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Motivation:

Insulating materials are used across many engineering disciplines as they are integral to
capacitors, wire insulation and semiconductors. However, these materials are only insulating if
the external electric field is below a certain threshold, known as the maximum electrical
breakdown field. Above this threshold, the material becomes conducting and loses its useful
properties. Predicting the maximum value of the electrical breakdown field through empirical
means is difficult due to the formation and accumulation of defects which is variable based on
ambient temperature, structural vacancies, and the duration of the exposure to the external
electric field. Therefore, the use of ab initio methods such as DFT are important in the
discussion of the dielectric breakdown for any material.

Objective:

The goal of the project is to determine the maximum intrinsic dielectric breakdown field based
on 8 key parameters. The model will be trained on intrinsic dielectric breakdown fields from
density functional theory (DFT) calculations based on the database provided here:

https://www.kaggle.com/datasets/chaozhuang/dielectric-breakdown-prediction-dataset?resource
=download

Deliverable:
We will develop a machine learning architecture that will predict the intrinsic dielectric
breakdown for any material where the following eight characteristics are defined:

Experimental band gap

Phonon cutoff frequency

Mean phonon frequency

Electronic contribution of the dielectric constant
Total dielectric constant

Nearest neighbor distance

Density

Bulk modulus

Crystal structure
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The accuracy of the machine learning architecture will be determined based on a certain
tolerance value (such as within 5% of expected). In addition, a correlation matrix between
certain parameters and the dielectric breakdown will be determined to give a better insight on
whether certain parameters are important versus which can be ignored.


https://www.kaggle.com/datasets/chaozhuang/dielectric-breakdown-prediction-dataset?resource=download
https://www.kaggle.com/datasets/chaozhuang/dielectric-breakdown-prediction-dataset?resource=download

Research Plan

Develop a Deep Neural Network (DNN) that utilizes the eight aforementioned parameters (some
of which came from experiments, DFT calculations, or a priori knowledge) in the database to
predict the intrinsic dielectric breakdown. This architecture will have a set amount of width for
each layer and will vary in # of layers to potentially determine a set that has the best predictive
abilities. The DNN architecture is included in figure 1 to clarify its structure.

Figure 1: Deep neural network with a few of the nodal connections to demonstrate the feedforward system with constant width and variable # of layers

The loss function will simply be the mean squared error between the ML predicted dielectric
breakdown value and the calculated dielectric breakdown value.

The 82 common insulators and semiconductors in the database will be split into a training set
and a validation set based on the 80/20 rule i.e. ~65 will be used for training and 17 will be used
for validation. It is evident that the DNN will need to be tuned based on several key
hyperparameters. The hyperparameters that we need to tune are the activation functions (tanh
v.s sinh), learning rate, regularization parameters, model width and layer #.

In order to determine the efficacy of our model, we will evaluate the accuracy and loss of our
model with respect to other materials with the inputs and expected dielectric breakdown
constant found in the materials project website. We will also compare our model to other
architectures such as the random forest trained on the same dataset found here:

https://pubs.acs.org/doi/10.1021/acs.chemmater.5b04109


https://pubs.acs.org/doi/10.1021/acs.chemmater.5b04109

Results and Discussion

A parameter sweep of the width and depth spanning multiple orders of magnitude was
conducted to determine the regions where the optimal performance occured. The metric to be
optimized was the percent of the predictions of the validation set that were within 5% of the
actual values. Plots of the percent of the predictions that were within 5% demonstrated that
increasing the width (and thus the number of connections) led to a decrease in performance.
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Figure 1: Plot of the percent accuracy of a tanh activation function DNN with a width 10 (left) vs width 1000 (right) and a constant depth of 4.
Based on the testing of widths > 50 which decreased performance, the parameter sweep

of the width and layers was narrowed down to numbers between 4 and 10. In table 1, the loss of
a DNN using the tanh activation function is recorded over several widths and layers. The
analysis of the performance of the model was switched from the percent within 5% of expected
for the validation data to the training loss to determine the relationship between number of
connections and performance using a different metric. Using the loss as the metric for
performance, it was evident that the parameter sweep resulted in a pair of optimal widths and
depths for the tanh function.

Table 1: Loss versus width and layers when tanh activation function is used.

Width — 4 6 8 10
Layers|
4 1.76E-06 9.85E-06 3.08E-08
6 1.52E-05 1.14E-09 8.59E-08
8 2.39E-08 1.79E-09 9.89E-09
10 2.63E-07 - 3.59E-06

While the optimal width and depth were found for the training loss, the percent accuracy
within 5% of the validation data still did not exceed 50%. This was a major concern as it
appeared as though increasing the number of connections increased overfitting, reducing the



generalizability of the model. This led to the comparison of the percent accuracy for the sin and
sigmoid activation functions for various widths at a depth of 6 to determine whether overfitting
may be reduced using different activation functions.
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Figure 2: Plot of the percent accuracy for the sin activation function (left) and the sigmoid activation function (right) at the same width and depth.

