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THE ICHNOLOGY OF VERTEBRATE CONSUMPTION: 
DENTALITES, GASTROLITHS AND BROMALITES

ADRIAN P. HUNT1 and SPENCER G. LUCAS2 

1Flying Heritage and Combat Armor Museum, 3407 109thSt SW, Everett, WA 98204, e-mail: adrianhu@flyingheritage.com; 2New Mexico 
Museum of Natural History, 1801 Mountain Road NW, Albuquerque, NM 87104, e-mail: spencer.lucas@state.nm.us

Abstract—There is a long tradition of indirectly inferring feeding in fossil and Recent vertebrates from 
the functional morphology of bones and teeth. However, some trace fossils provide direct evidence of 
feeding, and the study of the ichnology of feeding dates to the 1820s–1830s. Trace fossils that document 
vertebrate consumption in all of its phases are dentalites (“tooth marks”), gastroliths and bromalites 
(includes coprolites, consumulites and regurgitalites, among others), and these trace fossils are key to 
understanding the evolution of nutrient acquisition and food processing in the evolutionary history of 
vertebrates. We review the fossil record and significance of these ichnofossils as they relate to feeding, 
which is to say we review the ichnology of vertebrate consumption. Beyond a review, we also indicate 
areas for further research, which are many, on dentalites, gastroliths and bromalites. Finally, we analyze 
our knowledge of the history of these trace fossils to identify critical biotic events and turning points 
in the evolutionary history of vertebrate consumption.
 There is an extensive fossil record of vertebrate dentalites (“tooth marks”), principally on bony 
substrates, but also on invertebrate hard parts, coprolites, plants, lithic substrates and others, reviewed 
here for the first time. Two centuries of studies of dentalites show strong biases towards archeology, 
and towards dinosaurs as a result of the Taxophile Effect. This record merits more synthetic study 
in an ichnotaxonomic framework and the development of criteria for establishing inferences about 
behavior. Indeed, dentalites are of diverse paleoethological significance, including: (1) predation, 
including hunting strategies; (2) bite method and force; (3) dietary selection; (4) feeding; (5) 
scavenging strategies; (6) methodologies of bone accumulation; (7) trophic patterns; (8) intraspecific 
(agonistic) interactions; (9) tooth sharpening; and (10) bone and rock utilization for other purposes, 
including mineral extraction. What is now needed is a dentalite ichnology beginning with diverse 
documentation of the dentalite ichnofossil record, compilation and synthesis of the entire record, 
rigorous ichnotaxonomy and determination of analytical criteria for establishing inferences about the 
behaviors archived by tooth-mark ichnofossils. 
 Bromalites include regurgitalites, consumulites, coprolites, pabulites and digestilites. 
Regurgitalites are the least studied bromalites, the most difficult to identify, and their fossil record is 
strongly controlled by taxonomic and taphonomic factors. Bromalite pellets can represent coprolites 
or regurgitalites, and two-dimensional examples could be taphonomic artifacts (decayed specimens or 
physical concentrations). Many identified vertebrate regurgitalites were produced by fish or birds and 
are preserved in a limited range of environmental settings (e. g., aquatic low energy). Regurgitalites 
have diverse utility, including: (1) providing evidence of the evolution of predation and digestion; 
(2) analysis of taphonomy and sedimentary environments; (3) proxies for the presence of biotaxa; 
(4) loci for exceptional preservation; (5) biogeographic studies; (6) evaluating digestive processes of 
producers; and (7) evidence of the evolution of durophagy.
 There are numerous descriptions of consumulites, reviewed for the first time here, but they are 
usually concealed within publications with a different focus. Consumulites give the most unambiguous 
dietary attributions of any bromalites and provide direct evidence of the nature of digestion and the 
structure of the digestive tract. However, the study of consumulites is in an early stage of development, 
though they also have great potential to provide direct evidence of aspects of patterns of digestion, 
such as: (1) assessing the chemistry of digestive systems by examining the etching and erosion of 
consumulite materials; (2) studying the evolution of the components of the digestive system; (3) 
analyzing dietary changes through ontogeny; (4) evaluating the evolution of diets within clades; 
and (5) identifying environmental tolerances. Consumulites may preserve a wide range of organic 
elements with a poor fossil record and thus can be Lagerstätten. In addition, consumulites can also 
preserve tissues of the gastrointestinal tract. The systematic study of consumulites will undoubtedly 
yield significant records of contained fossils, as has the recent focus on the contents of coprolites. 
 The term gastrolith refers to sand and/or gravel swallowed by an animal and retained in the 
digestive tract. Wings recently grouped objects with different origins under the single term gastrolith, 
so he proposed to add prefixes to the word gastrolith to create terms that identified their different 
origins: “bio-gastrolith” for the calcareous concretions formed in the bodies of some crustaceans; 
“patho-gastrolith” for concretions formed in the stomach pathologically; and “geo-gastroliths” for 
swallowed rock particles. These terms are unnecessary if gastrolith is restricted to the meaning 
we advocate, which is the same as Wing’s “geo-gastrolith.” Wings also advocated using the term 
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“exolith” for “stones” that might be gastroliths but that lack a convincing skeletal association. This 
term, however, enshrines the widespread misconception that highly polished “stones” are gastroliths, 
regardless of any skeletal association. It also lacks specificity, as any polished “stone” anywhere 
could be called an exolith. Thus, we do not use the term exolith. The distribution of gastroliths is very 
irregular in extant vertebrates and is often related to the presence of a muscular gizzard. Nevertheless, 
swallowing or not swallowing sand/gravel can be specific to some individuals within a species. A 
variety of functions have been suggested for gastroliths, only two of which are of significance: use in 
digestion to grind, pulverize and/or disintegrate food or use as ballast for buoyancy control. It seems 
likely that some crocodiles and marine mammals use/used gastroliths for buoyancy control, but all 
other gastrolith-bearing vertebrates appear to have used them in digestion. Identification of fossil 
gastroliths is only certain when the sand/gravel is found as a concentrated mass in an anatomically 
plausible position within the abdominal region of a fossil skeleton. There are various ways to polish 
stones, notably by the wind to make them ventifacts. Polished clasts identified as gastroliths are 
siliceous, mostly quartz or chert. These clasts could have been polished by wind and/or water, both 
before ingestion by an animal and/or after excretion or other removal from an animal’s digestive tract. 
Furthermore, how a stomach or gizzard would polish siliceous clasts (which are very hard) is also 
unclear, and such polishing does not occur in extant birds. Only a small minority of bona fide gastroliths, 
particularly those of plesiosaurs, are highly polished. There is thus an inability to establish when and 
where the clasts were polished, and inferring that they acquired their polish while gastroliths is not 
supported by actualistic studies of gastroliths. The idea that any highly polished clast is a gastrolith 
needs to be abandoned. Most records of gastroliths are from plesiosaurs, birds and some dinosaurs. 
Gastroliths are trace fossils in need of ichnotaxonomy that provide important insights into various 
behaviors. Gastroliths clearly are the work of an animal. Unlike eggs, for example, the sand/gravel 
that comprise gastroliths (our definition) is not made by animals–it is swallowed by, concentrated 
by, transported by and, in some cases, altered by animals. So, the trace-fossil status of gastroliths 
is unimpeachable. We advocate development of an ichnotaxonomy for gastroliths. Ichnotaxonomic 
names, however, should not be assigned to individual grains/clasts of sand/gravel of fossil gastroliths. 
We favor naming the entire gastrolith mass from a single abdominal cavity. Ichnotaxobases could be 
the number of gastroliths in the mass, their general petrographic composition, and their overall size, 
shape, surface texture and other shared morphological features. This likely would produce a workable 
ichnotaxonomy that recognizes ichnotaxa that are readily distinguished by morphological differences 
that are a direct reflection of varied behavior. Gastroliths provide important insights into various 
behaviors, notably diet, digestion, buoyancy control and habitat preferences.
 After footprints, coprolites are the most studied vertebrate trace fossils, and they are the subject of 
an extensive and rapidly growing literature. Coprolites have an extensive fossil record that has proven 
potential to address a broad range of paleontological issues: (1) coprolites as proxy for biotaxa have 
utility in biochronology, biogeography and faunal turnover; (2) coprolites as trace fossils can delimit 
a hierarchy of ichnocoensoes and ichnofacies; (3) coprolites as end products of the gastrointestinal 
tract can provide evidence of digestive processes; and (4) internally, coprolites can be Lagerstätten 
that preserve a wide range of organisms with an otherwise poor fossil record.
 Other bromalites are digestilites, pabulites and micturalites. Digestilites is a new term for materials 
derived from the digestive tract. They are subject to chemical and physical processes that result 
in characteristic damage that can be recognized in regurgitated or defecated material. Digestilites 
composed of invertebrate debris provide a particularly important insight into the evolution of 
durophagous fish and also constitute a significant sediment source, particularly in the Cenozoic. 
Many late Cenozoic (and some earlier) microvertebrate accumulations consist of digestilites, and this 
large topic deserves substantial study. Pabulites are fossilized food that never entered the digestive 
tract.  Footprints, some nests and other traces also can record evidence of vertebrate predation and 
consumption. Mololite is a new term for tooth wear, which is a type of trace fossil. 
 There are taphonomic megabiases in the trace fossil record of vertebrate consumption. The 
bromalite and dentalite records are heavily skewed towards carnivores. There are also significant 
size-related biases, for example that small and large coprolites and regurgitalites are rare, as are small 
dentalites. Certain time periods demonstrate strong, geologically-based biases. For example, the 
continental flooding of the Late Cretaceous resulted in extensive trace (and body) fossils preserved 
in the Western Interior Basin of North America, not only in the sedimentary deposits of the seaways 
but also in the rocks that formed on the associated coastal plains. The first large sample of vertebrate 
ichnofossils related to feeding is from the Devonian, but the largest acme is in the Late Cretaceous, 
which resulted from taphonomy (continental flooding), the evolution of predators (e.g., sharks, 
mosasaurs, large theropods) and the Taxophile Effect. 
 The fossil record of trace fossils provides substantial information about the evolution of vertebrate 
feeding. In addition, relevant vertebrate and invertebrate ichnofossils provide significant insight into 
major evolutionary events. The earliest evidence of predation is from terminal Neoproterozoic trace 
fossils. The earliest definitive vertebrate feeding traces are spiral coprolites and regurgitalites from the 
Late Ordovician, but earlier bromalites could pertain to vertebrates. The oldest dentalite is from the 
Middle Silurian. Consumulites occur in Middle Silurian fish, but the first recognizable contents are 
from the Early Devonian. Bromalites and dentalites provide evidence for major evolutionary events 
including the Great Ordovician Biodiversification Event, Middle Paleozoic Marine Revolution, and 
Mesozoic Marine Revolution, as well as various proposed mass extinctions, real and imagined. 
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Consumulites are important in understanding the evolution of the avian digestive Bauplan. We also 
introduce the following terms: (1) cropalite for preserved contents of the crop, (2) proventrilite for 
contents of the proventriculus; (3) aspirationalite (from the medical term for food in the airway) 
for consumulites that preserve prey in the oral cavity with a significant portion extending exteriorly; 
(4) dislocational evisceralite for a portion of the gastrointestinal tract is physically removed from a 
carcass; and (5) preservational evisceralite for preferential fossilization of the gastrointestinal tract. 
There is an almost 200-year history of naming vertebrate tracks, but there is an unjustified reluctance 
to apply a binominal ichotaxonomy to traces related to feeding that impedes the development of their 
study.

INTRODUCTION
Diet and food acquisition are fundamental biological traits 

of any organism. In extant organisms, dietary composition and 
acquisition can be observed directly. However, among extinct 
organisms, the inference of these traits has relied primarily on 
analyses of the body fossils of animals. In the case of extinct 
vertebrates, an extensive literature infers food composition 
and acquisition primarily by biomechanical analysis of skulls, 
dentitions and selected postcrania in an actualistic context. 
However, such inferences are almost always general in nature. 
Thus, an extinct vertebrate may be inferred to have been eating 
insects (an insectivore) based on skull and tooth structure as well 
as based on body size, but precisely what insects were consumed 
cannot be directly determined. 

In contrast, vertebrate trace fossils can record the direct 
products of actual food acquisition and processing and thereby 
lead to the identification of very specific diets and modes of 
dietary acquisition. In these ways, dentalites (“tooth marks”), 
gastroliths and bromalites (includes coprolites, consumulites 
and regurgitalites, among others) are key to understanding the 
evolution of nutrient acquisition and food processing in the 
evolutionary history of vertebrates (Fig. 1). Here, we review the 
fossil record and significance of these ichnofossils as they relate 
to feeding, which is to say we review the ichnology of vertebrate 
consumption. Beyond a review, we also indicate areas for further 
research on dentalites, gastroliths and bromalites, which are 
many. Finally, we summarize the status of our knowledge of the 
history of vertebrate consumption based on these trace fossils. 
This summary thus identifies critical biotic events and turning 
points in the evolutionary history of vertebrate consumption.

Seilacher (1953) defined a mark in relation to ichnology 
as an abiogenic sedimentary structure (e.g., sole mark, flute 
mark). The current definition of trace is of a biogenic structure 
produced by the behavior of an organism modifying a substrate 
(Bertling et al., 2006; Vallon et al., 2015). Thus, a bite mark is 
more correctly termed a bite trace in ichnology. However, there 
is pervasive use in biology, pathology, paleontology, archeology 
and the vernacular of the term bite mark. We thus utilize the term 
“mark” in an informal sense, knowing that it is ichnologically 

incorrect but that it is easily understood. The usage of the formal 
term dentalite, which we recently introduced (Hunt et al., 2018), 
will obviate the need for future discussions of this topic.

Herein we utilize the ichnological framework established 
by the consensus work of Bertling et al. (2006, p. 266) and 
the definition of a trace fossil as “a morphologically recurrent 
structure resulting from the life activity of an individual 
organism (or homotypic organisms) modifying the substrate.” 
Thus, for example we do not consider signs of human technology 
as ichnofossils (e. g., Noe-Nygaard, 1989; Bertling et al., 2006; 
Lucas, 2016, but see Hasiotis et al., 2007). All the trace fossils 
discussed here fall within the ethological class Digestichnia 
(Vallon, 2012).

ABBREVIATIONS
CMM, Calvert Marine Museum, Solomons, Maryland, 

USA; FHSM, Sternberg Museum of Natural History, Fort Hays 
State University, Hays, Kansas, USA; GLCA, Glen Canyon 
National Recreation Area fossil collection reposited at Museum 
of Northern Arizona, Flagstaff, Arizona, USA. NMMNH, New 
Mexico Museum of Natural History, Albuquerque, New Mexico, 
USA; OUM, Oxford University Museum of Natural History, 
Oxford, UK; SMNS, Staatliches Museum für Naturkunde, 
Stuttgart, Germany; USNM, United States National Museum, 
Smithsonian, Washington, DC, USA; YPM, Yale Peabody 
Museum of Natural History, New Haven, Connecticut, USA.

