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Abstract 

Purpose:  On a regular basis, the intensivist encounters the patient who is difficult to wean from mechanical ventila‑
tory support. The causes for failure to wean from mechanical ventilatory support are often multifactorial and involve a 
complex interplay between cardiac and pulmonary dysfunction. A potential application of point of care ultrasonogra‑
phy relates to its utility in the process of weaning the patient from mechanical ventilatory support.

Methods:  This article reviews some applications of ultrasonography that may be relevant to the process of weaning 
from mechanical ventilatory support.

Results:  The authors have divided these applications of ultrasonography into four separate categories: the assess‑
ment of cardiac, diaphragmatic, and lung function; and the identification of pleural effusion; which can all be evalu‑
ated with ultrasonography during a dynamic process in which the intensivist is uniquely positioned to use ultra‑
sonography at the point of care.

Conclusions:  Ultrasonography may have useful application during the weaning process from mechanical ventilatory 
support.
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Introduction
Ultrasonography is well established as a useful bedside 
tool when performed by the intensivist at point of care for 
evaluation of cardiopulmonary failure. As ultrasonography 
is an evolving part of critical care medicine, an interesting 
feature of the discipline is that it lends itself to innovative 
applications. One of these relates to its potential utility in 
the process of weaning the patient from mechanical ventila-
tory support. As this utility is not yet well defined, this arti-
cle reviews some applications of ultrasonography that may 
be relevant to the weaning process. We have divided these 
into four separate categories: the assessment of cardiac, 

diaphragmatic, pleural effusion and lung function. The pur-
pose of this review is to inform the reader as to the potential 
utility of ultrasonography to aid in the process of weaning 
from mechanical ventilatory support. In reviewing the lit-
erature on the subject, it is important to define what consti-
tutes successful weaning. Most investigators define success 
as when the patient remains extubated for 48  h following 
removal of the endotracheal tube. Some studies report on 
the outcome of a spontaneous breathing trial (SBT), which 
is generally defined as a period of observation during which 
the patient is breathing through a T-piece with an appropri-
ate amount of supplemental oxygen. Adequate SBT perfor-
mance does not necessarily result in successful extubation.

Assessment of cardiac function
Weaning may be considered an exercise requiring an ele-
vation in cardiac index, oxygen demand and consumption 
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[1]. Jubran et al. reported that patients who failed an SBT 
had significant reduction in mixed venous oxygen satu-
ration (SvO2) compared to patients who pass the SBT 
where SvO2 remained constant [2]. In the failure group, 
an uncoupling between the left ventricle and the systemic 
circulation and between the right ventricle and the pul-
monary circulation occurred [2]. While cardiac function 
is crucial to the weaning process, the incidence of car-
diac-related weaning failure is not known. It is difficult 
to evaluate its incidence, as increases in respiratory load 
and cardiac load are strongly interrelated [3]; so it is dif-
ficult to identify to what extent a cardiac problem is the 
cause for the failure. Cabello et al. reported that cardiac-
related weaning failure occurred in 42 % of cases among 
76 patients who failed SBT [4]. In this study, difficult to 
wean patients performed an SBT with a T-piece versus 
pressure support ventilation (PSV) with and without 
PEEP. The failure rate on T-piece was higher than that 
on PSV, indicating that loading conditions vary accord-
ing the ventilator settings used during the SBT. This is a 
potential confounder in analysing the results of studies 
related to SBT.

Besides the increase in respiratory and cardiac load 
that occurs during weaning, spontaneous ventilation 
may stress the cardiovascular system compared to posi-
tive pressure ventilation. Negative intrathoracic pressure 
has been reported to depress left ventricular (LV) perfor-
mance [5], and to be coupled with a significant increase 
in systemic venous return [6] and LV ischemia [7]. These 
factors may alter LV diastolic function with relaxation 
impairment, decreased compliance and increased filling 
pressure [8] precipitating cardiogenic pulmonary oedema 
with resultant respiratory failure.

It follows that the use of critical care echocardiography 
(CCE) might be useful to evaluate the left ventricle dur-
ing the weaning process, owing to its ability to measure 
LV diastolic and systolic performance [9]. LV diastolic 
and systolic dysfunction are involved in cardiac-related 
weaning failure, with diastolic dysfunction being the 
predominant factor [10]. Evaluation of diastolic func-
tion requires competence in advanced CCE as the inten-
sivist must be able to use and correctly interpret pulsed 
wave Doppler (PWD) and tissue Doppler imaging (TDI) 
[11, 12]. The profile of the mitral inflow recorded by the 
PWD, with the E wave in early diastole and the A wave in 
late diastole, depends on LV diastolic function and filling 
pressure, while TDI of the mitral annulus allows sepa-
rate evaluation of LV relaxation (e′ wave at early diastole) 
and the LV filling pressure (E/e′ ratio). The E wave veloc-
ity and E/e′ ratio should be used with caution in patients 
with mitral regurgitation, mitral stenosis and mitral pros-
thetic valve, as these indices have not been validated for 
measurement of diastolic function.

