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Summary

OBJECTIVES: Machine learning (ML) has experienced a revolutionary decade with advances across many disciplines. We seek to under-
stand how recent advances in ML are going to specifically influence the practice of surgery in the future with a particular focus on thoracic

surgery.
METHODS: Review of relevant literature in both technical and clinical domains.

RESULTS: ML is a revolutionary technology that promises to change the way that surgery is practiced in the near future. Spurred by an ad-
vance in computing power and the volume of data produced in healthcare, ML has shown remarkable ability to master tasks that had
once been reserved for physicians. Supervised learning, unsupervised learning and reinforcement learning are all important techniques
that can be leveraged to improve care. Five key applications of ML to cardiac surgery include diagnostics, surgical skill assessment, postop-
erative prognostication, augmenting intraoperative performance and accelerating translational research. Some key limitations of ML in-
clude lack of interpretability, low quality and volumes of relevant clinical data, ethical limitations and difficulties with clinical
implementation.

CONCLUSIONS: In the future, the practice of cardiac surgery will be greatly augmented by ML technologies, ultimately leading to
improved surgical performance and better patient outcomes.

©The Author(s) 2021. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
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ABBREVIATIONS

ANN Artificial neural network
AUROC Area under the receiver operator curve
CNN Convolutional neural network

ML Machine learning
RL Reinforcement learning
INTRODUCTION

There is seemingly endless interest in applying machine learning
(ML) to medicine today. Almost daily, new research is published
heralding the use of ML to improve clinical care, from improving
disease prediction and screening to automated diagnosis across a
variety of different specialties, particularly in the fields of cancer,
neurology and cardiovascular medicine [1]. Some even believe
that ML algorithms will one day replace the diagnostic thinking
that physicians perform on a daily basis, including replacing spe-
cialists such as radiologists, although many experts believe that
this fear is unfounded [2]. Regardless, almost all agree that ML
stands poised to revolutionize the way that medicine is practiced
across specialties in the coming decades.

However, few physicians understand the implications that ML
will have when applied to clinical practice. Particularly in the field
of thoracic surgery, there have been relatively few direct applica-
tions of ML and several untapped areas for innovation. In this re-
view, we hope to demystify the use of ML in medicine and
inspire thoracic surgeons to embrace this powerful tool to im-
prove clinical care and surgical outcomes.

We begin by reviewing 4 basic subtypes of ML: supervised
learning, unsupervised learning, reinforcement learning (RL) and
deep learning. We then lay out 5 domains in thoracic surgery
that are ripe for innovation via ML. We finish by discussing some
of the limitations of ML.

MACHINE LEARNING METHODS

There are 4 main ML domains that have been applied to medi-
cine: supervised learning, unsupervised learning, RL and deep
learning.

Supervised learning

A supervised ML algorithm maps a set of input variables (fea-
tures’) to outcomes, where the outcomes are known. The form
that these features and outcomes can take on varies across differ-
ent applications. For example, features and outcomes can be bin-
ary, continuous or even vary temporally. If the outcome variable
takes on a continuous range of values, it is known as a regression
task and if the outcome variable takes on only 1 of 2 binary val-
ues, then the task is known as classification. Supervised learning
algorithms produce different kinds of decision functions that will
assigned predicted outputs based on input features (Table 1). The

performance of these decision functions can then be compared
to select the best performing algorithm.

Most physicians are familiar with regression models. While
these models are simple, they can often provide great insight
into linear relationships. Advanced forms of regression—known
as LASSO and Ridge regression—will penalize large regression
coefficients in a manner that limits the number of variables used
to predict an outcome, which is known as ‘regularization’ or
‘shrinkage’. Often times these linear models can perform nearly
as well more advanced models and the impact of each input fea-
ture on the outcome is well defined, which can be particularly
important in a medical contexts. If results from a linear model al-
ready offer sufficient improvement over the standard of care, fur-
ther optimization might not be worthwhile.

A support vector machine is another common technique.
Support vector machines are fast, relatively flexible and have
been used in medicine for many years. The goal of a support vec-
tor machine is to find an optimal decision boundary between 2
or more classes that puts the most space (otherwise known as
maximum margin) between the 2 groups. A useful analogy to re-
member is that a support vector machine finds the ‘widest high-
way’ between 2 groups of points.

Another set of models are known as ensemble methods, exem-
plified by the random forest method. A random forest will con-
struct a series decisions trees using different combinations of
explanatory variables to predict the outcome of interest. Each
tree will predict an outcome and the mode or mean outcome of
all of the decision trees will then be used as the final prediction
for classification or regression. This method has been shown to
perform well on numerous ML problems as the resulting classifier
tends to generalize well to new data.

Several other kinds of supervised learning models exist such as
a Naive Bayes models or linear discriminant analysis. While these
models have been utilized historically to solve some simple clas-
sification problems in medicine and have ample theoretical justi-
fication, their use has primarily been supplanted by some of the
more advanced models mentioned above [3].

