70%



 

 

 

which is equal to present value PV, as expected. 

 

If we discount $1 in two years using arithmetic return A, we get 
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2

1
0.8734

1 7.00%



 

 

which is less than present value PV = 0.8783. 

 

3. Capital Market Assumptions and Portfolio Returns 

 

This section introduces capital market assumptions for major asset classes and outlines basic 

steps for the estimation of portfolio returns. 

 

It is assumed that the capital markets consist of n asset classes. The following notation is used 

throughout this section: 

 

mi mean (arithmetic) return; 

si standard deviation of return; 

cij correlation coefficient between asset classes i and j. 

 

A portfolio is defined as a series of weights  iw , such that 
1

1
n

i

i

w


 . Each weight iw represents 

the fraction of the portfolio invested in the asset class i. 

 

Portfolio mean return A and variance V are calculated as follows: 

 

1

n

i i

i

A w m


       (3.1) 

 

, 1

n

i j i j ij

i j

V w w s s c


      (3.2) 

 

Let us also define return factor as 1 + R. It is common to assume that the return factor has 

lognormal distribution (which means ln(1 + R) has normal distribution). Under this assumption, 

parameters µ and σ of the lognormal distribution are calculated as follows: 

 

  22 ln 1 1V A


       (3.3) 

 

Using σ calculated in (3.3), parameter μ of the lognormal distribution is calculated as follows: 

 

  21
ln 1

2
A         (3.4) 

 

Given parameters μ and σ, the P
th
 percentile of the return distribution is equal to the following: 
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  1exp 1PR P          (3.5) 

 

where   is the standard normal distribution. In particular, if P = 50%, then  1 0P  . 

Therefore, the median of the return distribution under the lognormal return factor assumption is 

calculated as follows. 

 

 0.5 exp 1R        (3.6) 

 

Example 3.1. Let us consider two uncorrelated asset classes with mean returns 8.00% and 6.00% 

and standard deviations 20.00% and 10.00% correspondingly. If a portfolio has 35% of the first 

class and 65% of the second class, its mean and variance are calculated as follows. 

 
    8.00% 35% 6.00% 65% 6.70%A      

 

       
2 2

20.00% 35% 10.00% 65% 0.9125%V       

 

It is interesting to note that the standard deviation of the portfolio is 9.55% ( 0.9125% ), 

which is lower than the standard deviations of the underlying asset classes (20.00% and 10.00%). 

Assuming that the return factor of this portfolio has lognormal distribution, the parameters of this 

distribution are 

 

    
 

2

0.9125%
ln 1 0.0893

1 6.70%


 
   
  

 

 

     
20.0893

ln 1 6.70% 0.0609
2

      

 

From (3.5), the median return for this portfolio is  

 

      1

0.5 exp 0.0609 0.0893 0.5 1 6.27%R       

 

From (3.5), the 45th percentile for this portfolio is  

 

      1

0.45 exp 0.0609 0.0893 0.45 1 5.09%R       

 

4. Measurements of Investment Returns: Return Distributions 

 

The previous section presented the relationships between the arithmetic and geometric averages 

defined for a series of returns. This section develops similar results when return distribution R is 

given. 
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In this case, the arithmetic average (mean) return A is defined as the expected value of R: 

 

 A E R       (4.1) 

 

The geometric average (mean) return G is defined as follows: 

 

   exp ln 1 1G E R       (4.2) 

 

These arithmetic and geometric average returns are the limits of the arithmetic and geometric 

averages of appropriately selected series of independent identically distributed returns. 

