

CAP Snaps

Key Messages Non-Valvular Cardiac Surgery Thursday 31st March 2022

www.CardiothoracicAnaesthesia.com

Pericardium Anatomy and Pathophysiology

Mr Martin Yates Cardiothoracic Surgical Fellow

Anatomy

- Fibrous sack containing heart <u>and</u> great vessels
- 2 layers with small volume lubricating pericardial fluid
- 2 sinuses oblique and transverse

Phrenic Nerves

- Closely related to the pericardium on either side
- Risk of damage during minimally invasive cardiac surgery
- Risk of phrenic palsy if ice applied to the heart

Function

- Lubrication of the moving heart
- Prevention of movement of the heart in the thorax
- Protects the heart from trauma and infection
- Prevents over distension of the heart

• Tamponade

- · Fluid within the fixed pericardial space
- Prevents RV filling
- Reduces CO
- Clinical diagnosis
- Give volume (blood and products, increase HR, return to theatre

Aortic Surgery

- Ao root is within the pericardium
- Dissection/rupture causes tamponade
- Consider cannulation before opening pericardium
- Opening the pericardium may improve BP in tamponade, but may drop BP if rupture
- Be prepared!

www.CardiothoracicAnaesthesia.com

TOE of the Pericardium

Dr Sam Curtis – Cardiothoracic Anaesthesia Fellow

distended

e' >8

SLIDESMANIA.COM

velocity

- Constrictive
 pericarditis requires
 surgery.
- Normal heart in an abnormal sac.
- Restrictive
 cardiomyopathy is
 managed medically.
- Abnormal heart, normal
- sac.

Pericardectomy

Mr Martin Yates Cardiac Surgical Fellow

Caution!

Complex, sick

patients!

Heart failure.

Approx 60y

MDT decision

Aetiology

- Idiopathic
- Post-surgery
- Post-radiotherapy
- Infection TB, coxsackie
- Uraemia
- Trau
 - Amyloid
 - Sarcoic
 - Mesotheliom

Technique

Sternotomy or thoracotomy

Open both pleura Protect phrenic nerves Identify aorta Mobilise LV before RV

It may be impossible to dissect!

CPB?

On pump Still target Heparin -> more bleeding

Off pump

Easier to tell pericardium from myocardium Any hole made will bleed!

SLIDESMANIA.COM

Anaesthesia for Pericardectomy

•••

Fixed CO state

Optimise afterload

High risk of volume

Maintain HR

Maintain sinus

Dr Aoife Lavelle Consultant Anaesthetist

Arrhythmias

Common but poorly tolerated

Defib pads Quad pacing wires Maintain HR amiodarone not beta-blockers Caution with Mg2+

Bleeding

 High risk for major bleeding
 Ventricular rupture
 Coronary damage

Mediastinal bleeding

CICU

 May deteriorate postop
 Milrinone for 48h
 Maintain SVR
 Cautious fluid - CCF risk
 Maintain SR, avoid brady

Pre-op

• Thorough pre-op Ax

NYHA class Hepatic dysfx End organ damage Pulmonary function Cardiac imaging TOE, CT, CMR

Increased risk profile if concomitant cardiac procedures

Set up

Standard cardiac plus.....

- PA sheath + PAC
- CO monitoring throughout.
- Vascath if renal
 impairment
- Prepare for bleeding and going on bypass

Pathophysiology of Ischaemic Complications

Early (poorly tolerated) - VSD, PM rupture, free wall rupture **Mechanical** Late - aneurysm, pseudoaneurysm 01 complications Risk Fx - Difficult PCI, failure to restore flow, ECG not returning to normal, large, dominant RCA lesion 2-4d post-infarct - 2/3 antero-apical, 1/3 posterior septum Ventricular Septal 02 Defect Severe acute mitral regurgitation with normal sized LA Papillary 03 Acute pulmonary oedema muscle rupture 20-25% in hospital mortality Catastrophic transmural infarction -> myocardial rupture Left ventricle 04 Bleeding into pericardium -> Tamponade rupture Variable timeframe after STEMI - Aneurysm = myocardial thinning from extensive scarring - loss Aneurysm of function, risk of scar-related arrhythmia, risk of LV thrombus Pseudoaneurysm - Pseurdoaneurysm = contained LV rupture - risk of further rupture

Dr Kevin O'Gallagher Cardiology Fellow

www.CardiothoracicAnaesthesia.com

Atrial Fibrillation Ablation

Dr Ashley Nisbet Consultant Cardiologist

01	AF	 Very common Abnormal electrical activity originating from pulmonary veins Risk fx - older age, male sex, HTN, structural heart disease, rheumatic heart disease, heart failure
02	AF Ablation	Can achieve arrhythmia-free survival in >90%. Highest benefit in paroxysmal AF with no structural heart disease Patient selection can be difficult = increasingly done as day case
03	Pulmonary vein isolation	Venous femoral access - Trans-septal puncture (TOE guided) Coronary sinus reference catheter = Heparin for ACT >300s Differential pacing to confirm ablation
04	RF ablation vs Cryoballoon	 RF ablation - 2 transeptal punctures, slower procedure Cryoballoon - 1 larger trans-septal puncture, -40 degrees
05	Risks	 Trans-septal puncture - tamponade, aortic puncture Peri-procedural stroke - Bleeding = Groin haematoma Damage to cardiac structures - MV - Gastroparesis Phrenic nerve injury - Atrio-oesophageal fistula

,

1	Surgical AF 2	Ablation	Mr Jol Cons Cardiothora	hn Yap ultant acic Surgeon	nesia.com
Why surgical?	Paroxysmal AF	Persistent AF	Concomitant cardiac surgery	 Lone AF surgery Convergent ablation Subvibilitation 	Anaest
More effectiveDirect access to tissueFailed catheter ablation	 Isolate the triggers Pulmonary vein isolation Box lesion 	 Isolate trigger and rotor zones MAZE IV procedure Gold standard 	• CABG / AV surgery Do you want to open LA? -> longer CPB/AXC time, air emboli risk Y = MAZE, N = PVI	Improving safety profile More coverage than catheter ablation TOE to check for LAA clot Monitor oesophageal temp	thoracicA
 Concomitant cardiac surgery Survival benefit of no-AF after cardiac surgery 	 LAA occlusion >70% success and reduced stroke risk 	Requires opening LA • Cryosurgical probe	• Mitral surgery LA already open, most patients in persistent AF. MAZE should be done	Risks IVC, SVC injury Oesophageal injury Atrial perforation Diaphragm injury Phrenic nerve injury	www.Cardio

Dr Roger Cordery Consultant Anaesthetist

www.CardiothoracicAnaesthesia.com

Cath Lab Anaesthesia

- High risk procedures
- Isolated, distant sites
- Noisy with distractions
- Staff unfamiliar with GA
- Cardiologists needs
- Radiation exposure

Who needs GA?

Anaesthesia for

AF ablation

AF Ablation

- Irrigation can -> vol
- Vasopressors for low
- Heparin ACT 250-300

Cath lab considerations

((()))

- No anaesthetic rooms
- Equipment locations
- Minimal pain
- Non-tipping tables
- C-arm positioning

Convergent Ablation

- Hybrid theatre
- Big drip, tube, art line
- Mild pain
- No HDU needed
- TOE to check LAA
- Specialised oesophageal temp probe - confirmed with fluoroscopy

SLIDESMANIA.COM