SOME CONSIDERATIONS
Buckland (1822, 1835, 1836) first recognized and 

described coprolites, dentalites and consumulites. The concept 
of coprolites garnered immediate and widespread interest, 
and there is an extensive literature on these ichnofossils (e.g., 
Duffin, 2009, 2012a; Hunt et al. 2012f). The study of dentalites 
was intermittent until the past half century, but there never has 
been concerted research on consumulites. One of our goals 
is to review the voluminous and very dispersed literature 
on vertebrate dentalites, gastroliths and the most common 
bromalites (coprolites, consumulites and regurgitalites). The 
record of coprolites has already been reviewed by us, wholly or 
partially, several times during the past decade (e.g., Hunt et al., 
2007, 2012d, 2013, 2018; Hunt and Lucas, 2013, 2014a, 2016c, 
2018a, 2020a), so we limit our presentation on coprolites here 
to a synopsis. However, there has been no thorough synthesis 
of the literature on dentalites, consumulites, regurgitalites or 
gastroliths, although there have been some partial reviews 
(e.g., Wings, 2004, 2007; Lucas, 2016; Hunt et al., 2018), so 
we are more comprehensive in our treatment of the literature 
on these trace fossils (Appendix A). Similarly, there is a 
voluminous literature on Pleistocene trace fossils that document 
consumption that we summarize but do not list in detail, though 
for geologically older trace fossils we have attempted to evaluate 
the vast majority of examples. 

In our reviews we have generally employed the taxonomy 
of the producers or victims utilized in the original descriptions. 
We have characterized traces as marine or nonmarine, again 

FIGURE 1. Principal trace fossils associated with feeding. 
Artwork of the Early Triassic synapsid Lystrosaurus by Matt 
Celeskey.
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based largely on the original literature. We somewhat arbitrarily 
included lagoons in the nonmarine category, even though many 
such environments have marine influences. The sequence of the 
review follows the anterior-to-posterior progression through 
the gastrointestinal tract, commencing with dentalites and 
concluding with coprolites (Fig. 1).

There is a long history of the study of vertebrate functional 
morphology, dating back to Aristotle, but Cuvier laid the 
foundations of modern methodology with his concept of the 
correspondence of parts, namely that function could be inferred 
from structure (Cuvier, 1812, 1829; Appel, 1987; Russell, 1982; 
Ashley-Ross and Gillis, 2002). Cuvier applied this principle 
widely to vertebrate feeding, for example “there are several 
particular modifications, depending on the size, the manners, 
and the haunts for which each species of carnivorous animal is 
destined or fitted by nature; and, from each of these particular 
modifications there result certain minute conformations of 
particular parts” (Cuvier, 1818, p. 99-100). The inferred 
functional morphology of vertebrate hard parts has been the 
basis of almost all subsequent analysis of food acquisition 
and processing (e.g., Thompson, 1917; Gans, 1974; Schwenk, 
2000). However, the extensive dataset of ichnofossils related to 
feeding also has important potential for analysis, and it should 
be further integrated with studies of the body fossil record (e.g., 
Miller and Pittman, 2021).

Vertebrate and invertebrate ichnology have different 
traditions (e.g., Hunt and Lucas, 2007b, 2016a; Melchor and 
Genise, 2004; Lucas, 2005; Lockley, 2007), which Hunt and 
Lucas (2003, 2004, 2005c, 2007b) termed the ethological and the 
biotaxonomic. The majority of invertebrate ichnologists, with the 
notable exception of those describing arthropod walking traces, 
have principally utilized an ethological approach to ichnology 
by describing and naming behavioral interactions between 
organisms and substrate. In contrast, vertebrate ichnologists 
have principally applied a biotaxonomic approach by attempting 
to relate traces to the taxonomy of the producer. Thus, vertebrate 
ichnologists treat vertebrate ichnotaxa as proxies of biotaxa 
(Hunt and Lucas, 2007b, 2016a; Lucas, 2007). The history of 
naming vertebrate tracks dates back to the 1830s (Chirotherium 
Kaup, 1835) and has been both widely accepted and utilized in 
analyses ranging from those of biochronology to ichnofacies 
(e.g., Lucas, 2007; Hunt and Lucas, 2007b). However, with some 
exceptions (e.g., Duffin, 2010; Laojumpon et al., 2012; Milàn, 
2018; Rakshit et al., 2019; Duffin and Ward, 2020; Rummy 
et al., 2021), many workers have been explicitly reluctant to 
apply binomial nomenclature to bromalites and the other traces 
discussed here (e.g., Chin in Hunt et al., 1994; Bajdek et al., 
2014; Francischini et al., 2018). Regardless of all opinions on 
variation in feces morphology, which in our opinion are not 
upheld by Recent studies, if morphotypes can be recognized 
then they should be named to facilitate communication and 
utility. Thus, we discuss ichnotaxobases for all of the groups of 
vertebrate trace fossils reviewed here and advocate the erection 
of binomial taxonomy, as has been universally advocated for all 
trace fossils (Bertling et al., 2006).

Significant factors influence the preserved pattern of 
the fossil record of dentalites, gastroliths and bromalites. 
Lagerstätten are particularly important in the preservation of 
these trace fossils, especially with regard to consumulites. 
Cambrian and Ordovician coprolites are almost exclusively 
recorded from Lagerstätten (e.g., Winneshiek, Soom Shale: 
Aldridge et al., 2006; Hawkins et al., 2018), and they are 
important sources of feeding traces through the later Phanerozoic. 
In particular, Lagerstätten preserve large samples of articulated 
skeletons, which are necessary for the unambiguous recognition 
of consumulites and gastroliths (e.g., Holzmaden, Solnhofen: 
Keller, 1976; Viohl, 1990). Articulated skeletons are not 
restricted to Lagerstätten, but they mainly are preserved in a 

limited number of depositional environments, principally those 
of aquatic low energy settings (lagoonal, lacustrine, shallow 
marine). These depositional environments also preserve most 
consumulites, regurgitalites and gastroliths. 

The trace fossils discussed herein can provide significant 
information beyond feeding behavior. For example, dentalites 
provide prima facie evidence for intraspecific head-biting in 
serveral clades of large reptiles, including mosasaurs, phytosaurs, 
crocodylomorphs and tyrannosaurs (e.g., Currie and Eberth, 
2010; Carr et al., 2020; Brown et al., 2021). And, latrinites 
indicate the behavior of producers such as cave utilization by 
ground sloths (Hunt and Lucas, 2018c). 

All ichnofossils are facies fossils, but they have varied 
environmental restrictions. Coprolites are the only trace fossils 
that are routinely re-worked because of early lithification (e.g., 
Hollocher and Hollocher, 2012). They thus are present in 
intraformational, and even extraformational, lag deposits (Hunt 
and Lucas, 2010; Hunt et al., 2015).

There is a size bias, at least in the recognition of vertebrate 
feeding traces. The majority of dentalites, except for those of 
armored fish in the Devonian, and of consumulites, except 
for those from Lagerstätten, are reported from relatively large 
vertebrates. There is also ample evidence of the Taxophile 
Effect of Hunt et al. (2018)–preferential study of popular fossil 
groups, such as dinosaurs–for example, with publications on the 
dentalites of large Mesozoic reptiles greatly outnumbering those 
of small Paleogene mammals.

There have been few studies of the pattern of the overall 
fossil record of vertebrate trace fossils (e.g., Hunt et al., 2005a, 
2018). There are clearly extensive taphonomic megabiases 
(Behrensmeyer et al., 2000) in this trace fossil record. The 
bromalite and dentalite records are, for example, heavily skewed 
towards carnivores. There are also significant size-related biases, 
such as that small and large coprolites and regurgitalites are rare, 
as are small dentalites. Certain time periods demonstrate strong, 
geologically-based biases. Thus, for example, the continental 
flooding of the Late Cretaceous resulted in extensive trace (and 
body) fossils preserved in the Western Interior Basin of North 
America, not only in the sedimentary deposits of the seaways 
but also in the rocks that formed on the associated coastal plains, 
and could reasonably be considered to be a mega-Lagerstätten 
or maybe a Lagerstätten province. Certain traces have abundant 
records not consonant with those of the relative abundance of 
their producers, such as the spiral coprolites of chondrichthyans. 
These megabiases should provide many lines of future inquiry 
into the nature of the record of vertebrate ichnofossils and are 
discussed further below.

VERTEBRATE FEEDING
The analysis of vertebrate feeding in the fossil record has 

almost totally been based on the functional morphological 
(biomechanical) analysis of body fossils (especially of skulls 
and dentitions). A vast literature exists on such analyses, and 
we do not review it or its conclusions here. Instead, we draw 
attention to those aspects of vertebrate feeding that are informed 
by trace fossils, some of which are not understood from the 
study of body fossils.

The Hard Parts
Dentitions and teeth

Vertebrate teeth are hard structures (usually enamel 
capped) in the vertebrate mouth that are used to process food. 
They are very variable in individual morphology and, in their 
groupings in a given mouth (Fig. 2), which are referred to as 
dentitions (e.g., Peyer, 1968). Typically, teeth in dentitions can 
be considered homodont (if all the teeth are of very similar 
structure) or heterodont (in which very different tooth structures 
are present). Thus, for example, the dentition of humans is 
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very much heterodont, with the teeth readily distinguished as 
incisors, canines, premolars and molars based on their differing 
morphology. In contrast, the dentition of a dolphin consists of 
conical teeth that are essentially all of the same morphology, 
so the dolphin dentition is nearly homodont. Nevertheless, the 
terms heterodont and homodont are best viewed as ends of a 
spectrum of differentiation of tooth morphology in the dentitions 
of vertebrates. 

Most vertebrates have teeth that are located “marginally,” 
that is on the edges of the upper and/or lower jaws. However, many 
vertebrates, especially some fishes, amphibians and reptiles, do 
have teeth otherwise located, usually on the palate. Furthermore, 
all vertebrates have one or more tooth generations. Thus, in 
mammals there are typically two sets of teeth–deciduous and 
permanent–that succeed each other in ontogeny and are different 
from each other in morphology. Such dentitions are termed 
diphyodont. In contrast, most non-mammalian vertebrates have 
many generations of teeth, and such dental ontogeny is referred 
to as polyphyodont. Mammals are also distinguished from most 
other vertebrates by the ability to masticate food by virtue of 
large premolars and molars that fit together during occlusion. 
Some other groups, such as hadrosaurid dinosaurs, had dental 
batteries to reduce food to small particle sizes. Several groups 
of vertebrates are largely or completely edentulous, notably 
birds and turtles. There is little literature on their dentalites 

(e.g., Njau and Gilbert, 2016; Fernández-Jalvo and Andrews, 
2016; Tables A.1-4 herein), although there are several studies 
related to the hypothesis that the preservation of the Taung child 
(Australopithecus) in South Africa and its associated fauna were 
the result of the predatory activity of eagles (Berger and Clarke, 
1995; Sanders et al., 2003; McGraw et al., 2006; Gilbert et al., 
2009). 

Clearly, there is complexity to vertebrate teeth and dentitions, 
in morphology and in ontogeny. Thus, a similar complexity will 
be found in trace fossils made by teeth (dentalites). Furthermore, 
the processing of food by the teeth affects the structure and 
composition of vertebrate bromalites, a subject that has been little 
discussed. Finally, as detailed below, the use of gastroliths by 
some vertebrates (notably birds) can provide a food processing 
function not undertaken by the dentition.
Skeletal system

A major function of the vertebrate head is the acquisition 
and initial processing of food items, and the architecture of 
the skull relates in large part to diet. A good example is found 
in the semi-aquatic predator guild. Predators of this guild are 
often characterized by low, robust skulls with elongate jaws. 
This skull type is widely distributed among different taxonomic 
groups, including trematosaurs (temnospondyls), proterosuchids 
(archosauriforms), proterochampsids (archosauriforms), 
phytosaurs (archosauriforms), champsosaurs (sauropsids), 
crocodilians (eusuchians) and spinosaurs (saurischians). The 
low-profiled, elongate skull and lower jaws produce lower 
resistance when moved laterally through water. The long jaws 
allow for multiple pointed teeth that can hold slippery fish 
or other struggling prey, and the infliction of larger bites and 
higher tooth tip velocity; the robust structure offers protection 
from resisting prey (Taylor, 1987; Busbey, 1995; McHenry et 
al., 2006; Pierce et al., 2008; Walmesley et al., 2013). Detailed 
study of skull morphology can provide specific information 
about feeding behavior, such as with durophagous carnivorans 
(e.g., Tseng and Wang, 2010, 2011; Figueirido et al., 2013). 

The bones of the skull preserve the attachment areas 
for the muscles associated with mechanics of the jaw. The 
reconstruction of muscle mass and insertion locations provides 
information about the feeding capabilities and behaviors of 
the organism, and this methodology has been widely utilized, 
principally in terrestrial tetrapods, for example in dicynodonts 
(e.g., Crompton and Hotton, 1967), theropods (e.g., Molnar, 
2008), ornithischian dinosaurs (e.g., Weishampel, 1984) and 
herbivorous (e.g., Gambaryan and Kielan-Jaworowska, 1995) 
and carnivorous (e.g., Wroe et al., 2013) mammals.

The postcranial skeleton has indirect and direct significance 
for feeding. Food is often grasped with, sometimes even 
processed by, the fore limbs in many vertebrate taxa. For example, 
the strong fore limbs and thumbs of saber-toothed felines are 
inferred to have been used to achieve rapid immobilization of 
prey, thus decreasing the risk of injury and minimizing energy 
expenditure (Salesa et al., 2010), and claws in large herbivorous 
mammals are thought to have been utilized for browsing, digging 
and climbing to acquire food (Coombs, 1983). Other skeletal 
adaptations that have a direct correlation with locomotion are 
often directly reflective of the motions needed to acquire food.

The Soft Parts
Digestive System

The digestive tract of animals is an essential organ system. 
It allows animals to efficiently digest food and take up nutrients 
to maintain growth and sustain the body (Hejnol and Martín-
Durán, 2015). The vertebrate digestive tract is a tubular soft-
tissue structure that commonly can be divided into an esophagus, 
stomach and intestines. There is usually a constriction in the gut 
between the stomach and intestines, termed the pylorus, formed 

FIGURE 2. Selected vertebrate dentitions to document some 
of the wide range of morphology of individual teeth and of 
whole dentitions. A, Lateral view of the relatively homodont 
upper and lower tooth rows of the mackerel shark, Isurus. B, 
Much more heterodont upper and lower tooth rows of the sixgill 
shark, Hexanchus. C, Upper and lower tooth rows of the bat, 
Corynorhinus, showing the heterodonty characteristic of most 
mammals, by which teeth can be differentiated readily into 
incisors, canines, premolars and molars. D, Lateral view of 
the lower dentition of the seal, Leptonychotes. Posterior to the 
large canine, note the relative homodonty of the cheek teeth. E, 
Occlusal view of fossil toothplates of a Carboniferous lungfish, 
Ctenodus. Not to scale; modified from Peyer (1968).



6
by the sphincter muscles. The foregut is anterior to the pylorus, 
and the posterior segment can be referred to as the hindgut or 
the midgut and hindgut (e.g., Romer, 1962; Stevens and Hume, 
1995). 

In the least derived fish, and even some teleosts, the foregut 
is a simple tube between the pharynx and intestines, but in 
most vertebrates it is separated into an anterior esophagus and 
a posterior stomach. The esophagus serves mainly to transport 
food, whereas the stomach is for storage and some food 
processing. 