Deep learning

Although generally considered a subclass of supervised learning,
deep learning deserves special mention due many transformative
deep learning applications in medicine today. The core innov-
ation of deep learning is the artificial neural network (ANN).
ANNSs are formed by a series of interconnected layers of neurons
(known as hidden layers) which transform input data into scalar
values based on a set of weights. The output value of each neu-
ron is then passed through a non-linear transformation imitating
the on-off nature of biological neurons into the next layer of
neurons. This process continues until the final layer of the net-
work where the output of the model is compared to the true
value (Fig. TA). The weights of each neuron are then optimized
based off of the error of each prediction in a process known as
backpropagation. Due to their flexible structure, ANNs are able
to fit decision function to complex data patterns efficiently and
their performance continually improves with larger amounts of
data.
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Table 1: Description of supervised learning algorithms used in medicine today

Method Description

Use cases

Linear/logistic regression
bles optimized using a least-squares approach.
Support vector machine
classification.
Random forest

Models a linear relationship between input features and output varia-
Find optimally separating hyperplane between data points to make a

Creates a series of decision tree classifiers on a subset of the data and
features that are then ensembled together to create a prediction.

Useful when interpretation is valued
Useful with large numbers of input features
Robust to many kinds of data does not make any

assumptions about the underlying data distribution,
less influenced by outliers
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Figure 1: Deep learning methods. (A) An artificial neural network with 4 input features (red points), 4 hidden layers and 3 outputs (blue points). Each neuron in a neur-
al network will take in input values (x;-x4) multiplied by a series of weights (w;-w,) which will then be fed into a non-linear transformation to be passed on to the next
layer. The weights of the model are optimized via a process known as backpropagation. (B) Overview of convolutional neural network architecture. Features of an
image are extracted by a series of convolutional filters that learn the underlying features of the image with no human intervention. The output of this model could be

a binary classification or segmentation of a region of interest (i.e. lumen of the aorta).

Deep learning methods have been particularly successful when
applied to images. Because spatial patterns and the sheer number
of data points in an image often makes optimizing an ANN pro-
hibitively slow, a variation of an ANN is generally applied, known
as a convolutional neural network (CNN). A CNN uses convolution
filters to extract features from images; as convolutional layers are
stacked in a model, higher level features are extracted, such as
shapes, with no a priori human intervention (Fig. 1B). This kind of
feature extraction architecture can be applied to image classifica-
tion, object localization within an image and segmentation.

Evaluating and optimizing supervised learning
models

Once a supervised learning model is fitted, it must be evaluated
in order to measure its effectiveness. This allows for comparison
to other state-of-the-art models and gives physicians a sense of
how the model will perform when implemented in a clinical set-
ting. There are several metrics available to evaluate the perform-
ance of an ML model. One of the most common measures used
in a classification task is the area under the receiver operator curve
(AUROC). AUROC curves are constructed by plotting the false
positive rate (1—specificity) against true positive rate (sensitivity)
at given threshold probabilities produced by the model (Fig. 2A).
An AUROC of 0.5 indicates a random classifier while an AUROC

of 1.0 indicates a perfect classifier. The model with an AUROC
closest to 1 is selected as the best performing model. Another
useful metric is a precision recall curve, which plots the precision
(positive predictive value) of a classifier against the recall (sensi-
tivity) at different thresholds. Similar to AUROC curves, an area
under the precision recall curve can be calculated as well and val-
ues closer to 1.0 indicate a superior classifier (Fig. 2A). Calculating
area under the precision recall curve is particularly useful for clas-
sifying rare events, as AUROC curves can inflate performance.
Regression tasks try to minimize performance metrics such as
root mean squared error or maximize measures of fit such as R”.
The goal of any ML model is to produce accurate predictions
in the future. In order to estimate how well the model will per-
form on unseen data, available data are randomly split.
Predictive models are fit on some fraction of the data available,
usually 70-80% of the data, and then model performance will be
evaluated on the remaining 20-30% of the data (Fig. 2B). In
domains where a lot of data are available (e.g. electronic health
record research or imaging), an additional split will be performed
to produce a training, development and test set of data; models
are evaluated on the development set of the data and once the
best model is selected, it is evaluated once on the test set. If lim-
ited amounts of data are available, k-fold cross-validation can be
employed where the data are split into k equally sized folds,
models are trained on k-1 folds of the data and then evaluated
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Figure 2: Machine learning evaluation. (A) Machine learning model A produces output probabilities that more clearly segregate healthy and disease patients com-
pared to model B. This is reflected by higher area under the receiver operator curve and area under the precision recall curve measures. (B) For a relatively large data-
set of 1000 patients, an 80-20 train test split leaves 800 patients to fit model parameters and 200 patients to test the model. (C) For smaller datasets of 100 patients,
cross-validation is a useful technique. Here, five-fold cross-validation results in 5 performance metrics which can then be averaged to determine model performance.

on the remaining held-out fold of the data (Fig. 2C). Typically, 5-
or 10-fold cross-validation is used in practice.

Unsupervised learning

Unsupervised learning is a method that can be used to uncover
hidden patterns in data with no human intervention. The differ-
ence from supervised learning is that the only inputs to the algo-
rithm are the raw features and the outcomes are unknown.
Importantly, this means that evaluation metrics such as AUROC
cannot be calculated for unsupervised models; hence, it is diffi-
cult to objectively evaluate the outputs of these models and ex-
pert input is often needed to determine clinical efficacy.