The drastic fluctuations in the % accuracy shown in the left side of figure 2 is
representative of most of the models that used the sin activation function. These same
fluctuations were noted in the loss function and demonstrated that the sin activation function
was not a promising activation function. However, the sigmoid emerged as a promising
architecture as it resulted in ~40% accuracy for large widths (100) shown on the right side of
figure 2 and small widths (10) not shown.

The sigmoid DNN resulting in approximately the same accuracy as well as training loss
for a range of widths and depth necessitated the use of a different metric to characterize the
performance of the model. After looking into the research paper that published the database,
other metrics were found. By plotting the ML predicted and the DFT computed electrical
breakdown fields for both the validation and the training data, the authors were able to make
conclusions on the efficacy of their models.
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Figure 3: Plot of the predicted vs DFT computed electrical breakdown field for the kernel ridge regression (KRR), random forest regression (RFR)
models, and the least absolute shrinkage and selection operator based least-squares fit (LASSO-LSF) [1].

Using this analysis, the tendency of the sigmoid DNN to result in overfitting for a range of
widpth and depths was clear. As shown in figure 4, the R? for the training data is a perfect
match. However, the R? for the validation data is much lower than 80% illustrating that these
models can not be generalized to materials with different inputs.
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Figure 4: Plot of the predicted vs DFT computed electrical breakdown field for the sigmoid activation with a width of 10 (left) and width of 100 (right).

Using the R? analysis for the training and validation data sets demonstrated that while
the sigmoid performed well using the percent within 5% metric it resulted in overfitting. This led
to the same analysis being conducted for the tanh activation function for the parameters in table
1 which utilized relatively small width and depths. As shown in figure 5, a neural network with a
width of 2 and depth of 2 provides a good model fit for both the training and the validation data
while the model with more parameters underperforms. Using more complex models for the tanh
leads to overfitting, which can be seen in figure 5 as the spread of the validation data is larger
than the spread of the training data.
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Figure 5: Actual vs Predicted Log Breakdown Field for a width of 2 and 2 layers shown on the left, and for a width of 6 and 6 layers shown on the right.

In addition to comparing different parameters of the DNN, a random forest neural
network was developed to act as a comparison. While a DNN is characterized by its width and
depth, a random forest model is characterized by the number of trees. In order to determine the
number of trees that might result in the lowest loss, the RMSE vs number of trees was plotted
as shown in figure 6. This analysis demonstrated that the loss plateaus once the number of
trees exceeds ~20. Another tunable hyperparameter of random forest models is the seed which
introduces randomness into the model. Iterating through a few random seed values illustrated
that a random seed of 40 yielded the best results. Using a random seed of 40 and 50 trees, the
plot of the predicted vs DFT calculated electrical breakdown field is included in figure 6.
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Figure 6: Number of trees versus root mean squared error (left) and Actual vs Predicted electrical breakdown (right).

Conclusions and Future Work

In this report the ability of a deep neural network to predict the maximum electrical
breakdown field based on eight key characteristics is quantified. Several metrics were used to
conduct parameter sweeps including the training loss, % of the predictions within 5 percent of
the expected, and an R? analysis of the predicted vs actual electrical breakdown fields. While
not explicitly stated earlier in the report, as they had the least amount of impact on the accuracy
of the model, DNNs with regularization values of [1e-4, 1e-5, 1e-7, 1e-9] and learning rates of
[1e-3, 1e-4, 1e-5] were tested. A regularization of 1e-7 and 1e-3 yielded the >0.91 R? for the
training set and >0.80 R?for the validation set shown in figure 5. These results demonstrate that
using a simple NN with a width of 2 and a depth of 2 can be used to predict the maximum
electrical breakdown field. Furthermore, it was found that for the tanh activation function,
increasing the number of connections increased overfitting. This observation is not consistent
for the sigmoid activation function which illustrated that as the width increased the R?for the
validation set (figure 4). However, the potential increase in the R?for the validation set vs
increase in computational cost did not justify larger neural networks to be tested as the much
smaller tanh NN performed well. In addition to performing parameter sweeps for a DNN, a
random forest model was developed based on the same technique used in the original paper by
Kim et al. (2016). The random forest model using a random seed of 40 and 50 trees yielded a
>0.95 R? for the training set and >0.77 R?for the validation set; these results are comparable to
the performance of the tanh DNN.

Going forward, the DNN model could be used to compute the expected electrical
breakdown field in a manner that is quicker and less computationally expensive than DFT
computations and easier to implement compared to RFR and other more complicated ML
models. Future work could entail the use of characteristics not concluded from DFT calculations.
Because the objective is to reduce computational cost through these models, training the
models on data available from other means would be more useful. For example, someone who
wanted to use this model to predict the electrical breakdown field for a new material would need
to know the mean phonon frequency and electronic contribution of the dielectric constant which
are determined through DFT calculations. However, conducting these calculations is
computationally expensive and may be more work than calculating the maximum electrical
breakdown field using DFT.
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