Most vertebrates are monogastric, with a simple, single-
chambered stomach. However, digesting cellulose by microbial 
fermentation is most efficiently accomplished by a multi-
chambered ruminant stomach consisting of the reticulum, 
omasum, abomasum and rumen. This is foregut fermentation 
(e.g., bovids), as opposed to hindgut fermentation (e.g., 
camelids), which occurs in the cecum at the beginning of the 
large intestine. Birds have digestive challenges, including a lack 
of teeth, high metabolism, weight constraints and rigidity of the 
abdominal cavity preventing distension of the alimentary canal. 
They have a two-chambered stomach consisting of a glandular 
proventriculus and a muscular ventriculus (gizzard), which may 
contain sand and/or gravel, as well as a crop that is an expanded 
portion of the posterior esophagus, serving principally for 
storage. 

The digestive tract posterior to the stomach consists of the 
intestines. Many basal fish have a spiral valve, which comprises 
the majority of the intestinal length between the stomach and 
cloaca, and that may be helical or scroll-like in form (McAllister, 
1987; Capasso, 2019a). More derived vertebrates have intestines 
that consist of elongate tubes, separated into a more anterior 
small intestine (midgut) and a posterior large intestine (hindgut), 
that terminate in a rectum. The liver, pancreas and gallbladder 

are associated with the midgut.
Most of the trace fossils discussed here have diverse 

relationships to the vertebrate digestive tract. Thus, bromalites, 
notably consumulites, are divided into different kinds specific 
to a particular part of the digestive tract, reflecting their site of 
origin (Fig. 3; Table 1). Gastroliths mostly reside in the stomach. 
These specific kinds of traces thus provide information about 
the structure and function of that part of the digestive system in 
which they reside.

DENTALITES
Introduction

Hunt et al. (2018, p. 500) introduced the term dentalite 
to encompass all traces produced on a substrate by the teeth 
or oral cavity of a vertebrate or invertebrate (Appendix B). 
These trace fossils were generally referred to previously as 
“bite marks” (e.g., Avilla et al., 2004; Drumheller et al., 2014) 
although technically they should be considered “bite traces” 
(see discussion above). Most examples of dentalites were made 
by vertebrates, but the term also applies to traces left by the 
jaw apparatus of invertebrates (e.g., Bicrescomanducator rolli 
– cephalopod dentalites on ammonites: Andrew et. al., 2010: 
echinoid dentalites on crinoids: Baumiller et al. 2010; Gorzelak 
et al. 2012). The substrate of dentalites is most often bone 
(Binford, 1981; Fernández-Jalvo and Andrews, 2016) but can 
be vegetation (Lucas, 2016), invertebrate hard parts (Kauffman 
and Sawdo, 2013), coprolites (Godfrey and Smith, 2010) or 
sediment (Gingras et al., 2007). 

History of Study
The study of vertebrate dentalites has been reviewed 

recently by Drumheller-Horton (2012), Lucas (2016) and Hunt 
et al. (2018). It began with the work of Buckland (1822, 1824), 

FIGURE 3. Selected classification terms for bromalites and associated trace fossils. Modified from Hunt and Lucas (2012a).
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major motivation was to answer questions related to that posed 
by the title of Brain’s (1981) well known book “The hunters or 
the hunted?” (also see Washburn, 1957), which was, in itself, a 
reaction to Dart’s (e.g., 1957) hypothesis of the osteodontokeratic 
culture of Australopithecus (i.e., tool kits made from bones and 
teeth and utilized by hominoids). Paleontological studies of 
dentalites have been part of a broad resurgence of interest in 
vertebrate taphonomy (e.g., Behrensmeyer and Hill, 1980). The 
majority of this work, both actualistic and on fossils, relates to 
mammals, with a growing literature on crocodilians (e. g., Njau 
and Blumenschine, 2006). Fernández-Jalvo and Andrews (2016) 
provided an extensive photographic atlas of fossil and Recent 
dentalites. 

Cruickshank (1986) applied the first ichnogeneric name 
to dentalites. Subsequently, 18 additional ichnotaxa have 
been named (Table 2). The ichnotaxonomic process leads to 
a clear separation of description and interpretation, which are 
sometimes conflated in archeological studies. Jacobsen and 
Bromley (2009), Pirrone et al. (2014) and Lucas (2016) discussed 
ichnotaxobases of dentalites. Lucas (2016) recently named 
two substrate-based nonmarine ichnofacies: the Cubiculum 
ichnofacies for modifications to bone, including dentalites, and 
the Palaeoscolytus ichnofacies for modifications to vegetation, 
including dentalites. 

Actualistic Studies
Buckland (1822, 1824) conducted the first actualistic study 

of dentalites by feeding cow bones to a hyena from a travelling 
show and comparing the bite marks with those present on 
Pleistocene bison bones from Kirkdale Cave (Fig. 4). Lyell 
(1863) provided porcupines at the London Zoo with bone and 
antler samples to gnaw upon, and he compared the results with 
marks on probable Pleistocene bones from Saint Prest in France. 
Modern actualistic studies were largely inspired by controversies 
generated by the interpretation of early archeological sites in East 
Africa and South Africa, including Olduvai Gorge (Tanzania), 
Koobi Fora (Kenya), and Sterkfontein, Klasies River Mouth and 
Swartkrans (South Africa) (Arriaza et al., 2021). This research 
started in the 1970s but reached a crescendo in the 1980s (e.g. 
Sutcliffe, 1970; Binford, 1981; Brain, 1981; Bunn, 1982, 1983; 
Haynes, 1980, 1982, 1983; Blumenschine, 1986, 1988). New 
methodologies are being developed (e.g., Domínguez-Rodrigo 
and Piqueras, 2003; Domínguez-Rodrigo et al., 2012). Arriaza 
et al. (2021) recently studied leopard dentalites, utilizing 
microphotogrammetry and geometric morphometrics. They 
demonstrated that tooth marks inflicted by leopards, spotted 
hyenas and lions can be statistically differentiated based on their 
morphology, and that the ratio of pits to scores inflicted by the 
leopard is closer to hyenas.

Actualistic studies on crocodile dentalites were notably 
spurred by dissertations and subsequent research by Njau (2006; 
Njau and Blumenschine, 2006, 2012; Njau and Gilbert, 2016) 
and Drumheller (Drumheller-Horton, 2012; Drumheller and 
Brochu, 2014, 2016). D’Amore (2009) studied tooth marks of 
Varanus komodoensis as analogues for dentalites of theropods.

Bony Substrates
Introduction

We organize our review of the dentalite record by the 
substrate on which the dentalite is registered, because identifying 
the producers of dentalites is often problematic. Lucas (2016) 
and Hunt et al. (2018, fig. 12.6) briefly reviewed this record. 
There are several clear patterns to the documented record of 
dentalites (Fig. 5):

1. There is a bias towards dentalites of large animals 
preserved on large pieces of substrate (e.g., cetaceans, dinosaurs, 
marine reptiles). This is presumably related to ease of recognition 
and to the fact that smaller animals may be wholly ingested or 

who analyzed a Pleistocene vertebrate fauna from Kirkdale Cave 
in northern England (Fig. 4). He utilized element representation, 
bone damage and dentalites to demonstrate that the bone deposit 
was not “Diluvial” (from the Flood) but actually represented 
an “Antidiluvian” hyena den (e.g., Boylan, 1977). This was 
the start of a remarkable period in which Buckland used 
theoretical and actualistic studies (e.g., feeding cow bones to a 
captive hyena, walking tortoises across dough) to make major 
contributions to the study of vertebrate ichnofossils – dentalites, 
coprolites and footprints (Buckland, 1822, 1824, 1835; Boylan, 
1977; Pemberton et al., 2007; Duffin, 2009). Nevertheless, there 
was relatively little interest in dentalites for the remainder of 
the nineteenth century, with a few exceptions (e.g., Tournal, 
1833; Dawkins, 1863). The exceptions included both Mudge 
(1877) and Williston (1898), who commented on the presence 
of mosasaur fossils with dentalites produced by sharks in the 
Upper Cretaceous strata of the western United States.

During the twentieth century, interest in dentalites grew 
in the context of a dichotomy between studies in archaeology 
and paleontology (Hunt et al., 1994b; Drumheller-Horton, 
2012). Archeological studies of dentalites increased due to 
the advent of processual archaeology (e.g., Binford, 1981). A 

FIGURE 4. Comparison of Pleistocene and Recent damage 
to bovid bones by hyena jaws (from Buckland, 1824, pl. 23). 
“1. Residuary part of the lower extremity of the tibia of an ox, 
which I saw given entire to a Cape hyaena in Mr. Wombell’s 
travelling collection at Oxford, in December 1822: marks of 
the teeth are definitely distinctly visible at a, b, c, d, e, f….. 2. 
Fragment of a similar tibia from Kirkdale Cave, broken nearly 
in the same manner as No. 1, and bearing similar marks of teeth 
at a, b, c, d, e: in the recent, as in the antediluvian specimen, 
the lower condyle has, from its hardness, been left unbroken. 
3. Splinter from another bome broken by the hyaena at Oxford: 
the cavity at A. was produced by the hyaena’s tooth. 4. Similar 
splinter, bearing a similar cavity A., from the cave at Kirkdale, 
and partially incrusted with stalagmite. 5. Inside of the lower 
extremity of the recent specimen, No. 1, in which the hole A. 
was produced by the hyaena’s bite……6. Lower extremity of 
another tibia from Kirkdale, in which the form of the cavity A. 
resembles that in No. 5. 7. Scaphoid bone of the left carpus of 
an ox, which, with the other component bones of the carpus, lay 
all night untouched in the hyaena’s cage at Oxford. 8. Similar 
bone from Kirkdale, equally untouched” (Buckland, 1824, p. 
276-277).
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totally destroyed by mastication. 
2. Hunt et al. (2018) coined the term Taxophile Effect to 

refer to the disproportionate study of more “popular” taxonomic 
groups. This is well seen in the marked disparity between the 
numbers of reports of dentalites on dinosaur bones relative 
to those on the bones of Cenozoic mammals. The Taxophile 
Effect may also be at play with invertebrates, as there are more 
reports of dentalites on elegant ammonoids than on any other 
invertebrate taxonomic group.

3. Dentalites are non-randomly distributed in time, with 
notable acmes in the Late Triassic, Late Cretaceous and late 
Cenozoic (Fig. 5).

4. Prior to the Quaternary, with the exception of the 
nonmarine Mesozoic, most dentalites are reported from marine 
facies. In the Quaternary, a large percentage of dentalites are 
from cave deposits.

5. There is a clear seeker bias (seek and ye shall find), 
as careful investigation of large existing collections, at least 
of vertebrate specimens, has always led to the identification 
of multiple examples of dentalites (e.g., Jacobsen, 1995, 1998; 
Konuki, 2008; Drumheller et al., 2020; Dalman and Lucas, 
2021).

6. Dentalites on a bony substrate pertain to the 
Cubiculum ichnofacies of Lucas (2016), those on vegetation to 
the Palaeoscolytus ichnofacies of Lucas (2016) and those on 
coprolites to the Gaspeichnus ichnofacies of Hunt et al. (2018). 
Paleozoic 
Marine

Putative jawed vertebrates date to the Ordovician 
(Karatajute-Talimaa and Predtechenskyj, 1995; Sansom et al., 
1996; Smith and Sansom, 1997; Sansom et al., 2012), but the first 
definitive body fossil remains are of Early Silurian age (Zhao and 
Zhu, 2010; Brazeau and Friedman, 2015). The earliest record 
of a dentalite is on an unidentified jawless cyathaspid from the 
Middle Silurian (Wenlock) Man on the Hill (MOTH) site in the 
Mackenzie Mountains, Northwest Territories of Canada (Randle 
and Sansom, 2019a,b). There are no other recorded Silurian 
examples, but dentalites become relatively common in the 
Devonian, and the study of ostracoderms indicates increasing 
frequency of these traces on aquatic vertebrates through the 
period (Lebedev et al., 2009; Randle and Sansom, 2019a). 

Early Devonian dentalites are present on heterostracans in 
Canada, the USA, England, Wales, Scotland, Ukraine, Sweden, 
and Russia (Tarrant, 1991; Lebedev et al., 2009; Elliott and 
Petriello, 2011; Randle and Sansom, 2019a: Fig. 5). Dentalites of 
Middle Devonian age are known in heterostracans, arthrodires, 

and antiarchs in Latvia, Estonia, Russia, and the USA (Obruchev 
and Mark-Kurik, 1965; Lebedev et al., 2009; Johansen et al., 
2013; Tuuling, 2015; Randle and Sansom, 2019a). Late Devonian 
dentalites are present on heterostracans, arthrodires, antiarchs 
and osteolepiforms in Scotland, Estonia, Russia, Canada, and 
Morocco (Capasso et al., 1996; Lebedev et al., 2009; Scott et al., 
2012; Cloutier, 2013; Glinskiy and Mark-Kurik, 2016; Randle 
and Sansom, 2019a). Although eurypterids might be considered 
the perpetrators of some putative Devonian dentalites (e.g., 
Romer, 1933, but see Lamsdell and Braddy, 2009), there are 
only two probable recorded occurrences (Lebedev et al., 2009; 
Elliott and Petriello, 2011; Blieck, 2017). 

There are very few reports of dentalites on Carboniferous 
or Permian fish fossils. The marked decline after the Devonian 
probably relates in large part to the extinction of many of the 
armored fish, as sheets of dermal armor provide a preferential 
substrate to preserve dentalites. Zangerl and Richardson (1963) 
published a classic study of fossiliferous Pennsylvanian black 
shales that contain fossils that appeared to preserve abundant 
examples of bite marks. They documented a range of incomplete 
skeletons of fish, which they interpreted as representing 
dismembered carcasses and “gastric residues” (regurgitalites). 
However, subsequent study has made it clear that the partial 
skeletons represent normal decay processes, most of the putative 
regurgitalites are not regurgitalites, and there are no preserved 
dentalites (Elder, 1985; Elder and Smith, 1988).
Nonmarine

There are only a small number of reports of Paleozoic 
nonmarine dentalites (Fig. 5). However, one of the oldest 
tetrapod fossils, a humerus from the Famennian (Late Devonian), 
has puncture marks on the dorsal and ventral surfaces that may 
be dentalites (Shubin et al., 2004). The earliest example in the 
nonmarine Paleozoic of multiple dentalites is on an articulated 
skeleton of the early Permian synapsid predator Varanops, 
which preserves traces interpreted to be the result of scavenging 
by a dissorophoid amphibian (Reisz and Tsuji, 2006). Reisz and 
Tsuji (2006, p. 1023) opined that “few Paleozoic tetrapods have 
been prepared with the kind of care required to readily identify 
bite marks, or studied with these taphonomic features in mind.” 
The early Permian Craddock Bone Bed in Texas yields abundant 
dentalites produced by Dimetrodon that have not been described 
in detail (Houpt et al., 2020). Dentalites are present on a snout 
of the amphibian Diplocaulus but most commonly on skeletal 
elements of adult dimetrodonts and subadult diadectids. Damage 
is concentrated on distal limb elements and has been interpreted 
as the result of feeding on major muscle masses (Houpt et al., 

TABLE 1. Consumulite ichnotaxonomy.