The ability of CCE to predict weaning failure remains 
uncertain, as the cause may be multifactorial; cardiac 
dysfunction may contribute but other complex factors 
may be involved. Although CCE may accurately identify 
the high-risk patient before performing an SBT, there 
is no definitive data to support its use during SBT as a 
help to decide whether to extubate the patient. Two stud-
ies done in unselected critically ill patients reported that 
CCE performed before and during an SBT identified 
related changes in LV diastolic function and pressure 
with an increase in E/A, a decrease in E wave decelera-
tion time and an increase in E/e′ [13, 14]. As a result of 
the variability of these measurements and the relatively 
small value of the changes, this approach cannot be rec-
ommended for routine identification of patients in whom 
cardiac dysfunction occurs during the SBT. However, an 
echocardiographic evaluation before the SBT seems valu-
able to identify patients at high risk of weaning failure. 
In a population of 117 patients, Caille et al. reported that 
the 23 patients who failed to be weaned had a lower LV 
ejection fraction (EF) and a trend towards a higher E/e′ 
before SBT [13]. Moschietto et al. reported in 68 patients 
no difference in LVEF but an increased E/e′ in the failure 
group [15]. Gerbaud et al. did not confirm these results, 
but the population of their study was highly selected with 
patients hospitalised for heart failure with a mean LVEF 
of 40 % [16]. Papanikolaou et al. reported the impact of 
LV diastolic function on weaning failure in 50 patients 
with preserved LV systolic function who fulfilled stand-
ard criteria for SBT [17]. LV diastolic dysfunction was 
graded in three stages according to its severity based on 
PWD and TDI evaluation, as previously proposed [18]. 
Weaning failure occurred in 35 % of cases in patients with 
normal diastolic function, in 57 % in patients with grade 1 
(mild) diastolic dysfunction and in 80 % in patients with 
grade 2 (moderate) or 3 (severe) [17]. Dres et al. recently 
proposed to test the cardiovascular system before the 
SBT, using the passive leg raising (PLR) manoeuvre [19]. 
They hypothesised that preload independency, i.e. no 
cardiac output increase during PLR, would be associated 
with cardiac-related weaning failure. Cardiac output was 
measured by the pulse contour analysis method, but it 
could easily be measured by echocardiography. Among 
the 57 SBT included in the study, 11 SBT were successful; 
10 of these patients were preload responsive. Among the 
46 failed SBT, 45 patients were preload unresponsive, and 
all had cardiac dysfunction as evidenced by an elevation 
of pulmonary artery occlusion pressure [19]. During the 
weaning process, advanced CCE may be used to predict 
weaning failure but also to diagnose whether a cardio-
genic cause is responsible for the failure. When the pre-
test probability of weaning failure is high, as in patients 
with known heart failure, CCE has limited utility. When 



the pretest probability is low or intermediate, as in an 
unselected population of critically ill patients, CCE might 
be useful in predicting weaning failure.

Advanced CCE may have special application for the 
intensivist treating the patient with multiple medical 
problems who fails SBT criteria outright or who needs 
reintubation in the 48 h following extubation. Except for 
patients who were initially ventilated for a cardiac cause, 
LVEF is frequently preserved and cardiac-related wean-
ing failure is generally due to an LV diastolic dysfunction 
in patients with several risk factors such as age, arrhyth-
mia, hypertension (frequently due to delirium or dis-
comfort upon cessation of sedation) and kidney disease 
[20]. On the basis of standard guidelines for evaluation 
diastolic function [18], cardiac-related weaning failure 
may be suspected when the LV filling pressure is elevated 
with an E/A ratio >2 if the ejection fraction is reduced or 
an E/e′ > 12 if the ejection fraction is normal. For meas-
urement of diastolic function in the context of wean-
ing failure from ventilatory support, the advanced CCE 
examination should be performed in close temporal rela-
tionship to the clinical event i.e. during the SBT or imme-
diately following the failure of the SBT and before any 
treatment has been initiated to treat cardiac dysfunction. 
Lamia et al., by performing left ventricular filling pressure 
estimation by CCE at the end of SBT, detected weaning-
induced pulmonary artery occlusion pressure (PAOP) 
elevation in 39 patients [21] with concomitant changes 
in E/A and E/e′. Rare cases also reported weaning failure 
due to hypertrophic obstructive cardiomyopathy [22]. 
This is easily detectable by CCE and has a strong clinical 
impact since diuretics, inotropes or vasodilators are then 
contraindicated. The need to perform the advanced CCE 
examination when the cardiovascular system is under 
load in close conjunction with the SBT emphasises that 
standard cardiology consultative echocardiography is not 
useful for evaluation of the dynamic changes in diastolic 
function that may occur with the SBT. The intensivist 