There are 2 main methods of unsupervised learning: principle
component analysis and cluster analysis (Table 2). In high-

dimensional data, where there are many variables captured for
each example, it can be difficult to find clusters. Principle compo-
nent analysis seeks to summarize data in lower dimensions, pro-
jecting data from k dimensions down to two or three dimensions
that humans can interpret while best representing the underlying
data distribution These low-dimensional projections will often re-
veal clusters of data that would not be visible or interpretable in
higher dimensions.

Cluster analysis, as the name suggests, is focused on finding
groups of similar examples within data based on a similarity met-
ric. Some examples include k-means clustering, which can be
used to find k clusters of similar data points within a distribution.
The k-means algorithm will first randomly define k centroids
within the data distribution and then iteratively improve upon
these centroid definitions, which are then used to assign cluster
identities to data points within the distribution.
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Table 2: Description of unsupervised learning algorithms used in medicine today

Method Description

Use cases

K means clustering

Defines k centroids and closest examples are assigned to the centroid. ~ Finding new clinical phenotypes

Centroid locations are iteratively improved until convergence.

Principle component analysis  Projects high-dimensional data into lower dimensions that explain

most of the variation in the data.

Visualizing high-dimensional data, feature engineering

Table 3: Summary of machine learning studies applicable to thoracic surgery

Reference Objective

Sample size and modality

Methods Application to thoracic surgery

Wang et al., [5] Detect 8 common chest X-ray
pathologies
Detection of wall motion abnormal-

ities on echocardiograms

Kusunose et al. [6]

108 948 frontal chest X-rays CNN

300 echocardiograms CNN

Rapid detection and screening of
post-surgical complications

Rapidly diagnose or screen cardiac
abnormalities

Bai et al. [7] Segmentation of ascending and 500 aortic magnetic reson- ANN + RNN Objective and consistent aortic
descending aorta ance images diameter measurement
Ouyang et al. [8] Segment the left ventricle to con- 10 030 echocardiograms CNN Objectively and rapidly measure

tinuously measure ejection
fraction
Diagnose abdominal aortic aneur-
ysm using both electronic health
record and genomic data
Predicting in-hospital rupture of
type A aortic dissection

Lietal.[9]

Wu et al. [10]

ChangJunioretal. [11]  Predicting 30 day mortality for
patients undergoing surgery for

congenital heart defects

401 patients with computed
tomography scans and
whole genome sequencing

1133 patients

2240 patients

cardiac function in real time
Logistic regression  Screening high-risk populations
and basic research
Random forest Stratifying patient with type A aor-
tic dissection for closer monitor-
ing and follow-up
Stratifying patients for closer mon-
itoring and follow-up

Random forest

Wang and Majewicz Objectively evaluate 3 surgical skills— 40 trials (8 participants) CNN Rapid and continuous surgical skill
Fey[12] suturing, needle passing and knot evaluation without need for
tying—using ML manual annotation
Jinetal. [13] Detect surgical instruments in lap- 15 videos CNN Real-time technique feedback in

aroscopic videos

Estimate operative mortality risk of
cardiac surgery

Predict 30-day mortality rate for
patients undergoing surgery for
type A aortic dissection

Identify patients with an aortic an-
eurysm via ML in order to identify
causative genes

Kilic et al., [14]

Czerny et al. [15]

Pirruccello et al. [16]

11190 patients

2537 patients

33 420 patients

the operating room

Inform surgical risks of high-risk
patients

Risk stratify post-operative patients
for closer follow-up

XGBoost

Logistic regression

CNN Increase the scale and speed of
basic research projects by elimi-
nating manual diameter
measurement

ANN: artificial neural network; CNN: convolutional neural network; ML: machine learning.

One useful application of unsupervised learning in medicine is
discovery of new subtypes of a complex disease. Once this new
subgroup is identified, different treatment regimens can be
explored that may provide better outcomes to patients. This was
demonstrated in a novel study that utilized hierarchical clustering
to discover 3 distinct phenotypes of heart failure with preserved
ejection fraction [4]. Still, supervised learning remains the domin-
ant form of ML utilized today.

Reinforcement learning

RL is a fundamentally different framework compared to super-
vised learning. RL algorithms do not need extensive training
data of input-output pairs as is needed in supervised learning;
instead, RL algorithms will train an agent (e.g. surgical robot) to
perform a series of actions (e.g. suture a wound) that

incentivizes positive behaviours (e.g. closing the wound) and
disincentives negative behaviours (e.g. bleeding) as formalized in
a reward function. This is the kind of core technology at the
heart of surgical robotics. Algorithms will iteratively try different
series of actions until the reward function has been sufficiently
optimized and the system is able to achieve appropriate
performance.

RL has seen a number of remarkable achievements in the past
decade. However, applications to surgery are relatively infre-
quent and clinical implementation is difficult, given clinical and
anatomic variations. Additionally, imaging, monitoring data and
‘tactile’ inputs need to be integrated. Practical surgical applica-
tions remain crude and are currently far from implementation in
the OR.
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APPLICATIONS TO THORACIC SURGERY

Equipped with an understanding of the principles of ML, we can
begin to explore how this technology can be used by thoracic
surgeons in a variety of settings. Broadly, there are 5 fundamental
areas in which ML can aid thoracic surgeons: improving diagnosis
and preoperative management, augmenting surgical performance
in the OR, skill assessment, post-procedure prognostication and
translational research. We will discuss each setting separately,
show specific examples of what has already been accomplished,
and examine work that needs to be done in the future (Table 3).

