
A Survey of Optimization Algorithms to Minimize Quantum Gate Transformation Errors
for Pulse Sequences Using Single Flux Quantum Pulses

By: Antoine Moats, University of Southern California
Mentor: Professor Rebing Wu, Tsinghua University

The purpose of this paper is to analyze the ability of different MATLAB search algorithms to find
single flux quantum (SFQ) pulse sequences that minimize gate transformation errors which are defined
throughout the literature[1.2]. Moreover, these algorithms were tested across different scenarios such as
increasing the length of the pulse sequence, grouping the pulses together, and reducing the pulse area. The
algorithms I compared were the built-in MATLAB optimization algorithms: single and multi-objective
genetic algorithm (GA), surrogateopt (SO), particle swarm optimization (PSO), and simulated annealing
(SA). In most of the simulations 4 eigenstates were simulated as this was the case in many papers in the
literature on SFQ pulses[1.2].

Binary Pulse Sequences v.s. Segmented Pulse Sequence
In order to encode the fact that the pulse sequence can only include values corresponding to

On/Off, integer constraints need to be placed. In addition, the index of variables in MATLAB can not be
less than 1. Therefore the free evolution (U0) and applied pulse (U1) operators are stored in a cell array in
MATLAB as U{1} and U{2}. This limits the integers in the pulse sequence to be either 1 or 2. This was
done for the GA, SO, PSA, and SA algorithms.

One potential issue that arises with binary sequences is the frequency of pulses matches the
frequency of the excitation to higher order eigenstates causing leakage to occur. Leakage throughout the
pulse sequence increases the likelihood that the gate error will be large. Therefore, in order to reduce the
chance of leakage, grouping the pulses together may cause the gate error to be smaller. This can be done
by changing the integer constraints from 1 to 2 to be from - L to L. Thus, the pulse sequence is made up
of N segments where each segment is an integer between -L and L (where N and L are user inputs). A
segment with negative length C (greater than or equal to L) corresponds to a segment of C pulses being
Off and a segment with positive length C (less than or equal to L) corresponds to C pulses being On. An
example illustrating the difference is shown below:

Alternating Binary Sequence of 100 Pulses Alternating Pulse Sequence of 10 segments of
10 Pulses each



Binary Pulse Performance:

Algorithm Error Number of
Eigenstates

Pulse Area Size of Pulse
Sequence

Genetic Algorithm ∼10-2- 10-4 4 pi/20, pi/300 1000-4000

Surrogate Optimization ∼10-1 4 pi/20, pi/300 1000-4000

Simulated Annealing ∼10-1 4 pi/20, pi/300 1000-4000

Particle Swarm ∼10-1-10-3 4 pi/20, pi/300 1000-4000

The best overall results were from the genetic algorithm when the pulse area was pi/300 and the total
pulse length was made up of 4000 time steps.

Segmented Pulse Performance:

Algorithm Error Number of
Eigenstates

Pulse Area Number of
Segments

Maximum
Length of
Segments

Genetic Algorithm ∼10-2- 10-4 4 pi/20, pi/300 30-100 100

Surrogate
Optimization

∼10-2 4 pi/20, pi/300 30-100 100

Simulated
Annealing

∼10-1 4 pi/20, pi/300 30-100 100

Particle Swarm ∼10-2 4 pi/20, pi/300 30-100 100

The best overall results were seen from the genetic algorithm when the pulse area was pi/20 and
the number of segments was 30 and the maximum length of the segments was 100. Overall the final gate
error was comparable for all of the algorithms and was not significantly impacted by grouping the pulses
into segments. An example of excellent results from the genetic algorithm run for the binary case and the
segmented case is shown below:

Binary case of 4000 time steps and pulse
width of pi/300

30 segments of maximum length 100 and
pulse width of pi/20



Averaging the Error Over Unknown Number of Eigenstates
In the literature, the number of eigenstates involved in the calculation of gate error is usually 3 or

4. The reasoning for this is that the higher order eigenstates do not play a factor in leakage. In reality, the
precise number of eigenstates is unknown unless a measurement is made in which case the superposition
collapses and the quantum state is a pure state. Because the precise number of eigenstates is unknown it is
important to consider the case where a pulse sequence can be optimized for an arbitrary number of
eigenstates. This was done by encoding a lower bound and an upper bound of possible eigenstates. The
algorithms would calculate the value of the error when the number of eigenstates was limited to the lower
bound and increment the number of eigenstates by one until the upper bound was reached. The algorithms
would then average the error across all of the number of possible eigenstates and find the pulse sequence
that minimized this average.

Algorithm Average Error Lower bound-
Upper Bound of
eigenstates

Pulse Area Size of Pulse
Sequence

Genetic Algorithm ∼10-3 2-4 pi/300 1000-4000

Surrogate
Optimization

∼10-1 2-4 pi/20, pi/300 1000-4000

Particle Swarm ∼10-1-10-3 2-4 pi/300 1000-4000

Due to the lack of performance of the simulated Annealing algorithm in MATLAB I did not
include it in the above table. Addition, the number of eigenstates is capped at four because for higher
upper bounds of the eigenstates the minimized errors became on the order of magnitude of 10-1 across all
of the algorithms. This process illustrated that averaging the error for cases when the system was
constrained to a range of eigenstates was not effective in finding pulse sequences that limited the error of
a gate transformation. Moreover, a pulse sequence should be optimized when there is a known number of
eigenstates. While knowing the exact number of potential leakage eigenstates of a system is impossible,
as leakage to higher order eigenstates always occurs, it was an interesting find that contradicted some of
the papers in the literature on SFQ pulses[1.2]. Several papers argued that a pulse sequence optimized for 3
or 4 eigenstates was sufficient for n > 5 eigenstates[1.2] . The argument centered around the fact that
leakage to higher order eigenstates drops off in a nonlinear fashion as more eigenstates were added. While
this intuitively made sense, my findings did not directly support this conclusion.