Placement of consumulite Agassiz 
(1833)

Hoernes 
(1904)

Fritsch 
(1907)

Northwood 
(2005) Hunt and Lucas (2012a); this paper

Mouth
Protruding from 
oral cavity

Consumulite

Aspirationalite
Within oral 
cavity Oralite

Esophagus Esophagalite
Avian crop Cropalite

Stomach/
ventriculus

Avian 
proventriculus Gastrolite Proventrilite

Gastrolite

Intestines Cololite

Cololite

Intestinilite
Spiral valve Enterolite Enterospira Enterospira

Preserved 
outside 
body cavity

Cololite Evisceralite
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2020).

Another early Permian example is represented by a puncture 
dorsal to the caniniform tooth of the skull of Dimetrodon 
(Bathygnathus) borealis (Langston 1963; Brink et al., 2013, 
2015). The classic late Permian Karoo faunas preserve few 
reported dentalites, but one example is of dentalites, likely made 
by the gorgonopsian Aelurognathus, on a therapsid skeleton 
(Fordyce et al., 2012). 
Mesozoic
Marine

There are a large number of dentalites reported from the 
marine Mesozoic (Fig. 5; Table A.1). The majority are related 
to marine reptiles, and many dentalites in the Cretaceous were 
produced by sharks. Marine tetrapods provided an important 
substrate for the preservation of dentalites throughout the 
Mesozoic and Cenozoic. They generally have larger body sizes 
and more robust skeletal elements than chondrichthyans and 
bony fish, both factors that aid in the preservation and recognition 
of dentalites. The greatest number of occurrences is from the 
Late Cretaceous, with many from the sedimentary record of the 
Western Interior Seaway of western North America.

There are two dentalite records from the Early Jurassic, 
both from ichthyosaurs. Five specimens of the ichthyosaur 
Temnodontosaurus from Germany have dentalites attributed 
to Temnodontosaurus and the crocodylomorph Steneosaurus 
(Pardo-Pérez et al., 2018). A skull of the ichthyosaur Leptonectes 
cf. L. tenuirostris from England has a healed wound that appears 
to have been a dentalite (Maisch and Matzke, 2003).

There are a number of dentalites reported from the Middle 
Jurassic of England and one from Scotland. One example of the 
fish Leedicthys preserves a tooth of the marine crocodylomorph 
Metriorhynchus in a dentalite (Martill, 1985a). Four specimens 
of the plesiosaur Cryptoclidus or cf. Cryptoclidus from England 
include dentalites, three of which are attributed to a pliosaur 
maker and one to Metriorhynchus (Martill et al., 1994; Forrest, 
2000, 2003; Rothschild et al., 2018). Two ichthyosaurs, one 
from England and one from Scotland, include dentalites, one 
identified as having been produced by a pliosaur (Martill, 1996; 
Brusatte et al., 2015).

Late Jurassic dentalites are not numerous but are more 
broadly distributed than those from earlier parts of the period. Two 
specimens of turtles from Switzerland assigned to Plesiochelys 
sp. and an indeterminate taxon have dentalites attributed to the 
crocodyliform Machimosaurus (Meyer, 1991). Bones of the 
marine crocodyliforms Geosaurus vignaudi and G. saltillense 
from Mexico include dentalites (Frey et al., 2002; Buchy et al., 
2006). Late Jurassic plesiosaurs with dentalites occur in the 
USA, England and Mexico, and Late Jurassic ichthyosaurs with 
dentalites are present in Russia, Poland and Norway (Martill 
et al., 1994; Wahl, 2006; Buchy, 2007; Druckenmiller et al., 
2012; Novis, 2012; Zverkov et al., 2015; Tyborowski, 2016). 
One of the plesiosaur and one of the ichthyosaur occurrences 
are attributed to bites from pliosaurs (Buchy, 2007; Zverkov et 
al., 2015). 

The majority of Early Cretaceous dentalite records are from 
Australia (Table A.1). These specimens include dentalites on 
the ichthyodectiform fish Cooyoo australis (Wretman and Kear, 
2014). The holotype of the “elasmosaur” Eromangasaurus 
carinognathus has dentalites made by the “pliosaur” Kronosaurus 
(Thulborn and Turner, 1993; Kear, 2005; McHenry, 2009). In 
turn, there are two examples of dentalites on Kronosaurus, one 
produced by intraspecific interaction (McHenry, 2009) and one 
by a cretoxyrhinid shark (Holland, 2018). Kellner et al. (2010) 
described shallow punctures on an ornithocheiroid pterosaur 
wing metacarpal. Early Cretaceous dentalites outside of Australia 
include specimens of the crocodyliform Pachycheilosuchus 
trinquei from the USA (Rogers, 2003) and a spinosaur tooth 

FIGURE 5. Temporal distribution of reports of dentalites. 
Sources are in the text and Tables A.1-4.
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within a dentalite on the pterosaur Anhanguera sp. from Brazil 
(Buffetaut et al., 2004; Kellner, 2004).

Late Cretaceous marine dentalites are nearly global in 
their distribution, present in New Zealand, Australia, Japan, 
Italy, France, Germany, Belgium, Netherlands, Sweden, 
Jordan, Angola, Mali and Chile. However, the vast majority 
of occurrences are from the Western Interior of the USA and 
Canada. A wide range of taxonomic groups preserve dentalites, 
but the most characteristic group from the Late Cretaceous is the 
marine lizards, the mosasaurs. Dentalites produced by sharks, 
notably Squalicorax sp. and Cretoxyrhina, become abundant 
in the Late Cretaceous (e.g., Schwimmer et al., 1997; Everhart, 
2005c), and this trend extends into the Cenozoic.

There are 20 records of dentalites on large chondrichthyans 
and teleosts from the Late Cretaceous, including on specimens 
of Cretoxyrhina mantelli, Eumylodus laqueatus, Xiphactinus 
audax and Pachyrhizodus caninus (Shimada, 1997; Schwimmer 
et al., 1997; Shimada and Everhart, 2004; Cicimurri et al., 2008; 
Amalfitano et al., 2019). One of these specimens is from Italy, and 
the remainder are from the USA. Of the identified tracemakers, 
16 represent Squalicorax sp., and one is Cretoxyrhina mantelli 
(Table A.1).

Published Late Cretaceous dentalite records on marine 
turtles number about 23 (Table A.1). These include single 
occurrences from Italy, Angola, Jordan and The Netherlands, 
with the remainder from the USA (Mulder, 2003a; Kaddumi, 
2006; Mateus et al., 2012; Amalfitano et al., 2017; Fig. 6). All 
dentalites on Jurassic turtles are attributed to crocodylomorphs. 
Late Cretaceous dentalites include two or three attributed to 
crocodylomorphs, four or five to mosasaurs and 17 to sharks, 
principally Squalicorax with a few attributed to Cretoxyrhina 
or other taxa (Table A.1). Marine crocodylomorphs are less 
common in the Late Cretaceous, and there are only three 
examples with dentalites from Mali, France and the USA, and 
the two identified tracemakers are selachians (Hua et al., 2007; 
Boles and Lacovara, 2013; Hill et al., 2015). 

There are more than 50 documented examples of dentalites 

on Late Cretaceous mosasaurs (Fig. 6: Table A.1). The majority 
of the specimens are from the United States, but they also are 
present in The Netherlands, Belgium, Germany, Spain and 
Angola (Bardet et al., 1998; Dortangs et al., 2002; Corral et al., 
2004; Lingham-Solar, 2004; Rothschild et al., 2005; Strganac 
et al., 2015; Fig. 5). There are 10 examples of dentalites on 
mosasaurs produced by mosasaurs, some due to presumed 
intraspecific head biting (e.g., Rothschild and Martin, 1993; 
Everhart, 2008; Carr et al., 2020). There are approximately 40 
examples attributed to sharks, about a quarter of these produced 
by Squalicorax and several by Cretoxyrhina, but many are 
attributed to undetermined selachians (e.g., Schwimmer et al., 
1997; Everhart, 1999; Konuki, 2008).

There are 14 reports of dentalites on plesiosaur bones, 
half from the USA and the others from Sweden, Japan, Chile, 
Argentina and New Zealand (Sato et al., 2006; Barnes and Hiller, 
2010; Einarsson et al., 2010; Shimada et al., 2010; Kubo et al., 
2012; Otero et al., 2014; Araújo et al., 2015; Table A.1). The 
majority of specimens preserve dentalites produced by sharks, 
primarily Squalicorax, with two examples of Cretoxyrhina 
(e.g., Schwimmer et al., 1997; Everhart, 2005a; Araújo et al., 
2015). There is one report of a mosasaur-produced dentalite on a 
plesiosaur (Einarsson et al., 2010), and two plesiosaur skeletons 
that record dentalites derived from both a mosasaur and one or 
more selachians (Konuki, 2008; Barnes and Hiller, 2010).

Six dinosaur specimens that preserve dentalites have been 
recovered from marine strata in the USA – four hadrosaurs, 
a nodosaur, an ornithomimosaur and another theropod 
(Schwimmer et al., 1997; Everhart and Hamm, 2005; Everhart 
and Ewell, 2006; Schein and Poole, 2014; Brownstein, 2018; 
Brownstein and Bissell, 2021). All but the theropod, whose 
dentalite is attributed to a crocodylomorph, were bitten by sharks. 
Two specimens of the pterosaur Pteranodon preserve dentalites 
produced by Squalicorax (and a small fish) and Cretoxyrhina 
(Konuki, 2008; Ehret and Harrell, 2018; Hone et al., 2018a, 
b). There is one record of dentalites on the bird Hesperornis 
produced by a polycotylid plesiosaur (Martin et al., 2016).
Nonmarine

Although there is only a small data set, it seems that 
dentalites are relatively less common in the Paleozoic than the 
Mesozoic (Fig. 5; Table A.2). We posit that this may be caused 
by several factors that distinguish most Mesozoic vertebrate 
predators from most Paleozoic vertebrate predators, including: 
(1) the evolution of laterally compressed teeth in terrestrial 
predators, which would penetrate through soft tissue to bone 
more effectively; (2) the development of a more upright gait 
among predators that would provide for more three dimensional 
predation – more opportunity for biting the dorsal as well as 
the lateral regions of prey; and (3) increased body size of prey 
that would invite more extensive scavenging of carcasses than is 
feasible with small-bodied prey.

There are few unambiguous reports of dentalites from the 
nonmarine Early and Middle Triassic. Modesto and Botha-
Brink (2010) described a possible puncture on the scapula of a 
juvenile Lystrosaurus from the Early Triassic of South Africa. 
Fernandez et al. (2013) reported possible dentalites on the 
temnospondyl Broomistega putterilli from a burrow, also in the 
Early Triassic of South Africa. Cruickshank (1986) proposed 
the first ichnotaxonomic name for a vertebrate dentalite, 
Mandaodontites coxi for the imprint of a partial dental arcade 
with round tooth impressions (Table 2). This dentalite, from 
the Middle Triassic of Tanzania, is on a dicynodont bone and is 
attributed to an archosaur.

There are a large number of reports of Late Triassic 
dentalites from a wide range of taxa across a broad geographic 
area (North and South America and Europe), although they 
are never abundant in any given fossil assemblage (Fig. 5). 

FIGURE 6. Some Late Cretaceous dentalites from marine 
strata of Kansas, USA. A, Proximal end of mosasaur rib 
with characteristic serrated dentalites (Linichnus serratus) 
produced by Squalicorax sp. (Everhart, 2017, fig. 6.13). B, 
Left hyoplastron of the marine turtle Protostega gigas (FHSM 
VP-17979), in ventral view, from Santonian chalk, preserving 
mosasaur dentalites (Everhart, 2017, fig. 6.13). Photographs 
courtesy of Michael Everhart.
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The extent of the dentalite record thus broadly parallels that of 
the osseous record, with many more specimens known from 
the Late Triassic than in the earlier part of the period. The 
prevalence of dentalites correlates to a marked increase in the 
diversity of taxa with dorsal armor in Late Triassic nonmarine 
environments (non-archosaurian archosauriforms [Vancleavia], 
pseudosuchians [Revueltosaurus], aetosaurs, phytosaurs, 
paracrocodylomorphs, crocodylomorphs and turtles). Hunt et al. 
(2018) recently reviewed the record of Late Triassic dentalites.

The only record of dentalites on a Late Triassic amphibian 
is a clavicle fragment of Koskinonodon perfectum from New 
Mexico that preserves two rows of tooth marks made by blade-
like and rounded teeth (Rinehart et al., 2006). Rinehart et al. 
(2006) named these dentalites Heterodontichnites hunti and 
attributed them to a phytosaur. Dentalites on several phytosaur 
skulls of Nicrosaurus and Pseudopalatus in North America and 
Europe represent intraspecific head biting, as occurs in modern 
crocodylians (Abel, 1922a, b; Camp, 1930; Ruben, 1990). There 
are only two reports of dentalites on aetosaurs. Both specimens 
are on the aetosaurs Typothorax and Desmatosuchus from the 
southwestern United States (Zeigler et al., 2002; Drymala and 
Bader, 2012).

Dentalites on terrestrial carnivores include two incomplete 
femora of paracrocodylomorphs (“Rauisuchia”) from northern 
New Mexico, USA (Drumheller et al., 2014), with the dentalites 
interpreted to be from phytosaurs. A humerus of the holotype 
of the paracrocodylomorph Postosuchus kirkpatricki preserves 
dentalites of unknown origin (Weinbaum, 2013). The holotype 
skeleton of the crocodylomorph Dromicosuchus grallator from 
North Carolina, USA, preserves damage to the cervical area and 
mandible attributed to the paracrocodylomorph whose skeleton 
was found immediately above it, and it is inferred that the two 
animals died and were buried together during the act of predation 
(Sues et al., 2003). Sereno and Novas (1994) described healed 
intraspecific bite marks on the saurischian Herrerasaurus. 

The majority of dentalites described from the Late Triassic 
occur on dicynodont skeletons, which are always the largest 
bodied herbivorous taxa in their faunas (in contrast, they are not 
often registered on the bones of prosauropod dinosaurs, which 
dominate vertebrate faunas in certain environments/geographic 
locations). A femur of a dicynodont similar to Ischigualastia 
from New Mexico, USA, has multiple dentalites that are tooth 
marks of a phytosaur assigned to Heterodontichnites hunti 
(Lucas and Hunt 1993; Hunt and Lucas, 2014b). Budziszewska-
Karwowska et al. (2010) described bite marks on a dicynodont 
tibia from Poland. The bone has longitudinal dentalites on the 
anterior side of its shaft, as well as a row of small oval pits that 
are interpreted to represent the scavenging of more than one 
carnivore. 

Elsewhere in southern Poland, there are six small dicynodont 
bones with dentalites (Table A.2). These traces were assigned 
to the dentalite ichnotaxa Linichnus serratus, Knethichnus 
parallelum and Nihilichnus nihilicus, and attributed to theropod 
dinosaurs (Dzik et al., 2008; Niedźwiedzki et al., 2010). 
Dentalites also occur on ribs of the dicynodont “Jachaleria” 
candelariensis and other dicynodonts from Brazil (Braunn et al., 
2001; Vega-Dias and Schultz, 2007). Niedźwiedzki et al. (2010) 
suggested that dentalites on dicynodont bones indicate that an 
increase in the size of dicynodonts through the Late Triassic may 
have been driven by selection pressure to reach a size refuge 
from early dinosaur predators.