Aiding diagnosis and preoperative management

Due to its ability to draw inferences from the complex, high-
dimensional and often multimodal data needed to make a diag-
nosis, ML has been extensively investigated as a tool to improve
diagnosis. There are 2 imaging-based applications of ML applic-
able to thoracic surgery: automated diagnosis of cardiac path-
ology and segmentation of the aforementioned cardiac
pathology. On the diagnostic front, CNNs are able to detect sub-
tle patterns in biomedical images in order to quickly and accur-
ately detect pathology. One classic example is an ML algorithm
that was able to detect 8 distinct pathologies from chest X-rays
[5] Another study used CNNs to better detect wall motion
abnormalities in echocardiographic images, achieving an AUROC
of 0.99, outperforming physicians at the same task [6].

Segmentation is another fruitful application of CNNs, particu-
larly for tasks reliant upon measuring the dimensions of organs
and vessels [7]. There are numerous examples applicable to thor-
acic surgery, including aortic diameter [17] and volumetric seg-
mentation of the left ventricle to measure cardiac function [8]; in
all cases, CNNs are able to match or outperform human-level
performance. These studies show how ML can augment a thor-
acic surgeon'’s practice and quickly calculate clinically relevant
cardiac specific parameters, allowing for more time for direct pa-
tient care.

Additionally, early diagnosis of thoracic and abdominal aneur-
ysms would be particularly beneficial due to the fact that as
many as 95% of patients have no symptoms prior to life threat-
ening complications [18]. Recently, an ML approach that inte-
grated genomic and electronic health record data also
demonstrated remarkable ability to diagnose abdominal aortic
aneurysms while also elucidating some of the underlying genetic
mechanisms [9]. Additionally, a random forest classifier trained
on 1133 patients was able to predict in-hospital rupture of the
ascending aorta for patients with thoracic ascending aortic
aneurysms with an AUROC of 0.752 and sensitivity of 0.99 [10].

Augmenting intraoperative surgical performance

Surgical robotics has advanced greatly in the past few decades,
with examples including the da Vinci Surgical System (Intuitive
Surgical, Sunnyvale, CA, USA) for a variety of minimally invasive
surgical procedures and the Sensei X robotic catheter system
(Hansen Medical Inc., Mountain View, CA, USA) for cardiac cath-
eter insertion [19]. However, these systems currently require con-
tinuous or nearly continuous human intervention. Because
thoracic surgeons are capable of performing a wide array of pro-
cedures with high complexity and dynamic patients, surgical

robots will likely never be fully independent of human control.
However, RL powered robotics are already capable of performing
simple surgical subtasks, such as simple suturing and precise sur-
gical cutting [20, 21].

Creating a general purpose surgical robot for thoracic surgery
that is able to perform all parts of even a single procedure is very
challenging; creating a robot that is able to perform all of the
tasks that a single human thoracic surgeon can do is likely impos-
sible. However, a long-term goal might be to get ML robotics
could advance to the point where simple surgical tasks are auto-
mated and surgeons primarily play the role of decision-maker,
much like a pilot using auto-pilot controls in an airliner. A sur-
geon can set an objective for a robot to perform and then ob-
serve the procedure, intervening as necessary, while not worrying
about the psychomotor nuances of the procedure.

Outside of the realm of robotics, ML can also help integrate
signals derived from patient monitoring equipment during a sur-
gery in order to give early warnings to surgeons during a proced-
ure. A recent randomized trial investigated the implementation
of an ML system to detect intraoperative hypotension during
elective non-cardiac surgeries with remarkable success, decreas-
ing the median time of hypotension from 32.7 min to just 8 min
[22]. Particularly in high-risk operations, similar early warning sys-
tems can be implemented specifically for thoracic surgery proce-
dures, decreasing rates of adverse events.

Surgical observation and evaluation

Objective, real-time evaluation of surgical skills in trainees is a
particularly difficult task considering the dynamic nature of the
operating room and the variety of surgical procedures and envi-
ronments in which surgeons operate. However, ML algorithms
have been shown to accurately assess surgical performance and
provide quantitative and actionable feedback to surgeons on 3
simple performance tasks—suturing, needle passing and knot
tying—based on short video clips [12]. Another area of active re-
search is surgical phase recognition, which consists of automatic-
ally detecting the temporal phase of a surgery to improve
scheduling and throughput. Limited work has been done specif-
ically for thoracic surgery and instead has been primarily focused
on common ophthalmology or laparoscopic procedures [23,24].
One final application used deep learning to recognize surgical
tools that are being used during laparoscopic surgeries for the
purpose of tracking tools during a surgery and using this as a
proxy for surgical skill and quality [13]. Aspirational goals of these
kinds of technologies include alerting surgeons if they are deviat-
ing from the performance of other surgeons in the database or
providing real-time instructive feedback on technique while in
the operating room. Objective evaluation of surgical skill, both
real time and retrospective, has long been a goal of the surgical
community; leveraging ML can help achieve this goal [25].