Single v.s. Multi-objective Sequences
Another idea was to calculate the average leakage probability over time and to find an algorithm

that minimized the average leakage probability over time as well as the final gate error. Because there are
functions being minimized, this is known as a multi-objective optimization algorithm. In MATLAB, the
genetic algorithm is the only algorithm that can be utilized as a multi-objective algorithm. Using this new
multi-objective function, the binary sequences were used to see if reduced values of final gate errors could
be found.



Pareto Front of Multiobjective Genetic
Algorithm for 4 eigenstates

The Pareto front illustrates values that
minimize both objective functions in a way that
any decrease in one objective would lead to an
increase in the other. Here, the first objective
function - the gate error - is of more significance
than the second objective function - the average
leakage probability for higher order eigenstates.
Therefore the values on the left hand of the
graph are the optimal solutions that are included
in the table below.

Algorithm Final Gate Error Number of
Eigenstates

Pulse Area Size of Pulse
Sequence

Genetic Algorithm ∼10-3- 10-4 4 pi/20 1000-4000

Multi-objective GA ∼10-1-10-2 4 pi/20 1000-4000

Multi-objective GA ∼10-2- 10-4 4 pi/300 1000-4000

Discussion
The smallest gate errors were consistently found when the genetic algorithm was used. Across

almost all of the parameters (varying pulse length, pulse area, number of eigenstates etc.) the genetic
algorithm was the best. Moreover, the genetic algorithm provided values that were consistent with those
found in the literature ∼10-4 across each of these constraints as well. While low values were obtained for
pi/20 and shorter pulse sequences, smaller pulse areas (pi/300 or pi/100) and longer pulse sequences are
optimal for reducing leakage throughout the course of the pulse sequence. This can be seen from
multi-objective genetic algorithm runs where the final gate error and the average probability leakage are
minimized simultaneously and from single objective genetic algorithm runs. In the diagrams below, the
probability for each state overtime is graphed, and even though the single objective GA does not
explicitly minimize the probabilities of the second and third excited states, the average probabilities over
time are minimized. This is not found in sequences with pi/20 pulse areas where the second and third
eigenstates are “overexcited”, meaning leakage throughout the gate transformation is very high. Binary
sequences are also more favorable to segmented pulse sequences because they consistently decrease the
probabilities of the ground state and the first excited state. The segmented pulse sequences ended up
sporadically changing the probabilities of the ground and excited states leading to leakage to higher order
states. Reducing leakage to higher order states throughout the gate transformation is important because for
high leakage sequences, any external disturbance would increase the likelihood that the pulse sequence
did not effectively switch the probabilities of the two qubit states (the ground state and the first excited
state).



GA binary single obj pi/300 and 4000 time GA binary multi obj pi/300 and 4000 time steps
steps

The two graphs are essentially the same; the average leakage probability is marginally
reduced which can be deduced from the fact that the peaks of the 2nd and 3rd eigenstates are
slightly smaller for the second pulse sequence.

Side Investigations
Bounded leakage proof:

In order to calculate the average leakage probability, an initial probability column vector must
be inputted. This is due to the fact that for different starting probabilities, the leakage to higher order
states is different. For example, a qubit that starts purely in the first excited state will have a different
leakage to the second and third excited states than a qubit that starts purely in the ground state. Thus, I
proved that the average probability leakage to higher order states is bounded by a starting probability
of either the pure ground state or by a starting probability of the pure excited state. Once I did this, I
was able to calculate which one was greater for a given pulse sequence in order to determine the
highest average probability leakage for that pulse sequence. This allowed the comparison of the
average probability leakage used in the second objective function for the multi-objective genetic
algorithm to be simple as the initial probability is no longer a variable. Instead, each pulse sequence is
determined to be optimal based on the pulse sequence that has the lowest value of the highest average
probability leakage.

Genetic Algorithm settings:
In MATLAB, the Genetic Algorithm takes in several outputs allowing the user to “tune” the

algorithm minimizing the errors. After trial and error and reading papers[1,3] that also utilized the
genetic algorithm, the following settings produced the best results.

- 'CrossoverFcn' , crossoverFunction
- 'crossoverFraction', 0.9
- 'EliteCount', 25
- 'FitnessScalingFcn', 'fitscalingshiftlinear'
- 'PopulationSize', 1000
- "MaxGenerations", 1000



References

1. Optimal Qubit Control Using Single-Flux Quantum Pulses
Per J. Liebermann and Frank K. Wilhelm
https://arxiv.org/pdf/1512.05495.pdf

2. Binary Optimal Control Of Single-Flux-Quantum Pulse Sequences
Ryan H. Vogta, N. Anders Petersson
https://arxiv.org/pdf/2106.10329.pdf

3. Tuning Genetic Algorithm Parameters using Design of Experiments
Mohsen Mosayebi and Manbir Sodhi
http://www0.cs.ucl.ac.uk/staff/W.Langdon/gecco2020/companion_files/wksp176s2-file1.pdf

https://arxiv.org/pdf/1512.05495.pdf
https://arxiv.org/pdf/2106.10329.pdf
http://www0.cs.ucl.ac.uk/staff/W.Langdon/gecco2020/companion_files/wksp176s2-file1.pdf

