
Elastic Energy Approximation and Minimization Algorithm for

Foldable Meshes

Antoine Moats, Niharika Sashidhar, Paul Plucinsky
Viterbi School of Engineering, University of Southern California

May, 2024

Abstract

The purpose of this report is to solve the inverse of problems typically seen in research papers
about rigid, flat-foldable meshes. In recent years, several techniques have been developed to
determine the possible configurations that a given rigid, flat-foldable meshes can fold into. This
report, on the other hand, proposes a method of determining perturbations of the original mesh
pattern and the end configuration to reach optimal solutions. Instead of inverting conventional
methods, this proposal eliminates the concept of fixing the vertices between panels, allowing for
free rotations and translations of panels, and minimizes the error from a fixed vertex fold.

1 Introduction

Traditionally a form of Japanese art, origami is now a practical class of techniques used to
compress and pack materials. More generally, the principles learned from the study of origami can and
have been applied to many other flat-foldable meshes. These meshes have been shown to be useful in
fields such as aerospace, mechanical, and biomedical engineering. In the past, the nonlinear kinematics
of a given mesh pattern have been solved in order to determine its potential configurations and use
cases. However, this process is tedious and pertains only to a single mesh. The method detailed in this
paper relies on creating a general method to solve similar problems by eliminating the fixed vertices
constraint and abstracting the variables.

2 Abstracting the Variables

2.1 Symmetry Constraints

To understand how the variables are abstracted, it is important to understand how the flat-
foldable meshes are defined. For a given mesh, the vertices of the reference configuration and the end
configuration can be defined as xi and yi respectively. The structure is composed of J facets that are
considered rigid. The jth rigid panel includes a subset of vertices, Fj and similarly the ith vertex
shares multiple rigid components.

It is mathematically convenient to redefine the vertex coordinates of reference and end configura-
tion, xi and yi, with respect to the center of the jth panel:

xi = crj + rij yi = cj +Rjrij

where:

crj =
1

|Fj |
∑
i∈Fj

xi cj =
1

|Fj |
∑
i∈Fj

yi

1

Here cj captures the translation of the jth panel and Rj represents the rotation of the jth panel.
For the reference panel, there is a set of vertices such that

gr1(x̃) = x̃+ L̃r
1

gr2(x̃) = x̃+ L̃r
2

Here gr1(x̃)

2.2 Energy Approximation

Once the variables are abstracted, the error away from a rigid fold (defined as an elastic energy) can
be defined as follows:

E =
∑
j∈J

∑
i∈Fj

|yi − cj −Rjrij |2

3 Minimizing the Elastic Energy

The end goal is to independently minimize the elastic energy with respect to each variable Y, X and
R. Fixing X and R makes it possible for a global minimization rather than a local minimization. The
energy equation has to be rewritten from a local perspective using yi to a vector of all yi known as y.

Steps
1. Minimizing the energy with respect to y is done through the process of Lagrange multipliers.

a. Define a matrix x̃i such that x̃iy = yi
b. Define a matrix x̃k such that x̃ky = yk
c. Plug in these matrices into the energy equation to yield:

E =
∑
j∈J

∑
i∈Fj

|x̃iy −
1

|Fj |
∑
k∈Fj

x̃ky −Rjrij |2

d. Define a matrix

Aij = x̃i −
1

|Fj |
∑
k∈Fj

x̃k

e. Yielding:

E =
∑
j∈J

∑
i∈Fj

|Aijy −Rjrij |2

f. Simplify:

E =
∑
j∈J

∑
i∈Fj

y ·AT
ijAijy − 2(Rjrij)

TAijy + |rij |2

g. Define a matrix, a vector and a scalar

k̃ =
∑
j∈J

∑
i∈Fj

2AT
ijAij

B =
∑
j∈J

∑
i∈Fj

2(rTijR
TAij)

T

c =
∑
j∈J

∑
i∈Fj

|rij |2

2

h. Yielding:

E =
1

2
y · k̃y −B · y + c

i. Organize linear constraint equations:
Ãy = e

j. Utilize method of Lagrange multipliers:

w =
1

2
y · k̃y −B · y + c+ λ̃ · (Ãy − e)

k. Take the derivative with respect to the vector y and set to zero:

dw

dy
= k̃y −B + ÃT λ̃ = 0

Combing with the constraint equation:

k̃y + ÃT λ̃ = B

Ãy = e(
k̃ ÃT

Ã 0

)(
y

λ̃

)
=

(
B
e

)
Inverting the matrix yields: (

yopt
λ̃

)
=

(
k̃ ÃT

Ã 0

)−1 (
B
e

)
*The matrix is invertible.

2. Rotation Minimization/Quarternion Procedure (Taken from Low Energy Fold Paths for Multi-
stable Origami Structures[1])

a. Minimize the energy term with respect to each coordinate yi. This local minimization is different
than the previous one because each yi is assumed to be independent.

E =
∑
j∈J

∑
i∈Fj

|yi − cj −Rjrij |2

dE

dyi
=

∑
j∈J

∑
i∈Fj

2|yi − cj −Rjrij |δij = 0

Where δij = 0 if i ̸= j and δij = 1 if i = j. Whether summing over the panels first or the indices first
does not matter. Therefore, the set of panels can be replaced with the set of all indices:∑

i∈I

∑
j∈Ti

|yi − cj −Rjrij |δij = 0

Where Ti denotes the set of all panels associated with a given index. Eliminating the kronecker delta
δij/the first summation yields:

yi =
1

|Ti|
∑
j∈Ti

(cj +Rjrij)

3

b. In a similar fashion, minimizing the energy with respect to each independent cj yields:

cj =
1

|Fj |
∑
i∈Fj

(yi −Rjrij) =
1

|Fj |
∑
i∈Fj

yi

c. Next, the energy has to be minimized with respect to be locally minimized with respect to each
rotation matrix Rj . In order to make the minimization easier, the rotation matrix can be expressed
using quaternions. A quaternion is written in the following manner:

p = (q0, q)

Where q0 is a scalar and q is an 3-D vector in an imaginary sphere represented by q = q1, q2, q3.
Quaternions follow the multiplication rule:

pp′ = q0q
′

0 − q · q
′
, q0q + q

′

0q − q × q
′

And a unit quaternion is q20 + |q0|2 = q20 + q21 + q22 + q23 = 1. Using this method, the rotation matrix
can be expressed as:

R =

1− 2q22 − 2q23 2(q1q2 − q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) 1− 2q21 − 2q23 2(q2q3 − q0q1)
2(q1q3 + q0q2) 2(q2q3 − q0q1) 1− 2q22 − 2q22


The minimization with respect to the rotations can be expressed as:

pj = argminpj

∑
i∈Fj

(yi − cj −Rj(pj)rij)
2 = −

∑
i∈Fj

pjB
T
ijBijp

T
j

Where the minimized value is the largest eigenvalue of BT
ijBij (which can be found using the built-in

MATLAB function eig()) and pj is the eigenvector associated with that eigenvalue. Bij is a 4x4 matrix
of the form:

Bij =

(
0 rij + cj − yi

cj − rij − yi) [cj − yi + rij]x

)
The cross product operator is designed as follows:

(r1, r2, r1]x =

 0 −r3 r2
r3 0 −r1
−r2 r1 0



3. Configuration Finding Method (Taken from Low Energy Fold Paths for Multistable Origami
Structures[1])
Given initial values of y, c, R, tolerance n and position vectors rij i = 1, 2, 3....I and j = 1, 2, 3... J.

while |En+1 − En| > n do
for i = 1, 2, 3... I

yn+1
i =

1

|Ti|
∑
j∈Ti

(cj +Rjrij)