with advanced CCE capability is uniquely positioned to 
do this type of examination at point of care.

To summarise, cardiac-related weaning failure may be 
due to either a systolic or an isolated diastolic LV dys-
function. Advanced CCE can be useful to diagnose, and 
sometimes predict, cardiac-related weaning failure which 
likely occurs as a result of the precipitation of cardio-
genic pulmonary oedema. However, at this time there is 
no randomised clinical trial that demonstrates benefit of 
performing CCE to guide weaning in terms of shortening 
of weaning duration or survival improvement. In absence 
of this level of evidence, the results of the echocardiog-
raphy examination may be used to develop a treatment 
plan that is based upon sound clinical reasoning. How 
CCE may be combined with cardiac biomarkers for 
improving accuracy remains to be elucidated. Table  1 
summarizes some measurements of cardiac function that 
may have application to weaning from mechanical venti-
latory support.

Assessment of diaphragmatic function
Ultrasonography allows easy visualisation of the two 
hemidiaphragms and their excursion during respiratory 
cycles. Two different ultrasonographic parameters have 
been described to evaluate diaphragmatic performance. 
The first parameter refers to the measurement of dia-
phragmatic excursion (E) during inspiration [23]. E can 
be easily measured with a 3- to 5-MHz probe either in 
B- or M-mode, with so-called anatomical M-mode allow-
ing placement of the M-mode line parallel to the dia-
phragmatic excursion [24, 25]. The second parameter 
describes diaphragmatic muscle thickening during inspi-
ration in the zone of apposition of the diaphragm to the 
rib cage with at least a 10-MHz probe using the B- or 
M-mode [26]. Thickening fraction (TF  =  [thickness at 
end-inspiration − thickness at end-expiration]/thickness 
at end-expiration) is reported in most studies. For both 
parameters, technical tips to improve reproducibility and 

Table 1  Indices of cardiac function of potential utility for weaning from mechanical ventilatory support

A pulsed wave Doppler late mitral valve inflow velocity, CO cardiac output, E pulsed wave Doppler early mitral valve inflow velocity, e′ mitral annular tissue Doppler 
velocity, EF ejection fraction, LV left ventricle, PLR passive leg raise, SBT spontaneous breathing trial

Value Potential utility

Measurement before SBT

 LV ejection fraction <40 % Increased likelihood of failure of SBT

 LV ejection fraction Normal Increased likelihood of success of SBT

 Mitral diastolic inflow If EF reduced: E/A >2 Increased likelihood of failure of SBT

 Mitral diastolic inflow If EF normal: E/e′ >12 Increased likelihood of failure of SBT

 CO before/after PSL No increase in CO Increased likelihood of failure of SBT

Measurement after SBT

 Mitral diastolic inflow Increased E/A, E/e′ Identification of SBT-induced cardiogenic pulmonary oedema



accuracy of measurements have been published in detail 
allowing excellent operating characteristics [24, 25].

In patients breathing spontaneously, diaphragmatic 
excursion is the result of a given diaphragmatic con-
traction for a given mechanical burden (i.e. compliance 
of the respiratory system including abdominal compli-
ance). In patients receiving mechanical support, dia-
phragmatic excursion also depends on the amount of 
support and of PEEP level. Indeed PEEP increases end-
expiratory lung volume; the corresponding increase in 
lung volume lowers the diaphragmatic dome, which can 
result in decreased diaphragmatic excursion [27]. Meas-
urements of diaphragmatic thickening can be used as a 
direct index of diaphragmatic efficiency as a pressure 
generator, although thickness may also be influenced 
by lung volume in a non-linear relationship [26, 28, 29]. 
Both E and TF have been shown to correlate with func-
tional measurements of diaphragmatic function (typi-
cally transdiaphragmatic pressure measurements, Pdi) 
in spontaneously breathing patients [23]. As a result of 
the effect of PEEP and level of ventilatory support on 
the diaphragmatic contour on E, only muscle thickening 
measurements perform well in analysing diaphragmatic 
function in patients receiving mechanical ventilation [29, 
30]. No study has compared the performance of E and TF 
in spontaneously breathing patients to assess diaphrag-
matic performance.