Post-surgical prognosis

Much of clinical medicine involves using patient data to make
predictions about future outcomes and then managing patients
based on these predictions. While historically these decisions
were made based on clinical experience and medical literature,
ML has opened up the possibility of making highly accurate pre-
dictions of patient outcomes that allows for highly individualized
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Table 4: Limitations of machine learning and potential
solutions
Limitation Potential solutions

Lack of model
interpretability

o Rely on simpler models
e Perform careful model auditing to dis-
cover blind spots

Barriers to clinical o Study clinician workflow
implementation e Partnerships with ML practitioners
e Improve user interfaces

Low data quality and o Establish data sharing agreements be-
quantity tween institutions
o Audit databases consistently for accuracy

Limited model evaluation e Implement mechanisms to monitor
post-deployment model performance in clinical settings
e Evaluate magnitude of practice changes
post-deployment

Ethical considerations e Increase patient access to ML by expand-
ing implementation to community and
smaller hospitals

e Ensure that input data are representative
of the treated patient population

o Appropriately inform patients about the
use of ML in clinical care

ML: machine learning.

patient management. This is reflected by the exponential rise of
published clinical scoring systems, with approximately 250 000
such publications since 1965 [26].

Predictive models are particularly important in thoracic sur-
gery, where surgical complication rates are higher than other sur-
gical specialties [27]. A recent publication used XGBoost, a type
of ensemble model, to predict the operative mortality rate of
11 190 patients from a single institution undergoing cardiac sur-
gery demonstrated improved AUROC, calibration, accuracy and
F1 score over the state of the art Society of Thoracic Surgeons
Predicted Risk of Mortality (STS PROM) score [14]. Another study
applied logistic regression on 1000 patients, improving predic-
tion of in-hospital mortality following cardiac surgery compared
to other measures such as Acute Physiology and Chronic Health
Evaluation Il (APACHE Il) and Parsonnet score [28]. A third study
was able to predict 30-day mortality for patients with acute type
A aortic dissection using logistic regression with an AUROC of
0.728 [15]. Still another study predicted 30-day mortality for
patients undergoing surgery for congenital heart disease with an
AUROC of 0.902 [11].

However, it is important to note that advanced ML techniques
are not a panacea for predicting outcomes; one report noted
that ML did not outperform simple logistic regression when pre-
dicting in hospital mortality after cardiac surgery [29]. Continued
expansion of large postoperative databases may improve the
predictive power of ML techniques [30].

Accelerating translational research

Translational research innovations have always shaped the qual-
ity of thoracic surgery in a number of ways, from the use of deep
hypothermia for patients under circulatory arrest to a detailed
understanding of the impact of genetics on aortic aneurysms and
dissections [31-33]. Surgical innovation in the future will continue

to rely upon similar kinds of translational research. ML techni-
ques are poised to accelerate this process in diverse.

Genetic studies in particular can be revolutionized by ML.
ANNSs have also been utilized in genomics to predict pathogen-
icity of mutations or genetic regulatory mechanisms. One study
used a neural network to identify SNPs associated with inherit-
able cardiac disease [34]. Another recent study used deep learn-
ing techniques on magnetic resonance images of the aorta from
the UK Biobank to measure the aortic diameter of over 30 000
individuals. Then, GWAS study ultimately identified that the gene
SVIL, a gene highly expressed in vascular smooth muscle, as sig-
nificantly associated with both ascending and descending dila-
tion [16]. Only 116 images needed manual assessment; deep
learning was able to segment the remaining images with high ac-
curacy. Deep learning on biomedical imaging and electronic
health record data coupled with genetic sequences can revolu-
tionize the study of aortic disease—and other cardiac domains—
by increasing the sample size of studies and the speed at which
discoveries are made.

LIMITATIONS OF MACHINE LEARNING IN
MEDICINE

Although much hype has surrounded the field of ML, it is not a
panacea for all of the diagnostic and management challenges fac-
ing surgeons today. Few of the promising applications discussed
above are commonly used by physicians during everyday prac-
tice. There are several limitations of ML that deserve mention,
which are summarized in Table 4.

Perhaps the biggest shortcoming of ML in medicine revolves
around a lack of interpretability regarding the outcomes pro-
duced by the ML model at hand. The major benefit of ML—
uncovering highly complex and non-linear associations between
features—also means that humans are unable to understand what
is going on behind the ‘black box' used to make these associa-
tions. This differs from other modelling methods in medicine. For
example, in linear regression, examining the weights (i.e. B) of the
regression model gives the user a very straightforward interpret-
ation: increasing input feature x, by 1 increases or decreases the
output y by By. Several attempts have been made to allow for the
same kind of convenient interpretation in ML, yet all make
assumptions that are frequently violated, are computationally ex-
pensive, or are very sensitive to perturbations in the model [35].
More effort should be invested in giving clinicians a look behind
the ‘black box’ to improve confidence in the outputted results.