4

end
for j = 1, 2, 3... J

cnj + 1 =
1

|Fj |
∑
i∈Fj

yi

end
for i = 1, 2, 3... I
for j = 1, 2, 3... J

Bij =

(
0 rij + cj − yi

cj − rij − yi) [cj − yi + rij]x

)
end

pnj + 1 = argminpj

∑
i∈Fj

pjB
T
ijBijp

T
j

end
Update

En+1 =
∑
j∈J

∑
i∈Fj

|yn+1
i − cn+1

j −Rn+1
j rij |2

end

save Rn+1
j = Ropt

j

4. Minimizing the energy with respect to the x vector is done through the process of Lagrange
multipliers and fixing the ancillary variables. First, the energy equation has to rewritten from the
local perspective to the global perspective in the following way:

a. Define a matrix z̃i such that z̃ix = xi

b. Define a vector dij such that dij = yi − cj
c. Plug the above variables into the energy equation to yield:

E =
∑
j∈J

∑
i∈Fj

(dij −Rj z̃ix+
Rj

|Fj |
∑
i∈Fj

z̃ix)
2

d. Define a matrix

Gij = Rj z̃i −
Rj

|Fj |
∑
i∈Fj

z̃i

e. Yielding:

E =
∑
j∈J

∑
i∈Fj

(dij −Gijx)
2

f. Simplify:

E =
∑
j∈J

∑
i∈Fj

(x ·GT
ijGijx− 2(Gij)

T dijx+ |dij |2

g. Define a matrix, a vector and a scalar

g̃ =
∑
j∈J

∑
i∈Fj

2GT
ijGij

5

M =
∑
j∈J

∑
i∈Fj

2GT
ijdij

d =
∑
j∈J

∑
i∈Fj

|dij |2

h. Yielding:

E =
1

2
x · g̃x−M · x+ d

i. Organize linear constraint equations:
Ũx = h

j. Utilizing the method of Lagrange multipliers:

l =
1

2
x · g̃x−M · x+ d+ Λ̃ · (Ũx− h)

k. Take the derivative with respect to the vector x and set to zero

dl

dx
= g̃x−M + ŨT Λ̃ = 0

l. Combining with constraint equation

g̃(x) + ŨT Λ̃ = M

Ũ(x) = h(
g̃ ŨT

Ũ 0

)(
x

Λ̃

)
=

(
M
h

)
m. Inverting the matrix yields: (

xopt

Λ̃

)
=

(
g̃ ŨT

Ũ 0

)−1 (
M
h

)
*The matrix is invertible.

4 Iterative Procedure

In a similar fashion as the Configuration Finding Method taken from Low Energy Fold Paths for Mul-
tistable Origami Structures[1], the energy can be calculated and iteratively minimized with respect to
the new variables:

Given initial of x, y, c, R, tolerance n and position vectors rij i = 1, 2, 3....I and j = 1, 2, 3...
J.

while |En+1 − En| > n
do
1. fix x, c, R and find yopt (

yn+1
opt

λ̃

)
=

(
k̃ ÃT

Ã 0

)−1 (
B
e

)

6

2. Fix y, c, R and find xn+1
opt (

xn+1
opt

Λ̃

)
=

(
g̃ F̃T

F̃ 0

)−1 (
M
h

)
3. Then utilize the rotation eigenvalue method to find a Ropt

j

4. Update the energy equation:

En+1 =
∑
j∈J

∑
i∈Fj

|yn+1
opt − cn+1

j −Ropt
j rij |2

end

5 Procedure without Lagrange Multipliers

Given the energy equation:

E =
1

2
y · k̃y +B · y + c

s.t. Ay = c
know: N = Null(A) and y = Nỹ
where ỹ is the set of ”free” vectors and N is some tensor that can be determined from the Null function
in MATLAB
By definition: yi satisfy Ayi = c
Let:

y = yi +Nỹ

plugging this solution into the energy equation:

E =
1

2
(yi +Nỹ) · k(yi +Nỹ) +B · (yi +Nỹ) + c

Given that the kMatrix is symmetric:

E =
1

2
[ỹ ·NT kNỹ] + (NT kNỹ +NTB) · ỹ + (kyi +B) · yi + c

The end result simplifies to:

E =
1

2
[ỹ ·NT kNỹ]− b̃ · ỹ + c̃

Where
b̃ = −(NT kyi +NTB)

The actual value of c does not matter because it is a constant

c̃ = (kyi +B) · yi + c

Taking the derivative, and setting it equal to zero:

dE

dỹ
= NT kNỹ − b̃ = 0

Solving for ỹ
ỹ = (NT kN)−1b̃

7

6 Rewriting the Energy Equation with Cj being with respect
to the x configuration

6.1 Y procedure

Starting Equation:

E =
∑
j∈J

∑
i∈Fj

|yi − cj −Rjrij |2

a. Define a matrix x̃i such that x̃iy = yi
b. Plug in these matrices into the energy equation to yield:

E =
∑
j∈J

∑
i∈Fj

|x̃iy − cj −Rjrij |2

c. Expand the squared term:

E =
∑
j∈J

∑
i∈Fj

y · x̃i
T x̃iy − 2(x̃i

T cj + x̃i
TRjrij) · y + |cj |2 + |rij |2 + 2cj ·Rjrij

Define matrices and constants to get:

E =
1

2
y · ky −B · y + c

Where
k =

∑
j∈J

∑
i∈Fj

2x̃i
T x̃i

B =
∑
j∈J

∑
i∈Fj

2(x̃i
T cj + x̃i

TRjrij)

c =
∑
j∈J

∑
i∈Fj

|cj |2 + |rij |2 + 2cj ·Rjrij

6.2 X procedure

Starting Equation:

E =
∑
j∈J

∑
i∈Fj

|yi − cj −Rjrij |2

a. Define a matrix z̃i such that z̃ix = xi

b. Define a matrix z̃k such that z̃kx = xk

c. Define a vector dij such that dij = yi d. Plug in these matrices into the energy equation to yield:

E =
∑
j∈J

∑
i∈Fj

(dij −
I

|Fj |
∑
i∈Fj

z̃ix−Rj z̃ix+
Rj

|Fj |
∑
i∈Fj

z̃ix)
2

e. Define the gij matrix:

Gij =
(I −Rj)

|Fj |
∑
i∈Fj

z̃i +Rj z̃i

e. Yielding:

E =
∑
j∈J

∑
i∈Fj

(dij −Gijx)
2

8

f. Simplify:

E =
∑
j∈J

∑
i∈Fj

(x ·GT
ijGijx− 2(Gij)

T dijx+ |dij |2

g. Define a matrix, a vector and a scalar

g̃ =
∑
j∈J

∑
i∈Fj

2GT
ijGij

M =
∑
j∈J

∑
i∈Fj

2GT
ijdij

d =
∑
j∈J

∑
i∈Fj

|dij |2

h. Yielding:

E =
1

2
x · g̃x−M · x+ d

7 Discussion

Hopefully this can be applied to any symmetrical pattern

8 Conclusion

We need to test if this algorithm actually works

9 Appendix

9.1 Proof 1

Proof that the minimization of:

pj = argminpj

∑
i∈Fj

(yi − cj −Rj(pj)rij)
2 =

∑
i∈Fj

pjB
T
ijBijp

T
j

is the smallest eigenvalue of BT
ijBij given the pj is a unit vector.

a. The rotation matrix Rj can be rewritten as a quadratic tensor:

Rj = I +
∑
i∈Fj

pjSijp
T
j [ei ⊗ ej]

b. Setting Sij [ei ⊗ ej] = BT
ijBij .

c. Moving the summation inside:

argmin pj [
∑
i∈Fj

BT
ijBij]p

T
j

d. This overall matrix is orthonormal which can be represented as Qj.