Diaphragmatic dysfunction in patients receiving 
mechanical ventilation most frequently occurs relatively 
symmetrically secondary to neuromuscular disorders or 
non-myopathic diseases such as chronic obstructive pul-
monary disease, to ICU-acquired neuromyopathy and/
or to ventilator-induced diaphragmatic dysfunction [31–
33]. Alternatively, phrenic nerve injury, especially during 
cardiac surgery, may lead to asymmetric diaphragmatic 
dysfunction [34]. Accordingly, most studies, performed 
in non-cardiac surgery patients, recorded E or TF on only 
one hemidiaphragm (usually on the right side) taken as a 
proxy for the whole diaphragmatic performance [29, 30, 
34, 35]. Only a few studies considered the worst or the 
mean value between right and left [36–38]. In cardiac 
surgery patients, Lerolle et al. performed bilateral assess-
ment of diaphragmatic excursion and identified the best 
E (Emax) as the functional parameter of diaphragmatic 
performance [23]. In cardiac surgery patients, injury of a 
phrenic nerve may lead to complete paralysis of a hemid-
iaphragm while the other remains unaffected. This gen-
erally does not lead to global functional impairment. In 
this study, patients with unilateral diaphragmatic paraly-
sis could be weaned off the ventilator without delay when 
the contralateral diaphragm performed well enough i.e. 
Emax > 25 mm. An Emax < 25 mm, indicating bilateral dia-
phragmatic paresis or paralysis, had a positive likelihood 

ratio of 6.7 and a negative likelihood ratio of 0 for having 
a severe diaphragmatic dysfunction as diagnosed with 
Pdi measurements. This study shows that cardiac sur-
gery patients, exposed to a specific form of phrenic nerve 
injury, require bilateral examination of the diaphragm. 
Although in other settings unilateral measurements may 
perform well in assessing global diaphragmatic function, 
it may be appropriate to screen first for asymmetric dia-
phragmatic dysfunction.

Four studies described the use of ultrasonographic 
evaluation of the diaphragm in the process of weaning 
in non-cardiac surgery patients. Jiang et  al. considered 
the mean value of inspiratory excursions of the liver and 
the spleen measured during an SBT [37]. Among the 55 
patients who underwent extubation, those who required 
reintubation within 72  h had significantly lower mean 
values of liver and spleen displacements than those 
who did not require reintubation. At a cutoff value of 
1.1  cm, the sensitivity and specificity to predict suc-
cessful extubation were 84 and 83  %. In a cohort of 82 
patients, Kim et  al. defined diaphragmatic dysfunction 
by an E value  <  10  mm for either hemidiaphragm [36]. 
The patients with diaphragmatic dysfunction accord-
ing to this criterion had longer weaning time and higher 
frequency of reintubation. The applicability of these two 
studies is questionable considering the unusually high 
rates of weaning failure in unselected patients (41 % and 
65  % respectively). In 2014, two studies were published 
evaluating TF in the weaning process. Di Nino et al. stud-
ied 63 patients who were extubated after diaphragmatic 
assessment during an SBT or a pressure support trial 
(PST) [34]. Twenty-two per cent of the patients required 
reintubation within 48 h. A threshold of TF ≥ 30 % was 
associated with a positive predictive value of 91  % and 
a negative predictive value of 63  % for extubation suc-
cess. Performance of TF was similar if the measurements 
were performed during an SBT or a PST. Similarly, Fer-
rari et  al. found in 46 patients with repeated weaning 
failure that a cutoff value of a TF > 36 % measured dur-
ing an SBT on tracheostomy tube was associated with a 
positive predictive value of 92 % and a negative predictive 
value of 75 % for success or failure from discontinuation 
of mechanical support at 48 h [35]. These studies confirm 
the potential interest of these indices, either E or TF, in 
the weaning process. However, much remains to be per-
formed to define their place vs. clinical parameters. In the 
aforementioned studies, the performance of ultrasono-
graphic indexes in predicting extubation failure or suc-
cess was compared with such clinical parameters as the 
Rapid Shallow Breathing Index, and proved equivalent or 
slightly better, although the number of patients studied 
was low. It is likely that ultrasonography may be clinically 
relevant in specific situations such as neuromuscular 



disease or in extensive ICU-acquired neuromyopathy. 
Ultrasonography may be particularly useful to moni-
tor recovery over time. Mariani et  al. studied diaphrag-
matic excursion in 34 patients with prolonged (>7 days) 
mechanical ventilation; repeated measurements were 
performed in seven patients with bilateral dysfunction 
(E  <  11  mm) [39]. Progressive improvement of E was 
observed over time in 71 % of cases. Grosu et al. observed 
diaphragmatic thinning over time in patients receiving 
volume-controlled mechanical ventilation [40]. Table  2 
summarizes some measurements of diaphragmatic func-
tion that may have application to weaning from mechani-
cal ventilatory support.