Clinical implementation is a challenge faced by both clinicians
and ML practitioners alike. While a well implemented ML model
fits seamlessly into pre-existing digital infrastructure, a poorly
implemented model may significantly hinder the workflow of
physicians by requiring manual input of from the patient’s digital
record. A poorly structured user interface may draw physicians
away from time spent with patients [36]. Because much of the in-
novation in ML is centred on algorithm and dataset develop-
ment, less focus has been placed on ensuring the ML models are
easy to use by physicians. Shifting this perspective could greatly
accelerate ML adoption in clinical practice. Ideally, ML models
should work in the background, automating tasks that physicians
find mundane or frustrating (e.g. data entry) and augmenting
clinical care whenever possible. Yet few studies have examined
the nuances of implementation [37]. In addition, overreliance
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upon ML and automation bias may pose real future risks if ML
becomes widely adopted in medicine; even the most reliable ML
model can never replace clinical experience [38].

Accessing high-quality data remains a central challenge faced
by ML in clinical practice. A common aphorism among ML prac-
titioners is ‘garbage in, garbage out this is to say, the quality of
the data dictates the quality of the model. If the data that are
used to train ML models are not representative of the patient
data in clinical practice, the model is useless and will generalize
poorly to new data. This can occur when training data systemat-
ically overrepresents or underrepresents a particular patient
population (i.e. cancer patients) or the database draws from only
a specific segment of the population. As a general rule of thumb,
the larger and more diverse a database is, the greater its utility
for ML. Yet producing large, heterogenous datasets in medicine
is necessarily difficult due to privacy and regulatory requirements
(e.g. HIPAA, IRB). Physicians and researchers should strive to en-
sure that clinical data sets are heterogenous and capture the full
range of presentations that they might encounter by establishing
data sharing agreements between institutions, capturing as much
relevant clinical data as possible, remaining vigilant against inclu-
sion and exclusion bias, and frequently auditing databases to en-
sure high-quality data input.

Finally, ML models often do not receive the same level of scru-
tiny after deployment in a clinical setting. Much like postmarket-
ing surveillance of pharmaceuticals, ML models should be
continually audited post-deployment for both accuracy and effi-
cacy. For example, although computer-aided mammography has
increased in prevalence in the past 2 decades, there has been no
appreciable increase in diagnostic accuracy [39]. In addition,
models should be subjected to evaluation post-deployment in
order to assess the quality of the input data and ensure that the
model is not underperforming on novel data.

Ethical considerations

There are several ethical issues that need to be considered when
implementing ML algorithms in clinical practice. One key tenets
is that all patients should receive equitable access to the benefits
provided by ML models. There is an apparent geographic bias in
current implementations of ML applications in the USA; a recent
study showed that a disproportionate number of ML studies
used patient cohorts from just 3 states—California, New York and
Massachusetts—with no representation from 34 of 50 states [40].
A more conscious effort needs to be made to diversify both the
populations that have access to ML and training physicians to ad-
vocate for ML integration at a variety of clinical settings.

It is also critical that the data that are inputted into ML models
are broadly representative of kinds of patients being treated.
Models will perform poorly if patient populations are not repre-
sented in the training data. In addition, if racially biased care is
reflected in the training data, ML may recapitulate these biases,
as recently discovered in an algorithm used nationwide to stratify
patients into high-risk care management programmes [41]. To
combat this bias, data should be continually examined to make
sure that the diversity of patients seen in clinical practice is repre-
sented in the training data and that a model is not consistently
underperforming on subgroups of patients.

As with other medical interventions, patients should be
informed when ML is being utilized in their care, as well as any
being made aware of potential shortcomings. This will become

more difficult as artificial intelligence becomes integrated into
everyday medical practice via ambient intelligence and inte-
grated clinical decision support tools [42]. Explicit informed con-
sent discussions should take place about the role of human
oversight in any ML process, how patient data are being captured
and used, and privacy measures in place to protect health
information.

CONCLUSIONS

When the words ‘machine learning’ are uttered to a thoracic sur-
geon, reactions can range from unrestrained optimism about the
future of ML in medicine to confusion and fear about compli-
cated mathematics and even to resentment about automation.
The proper response likely falls somewhere between all of these
sentiments. ML certainly has a remarkable future in surgery if
implemented properly. However, in order to fully realize the po-
tential of ML in thoracic surgery, surgeons need to be able to
interface with ML practitioners in a way that drives meaningful
collaboration. In order for these collaborations to be successful,
surgeons need a high-level understanding of different ML techni-
ques, awareness of current ML efforts in thoracic surgery and rec-
ognition of some potential shortcomings of ML. We hope to
have covered all 3 of these domains in this review.

Conflict of interest: The disclosures for Dr John A. Elefteriades
are as follows: Coolspine—Principal; Terumo—Data and Safety
Monitoring  Board;  Cryolife—Consultant; ~ DuraBiotech—
Consultant. The other authors have nothing to disclose.

Author contributions

Nicolai P. Ostberg: Conceptualization; Data curation; Formal analysis;
Investigation; Methodology; Validation; Visualization; Writing—original draft.
Mohammad A. Zafar: Conceptualization; Data curation; Formal analysis;
Investigation; Project administration; Visualization; Writing—original draft.
John A. Elefteriades: Conceptualization; Data curation; Formal analysis;
Investigation; Methodology; Project administration; Supervision; Visualization;
Writing—review & editing.