Other dentalites on herbivore bones include the topotype 
of the pseudosuchian Revuelosaurus callenderi that preserves 
dentalites (gnaw marks: Hunt et al., 2005c; Hunt and Lucas, 
2014b). Müller et al. (2015) described dentalites on bones of the 
traversodontid cynodont Exaeretodon, from Brazil, which were 
attributed to an ecteniniid cynodont. Romo-de-Vivar-Martínez 
et al. (2017) reported a pathology in the rhynchocephalian 

Clevosaurus brasiliensis, also from Brazil, that resulted from 
injuries (including bites) produced during intraspecific fights. 
Holgado et al. (2015) recognized dentalites that were produced 
by fish on a skeleton from Italy of a protorosaurian within a 
regurgitalite. 

The Jurassic and Cretaceous have nonmarine faunas 
dominated by dinosaurs that yield most of the described 
dentalites (Table A.2). The Jurassic and Cretaceous share with the 
Triassic a pattern of an increasing volume of dentalites towards 
the end of each period, reflecting the increase of preservation 
of nonmarine vertebrate specimens. Throughout the Mesozoic, 
the majority of nonmarine dentalites are from North America. 
Hunt (1984, 1987) predicted that dentalites would be more rare 
on dinosaur bones than on mammal bones because non-avian 
theropods lacked the dentition or jaw mechanics to manipulate 
and modify bones in a similar manner. Fiorillo (1991a) validated 
this hypothesis by demonstrating that dinosaur faunas exhibited 
4% or less of bones with dentalites, whereas in the mammal 
faunas he studied the percentages varied from 13.1 to 37.5% 
(but see Drumheller et al., 2020, for a notable exception).

Dentalites are rare in the Early Jurassic, but include 
occurrences of a crocodylomoprh bite on a prosauropod bone 
from China (Xing et al., 2018) and a theropod bitten by a 
theropod from Antarctica (Hammer and Hickerson, 1993). There 
are no reports of dentalites from the Middle Jurassic, which in 
large part probably reflects the paucity of nonmarine faunas of 
that age.

The Late Jurassic has a record of dentalites that is fairly diverse 
taxonomically and geographically, although it is dominated 
by specimens associated with sauropods from North America 
(Table A.2). Two turtles from Germany preserve dentalites, 
one produced by a theropod and one by a crocodylomorph 
or a theropod (Joyce, 2000; Karl, 2012). The remaining Late 
Jurassic dentalites are registered on dinosaur bones. There are 
four records of dentalites from large theropods. Specimens of 
Sinraptor dongi from China and Allosaurus from the United 
States preserve cranial or mandibular dentalites that probably 
resulted from intraspecific combat (Gilmore, 1920; Tanke and 
Currie, 1998). Another specimen of Allosaurus preserves a 
pubic foot bitten by Ceratosaurus or Torvosaurus (Chure et 
al., 1998). Augustin et al. (2020a, b) described dentalites of a 
metriacanthosaurid and of a mammal, respectively, on different 
mamenchisaurid sauropod dinosaur specimens from China. 

Cetiosauriscus greppini from Switzerland and Europasaurus 
holgeri from Germany are sauropods with dentalites produced by 
the huge crocodile Machimosaurus and a small crocodylomorph 
or shark, respectively (Meyer and Thüring, 2003; Slodownik 
and Wings, 2011; Wings, 2015a). Osborn (1904) first reported 
dentalites on a sauropod from the Upper Jurassic Morrison 
Formation of the western USA. Subsequently, dentalites have 
been described from many taxa from the Morrison, including 
the sauropods Camarasaurus, Apatosaurus, Diplodocus and a 
brachiosaur (e.g., Osborn, 1904; Mathew, 1908; Jensen, 1988; 
Chure et al., 1998; Jacobsen, 1998; Hunt et al., 1994b; Myers, 
2004; Kirkland et al., 2005; Jennings and Hasiotis, 2006; Myers 
and Storrs, 2007; Bader et al., 2009; Storrs et al., 2013; Hone 
and Chure, 2018). Virtually all of these dentalites are attributed 
to theropods, in general, and most to Allosaurus, in particular 
(e.g., Osborn, 1904; Mathew, 1908; Chure et al., 1988; Jennings 
and Hasiotis, 2006). Dentalites on the holotype skeleton of 
Camarasaurus lewisi may pertain to Torvosaurus (Jensen, 
1988; Hunt et al., 1994b). There are only single occurrences 
of dentalites on other Morrison herbivorous dinosaurs – the 
ankylosaur Mymoorapelta maysi and the stegosaur Stegosaurus 
(Carpenter et al., 2005; Kirkland et al., 2005). 

It is notable that, during the Jurassic, dentalites attributed to 
crocodylomorphs are restricted to small-bodied tetrapods such 
as turtles (e.g., Karl and Tichy, 2004), with only two possible 
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associations with sauropods (Meyer and Thüring, 2003; Bader 
et al., 2009). One of these is attributed to Machimosaurus, the 
largest crocodyliform of the Jurassic, with a body length of up 
to approximately 6.9 m (Young et al., 2016). While some species 
of this genus were more marine, the Late Jurassic M. mosae was 
adapted to a semi-aquatic lifestyle (Young et al., 2014). 

There is a time interval from the beginning of the Jurassic 
until the Early Cretaceous, possibly the Aptian, when there are 
no known large, semi-aquatic predators. In the Late Triassic, 
phytosaurs such as Smilosuchus gregorii (Camp, 1930; 
Long and Murry, 1985) had a body length longer than that of 
contemporaneous terrestrial tetrapods. Prosauropods were 
longer, but apparently were geographically and ecologically 
separated from phytosaurs. However, after the extinction of 
the phytosaurs (an earliest Jurassic event: Lucas and Tanner, 
2018), no semi-aquatic predators were more than half the length 
of the largest associated terrestrial predators or herbivores 
until the Cretaceous. As Young et al. (2016, p. 11) noted, “it is 
unclear whether Machimosaurus rex (~7.15 m) was the largest 
crocodylomorph of the pre-Aptian Early Cretaceous, as the 
ages and body sizes of the giant pholidosaurids Sarcosuchus 
hartti (Marsh, 1869) and Chalawan thailandicus (Buffetaut 
and Ingavat, 1980) are uncertain.” By the Aptian-Alban, large 
crocodylomorphs such as Sarcosuchus (Sereno et al., 2001) and 
large, semi-aquatic theropods such as Suchiomimus and Baronyx 
entered this niche. We term this interval without large semi-
aquatic predators the “SAP (semi-aquatic predator) Gap.” The 
prevalence of theropod footprints on lake margins (Hunt and 
Lucas, 2007b; Milner and Kirkland, 2007) and biomechanical 
data (Molnar, 1973; Bakker and Bir, 2004; but see Yun, 2019) 
suggest that terrestrial non-avian dinosaurs may have partially 
exploited this niche during the SAP Gap. However, the paucity 
of dinosaur dentalites on either turtles or crocodiles in the 
Mesozoic suggests otherwise (Table A.2)

Early Cretaceous dentalites are less numerous than those 
from the Late Jurassic and include traces on a turtle from France 
and on crocodyliforms from Spain and England, all produced 
by crocodyliforms, with most attributed to goniopholidids 
(Andrade et al., 2011; Buscalioni et al., 2013; Ristevski et al., 
2018; Gônet et al., 2019; Table A.2). There are only two reports 
of Early Cretaceous theropods with dentalites, which are an 
ornithomimosaur from France and a tetanuran from Australia 
(Gônet et al., 2019; Poropat et al., 2019). Several ornithopod 
specimens preserve dentalites, including Tenontosaurus 
tilletti from the USA, Lurdusaurus arenatus from Niger and 
Camptosaurus and an iguanodont from Romania (Grigorescu, 
1992; Taquet and Russell, 1999; Posmoşanu, 2003; Gignac 
et al., 2010). There are a smaller number of occurrences on 
sauropod specimens, including Dongbeititan dongi from China, 
a titanosauriform from Spain and an indeterminate taxon 
from Korea (Paik et al., 2011; Xing et al., 2012; Alonso et al., 
2017). Buffetaut et al. (2004) described the oldest dentalite on 
a pterosaur bone, an Early Cretaceous record of a spinosaurid 
tooth within a dentalite.

The Late Cretaceous has the largest number of recorded 
dentalites from nonmarine depositional environments before 
the Pleistocene (Fig. 5: Table A.2). Taxa with dentalites include 
multiple examples of turtles and crocodylomorphs, scores 
of examples of non-avian dinosaurs (theropods, sauropods, 
thyreophorans, marginocephalians, ornithopods) as well as a 
pterosaur and a mammal (Table A.2). These traces have a broad 
geographic range in North America (Canada, USA, Mexico), 
South America (Argentina, Brazil), Europe (Hungary, Romania, 
Spain), Asia (Russia, China, Mongolia, Pakistan) and Africa 
(Madagascar). There are several reasons why this dataset is 
so large: (1) the Late Cretaceous yields the largest sample of 
excavated vertebrate fossils of large size before the Pleistocene; 
(2) the Western Interior Basin preserved large volumes of Late 

Cretaceous vertebrate fossils, and later tectonics, climate and 
human history led to large numbers of collections and studies; 
(3) the Taxophile Effect is a strong influence, as many bones 
or skeletons of dinosaurs with dentalites warrant individual 
papers, which skews the dataset, and the most popular dinosaurs 
(tyrannosaurs) have a disproportionately large literature; and 
(4) the large body size of many Late Cretaceous terrestrial 
vertebrates results in more recognition and preservation of 
dentalites. The large dataset demonstrates several patterns:

1. The majority of dentalites on turtles were produced by 
crocodylomorphs (Carpenter and Lindsay, 1980; Fiorelli, 2010; 
Noto et al., 2012; Botfalvai et al., 2014).

2. Most dentalites on crocodylomorphs represent 
instraspecific aggression or predation (Williamson, 1996; Avilla 
et al., 2004; De Vasconcellos and Carvalho, 2010; Codrea et 
al., 2010, 2012; de Araújo Júnior and da Silva Marinho, 2013; 
Botfalvai et al., 2014) 

3. Crocodylomorph-produced dentalites are rare on bones 
of dinosaurs, except for examples that record biting by the giant 
Deinosuchus (Rivera-Sylva et al., 2009, 2011; Schwimmer, 
2010).

4. Intraspecific head biting was common among large 
theropods, including tyrannosaurs (e.g., Bell and Currie, 2010; 
Currie and Eberth, 2010; Hone and Tanke, 2015) and abelisaurs 
(Rogers et al., 2004; Malkani, 2006, 2009, 2010; Brown et al., 
2021a).

5. Cannibalism is demonstrable in tyrannosaurids (e.g., 
Dalman and Lucas, 2021; Fig. 7).

6. The most common dinosaurian substrates of 
dentalites are bones of hadrosaurs and ceratopsians. Jacobsen 
(1998) analyzed 1000 dinosaur bones from the Dinosaur 
Park Formation in Alberta, Canada, and recorded the highest 
percentage of dentalites on hadrosaurid bones (14%), whereas 

FIGURE 7. Dentalites on a right femur of a tyrannosaurid 
(NMMNH P-25083) from the Upper Cretaceous (Campanian) 
De-na-zin Member, Kirtland Formation, New Mexico, USA. A, 
Femur, in anterior view. B, Close-up of the anterior surface of 
the femoral head showing dentalites (adapted from Dalman and 
Lucas, 2021, fig. 6).
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only 5% of the ceratopsid bones showed tooth marks, and 2% of 
the tyrannosaurid bones. One of the most well-known examples 
of putative evidence of carnivore biting involves the mid-caudal 
neural spines of the Late Cretaceous hadrosaur Edmontosaurus, 
possibly bitten by Tyrannosaurus (Carpenter, 1998), but the 
damage is more likely due to trampling, with the putative tooth 
marks actually related to a pyogenic infection in which the 
openings allowed the discharge of pus (Tanke and Rothschild, 
2014).

7. The earliest mammalian-produced dentalites occur in 
the Late Cretaceous and include traces on Champsosaurus from 
Canada (Longrich and Ryan, 2010), the theropods Buitreraptor 
gonzalezorum from Argentina (Gianechini and de Valais, 2016) 
and Velociraptor from Mongolia (Saneyoshi et al., 2011), 
the protoceratopsians Protoceratops and Bagaceratops from 
Mongolia (Saneyoshi et al., 2011), ornithischians from Canada 
(Longrich and Ryan, 2010), the mammal Eodelphis from Canada 
(Longrich and Ryan, 2010) and multiple taxa from Argentina (de 
Valais et al., 2012).

8. Large sample sizes of both dentalites and associated 
body fossils facilitate study of the producers and their behavior 
(e.g., Brown et al., 2021b).
Cenozoic 
Marine

Marine dentalites are less common in the Cenozoic than 
in the Mesozoic (Fig. 5; Table A.3). The majority of examples 
were produced by selachians on a substrate of marine mammal 
bones in (decreasing order of abundance) cetaceans, pinnipeds 
and sirenians. 

Two sawfish from the Pliocene of Italy and the USA 
preserve dentalites of unknown origin, and one specimen of 
a tuna (Thunnus) from the Pliocene of the USA has dentalites 
produced by istiophorid billfish (Purdy et al., 2001; Schneider 
and Fierstine, 2004; Collareta et al., 2017a). A Carcharhinus 
from the Miocene of the USA contains a conspecific tooth in a 
dentalite, and a Carcharodon megalodon from the Pliocene has 
a shark dentalite (Purdy et al., 2001; Godfrey, 2003). 

There are only three recorded Paleogene turtles and one 
crocodylomorph with dentalites. An indeterminate chelonioid 
from the Paleocene of Denmark preserves three types of 
dentalites, Nihilichnus nihilicus, interpreted as crocodilian, 
Machichnus bohemicus, interpreted as selachian and small, 
circular traces from sharks or bony fish (Milàn et al., 2011). 
Myrvold et al. (2018) describe other Paleocene specimens from 
Denmark consisting of fragments of a carapace of a chelonid 
turtle and a hypoplastron of Ctenochelys cf. C. stenoporus, 
both with marks produced by a crocodilian and the former with 
shark dentalites. A dryosaurid from the Paleocene of Niger has 
dentalites of crocodylomorph origin (Martin, 2013). 

There is a small but widespread record of dentalites on 
fossil penguin bones. These include the Eocene Palaeeudyptes 
klekowskii from Antarctica, cf. Spheniscus and an unidentified 
form from the Miocene of Argentina and Pliocene Tereingaomis 
moisleyi from New Zealand (McKee, 1987; Walsh and Hune, 
2001; Cione et al., 2010; Hospitaleche, 2016). The producers 
of the dentalites were identified as teleost, Galeocerdo aduncus, 
cf. Carcharhinus and a dolphin, respectively (McKee, 1987; 
Walsh and Hune, 2001; Cione et al., 2010; Hospitaleche, 2016). 
Terrestrial carnivores also produced dentalites on penguin bones 
(Table A.3). A ?charadiiform bird from the Pliocene of Spain 
preserves dentalites attributed to a shark (Muñiz et al., 2008).