Assessment of pleural effusion
In considering whether removal of pleural fluid might 
improve the likelihood of successful weaning, it is use-
ful to review the physiological consequences of pleural 
fluid on respiratory function. Pleural fluid accumulation 
results in relaxation atelectasis of the lung that is adja-
cent to the pleural effusion. This is in association with the 
hydrostatic fluid pressure generated by the effusion. The 
degree of atelectasis is readily observed with lung ultra-
sonography. Large pleural effusions may cause lobar or 
even total lung atelectasis. The atelectatic lung is airless. 
As such, it must result in loss of alveolar volume available 
for gas exchange. Even large effusions may have surpris-
ingly little effect on oxygenation function, presumably as 
a result of a reduction in blood flow to the non-aerated 
atelectatic lung.

As the elastic recoil of the intercostal chest wall is no 
longer opposed by that of the lung, the configuration of 
the chest wall changes in the area of the effusion. The 
resulting outward movement of the chest wall causes a 
reduction in length tension efficiency of the intercostal 
muscles. The diaphragm is uncoupled from the visceral 
pleural surface, such that diaphragmatic movement has 
an attenuated effect on lung inflation. With large effu-
sions, pleural pressure may be so elevated as to result 
in reverse curvature of the ipsilateral diaphragm. This 
results in profound alteration of the preload function 
of the diaphragm, which is optimal only when the dia-
phragm has normal concavity.

Given the predictable negative physiological effects of 
pleural fluid, it is reasonable to consider whether remov-
ing a pleural effusion might increase the chances of suc-
cessful weaning. This is an intuitively attractive concept, 
given the empiric clinical observation that removal of 
pleural fluid in the spontaneously breathing patient will 
often result in immediate improvement in dyspnoea 
and associated respiratory distress. The effect of pleural 
fluid removal has been studied in patients on mechani-
cal ventilatory support. Ahmed et al. reported no change 
in PaO2 following fluid removal, but reduction in pulmo-
nary artery occlusion, central venous pressure and pul-
monary shunt fraction in association with an increase in 
VO2 and DO2 [41]. Doelken et al. reported no improve-
ment in PaO2, physiological dead space, static or dynamic 
respiratory system compliance and end-inspiratory air-
way resistance; passive inflation work was reduced from 
3.42 to 2.99  J/L [42]. This reduction in ventilator per-
formed work might predict a reduction in the work per-
formed by the spontaneously breathing patient. Razazi 
et al. reported improvement in respiratory system com-
pliance, end-inspiratory transpulmonary pressure, PaO2/
FIO2 ratio and end-expiratory lung volume [43]. A lesser 
improvement in oxygenation occurred in patients with 
ARDS. These improvements were sustained when meas-
ured at 3 and 24 h after pleural fluid drainage. In a recent 
meta-analysis of five studies comprising 118 patients, 
there was an overall 18 % improvement in PaO2/FIO2 fol-
lowing pleural fluid removal [44]. With focus on patient 
outcome, Kupfer et  al. reported that continuous drain-
age of transudative pleural effusions with an indwelling 
catheter was associated with a reduction in days of ven-
tilatory support (3.8 ± 0.5 vs. 6.5 ± 1.1 days). This was a 
retrospective non-randomised observational study. Aver-
age fluid removal was 1.2 L [45]. Talmor et  al. reported 
in a retrospective study improvement in oxygenation in 
patients who required substantial PEEP with ARDS [46].