Reviewer information

European Journal of Cardio-Thoracic Surgery thanks Mitsuru Asano, Tomislav
Kopjar and Nikolay O. Travin for their contribution to the peer review process
of this article.

REFERENCES

[1] Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S et al. Artificial intelligence in
healthcare: past, present and future. Stroke Vasc Neurol 2017;2:
230-43.

[2] Chan S, Siegel EL. Will machine learning end the viability of radiology as
a thriving medical specialty? Br ] Radiol 2019;92:20180416.

[3] Langarizadeh M, Moghbeli F. Applying naive Bayesian networks to dis-
ease prediction: a systematic review. Acta Inform Med 2016;24:364-9.

[4] Shah SJ, Katz DH, Selvaraj S, Burke MA, Yancy CW, Gheorghiade M et al.
Phenomapping for novel classification of heart failure with preserved
ejection fraction. Circulation 2015;131:269-79.

[5] Wang X, Peng, Y Lu, L Lu, Z Bagheri, M and Summers, RM ChestX-Ray8:
Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-
Supervised Classification and Localization of Common Thorax Diseases.
In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Honolulu, HI, USA, 2017, pp. 3462-71, doi:10.1109/CVPR.2017.369.

120Z J8qWISAON 80 UO J8sn uopuo- Jo Alsiaaiun Atepy usend Aq G266/ 19/ 1 2/2/09/2101e/s1ole/woo dnoolwepeoe//:sdiy wWo.ll papeojumod



(6]

7]

(8]

9]

(10]

(1]

2]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

N.P. Ostberg et al. / European Journal of Cardio-Thoracic Surgery 221

Kusunose K, Abe T, Haga A, Fukuda D, Yamada H, Harada M et al. A
deep learning approach for assessment of regional wall motion abnor-
mality from echocardiographic images. JACC Cardiovasc Imaging 2020;
13:374-81.

Chen C, Qin C, Qiu H, Tarroni G, Duan J, Bai W et al. Deep learning for
cardiac image segmentation: a review. Front Cardiovasc Med 2020;7:25.
Ouyang D, He B, Ghorbani A, Yuan N, Ebinger J, Langlotz CP et al.
Video-based Al for beat-to-beat assessment of cardiac function. Nature
2020;580:252-6.

LiJ, Pan C, Zhang S, Spin JM, Deng A, Leung LLK et al. Decoding the gen-
omics of abdominal aortic aneurysm. Cell 2018;174:1361-72.e10.

Wu J, Qiu J, Xie E, Jiang W, Zhao R, Zafar MA et al. Predicting in-hospital
rupture of type A aortic dissection using random forest. ] Thorac Dis
2019;11:4634-46.

Chang Junior J, Binuesa F, Caneo LF, Turquetto ALR, Arita E, Barbosa AC
et al. Improving preoperative risk-of-death prediction in surgery con-
genital heart defects using artificial intelligence model: a pilot study.
PLoS One 2020;15:e0238199.

Wang Z, Majewicz Fey A. Deep learning with convolutional neural net-
work for objective skill evaluation in robot-assisted surgery. Int J
Comput Assist Radiol Surg 2018;13:1959-70.

Jin A, Yeung S, Jopling J, Krause J, Azagury D, Milstein A et al. Tool detec-
tion and operative skill assessment in surgical videos using region-based
convolutional neural networks. arXiv e-Prints 2018; arXiv:1802.08774.
pp. 691-9, doi:10.1109/WACV.2018.0081.

Kilic A, Goyal A, Miller JK, Gjekmarkaj E, Tam WL, Gleason TG et al.
Predictive utility of a machine learning algorithm in estimating mortality
risk in cardiac surgery. Ann Thorac Surg 2020;109:1811-19.

Czerny M, Siepe M, Beyersdorf F, Feisst M, Gabel M, Pilz M et al.
Prediction of mortality rate in acute type A dissection: the German
Registry for Acute Type A Aortic Dissection score. Eur ] Cardiothorac
Surg 2020;58:700-6.

Pirruccello JP, Chaffin MD, Fleming SJ, Arduini A, Lin H, Khurshid S et al.
Deep learning enables genetic analysis of the human thoracic aorta.
bioRxiv 2020; 2020.05.12.091934.

Bai W, Suzuki, H Qin, C Tarroni, G Oktay, O Matthews, PM, et al. Recurrent
Neural Networks for Aortic Image Sequence Segmentation with Sparse
Annotations. In Medical Image Computing and Computer Assisted
Intervention - MICCAI 2018. Cham: Springer International Publishing, 2018.
Elefteriades JA, Sang A, Kuzmik G, Hornick M. Guilt by association: para-
digm for detecting a silent killer (thoracic aortic aneurysm). Open Heart
2015;2:000169.

Peters BS, Armijo PR, Krause C, Choudhury SA, Oleynikov D. Review of
emerging surgical robotic technology. Surg Endosc 2018;32:1636-55.
Schulman J, Gupta A, Venkatesan S, Tayson-Frederick M, Abbeel P. A
case study of trajectory transfer through non-rigid registration for a simpli-
fied suturing scenario. In 2013 IEEE/RS International Conference on
Intelligent Robots and Systems. Tokyo, Japan, 2013, pp. 4111-17, doi:
10.1109/IR0S.2013.6696945.