The largest number (> 40) of reports of marine dentalites 
from the Cenozoic relate to large, non-delphin cetaceans (Table 
A.3). The earliest example is the basilosaurid Dorudon atrox 
from the Eocene of Egypt that preserves dentalites attributed 
to Basilosaurus isis (Fahlke, 2012). There are currently no 
Oligocene records. The earliest records of odontocete (e.g., 

Lambert et al., 2018) and mysticete (e.g., Noriega et al., 2007; 
Collareta et al., 2017b) dentalites are from the Miocene, and 
these, and all younger examples, are attributed to sharks. About 
a third of all records of dentalites are merely attributed to 
unspecified cetaceans. The majority of Pliocene dentalites that 
are attributed to a specific genus are attributed to Carcharodon 
(e.g., Bianucci et al., 2002; Ehret et al., 2009; Govender and 
Chinsamy, 2013; Govender, 2015, 2019). There are very few 
reports of Pleistocene marine dentalites (e.g., Cicimurri and 
Knight, 2009).

Reports of dentalites on dolphins are restricted to the 
Oligocene, Miocene and Pliocene (Table A.3). Pervesler et al. 
(1995) describe a specimen from the Oligocene of Austria. The 
three examples from the Miocene are from the eastern United 
States. Specimens of Eurhinodelphis, a ?eurhinodelphinid, 
and Hadrodelphis preserve dentalites of sharks (Dawson 
and Gottfried, 2002; Godfrey, 2003; Godfrey et al., 2018). 
There are three Pliocene examples from northern Italy. 
Specimens of Astadelphis gastaldii, Hemisyntrachelus cortessi 
and an indeterminate taxon preserve dentalites attributed 
to Cosmopolitodus hastalis and Carcharodon carcharias 
(Knethichnus parallelum), respectively (Portis, 1883; Cigala-
Fulgosi, 1990; Bianucci et al., 2000; Jacobsen and Bromley, 
2009).

Eight pinnipeds preserve dentalites (Table A.3). A pinniped 
from the Miocene of the USA preserves dentalites attributed to 
a shark (Bigelow, 1994). Two specimens from the Miocene and 
Pliocene of the USA have dentalites produced by mammals, 
possibly a pilot whale or beluga-like cetacean, a terrestrial 
carnivore, a dusignathine or odobenine walrus, or a conspecific 
otariid (Boessenecker and Perry, 2011). Collareta et al. (2017b) 
described dentalites produced by Carcharocles megalodon 
on a pinniped from the Miocene of Peru. Two specimens of 
Homiphoca from the Pliocene of Spain preserve Linichnus 
produced by teleosts or small sharks (Rahmat et al., 2018; 
Muñiz et al., 2020). An example of Eumetopias jubatus from 
the Pleistocene of Canada yields dentalites attributed to a bull of 
that species (Harington et al., 2004).

There are only three records of dentalites on sirenian bones 
(Table A.3). The oldest are Oligocene specimens of Halitherium 
schinzii from Germany and Austria that preserve shark-produced 
dentalites (Pervesler et al., 1995; Diedrich, 2008). A Miocene 
specimen from Venezuela was also bitten by a shark (Aguilera 
and de Aguilera, 2004). 
Nonmarine

As mammalian faunas typically yield an order of magnitude 
more dentalites than reptilian faunas (Fiorillo, 1991a), one would 
expect a very large literature on Cenozoic dentalites, particularly 
relative to the Mesozoic, but this is not the case (at least until 
the Pleistocene). It is clear that the Taxophile Effect is important 
in the large volume of literature on dinosaur dentalites. Many 
individual examples of dinosaur dentalites warrant individual 
papers, which is clearly not the case for Cenozoic mammals 
(Fig. 5; Table A.4). The volume of dentalite reports in the 
Pleistocene also reflects in part the Taxophile Effect relative to 
hominin evolution, as well as other factors, including: (1) the 
large volume of Pleistocene vertebrate fossils relative to earlier 
time periods; (2) the widespread preservation of cave faunas – 
large sample sizes, often accumulated by predators and carefully 
studied to document this, hominin fossils are sometimes present, 
and surface preservation of bones is very good; and (3) the ease 
of using modern analogues, which has promoted study. The 
dataset for the nonmarine Cenozoic (Table A.4) is thus the most 
incomplete in this study. Many pre-Pleistocene dentalites are 
not recorded, or the occurrences are buried within taxonomic or 
faunal discussions and are difficult to find.

Sinclair and Granger (1914, p. 310), who amassed important 
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collections of early Paleocene mammals from New Mexico, 
USA, noted that “A quarter, at least, of the Puerco specimens, 
collected by the 1913 expedition, show traces of gnawing, 
probably by small plagiaulacids [multituberculate mammals].” 
In marked contrast, we have only found five other published 
mentions of dentalites on Paleocene mammal bones (Simpson 
and Elftman, 1928; Gingerich, 1987; Bloch and Boyer, 2001; 
Secord et al., 2002; Longrich and Ryan, 2010). In addition, the 
literature on Pleistocene dentalites, particularly with regard to 
hominins and cave faunas, is very extensive, and we have not 
captured all of it here. Instead, we have attempted to record the 
significant literature and a sampling of the remainder. 

There is only one dentalite recorded from a lizard, 
which occurs on Varanus sp. from the Miocene of Greece 
and is interpreted to have been produced by the hyaenid 
Protictitherium (Georgalis et al., 2018). There are many reports 
(18) of dentalites on Cenozoic turtles and crocodylomorphs (6), 
and occurrences are mainly clustered in the Paleocene-Eocene 
and the Pleistocene (Table A.4). The majority of these dentalites 
are attributed to crocodylomorphs (e.g., Sawyer and Erickson, 
1998; Fuentes, 2003; Njau, 2006; Mackness et al., 2010; Böhme 
et al, 2011; Hastings et al., 2015; Scheyer et al., 2018; Falk et 
al., 2019).

There are relatively few reports of dentalites on avian 
specimens. Occurrences include on Cayaoa brunetti and a 
penguin from the Miocene of Argentina (Cione et al., 2010; De 
Mendoza and Haidr, 2018) and on the ibis Geronticus cf. G. 
calvus from the Pliocene of South Africa (Pavia et al., 2017). 
The sources of the dentalites are identified as mammals or 
unknown. In the Holocene of New Zealand, moas were subject 
to predation by the eagle Harpagornis, producing dentalites 
(Farlow and Holtz, 2002).

Eocene mammals with dentalites are known in the USA and 
Germany, with one occurrence in France and one in England. 
Specimens from the United States include on the pantodont 
Coryphodon, resulting from intraspecific combat, and on the 
“condylarth” Apheliscus chydaeus, the carnivore Viverravus and 
the primate Notharctus (Gingerich, 1987; Lucas and Schoch, 
1987; Alexander, 1992; Gingerich, 1994: Table A.4). Alexander 
and Burger (2001) described an unusual occurrence of a dentalite 
on a perissodactyl within a consumulite of the crocodilian 
Pristichampsus vorax. They also listed several primate specimens 
(Notharctus, Omomys) that appear to preserve raptor dentalites. 
The German Eocene includes the two important Lagerstätten 
of Messel and Geiseltal. Dentalites produced by crocodiles 
occur on several mammal fossils from these Lagerstätten, 
including equids, the ceratomorph Lophiodon and the primate 
Europolemur (Franzen and Frey, 1993; Franzen, 2001; Falk 
et al., 2019). Mammals from Quercy in France preserve 
dentalites produced by rodents such as Archaeomys (Laudet 
and Fosse, 2001). The rodents Isoptychus sp. and Thalerimys 
fordi from southern England preserve dentalites produced by 
the amphicyonid Cynodictis cf. C. lacustris (Vasileiadou et al., 
2007, 2009).

There are multiple reports of Oligocene dentalites from the 
United States and one from Egypt (Table A.4). The dentalites 
from the USA occur on several taxa, including oreodonts, 
entelodonts, and Titanotherium, and include bite marks 
and evidence of gnawing (Sinclair, 1922; Scott and Jepsen, 
1936; Tanke et al., 1992; Effinger, 1998; Tanke and Currie, 
1998; Longrich and Ryan, 2010). Four species of primates 
(Aegyptopithecus, Propliopithecus) from the Fayum Formation 
of Egypt preserve dentalites produced by carnivore-like 
mammals (Gebo and Simons, 1984).

Miocene dentalites are much more widely distributed 
than those from the Paleogene, and they occur in Hungary, 
Greece, Austria, China, Uganda, South Africa, Kenya and the 
USA (Table A.4). The substrates for these dentalites includes 

rhinocerotids (Antunes et al., 2006a; Deng and Tseng, 2010), 
a cervid (Havlik et al., 2014), a proboscidean (Havlik et al., 
2014), an equid (Diffendal, 2003), a climacoceratid (Pickford, 
1996), a tragulid (Sánchez et al., 2015), camelids (Winkler, 
1987; Morgan and Williamson, 2000), a primate (Zapfe, 1981) 
and a hominim (Gommery et al., 2007). All of the above 
have dentalites attributed to mammalian predators, except for 
the climatococeratid from South Africa that was bitten by a 
crocodilian. The most important study of Miocene dentalites 
was by Mikuláš et al. (2006; also see Ekrt et al., 2016), who 
studied multiple dentalites on ungulates, small mammals and 
carnivores and erected six ichnotaxa for these traces, which are 
starting to be widely used – Nihilichnus nihilicus, N. mortalis, 
Machichnus regularis, M. multilineatus, M. bohemicus and 
Brutalichnus brutalis. They attributed these ichnotaxa to 
squirrels, the carnivore Amphicyon sp. and crocodilians. 

There is a smaller number of records of Pliocene 
dentalites. Ungulates from Italy have traces produced by 
the hyena Pachycrocuta brevirostris, and a glyptodont (cf. 
Eosclerocalyptus lineatus) from Argentina was bitten by 
the procyonid, Chapalmalania (Mazza et al., 2004; Mazza, 
2006; de los Reyes et al., 2013). A Canadian mammoth was 
gnawed by a beaver, and a rodent from Chad was bitten by a 
mammalian carnivore (Harington, 1996; Denys et al., 2003). 
Diverse mammals from Tanzania have traces of indeterminate 
mammalian predators (Su and Harrison, 2008). Sahle et al. 
(2017) reported crocodile dentalites on diverse large mammals 
from Tanzania (bovids, equid, ungulate) and on Australopithecus 
anamensis and A. afarensis from Ethiopia.

There are large numbers of reports of dentalites from the 
Pleistocene from every continent, except Antarctica. Much 
of the impetus for the rise of interest in dentalites relates to 
studies focused on the taphonomy of Pleistocene hominins, 
in particular, which has expanded more broadly to other bone 
accumulating agents, notably in caves (e.g., Binford, 1981; 
Brain, 1981; Andrews, 1990; Hart and Sussman, 2005). Indeed, 
the most well-known examples of dentalites relate to Pleistocene 
hominins – leopard predation on Paranthropus robustus (Brain, 
1981), eagle predation on the Taung child, Australopithecus 
africanus (Berger and Clarke, 1995), bites of Crocodylus 
anthropophagus on Homo habilis (Davidson and Soloman, 
1990) and Pachycrocuta brevirostris-produced dentalites on H. 
erectus (Boaz et al., 2000).

Dentalites occur on a wide range of Pleistocene taxa. It is 
notable that many dentalites in the Old World are attributable 
to hyenas, principally Crocuta crocuta spelaeus, but also 
Pachycrocuta brevirostris. Cave hyena dentalites occur in 
England, Germany, the Czech Republic and Morocco (Buckland, 
1824; Diedrich, 2011, 2012a, c, 2013), and those of the giant, 
short-faced hyena are present in Spain, China and Pakistan 
(Palmquist et al., 1996; Boaz et al., 2000; Dennell et al., 2008). 
There are several occurrences in Australia of dentalites of the 
marsupial “lion” Thylacoleo carnifex (Horten and Wright, 
1981; Runnegar, 1983; Camens and Carey, 2013; Dortch et 
al., 2016). It is also notable that intraspecific dentalites occur 
in several Pleistocene taxa, including Ursus spelaeus in Spain 
(Capasso, 1998; Pinto Llona and Andrews, 2004; Rabal-Garcés 
et al., 2012), Canis lupus in the United States (Courville, 1953), 
Smilodon fatalis in the United States (Miller, 1980; Akersten, 
1985; Rothschild and Martin, 1993), Panthera leo spelaea in 
Germany (Diedrich, 2011) and Crocuta crocuta spelaea in the 
Czech Republic (Diedrich, 2012a).

Sutcliffe (1973) first identified osteophagia in herbivorous 
mammals as a significant phenomenon, notably ungulates such 
as giraffes and some deer that chew antlers and bone, presumably 
for nutritional supplements. This behavior has been recognized 
in several Recent taxa (e. g., Haynes, 1991, figs. 4.30-31) but 
not yet in fossils.
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Invertebrate Hard Tissue Substrate

The ichnological record of predation on invertebrates by 
vertebrate predators and scavengers is surprisingly small. There 
are, in fact, only two main taxa that have been documented in any 
detail: (1) predation on sessile echinoderms; and (2) predation 
on nektonic nautiloids and ammonoids (Table A.5). 

There are three reports of dentalites, possibly produced by 
vertebrates, on Paleozoic crinoids from the Middle Devonian 
of Germany (Bohatý, 2008, 2009) and Poland (Gorzelak et 
al., 2011) and the early Carboniferous of the United States 
(Gahn, 2004). There are single examples, all from Poland, 
from the Middle Triassic (Salamon and Gorzelak, 2008), Late 
Jurassic (Lach et al., 2015) and Late Cretaceous (Salamon and 
Gorzelak, 2010). Crinoids have relatively massive skeletons 
and lack a large volume of easily digestible tissue, so they are 
not attractive to Recent fish (Gahn, 2004). However, since the 
Ordovician, crinoids have served as substrate hosts to a wide 
range of organisms, including brachiopods, bryozoans, corals, 
gastropods, ophiuroids, myzostomid annelids and clionid 
sponges. Thus, at least some of the dentalites on crinoids may be 
“collateral damage” resulting from predation on their epibionts 
(Gahn, 2004). Cione et al. (2010) suggested a similar origin for 
some dentalites on Miocene penguin bones. 

Echinoids, in contrast to crinoids, appear more attractive 
as a food source because of their thin test and relatively more 
abundant soft tissue. The earliest example of a vertebrate 
dentalite on an echinoid is from the Middle Jurassic of Israel 
(Wilson et al., 2014). There are 11 reports of Late Cretaceous 
dentalites on echinoids from Germany and The Netherlands. 
The mosasaur Prognathodon is proposed as the producer of 
a dentalite from Germany (Neumann and Hampe, 2018), and 
the shark Squalicorax for another specimen from that country 
(Neumann, 2000). Other examples are generally attributed to 
indeterminate fish (e.g., Thies and Reif, 1985; Jagt et al., 2018). 
Current records suggest that there is great potential to find 
additional dentalites on echinoids.

There are three examples of dentalites on nonmarine 
bivalves from the Late Triassic of Poland (Gorzalak et al., 
2010), and the Early Cretaceous of Spain (Bermúdez-Rochas et 
al., 2013) and Australia (Kear and Godthelp, 2008). Nonmarine 
invertebrates are much less studied than vertebrates from the 
same environments, so we expect more dentalites to be present 
but not yet documented.