The lack of consistent major measurable improve-
ment in gas exchange or respiratory mechanics should 
not discourage the intensivist from removing the pleu-
ral effusion. Sound physiological reasoning, the visual 
observation of a large area of non-functioning atelectatic 
lung on ultrasonography and the empiric observation 

Table 2  Indices of diaphragmatic function of potential utility for weaning from mechanical ventilatory support

SBT spontaneous breathing trial

Measurement Value Potential utility

Diaphragmatic excursion during SBT <11 mm Increased likelihood of failure of SBT

Best diaphragmatic excursion on right or left >25 mm Increased likelihood of success of SBT

Thickening fraction of diaphragm during SBT >30–36 % Increased likelihood of success of SBT

Right- and left-sided diaphragmatic excursion Bilateral absence of diaphragmatic excursion Increased likelihood of failure of SBT



that pleural fluid removal in the spontaneously breathing 
patient promptly reduces respiratory distress all indicate 
that thoracentesis may improve the likelihood of success-
ful extubation, particularly in the patient with marginal 
cardiopulmonary function who is approaching extuba-
tion attempt or who has failed SBT.

In considering the option of pleural fluid drainage, the 
intensivist needs to consider several factors. Thoracente-
sis with ultrasonography guidance has a low risk of com-
plication in the patient on mechanical ventilatory support 
[47, 48]. While the volume of the effusion may be accu-
rately estimated with ultrasonography [49, 50], it is not 
clear what volume indicates for removal of the effusion, 
given that the aforementioned studies were performed 
with a wide range of pleural fluid volume removal. It is 
unlikely that removal of a small effusion will have posi-
tive influence on the weaning process; and the larger the 
effusion is, the more likely its removal will improve the 
likelihood of successful extubation. Table  3 summarizes 
an approach to pleural effusion that may have applica-
tion to weaning from mechanical ventilatory support. On 
the basis of a single retrospective study [51], the clinician 
may consider the option of placing an indwelling cathe-
ter into the pleural space for continuous pleural effusion 
drainage as the patient approaches extubation attempt, 
rather than performing removal of the pleural fluid as a 
single event.

Assessment of lung aeration
The utility of lung ultrasonography (LUS) for guiding the 
weaning process in the ICU derives from the observation 
that the initiation of spontaneous breathing after a period 
of mechanical ventilation is associated with some loss 
of lung aeration in the critically ill [52]. LUS assessment 
before and at the end of the SBT is useful for detecting 
aeration loss, which is relevant for prediction of post-
extubation distress, irrespective of its primary cause i.e. 
cardiac, respiratory or diaphragmatic.

Soummer et al. demonstrated that LUS predicts wean-
ing failure with some accuracy by identifying global 
and regional lung de-recruitment [52]. A LUS score has 

been validated with the aim of providing quantifiable 
comparable measures of progressive changes in aera-
tion [53–56]. This score originates from the conversion 
of lung ultrasound patterns into numeric values, which 
are allocated according to the worst ultrasound pattern 
observed for a given chest region. The final score, rang-
ing from 0 to 36, is the sum of the values, from 0 to 3, 
assigned to the LUS patterns visualized in each of the 12 
regions examined. The 12 anterior, lateral and posterior 
regions are delimited by anatomic landmarks as stated in 
the consensus conference recommendations for point-
of-care LUS [57]. The four ultrasound patterns identified 
for each region correspond to progressive degrees of lung 
aeration (Table  4). While this LUS score calculated on 
12 chest areas allows the measurement of the degree of 
lung aeration at a precise moment, the following step is 
to score the change in aeration in successive stages, for 
instance before and after treatment. For this purpose, a 
LUS dynamic re-aeration score can be calculated for each 
region by adding 1, 3 or 5 points respectively in case of a 
slight, moderate or substantial increase in lung aeration, 
or subtracting the same points in case of aeration loss 
[53].

In the setting of weaning, the LUS score was accurate in 
predicting the occurrence of post-extubation distress by 
measuring lung aeration defects during the SBT [52]. The 
score was increased in patients who failed the trial and 
went on to develop post-extubation distress. This corre-
lation was irrespective of the underlying cause and lung 
condition. By contrast, the LUS score remained signifi-
cantly under a cutoff value in patients who went on to be 
successfully weaned. The identified cutoff to predict 85 % 
risk of post-extubation failure was >17, whereas the safest 
value below which the risk of developing post-extubation 
failure was negligible was  <13 (negative likelihood ratio 
of 0.20). A score between these two values, found in 25 % 
of patients, was inconclusive in predicting recurrence of 
respiratory distress or successful weaning. Table 5 sum-
marizes LUS that may have application to weaning from 
mechanical ventilatory support. In this study, the LUS 
score was more accurate than B-type natriuretic peptide 

Table 3  Potential approach to pleural effusion relevant to weaning from mechanical ventilatory support

Dysphysiology indicates clinically relevant factors such as diastolic heart failure, chronic obstructive lung disease, respiratory muscle weakness etc. that reduce 
likelihood of successful SBT independent of the pleural effusion

PLEFF pleural effusion, SBT spontaneous breathing trial

Ultrasonography result Proposed intervention Probable result

Small PLEFF Removal of PLEFF No effect on likelihood of success of SBT

Moderate PLEFF without co-existing dysphysiology Removal of PLEFF No effect on likelihood of success of SBT

Moderate PLEFF with co-existing dysphysiology Removal of PLEFF Increased likelihood of success of SBT

Large PLEFF Removal of PLEFF Increased likelihood of success of SBT



and transthoracic echocardiography in discriminating 
failure from success.