argmin pjQjp
T
j

9

e. Taking the transpose (which is simply rearranging the notation)

minimize pTj Qjpj

f. Qj can be diagonalized (spectral decomposition) into a matrix of eigenvectors T and diagonal matrix
of eigenvalues D:

Qj = TTDT

g. Plugging in the decomposed matrix:

pTj T
TDTpj = (Tpj)

TDTpj =
∑
i

λi(Tpj)
2
i

h. Writing this out in component form yields:∑
i

λi(Tpj)
2
i = λ1(Tpj)

2
1 + λ2(Tpj)

2
2 + λ3(Tpj)

2
3 + λ4(Tpj)

2
4

Given the fact that |Tpj | = 1 (the magnitude of pj is invariant under the tranformation T):

(Tpj)
2
1 + (Tpj)

2
2 + (Tpj)

2
3 + (Tpj)

2
4 = 1

And that λ1 ≤ λ2 ≤ λ3 ≤ λ4 Then

λ1(Tpj)
2
1 + λ2(Tpj)

2
2 + λ3(Tpj)

2
3 + λ4(Tpj)

2
4 ≥ λ1

i. If pj is a unit vector and an eigenvector of matrix Qj then

pTj Qjpj = λj

∑
i

(pj)
2
i = λj |pj |2 = λj

j. Moreover, the minimum value of the expression (λ1) is found when pj is equal to the eigenvector
associated with the smallest eigenvalue of the matrix.

9.2 Illustrating that the Null Space of the Inversion Process is of Dim(0)

The following system of equations has been difficult to solve; here were some steps taken in an effort
to determine whether the matrix was invertible:

k̃y + ÃT λ̃ = B

Ãy = e(
k̃ ÃT

Ã 0

)(
y

λ̃

)
=

(
B
e

)
Setting the right side of the equation to zero:

k̃y + ÃT λ̃ = 0

Ãy = 0

Rewriting the equations using the null-space of A

ynull = Ny2

k̃ynull + ÃT λ̃ = 0

10

k̃Ny2 + ÃT λ̃ = 0

Taking the dot product with respect to both sides:

ÃT λ̃ · k̃Ny2 + |ÃT λ̃|2 = 0

Simplifying:
λ̃ · Ãk̃Ny2 + |ÃT λ̃|2 = 0

If chosen correctly, ÃT should not have a null-space. Thus,

|ÃT λ̃|2 ̸= 0

However, I am not sure how this is relevant to proving that the matrix is invertible.

9.3 The null-space of the constraint equations

For a given configuration that has any set of vectors, in this case we consider only one y2, as free
variables, the null-space is equal to a linear combination of the position vectors dependent on the free
variable. This can be shown with a simple case:

Ay = c

Splitting y into it’s two components:
y = ycomp + ynull

For the two square constraint equations, the solutions for y, ycomp, and ynull can be written:

y =


y1
y2

y1 + e1
y1 + e1 + e2

y2 + e2
y1 + e2


*here y1 is constrained to be [0,0,0]

ycomp =


0̃

var
y1 + e1

y1 + e1 + e2
var + e2
y1 + e2



ynull = y − ycomp =


0

y2 − var
0
0

y2 − var
0


Since y2 and var are arbitrary, the end result is:

ynull =


0

var
0
0

var
0


11

Since var is any 3 dimensional vector, the null-space of A is of dimension 3. This can and should be
validated fairly easily.

9.4 Calculation of the Unknown Position Vectors

If there is a set of defined constraints, A, then the unknown position vectors can be determined from
the defined vectors. To illustrate this, a simple case is considered with two ”free” vectors. Splitting A
and y into components:

Ay = A12y12 +Auyu = c

*where y12 are the two defined position vectors listed as column vectors and A12 are the columns
associated with those vectors. yu represents the unknowns vectors and Au are the columns associated
with those vectors.
Solving for the unknown vectors:

Auyu = c−A12y12

yu = A−1
u [c−A12y12]

10 References

[1] https://www.sciencedirect.com/science/article/pii/S0020768323000227

12