A few other sessile invertebrates yield dentalites of 
vertebrate origin, including a Late Cretaceous rudist (Hattin, 
1988), an Early Jurassic brachiopod (Tasnadi-Kubacska, 1962) 
and marine bivalves from the Middle Devonian (Nagel-Myers et 
al., 2009), Middle Jurassic (Phipps, 2008) and Late Cretaceous 
(Kauffman, 1972). There are only two dentalites reported from 
fossil coral. Galle and Mikuláš (2003) described predation of 
fish on rugose coral from the Middle Devonian of the Czech 
Republic, and Kauffman (1981) described gall-like growths 
on Late Pleistocene coral from Jamaica that resemble Recent 
examples of predation by threespot damselfish. Given the 
importance of predation on coral reefs by Recent vertebrates 
such as parrotfish (Peyrot-Clausade et al., 2000), we expect 
there to be many more examples of dentalites on scleractinian 
corals and, by analogy, in extinct coral groups (and other reef-
forming invertebrates).

There are only three examples of dentalites on vagrant 
fossil invertebrates. Zatoń et al. (2007) and Neumann (2000) 
describe traces on sea stars from the Middle Jurassic of Poland 
and the Late Cretaceous of Germany, respectively. Bishop 
(1972) reported a dentalite on the crab Raninella from the Late 
Cretaceous of the United States.

Kauffman and Kesling (1960) wrote an influential paper 
describing putative predation on the Late Cretaceous ammonite 
Placenticeras cf. P. whitfieldi by a platecarpine mosasaur. 

Subsequently, there has been a large number of reports of 
dentalites on nautiloids and ammonoids, with the majority 
being of Late Cretaceous age. Older dentalites on cephalopod 
fossils are reported from the Late Devonian (Slotta et al., 
2011), Late Mississippian (Bond and Saunders, 1989), Early 
Pennsylvanian (e.g., Mapes and Hansen, 1983), Early Triassic 
(Hoffman and Keup, 2015), Late Triassic (Tichy and Urbanek, 
2004), Early Jurassic (e.g., Takeda and Tanabe, 2014), Middle 
Jurassic (e.g., Richter, 2009) and Early Cretaceous (Hoffman 
and Keupp, 2015). The inferred sources of these dentalites 
include teleosts (e.g., Martill, 1990), sharks (Vullo, 2011) and 
marine reptiles, including a nothosaur (Tichy and Urbanek, 
2004). Late Cretaceous examples occur in Morocco (Gale et al., 
2017), Madagascar (Hoffman and Keupp, 2015), Mexico (e.g., 
Ifrim, 2013) and Canada (e.g., Hewitt and Westermann, 1990). 
There are multiple reports from the USA, and Kauffman (1990b) 
mentions more than 100 specimens. One report from Mexico 
identifies the tracemaker as the shark Ptychodus (Ifrim, 2013), 
but the remainder are identified as being produced by mosasaurs 
(e.g., Saul, 1979; Tsujita and Westermann, 1998). Some sub-
circular traces on Late Cretaceous ammonoids represent limpet 
(patellogastropod) home scars (e.g., Knsc et al., 1994), and it 
has been proposed that these caused all of the putative dentalites 
(Kase et al., 1994, 1998; Johnston et al., 1997; Seilacher, 
1998). However, this seems an overstatement, and many 
putative dentalites are correctly identified as such (Tsujita and 
Westermann, 2001; King, 2009; Mapes and Chaffin, 2003). Other 
dentalites occurring on nektonic invertebrates include examples 
of a foraminiferan with parottfish traces from the Eocene of 
India (Syed and Sengupta, 2019) and a Late Cretaceous squid 
with marks of the mosasaur Tylosaurus proriger (Stewart and 
Carpenter, 1990). 

Tischlinger (2001) described the only vertebrate dentalites 
on flying insects. Two specimens of insects, the odonatan 
Cymatophlebia longialata and the neuropteran Archegetes 
neuropterum, have damage to their wings, including absence of 
a wingtip that he attributed to pterosaur predation. 

There is a distinct paucity of dentalites attributed to teleosts, 
even though many Recent teleost taxa feed on a variety of 
invertebrates (e.g., Backus, 1964; Brown-Sarracino et al., 2007). 
However, it is difficult to identify teleost dentalites because 
there is so little known about fish traces, notably in temperate 
areas (Cione et al., 2010)

Coprolite Substrate
Coprolites containing dentalites have only been recognized 

in the past decade, principally by Godfrey and co-workers. They 
are all from aquatic environments, mainly marine, and all but 
one is definitely Cenozoic in age. Hunt et al. (2018) erected the 
Gaspeichnus ichnofacies for traces on a coprolitic substrate, 
which also include footprints and borings.

Godfrey and Smith (2010; Fig. 8) first described dentalites 
on coprolites of unknown origin, which derive from the 
Miocene Calvert Cliffs of the United States. They describe two 
coprolites with dentalites produced by sharks that could have 
resulted from: (1) aborted coprophagy, (2) benthic or nektonic 
exploration, or (3) predation. Moore (2021) recently described 
another coprolite from this location. Godfrey et al. (2020) record 
a Paleocene crocodile coprolite from the United States with 
dentalites made by a chondrichthyan, actinopterygian, or small 
crocodilian. 

Godfrey and Palmer (2015) described a coprolite bitten by 
the gar Lepidosteus from South Carolina, USA, from a mixed 
lag of Late Cretaceous, early Paleocene and Plio-Pleistocene 
taxa. Frandsen (2020, p. 25-26, 28, 31, 33, 36, 39) illustrated 
seven additional coprolites with putative dentalites. Godfrey 
and Frandsen (2016) described another dentalite of Lepidosteus 
from another locality in South Carolina in a coprolite that 
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might pertain to a crocodile. Subsequently, Frandsen and 
Godfrey (2019) illustrated two coprolites within the jaws of an 
articulated specimen of the gar Atractosteus simplex from the 
lacustrine Eocene Green River Formation of Wyoming, USA. 
A crocodilian coprolite from the Paleocene of Maryland, USA, 
exhibits dentalites of unknown origin (Godfrey et al., 2020). 

Frandsen (2020) illustrated two Pre-Cenozoic coprolites 
with putative dentalites. However, a specimen from the Late 
Triassic of New Mexico, USA, has longitudinal striations that 
we identify not as dentalites but rather the characteristic surface 
texture of Alococoprus (Frandsen, 2020, p. 22). Thus, the oldest 
of his specimens that we concur is a dentalite is from the Early 
Jurassic of Lyme Regis, England, with conical depresssions 
(Frandsen, 2020, p. 76). 

Dentzien-Dias et al. (2018) described teleost 
(Serrasalmidae?) dentalites on coprolites from the Miocene 
of Venezuela. A coprolite of a carnivorous fish, likely a shark, 
from the Miocene of Italy contains dentalites possibly attributed 
to both selachians and teleosts (Collareta et al., 2019b). 
Dentzien-Dias et al. (2021) described multiple dentalites on 

fish coprolites from the Eocene of Virginia, USA. Cueille et al. 
(2020) described 17 coprolites from the Rhaetian of the United 
Kingdom with probable dentalites. Rozada et al. (2021) recently 
noted a coprolite from the Early Cretaceous of France with a 
possible shark dentalite.

Lithic Substrate
A variety of vertebrate behaviors involve direct interaction 

between mouth parts and the lithic substrate, notably feeding by 
aquatic fish and tetrapods, feeding by aerial birds and pterosaurs 
and digging by rodents. Several Recent vertebrates substantially 
disturb the substrate during aquatic feeding, including 
chondricththyans (e.g., Common Skate Raja erinacea, Bat Ray 
Myliobatis californicus: Cook, 1971), actinopterygians (e.g., 
Atlantic Sturgeon Acipenser oxyrinchus oxyrinchus: Armitage 
and Gingras, 2003; Pearson et al., 2007), osteichthyans (e.g., 
Goat fish – Mullidae: Geister, 1998; flatfish such as California 
Halibut Paralicthys californicus: Cook, 1971), pinnipeds (e.g., 
walrus Odobenus rosmarus: Kastelein et al., 1989), cetaceans 
(e.g., Grey Whale Eschrichtius robustus: Nelson et al., 1987, 
1992) and otters (e.g., Sea Otter Enhydra lutris: Calkins, 1978). 

The oldest marine traces attributed to vertebrate feeding 
were described by Fischer (1978) from the Ordovician Harding 
Sandstone of Colorado, USA. He erected the ichnogenus 
Agnathichnus for what he interpreted to be the feeding trace 
of a jawless fish. However, one of us (SGL) is revising this 
ichnofauna and considers Agnathichnus to be a synonym of 
Treptichnus, a zig-zag style of arthropod feeding trace.

Osculichnus tarnowskae is an ichnotaxon from the 
Early Devonian of Poland. It consists of a bilobate, generally 
elliptical, epichnial pit in the substrate that was produced by a 
fish probably feeding on bivalves, polychaetes and arthropods 
(Szrek et al., 2016). The producer was probably a lungfish 
similar to Dipnorhynchus (Szrek et al., 2016). Osculichnus 
also occurs in the Late Devonian of China (Fan et al., 2019), 
and the type ichnospecies, O. labialis, is from the late Eocene-
early Oligocene of Turkey (Demírcan and Uchman, 2010; 2016; 
Table 2). Osculichnus and cf. Osculichnus occur in the Lower 
Jurassic of Poland and the Upper Jurassic of Spain (Pieńkowski, 
1985; Rodríguez de la Rosa et al., 2021). Rodríguez de la Rosa 
et al. (2021) described Osculichnus repitsini from the Lower 
Cretaceous of Mexico as well as Daandavichnus batoideum, a 
complex ovoid trace they identified as a batoid feeding trace. 

Geister (1998) described sigmoidal epichnial grooves from 
Early Devonian limestones of the Czech Republic that are 20 
to 35 cm long, 3 to 5 cm wide, and less than 3 cm deep. He 
interpreted these as feeding traces made by jawless or jawed 
fishes feeding on the muddy sea floor.

Large furrows, up to 60 cm wide, up to 30 cm deep and 
up to 9 m long, are present on a Middle Jurassic bedding plane 
of limestone in northern Switzerland (Geister, 1998). There are 
three morphologies of trace. Geister (1998) suggested that the 
traces more than 40 cm wide were produced by the snout of the 
pliosaur Liopleurodon, and the smaller ones, less than 15 cm 
wide, could have been made by plesiosauroids or by the narrow 
pointed snouts of ichthyosaurs. 

Calvo et al. (1987) named Megaplanolites ibericus for a 
large tubular trace fossil from the Late Jurassic of Spain. They 
interpreted it as a feeding or locomotion trace of a large worm, 
but Geister (1998) suggested that it represents a vertebrate 
feeding trace.

Thousands of ovate depressions on bedding planes of Late 
Cretaceous strata from Spain had been previously identified as 
dinosaur tracks but were re-interpreted by Martinell et al. (2001) 
as traces of the feeding activity of rays or other fish with similar 
behavior. Martinell et al. (2001) assigned them to Piscichnnus.

Poropat et al. (2021) describe two morphologies of trace 
fossil from the Cenomanian–?lowermost Turonian Winton 

FIGURE 8. Coprolite (CMM-V-2244) from the Miocene of 
Maryland, USA with dentalites of six tooth marks, possibly 
produced by a tiger shark (cf. Galeocerdo sp.). A, Flattened 
lower surface with six deeper tooth impressions. B, Convex 
upper surface showing at least five shallower tooth impressions. 
C, Silicone rubber cast of the tooth impressions in labial view. 
Cast teeth 1–4 in C correspond to numbered impressions 1–4 in 
D. D, Drawing of the flattened lower surface of CMM-V-2244. 
Scale bars equal 10 mm (Godfrey and Smith, 2010, fig. 2). 
Figure courtesy of Stephen Godfrey.
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Formation of Australia, which they attribute to feeding traces 
of fish. One morphotype consists of two indentations and 
superficially resembles feeding traces made by the Recent 
sturgeon Acipenser oxyrinchus (Pearson et al., 2007). There are 
multiple examples of a U-shaped trace that are interpreted as 
snout marks of a lungfish (Poropat et al., 2021). 

Undichna is a common sinuous trace produced by a 
swimming fish (Minter and Braddy, 2006). Martin et al. (2010) 
described a specimen of Undichna cf. simplicatas from the 
lacustrine Green River Formation (early Eocene) of the western 
United States that preserves overlapping ellipsoids along the 
midline. These were interpreted as being produced by the 
ventral mouth of Notogoneues osculus during feeding (Martin 
et al., 2010).

Howard et al. (1977) described how rays excavate large 
pits in shallow estuarine conditions to search for infaunal food 
sources. They described how the excavation was accomplished 
by flapping the “wings” to hydraulically erode the sediment. 
Howard et al. (1977) noted Pleistocene and Cretaceous examples 
of this trace. However, Gregory et al. (1979) describe how the 
New Zealand eagle ray, Myliobatis tenuicaudatus, hydraulically 
excavates much of its vertical-sided feeding depression by 
the action of water jetted downwards through the mouth and/
or gill clefts and noted that other rays probably use a similar 
methodology. In this case, the depression would arguably 
represent a dentalite. Gregory (1991) named this trace Piscichnus 
waitemata. However, Piscichnus is a trace often attributed to the 
shallow, disc-shaped nests that many fish excavate in sediment, 
so most of its records are not dentalites (e.g., Feibel, 1987). 
Uchman et al. (2018) described Piscichnus waitemata from the 
Pliocene of Santa Maria Island (Azores Archipelago), which 
they interpreted to have been produced by ray fishes hunting for 
polychaetes, crustaceans and bivalves. Belvedere et al. (2011) 
described more than two hundred crescentic traces from the 
Middle Eocene of Italy that they assigned to Piscichnus isp. and 
interpreted as the feeding traces of sturgeon-like fishes rather 
than rays or flat fishes. 

Excavation by hydraulic jetting through the oral cavity is 
also used by walruses. Gingras et al. (2007) described Pleistocene 
pits from the northwestern United States that they attributed to 
walruses feeding on deep-burrowing bivalves. Walruses root for 
prey with their snouts and emit a jet of water that liquefies the 
bottom sediments where a bivalve has burrowed (Gingras et al., 
2007). 

Both birds and pterosaurs produced feeding traces on 
substrate. Erickson (1967) first described dabble (surface 
grazing) marks associated with a trackway of Presbyornis from 
the Eocene of the United States (also see Lockley and Hunt, 
1995, p. 253; Hunt and Lucas, 2007a, fig. 3). Subsequently, Falk 
(2004; Falk et al., 2010, 2014) described a wide range of avian 
feeding interactions with the substrate from the Early Cretaceous 
of Korea, including pecking, probing and scything traces. 

Analogous feeding traces have also been attributed to 
pterosaurs. There are several occurrences of shallow, paired, 
rounded impressions interpreted as beak traces associated with 
pterosaur tracks from the Middle Jurassic of Utah (Lockley 
and Wright, 2003), the Early Cretaceous of England (Wright et 
al., 1997) and the Late Cretaceous of Utah (Parker and Balsey, 
1989; Wright et al. 1997; Mazin et al., 2003). Sinuous traces 
from the Late Cretaceous of Utah and Mexico, some originally 
interpreted as tail drags, may represent sweeping movements of 
pterodactyloid jaws (Lockley and Wright, 2003; Rodriguez-de 
la Rosa, 2003). 