Specifically, let  kr be a series of independent returns that has the same distribution as R. Let us 

define arithmetic averages nA  and geometric averages nG for 1, , nr r : 

 

1

1 n

n k

k

A r
n 

        (4.3) 

 

 
1

1

1 1
n

n
n k

k

G r


        (4.4) 

 

According to the Law of Large Numbers (LLN), nA converge to E. Also, from (4.4) we have 

 

   
1

1
ln 1 ln 1

n

n k

k

G r
n 

       (4.5) 

 

Again, according to the LLN,  
1

1
ln 1

n

k

k

r
n 

  converge to the expected value   ln 1E R . From 

(4.5),  ln 1 nG converges to   ln 1E R as well. Consequently, nG converge to 

   exp ln 1 1E R  , which, according to (4.2), is equal to G.  

 

To recap, nA converges to A and nG  converges to G when n tends to infinity. As discussed above, 

the approximations (R1) – (R4) are true for nA  and nG , where nV is defined as in (2.6): 

 

 
2

1

1 n

n k n

k

V r A
n 

       (4.6) 

 

Since nV converge to the variance of returns V when n tends to infinity, the approximations (R1) 

– (R4) are true for A and G as well. As was discussed before, if the primary objective of discount 
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rate selection is to connects the starting and ending asset values, then the geometric mean is a 

reasonable choice for the discount rate. 

 

This conclusion, however, is valid over relatively long time horizons only. Over shorter time 

horizons, the geometric average of series  kr has non-trivial volatility and cannot be considered 

approximately constant. More importantly, the investor may have objectives other than 

connecting the starting and ending asset values. All in all, additional conditions of stochastic 

nature may be required to select a reasonable discount rate. Such conditions are discussed in the 

next section. 

 

For large n, the Central Limit Theorem (CLT) can be used to analyze the stochastic properties of 

the geometric average. According to the CLT applied to  
1

1
ln 1

n

k

k

r
n 

 , the geometric average 

return factor 1 nG defined as  

 

       
1

11

1
1 1 exp ln 1

n n

n
n k k

kk

G r r
n 

 
     

 
  

 

is approximately lognormally distributed.  If the mean and standard deviation of  ln 1 kr are  

and correspondingly, then the parameters of the geometric average return factor are  and
n


. 

 

Assuming that the return factor has lognormal distribution, it can be shown that relationship (R4) 

is exact:
9
 

 

    
1 2

2
1 1 1 1G A V A




         (4.7) 

 

An important property of lognormal return factors is the geometric mean return is equal to the 

median return. Indeed, if  and  are the parameters of the lognormal distribution, then 

 ln 1 R  is normal and 

 

         exp ln 1 1 exp 1G E R        (4.8) 

 

which is the median of the return distribution according to (3.6). 

 

Thus, if a discount rate were chosen at random (not that this is a great idea), then there would be 

a 50% chance for the discount rate to be greater than the geometric mean and a 50% chance to be 

less than the geometric mean. Similarly, if a present value were calculated using randomly 

selected discount rate, then there would be a 50% chance that a present value is greater than the 

present value calculated using the geometric mean.
10
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Given arithmetic mean A and variance V, formula (4.7) produces geometric return G. If there is a 

need to calculate the arithmetic mean when the geometric mean and the variance are given, then 

the arithmetic mean is calculated as follows: 

 

     
 

2

1 1 4
1 1 1

2 2 1

V
A G

G
    


   (4.9) 

 

Example 4.1. This example is a continuation of Example 3.1. In this example, 6.70%A and 

0.9125%V  . According to (4.7), 

 

    

 
2

1 0.067
1 6.27%

0.009125
1

1 0.067

G


  




 

 

which is equal to the median return calculated in Example 3.1. Note that the geometric returns 

for the individual asset classes are 6.19% and 5.53%. It is noteworthy that the geometric return 

for the portfolio that has 35% of the first class and 65% of the second class is 6.27%, which 

higher than the geometric returns of the individual classes. 