Beyond its proven utility in predicting the outcome of 
the SBT, the LUS score has potential in management of 
respiratory failure. The LUS allows assessment of regional 
lung aeration. A regional quantification allows identifica-
tion of regions that are predominantly involved in lung 
de-recruitment and therefore contribute more than other 
areas to the patient’s inability to maintain spontaneous 
breathing. Both global and regional assessment of lung 
de-recruitment provides useful insights into the aetiology 
of the weaning failure [45]. This information might then 
be used to optimise the patient’s condition before SBT by 
detecting and treating alteration of the aeration pattern 
of the lung, such as de-recruited areas due to compressive 

phenomenon (effusion) and obstructive atelectasis [45, 
58]. Thus, LUS may be helpful in deciding the correct 
timing of an SBT. A high score during mechanical ven-
tilation could indicate that the patient is not yet ready to 
begin the weaning process, whereas a lower score could 

Table 4  Lung ultrasound score and corresponding ultrasound patterns

Points Degrees of lung aeration Patterns
0 point Normal aeration Horizontal A-lines

(or no more than two B-
lines)

1 point Moderate loss of 
aeration

Multiple B-lines,
either regularly spaced (7 
mm apart), or irregularly 
spaced and even 
coalescent but only 
visible in a limited area of 
the intercostal space

2 points Severe loss of aeration Multiple coalescent B-
lines, in prevalent areas 
of the intercostal spaces 
and observed in one or 
several intercostal 
spaces

3 points Complete loss of 
aeration

Lung consolidation,
with or without air 
bronchograms

Table 5  Lung ultrasonography scores following spontane-
ous breathing trial for prediction of successful extubation

LUS lung ultrasonography score, SBT spontaneous breathing trial

LUS at end of SBT Value Potential utility

LUS score <13 Increased likelihood of success of extuba‑
tion

LUS score 13–17 Indeterminate likelihood

LUS score >17 Increased likelihood of failure of extubation



be useful in shortening the weaning period and mini-
mising time on mechanical ventilation. The effect of any 
therapeutic strategy in the post-SBT phase may also be 
monitored at the bedside by the assessment of changes in 
time of the LUS score [4]. This is currently under study, 
and the preliminary results of a trial were recently pre-
sented at the ESICM Congress [59].

The LUS evaluation of pulmonary aeration in the con-
text of weaning from ventilatory support has some limi-
tations. The ultrasound is a surface imaging technique 
and not a panoramic tool. Lung pathology that is sur-
rounded by aerated lung will not be visible, as aerated 
lung blocks transmission of ultrasound. This limitation 
is seldom relevant in the critically ill patient because 
diseases characteristic of critical care medicine usually 
extend to the visceral pleural surface and are therefore 
visible with ultrasonography. Finally, the LUS score as 
presently defined has utility as a research tool, but may 
be overly complicated for the frontline intensivist to use 
in a busy ICU.

Despite these limitations, LUS is a useful bedside 
tool that allows real-time assessment of the lung dur-
ing an SBT. On the basis of the available literature, the 
LUS examination, including a baseline examination 

and repeated assessment during and after SBT, is use-
ful for the routine management of the weaning process. 
More prospective studies are needed to further validate 
the technique and to increase evidence of its utility [60]. 
Future research may combine LUS with the Rapid Shal-
low Breathing Index [61] and ultrasound examination 
of diaphragm function to further improve the predictive 
value of the LUS score.