Thananjeyan B, Garg A, Krishnan S, Chen C, Miller L, Goldberg K.
Muiltilateral surgical pattern cutting in 2D orthotropic gauze with deep re-
inforcement learning policies for tensioning. In 2017 IEEE International
Conference on Robotics and Automation (ICRA). 2017.

Wijnberge M, Geerts BF, Hol L, Lemmers N, Mulder MP, Berge P et al.
Effect of a machine learning-derived early warning system for intraoper-
ative hypotension vs standard care on depth and duration of intraopera-
tive hypotension during elective noncardiac surgery: the HYPE
randomized clinical trial. JAMA 2020;323:1052.

(23]

(24]

[40]

(41]

(42]

Kitaguchi D, Takeshita N, Matsuzaki H, Takano H, Owada Y, Enomoto T
et al. Real-time automatic surgical phase recognition in laparoscopic sig-
moidectomy using the convolutional neural network-based deep learn-
ing approach. Surg Endosc 2020;34:4924-31.

Zisimopoulos O, Flouty E, Luengo |, Giataganas P, Nehme J, Chow A et
al. DeepPhase: surgical phase recognition in CATARACTS videos. arXiv
e-Prints 2018; arXiv:1807.10565.

Reiley CE, Lin HC, Yuh DD, Hager GD. Review of methods for objective
surgical skill evaluation. Surg Endosc 2011;25:356-66.

Challener DW, Prokop LJ, Abu-Saleh O. The proliferation of reports on
clinical scoring systems: issues about uptake and clinical utility. JAMA
2019;321:2405-6.

Crawford TC, Magruder JT, Grimm JC, Suarez-Pierre A, Sciortino CM,
Mandal K et al. Complications after cardiac operations: all are not cre-
ated equal. Ann Thorac Surg 2017;103:32-40.

Turner JS, Morgan CJ, Thakrar B, Pepper JR. Difficulties in predicting out-
come in cardiac surgery patients. Crit Care Med 1995;23:1843-50.
Benedetto U, Sinha S, Lyon M, Dimagli A, Gaunt TR, Angelini G et al. Can
machine learning improve mortality prediction following cardiac sur-
gery? Eur J Cardiothorac Surg 2020;58:1130-6.

D’Agostino RS, Jacobs JP, Badhwar V, Fernandez FG, Paone G, Wormuth
DW et al. The society of thoracic surgeons adult cardiac surgery data-
base: 2018 update on outcomes and quality. Ann Thorac Surg 2018;105:
15-23.

Ostberg NP, Zafar MA, Ziganshin BA, Elefteriades JA. The genetics of
thoracic aortic aneurysms and dissection: a clinical perspective.
Biomolecules 2020;10:182.

Haverich A, Hagl C. Organ protection during hypothermic circulatory ar-
rest. ] Thorac Cardiovasc Surg 2003;125:460-2.

Parolari A, Tremoli E, Songia P, Pilozzi A, Bartolomeo RD, Alamanni F
et al. Biological features of thoracic aortic diseases. Where are we now,
where are we heading to: established and emerging biomarkers and mo-
lecular pathways. Eur J Cardiothorac Surg 2013;44:9-23.

Burghardt TP, Ajtai K. Neural/Bayes network predictor for inheritable
cardiac disease pathogenicity and phenotype. ] Mol Cell Cardiol 2018;
119:19-27.

Elshawi R, Al-Mallah MH, Sakr S. On the interpretability of machine
learning-based model for predicting hypertension. BMC Med Inform
Decis Mak 2019;19:146.

Rajkomar A, Dean ], Kohane I. Machine learning in medicine. N Engl ]
Med 2019;380:1347-58.

Escobar GJ, Turk BJ, Ragins A, Ha J, Hoberman B, LeVine SM et al.
Piloting electronic medical record-based early detection of inpatient de-
terioration in community hospitals. ] Hosp Med 2016;11:518-24.
Amarasingham R, Patzer RE, Huesch M, Nguyen NQ, Xie B.
Implementing electronic health care predictive analytics: considerations
and challenges. Health Aff (Millwood) 2014;33:1148-54.

Lehman CD, Wellman RD, Buist DS, Kerlikowske K, Tosteson AN,
Miglioretti DL. Diagnostic accuracy of digital screening mammography
with and without computer-aided detection. JAMA Intern Med 2015;
175:1828-37.

Kaushal A, Altman R, Langlotz C. Geographic distribution of US cohorts
used to train deep learning algorithms. JAMA 2020;324:1212-3.
Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias
in an algorithm used to manage the health of populations. Science 2019;
366:447-53.

Haque A, Milstein A, Fei-Fei L. llluminating the dark spaces of healthcare
with ambient intelligence. Nature 2020;585:193-202.

120Z J8qWIBAON 80 UO J8sn uopuo Jo Alsianiun Atepy ussnd Aq 5266/ 19/ 1 2/2/09/210me/s10le/woo dnoolwepeoe//:sdiy wq



	tblfn1
	tblfn2