 

Let us take a look at the stochastic properties of the geometric average for this portfolio. Under 

the lognormal return factor assumption, the parameters of the return distribution are 0.0609   

and 0.0893   (see Example 3.1). If n = 10, then the geometric average return factor 1 nG  is 

approximately lognormally distributed with parameters 0.0609  and 0.283
n


 . The mean, 

median and standard deviation are 6.32%, 6.27% and 3.00% correspondingly. Note significant 

decreases of the mean and standard deviation of the geometric average compared to the original 

return distribution (6.32% vs. 6.70% and 3.00% vs. 9.55%), while the median remains the same. 

 

5. Examples of Discount Rate Selection 

 

As was discussed in the previous section, the investor may have objectives other than connecting 

the starting and ending asset values. This section discusses and presents three additional 

examples of such objectives that lead to the selection of discount rates.  

 

Let us consider a simple modification of the funding problem discussed earlier in the paper. 

Think of an investor that has made a commitment to accumulate $F at the end of the period by 

means of investing in a portfolio that generates (uncertain) investment return R. To fund the 

commitment, the investor wants to make a contribution that is the subject to certain conditions. 

 

For convenience, let us recall Objective 1 introduced in Section 2: 
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Objective 1: To "connect" the starting and ending asset values. 

 

As was demonstrated in Section 2, the right discount rate for this objective is the geometric 

return. 

 

Objective 2: To have a "safety cushion".  

 

Let us assume that the investor's objective is have more than a 50% chance that investment 

returns are greater than the discount rate (the "safety cushion"). For example, if it is required to 

have a P% chance that the investment return is greater than the discount rate, then the discount 

rate that delivers this safety level is the (100 - P)th percentile of the return distribution. 

 

Objective 3: No expected gains/losses in the future. 

 

Let us assume that the investor's objective is to have neither expected gains nor losses at the end 

of the period. If Cf is the investor's contribution at the present, then this objective implies that the 

commitment is the mean of the (uncertain) future value of Cf : 

 

        0 1fE FV E C R F       (5.1) 

 

Equation (5.1) gives the following formula for contribution Cf (subscript f in Cf indicates that the 

objective is "no expected gains or losses in the future"): 

 

    
 1

f

F
C

E R



     (5.2) 

 

Formula (5.2) shows that the objective "no expected gains or losses in the future" leads to 

contribution Cf calculated as the present value of the commitment using the arithmetic mean 

return. Hence, the right discount rate fd for this objective is the arithmetic mean return: 

 

     fd E R       (5.3) 

 

As discussed in a prior section, there is a certain symmetry and fundamental connection between 

future and present values. In light of this discussion, the following objective is a natural 

counterpart to Objective 3. 

 

Objective 4: No expected gains/losses at the present.  

 

At first, this objective looks somewhat peculiar. Everything is supposed to be known at the 

present, so what kind of gains/losses can exist now? But remember that that the asset value 

required to fund the commitment – the present value of the commitment – is uncertain at the 

present. Therefore, the objective "today's contribution is the mean of the present value of the 
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commitment" is as meaningful as the objective "the commitment is the mean of the future value 

of today's contribution" discussed in Objective 3. 

 

If Cp is the contribution the investor makes at the present, then the objective "no expected 

gains/losses at the present" implies the following equation. 

 

      0
1

P

F
E PV E C

R

 
   

 
    (5.4) 

 

Equation (5.4) gives the following formula for contribution Cp (subscript p in Cp indicates that 

the objective is "no expected gains or losses at the present"): 

 

    
1

1
PC F E

R

 
   

 
     (5.5) 

 

Formula (5.5) shows that the objective "no expected gains or losses at the present" leads to 

contribution PC  that is equal to the present value of the commitment using discount rate
pd : 

 

    
1

p

p

F
C

d



      (5.6) 

 

where pd  is calculated from (5.5) and (5.6) as 

 

    
1

1
1

1

pd

E
R

 
 
 
 

     (5.7) 

 

Note that Jensen inequality entails  

 

    
 

1 1

1 1
E

R E R

 
 

  
     (5.8) 

 

Therefore, p fd d .  