Summary
Usual practice, physiology and well-known causes of 
weaning failure all support the use of ultrasonography to 
identify patients who are at high risk for weaning failure. 
When ultrasonography is used to diagnose the cause(s) 
of the failure to wean, the clinician can use this infor-
mation to optimise physiological function in order to 
improve the likelihood of successful discontinuation of 
ventilatory support. Advanced CCE allows the intensiv-
ist to detect systolic or diastolic LV dysfunction, while 
thoracic ultrasonography may help by detecting loss of 
lung aeration, pleural effusion or diaphragmatic dys-
function. However, the cause of weaning failure is often 
multifactorial. Ultrasonography will not generally iden-
tify a single cause for weaning failure, as several different 

WEANING PROCESS

Before SBT During SBT A�er a failed SBT

Detect high-risk pa�ents Predict weaning success Diagnose cause of failure

1- ECHOCARDIOGRAPHY
- Moderate to severe LV diastolic impairment
(E’ < 8 cm/s, E/A 0.8-1.5 or > 2)
- Preload-independency
- LV systolic dysfunc�on (LVEF < 40%)
- Obstruc�ve CM

2- LUNG/PLEURAL US
- Altera�on in lung aera�on
(LUS score)
- Pleural effusion related lung consolida�on

1- LUNG US
- No lung de-recruitment
(LUS score)

2- DIAPHRAGMATIC US
- No diaphragma�c dysfunc�on
(excursion and thickening during inspira�on)

1- ECHOCARDIOGRAPHY
- CPE 
(elevated LV filling pressure)

2- LUNG US
- Lung de-recruitment 
(LUS score)

Fig. 1  Potential utility of ultrasonography for evaluation of spontaneous breathing trial. A pulsed wave Doppler late mitral valve inflow velocity, E 
pulsed wave Doppler early mitral valve inflow velocity, e′ mitral annular tissue Doppler velocity, LUS lung ultrasonography score, LV left ventricle, PLR 
passive leg raise, SBT spontaneous breathing trial. Results of the SBT may differ according to whether a T-piece or pressure support ventilation with 
PEEP (PSV 7 cmH2O/PEEP 0 or 5 cm) is used. Use of T-piece during the SBT may be associated with precipitation of cardiac failure when compared to 
the SBT performed with PSV, so the operator should consider this confounder when interpreting ultrasonography results [4]



mechanisms may be present. For instance, in a patient 
with LV diastolic dysfunction and diaphragmatic dys-
function, loss of lung aeration during the weaning may 
induce an increase in respiratory work, then an increase 
in cardiac demand and finally LV diastolic pressure ele-
vation-related weaning failure with resultant cardiogenic 
pulmonary oedema. Ultrasonography will identify these 
processes and lead to directed intervention. If this patient 
also has co-existing severe emphysema and loss of air-
way clearance, neither of which is detectable with ultra-
sonography, the patient may still fail extubation despite 
useful results from the ultrasonography of the heart and 
thorax. Figure 1 presents a potential approach for use of 
ultrasonography to evaluate different factors involved in 
the weaning. In using this approach, several caveats are 
in order. To be useful, echocardiographic evaluation of 
the patient who is failing weaning has to be done as close 
as possible to the respiratory distress, i.e. during the SBT 
and before replacing the patient under positive pressure 
ventilation, or before reintubation of the patient in case 
of failed extubation, when possible. Likewise, lung ultra-
sonography should be performed in close conjunction to 
the SBT or failed extubation attempt. Rapid changes in 
respiratory and cardiac load occur during SBT and may 
manifest with dynamic changes in ultrasonography that 
are only visible with real-time scanning during the SBT. 
Ultrasonographic findings are always considered within 
the broader clinical context. The intensivist is therefore 
uniquely qualified to use ultrasonography for the bedside 
evaluation of weaning failure, as they have full knowledge 
of the clinical condition of their patient. As a corollary, 
ultrasonography should never be used as a final determi-
nant of the success or failure of a weaning attempt. It may 
be helpful in identifying the high-risk patient, in defin-
ing a mechanism(s) for failure and to guide intervention 
that may increase the success of the next attempt. In the 
case of the patient at low risk of failure based on clinical 
assessment, ultrasonography may increase the accuracy 
of prediction; whereas in the other situations, it may help 
to determine the cause of failure.

Conclusion
This narrative review summarises the potential utility of 
ultrasonography to aid in the process of weaning from 
mechanical ventilatory support. Although there are no 
studies that have demonstrated improvement in outcome 
when using ultrasonography for this purpose, this review 
suggests the intensivist may productively use ultrasonog-
raphy to identify impediments to successful extubation. 
This knowledge may then lead to logical therapeutic 
interventions. In using ultrasonography for this appli-
cation, it is best to combine both cardiac and thoracic 
(diaphragm, lung and pleura) assessments, rather than 

using a limited examination approach. This allows the 
clinician to develop an integrative analysis that combines 
the results of a multi-system scanning approach. Future 
research is required to see if ultrasonography has util-
ity to improve the process of weaning from mechanical 
ventilatory support, and how it can be productively com-
bined with other clinical indicators.
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