 

Under the lognormal return factor assumption, we can tell more about discount rate pd . Defining 

R as 

 

    
  

2
1

1
R

V

E R
  


     (5.9) 
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where V is the variance of return R, it can be shown that the expected value of the reciprocal 

return factor is 

 

    
 

1

1 1

RE
R E R

 
 

  
     (5.10) 

 

Combining (5.7) and (5.10), we get 

 

    
 1

1p

R

E R
d




       (5.11) 

 

Furthermore, under the lognormal return factor assumption, there is an interesting relationship 

between the geometric mean return G and discount rates 
pd and 

fd generated by Objective 3 and 

Objective 4: 

 

      1 1 1p fG d d        (5.12) 

 

Thus, the geometric mean return G is the "geometric mid-point" between the discount rates 

generated by the objectives of no expected gains/losses in the future and at the present. 

 

Example 5.1. This example is a continuation of Example 3.1 and Example 4.1. As in these 

examples, 6.70%A and 0.9125%V  . Then 1.0080R  and 

 

    
6.70%fd   

    5.85%pd 
 

 

The 45th percentile of the return distribution is 0.45 5.09%R  (see Example 3.1). 

 

Conclusion 

 

The selection of a discount rate is one of the most important assumptions for the calculations of 

present values. This paper presents the basic properties of the key measurements of investment 

returns and the discount rates associated with these measurements.  

 

The paper shows that the selection of the discount rate depends on the objective of the 

calculation. The paper demonstrates the selection of discount rates for the following four 

objectives. 

 

Objective 1: To "connect" the starting and ending asset values. The correct discount rate for this 

objective is the geometric mean return. 
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Objective 2: To have a certain "safety cushion". The correct discount rate for this objective is the 

(100 - P)th percentile of the return distribution if it is required to have a P% chance that the 

investment return is greater than the discount rate. 

 

Objective 3: No expected gains/losses in the future. The correct discount rate for this objective is 

the arithmetic mean return. 

 

Objective 4: No expected gains/losses at the present. The correct discount rate for this objective 

is given in formula (5.7). 

 

It is worth reminding that the main purpose of a discount rate is to calculate a deterministic 

present value. Yet, present values associated with vital funding problems are inherently 

stochastic. As a result, the presence of a discount rate assumption has significant pros and cons. 

The primary advantage of a discount rate is the simplicity of calculations. The main disadvantage 

is a discount rate based deterministic present value cannot adequately describe the present value 

of an uncertain financial commitment funded via investing in risky assets. This author believes 

that the direct analysis of present values and their stochastic properties is the most appropriate 

approach to the process of funding financial commitments, but this subject is outside of the scope 

of this paper. 

 

This author hopes that the paper would be useful to practitioners specializing in the area of 

funding financial commitments. 
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Endnotes 
 
1 There are exceptions, e.g. an inflation-adjusted cash flow with a matching TIPS portfolio. 
2 See Mindlin [2009] for more details. 
3 That is as long as the returns in the series are not the same. 
4 For the purposes of this paper, the concerns that the sample variance as defined in (2.6) is not an unbiased estimate 

are set aside.  
5 This fact is a corollary of the Jencen’s inequality. 
6 For example, see Bodie [1999], p. 751, Jordan [2008], p. 25, Pinto [2010], p. 49., Siegel [2008], p. 22., DeFusco 

[2007], p 128, 155. 
7 That is, obviously, as long as the returns in the series are not the same and V > 0. 
8 Mindlin [2010] contains a simple example for which (R1) > (R2). 
9 See Mindlin [2010] for more details. 
10 The presence of discount rate is critical for these observations. In general, the median of the present value 
distribution calculated using the full range of returns (and without discount rates) is not equal to the present value 

calculated using the geometric mean (except when the cash flow contains just one payment). In other words, the 

median of present value is not the same as the present value at the median return. See Mindlin [2009] for more 

details regarding stochastic present values. 
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