Several rodents utilize their dentition, as well as their 
claws, for the excavation of burrows. Good examples have been 
described from the Late Oligocene and Miocene of Nebraska 
and Colorado in the United States. Tooth marks of Palaeocaster 
fossor occur in the spiral Daimonelix burrows from the late 

Oligocene-early Miocene of Nebraska (Martin and Bennett, 
1977; Yelinek, 2005). Gobetz and Martin (2006) described 
dentalites of a gopher-like rodent, possibly Gregorymys, from 
the Early Miocene of that state. Late Miocene burrows from 
Nebraska produced by marmotine ground squirrels contain 
paired striations, which are common dentalites in rodent burrows 
(Joeckel and Tucker, 2013). Gobetz (2006) and Hembree and 
Hasiotis (2008) described other burrows of mylagaulids with 
dentalites from the late Miocene of the adjacent state of Colorado. 
One of us (SGL) is describing Pliocene rodent burrows from 
New Mexico with dentalites.

Geophagy is the consumption of soil or minerals (including 
salt licks) and is practiced by many Recent animals, principally 
herbivores, including ungulates, seed-eating birds and human 
and non-human primates (Jones and Hanson 1985; Gilardi et al., 
1999; Izawa, 1993; Pryce, 1994; Abrahams and Parsons, 1996; 
Mahaney et al., 1996; Diamond et al., 1999; Abrahams, 2003; 
Tobler et al., 2009). There are multiple potential advantages 
to geophagy, principally related to mineral supplementation or 
alleviating gastrointestinal disorders (e.g., adsorb toxins, adjust 
gut pH, antidiarrhoea, counteract the effects of endoparasites, 
protect the gastrointestinal lining from biological and chemical 
damage) (Gilardi et al., 1999; Krishnamani and Mahaney, 2000; 
Abrahams, 2003). Geophagy should result in dentalites in non-
primates, and these could be recognized in the fossil record.

Some Recent terrestrial vertebrates, including bears and 
raccoons, use mechanical excavation (i.e., digging into the 
sediment) to feed (Gingras et al., 2007). Currently there is no 
described fossil record for this behavior.

Plant Substrate
Specialized herbivorous vertebrates date back to the 

Pennsylvanian (Lucas et al., 2018), and Paleozoic-Cenozoic 
invertebrate predation on plants has been widely documented 
(e.g., Scott, 1991; Labandeira, 1998), but there are very few 
examples of vertebrate dentalites on vegetation, and all are from 
the Cenozoic. All dentalites are preserved on the more dense 
portions of plants such as wood and nuts.

There are few well documented Mesozoic examples of 
dentalites on plant material. However, Lewis (2011) described 
fossil vines associated with hadrosaur bones from the Late 
Cretaceous of Texas, USA, with damage indicating that the 
branches were dominantly removed by shearing consistent with 
herbivory. In addition, the internal anatomy of the vines shows 
tracheid-filled false rings that are generally caused by mechanical 
removal of a portion of the plant during life. Manchester et al. 
(2010) described palm seeds in the same area associated with 
bones of juvenile ceratopsian and hadrosaurian dinosaurs and 
interpreted them as food debris. 

Dentalites produced by rodents occur on seeds and nuts 
from the Eocene to the Pleistocene (Collinson, 1990). Collinson 
and Hooker (2000) recorded gnaw marks on late Eocene seeds 
of Stratiotes from southern England. Kodaira (1921) and 
Yoshikawa (2000) described dentalites produced by mice on 
nuts of Juglans spp. from the Pleistocene of Japan. The latter 
example was attributed to Apodemus speciosus (Yoshikawa, 
2000). Gregor (1982) described another example of rodent 
activity in the stripping of Miocene Aruacaria cones.

Beavers actively modify woody tissue and produce 
dentalites. Wood-cutting behavior may date back to the 
Oligocene, but the earliest dentalites on wood are Pliocene in 
age (Rybczynski, 2008). Dentalites occur with skeletal remains 
of Dipoides sp. from the early Pliocene on Ellesmere Island in 
Canada (Harington, 1996; Hutchinson and Harington, 2002; 
Tedford and Harington, 2003). Both Dipoides and the Recent 
Castor employ the same function of their incisors, but the living 
beaver has a more efficient cutting mechanism (Rybczynski, 
2008).
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Other Substrates

Dentalites occur, or potentially could occur, on a number of 
other substrates:

1. Hirsch et al. (1997) described predatory peck marks on 
fossil eggshells from the Eocene of Colorado, USA.

2. Possible dentalites on dinosaur skin include concave 
depressions with radiating stress fractures in Psittacosaurus 
(Lingham-Soliar, 2008) and a healed wound in Edmontosaurus 
(Rothschild and Depalma, 2013).

3. Chumakov et al. (2013) erected three new ichospecies, 
Machichnus normani, M. harlandi and M. jeansi, for scratch 
marks on phosphorite nodules and pebbles from the Late 
Cretaceous of England. They are interpreted as scratches that 
originated from the teeth of fish scraping bacterial or algal film 
off the surface of nodules that were covered with phosphate gel. 

4. Some rocks are gnawed by rodents and other mammals 
for minerals or to wear down incisors (e.g., Gobetz and Hattin, 
2002), although no paleontological specimens have been 
identified. 

5. Jensen et al. (2019) report human chewing of birch 
pitch for non-nutritional reasons from the Holocene, and similar 
behavior might be seen in older hominins.

Ichnotaxobases and Ichnotaxonomy
Introduction

Bromley and Jacobsen (2008) outlined research designed 
to produce an ichnotaxonomy of dentalites. They also noted 
how few ichnotaxa have been named for trace fossils in bone 
and recommended the development of rigorous ichnotaxobases 
and ichnotaxonomy. Currently, there are 19 named ichnotaxa of 
dentalites on bone and lithic substrates (Table 2).
Ichnotaxobases

Ichnotaxobases are distinctive morphologic features of 
a trace fossil that display significant and readily detectable 
variability and are thus important to ichnotaxonomic 
classifications (e. g., Bromley, 1996; Buatois and Mángano, 
2011; Pirrone et al., 2014). 

Pirrone et al. (2014) proposed ichnotaxobases for 
bioerosional structures of all kinds in bone; the following are 
particular to dentalites. 
Substrate

We follow Bertling et al. (2006) in considering substrate as 
an important ichnotaxobase if it implies a different behavior of 
the producer. This is clearly the case if the dentalite is in a bone, 
wood, a coprolite or an invertebrate shell (Lucas, 2016).
Orientation

Virtually all vertebrate teeth/dentitions function (move) 
vertically (dorso-ventrally), though lateral motion of the teeth/
dentitions is also significant in some vertebrate taxa. Thus, 
dentalites can be divided into those produced by a vertical or 
lateral impact or a combination of the two. Binford’s (1981) 
influential classification scheme of tooth marks recognized 
two vertical (punctures, pits) and two lateral tooth strike marks 
(scores, furrows).

Vertical features include deep (puncture of Binford, 1981; 
perforation of Fernández-Jalvo and Andrews, 2016) and shallow 
(pits) penetrations. Binford (1981) suggested the definitions 
are based on whether there is collapse of surficial layers (in 
bone, but this could also be applicable to shells), but a simpler 
differentiation might be whether the depression is deeper than 
wide. Binford (1981) considered pits to be more typical of 
gnawing.

Traces produced by lateral impacts of teeth are generally 
U-shaped (Fiorillo, 1991a, b; Fernández-Jalvo and Andrews, 
2016). Binford’s (1981) terms scores and furrows distinguish 

single and repeated jaw action. Some traces represent both 
vertical and lateral contact. Many of these include a tooth 
strike that slipped, but others may represent “torsional forces 
applied against incompletely gripped bones that slip on 
clasped jaws during side-to-side head thrusting and clockwise 
to counterclockwise death roll pivots……and are common in 
crocodile-modified assemblages” (Njau and Gilbert, 2016, p. 5).
Size

Absolute size and size relative to the dimensions of the 
substrate are important. Small tooth marks on a large bone 
(or shell) probably denote post-mortem damage, although the 
opposite is not always the case. 
Evidence of tooth structure

Tooth structure can be seen in vertical marks by the cross 
section of the impression (e.g., Cruickshank, 1986; Rinehart et 
al., 2006). In lateral marks, serrations can produce lineations 
(Jacobsen and Bromley, 2009). Grooved incisors of rodents can 
also produce lineations (Fernández-Jalvo and Andrews, 2016). 
Bicarinate crocodile teeth produce distinctive marks (Njau and 
Blumenschine, 2006).
Evidence of dentition

The most useful traces provide not only evidence of 
behavior but also of the tracemaker’s morphology. Bromley and 
Jacobsen (2008) favored naming bite marks based on the damage 
of a single tooth and regard multiple tooth marks as compound 
trace fossils. However, this suggestion fails to recognize the 
significance of heterodonty and the variation in single dental 
configurations (arcades). Thus, the ideal ichnotaxobase is the 
tooth marks of an entire dental arcade, and anything less than 
that could be regarded as extramorphological variants (Lucas, 
2016). 
Pattern of occurrence (Pirrone et al., 2014)

Many dentalites are not isolated. Pits often occur in 
groupings. Multiple lateral marks can be sinuous, arcuate or 
sub-parallel (Mikuláš et al., 2006; Jacobsen and Bromley, 2009). 
Gnawing traces are usually sub-parallel (Fernández-Jalvo and 
Andrews, 2016, figs. A.194-A.201).
Location

Buckland (1822, 1824) recognized that the location of 
dentalites on the substrate was important to identify the behavior 
and identity of the tracemaker. Subsequently, the pattern of 
dentalites on skeletons has been recognized as important in 
assessing predation and scavenging in animals with and without 
living analogues (e.g., Binford, 1981; Brain, 1981; Hunt et al., 
1994b).
Summary

There are several ichnotaxobases available for dentalites, 
but the ideal one is based on the tooth marks of an entire dental 
arcade. 

Utility of Dentalites
Dentalites have the potential to document a wide range of 

behaviors, including: (1) predation, including hunting strategies; 
(2) bite method and force; (3) dietary selection; (4) feeding; (5) 
scavenging strategies; (6) methodologies of bone accumulation; 
(7) trophic patterns; (8) intraspecific (agonistic) interactions; (9) 
tooth sharpening; and (10) bone and rock utilization for other 
purposes, including mineral extraction (Binford, 1981; Hunt et 
al., 1994b; Drumheller-Horton, 2012; Lucas, 2016). They thus 
are of diverse paleoethological significance.

Conclusions
There have been two centuries of studies of dentalites and 
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2002) and the Jurassic of Germany (Dietl and Schweigert, 2001).

Most recognized vertebrate regurgitalites contain vertebrate 
remains. Oji et al. (2003) used angular shell debris as a proxy 
for the prevalence of durophagous predators, including fish, 
and Salamon et al. (2014) reported Devonian and Mississippian 
regurgitalites that confirm this hypothesis. Zatoń and co-
workers (Zatoń et al., 2007; Zatoń and Salamon, 2008; Salamon 
et al., 2012) described vertebrate regurgitalites from the Triassic 
and Jurassic of Poland composed of the remains of diverse 
invertebrate taxa. Other examples of regurgitalites composed of 
invertebrate hard parts have also been described in the last two 
decades from the Mesozoic of Germany and Austria (Neumann, 
2000; Stevens et al., 2014; Lukeneder et al., 2020; Lukeneder 
and Lukeneder, 2021).

In the last decade there has been elevated interest in 
regurgitalites, which has increased in pace during the past three 
years. Myhrvold (2011) and Hunt and Lucas (2012a) reviewed 
terminology and introduced new terms, and several papers have 
reviewed criteria for the recognition of regurgitalites (Myhrvold, 
2011; Thies and Hauff, 2012; Hunt et al., 2015a; Klug and Vallon, 
2018; Hoffman et al., 2019; Gordon et al., 2020; Friemuth et al., 
2021). Burrow and Turner (2010) described the oldest definitive 
vertebrate regurgitalite from the Lower Devonian of Scotland. 
Hunt and collaborators (Hunt et al., 2012e, h-i; Hunt and Lucas, 
2021a) described a series of Pennsylvanian ichnofaunas from 
New Mexico and Montana in the United States and named the 
first regurgitalite ichnotaxa, Ostracobromus and Conchobromus. 
Diverse regurgitalites produced by owls and snakes have been 
described from the Messel Lagersttäte in Germany (Morlo et 
al., 2012; Mayr and Schaal, 2016; Schaal, 2016; Gunnell et al., 
2018). Everhart has described multiple regurgitalites from the 
marine Cretaceous of Kansas in the United States (Everhart, 
1999, 2003, 2004b, 2017). Lucas et al. (2012) described a 
spectacular purgolite composed of strigilites from the lower 
Oligocene of eastern Wyoming, and Freimuth (2020; Friemuth 
et al., 2021) studied the regurgitalites of a theropod dinosaur 
from Montana.

Regurgitation
The vomiting reflex is common in vertebrates and is a 

protective mechanism for the bulk ejection of noxious material 
(Simms et al., 2000). Habitual regurgitation occurs in a variety 
of Recent carnivorous, piscivorous and insectivorous species 
that routinely ingest food with a high proportion of indigestible 
material that is egested through the mouth (Shäfer, 1972; 
Myhrvold, 2011). The other principal expulsion mechanism is 
stomach eversion, which occurs in sharks and rays and, possibly, 
some amphibians (e.g., Simms et al., 2000; Brunnschweiler et 
al., 2005). The range of reasons for regurgitation include: (1) 
eradicating poison; (2) removing mechanically dangerous 
matter; (3) feeding offspring; (4) removing parasites; (5) 
eliminating indigestible material; and (6) getting rid of sloughed 
gastric mucosa and mucus (Gudger, 1949; Beintema, 1991; 
Sims et al. 2000; Klug and Vallon, 2018; Hoffmann et al., 2019). 

Many bony fish and chrondrichthyans regurgitate 
indigestible material (e.g., Hattin, 1986; Bowman, 1986; 
Andrews et al., 1998; Zatoń and Salamon, 2008; Aas et al., 
2017). Most carnivorous snakes and many lizards egest gastric 
pellets and other materials such as eggshell fragments (Gans, 
1952; Reinhard and Vogel, 1980; Myhrvold, 2011). Long et 
al. (2010) reported regurgitation in turtles. Varanids produce 
gastric pellets (Petzold, 1967; Auffenberg, 1981), as do many 
crocodilians (Dolowy et al., 1960; Scherpner, 1980; Fisher, 
1981a,b; Chabreck, 1996; Andrews et al., 2000; Myhrvold, 
2011). Virtually all birds that eat invertebrate or vertebrate 
animals egest pellets, and the majority of birds regurgitate to 
feed their young (e.g., Rea, 1973; Duke et al., 1976; Andrews, 
1990; Zijlstra and Van Eerden, 1995; Myhrvold, 2011). Among 

abundant records, but with strong biases towards archeology, and 
towards dinosaurs as a result of the Taxophile Effect. Dentalites 
have diverse potential in paleoethology. What is now needed is 
a dentalite ichnology beginning with diverse documentation of 
the dentalite ichnofossil record, compilation and synthesis of 
the entire record, rigorous ichnotaxonomy and determination of 
analytical criteria for establishing inferences about the behaviors 
archived by tooth-mark ichnofossils (Lucas, 2016). 

REGURGITALITES
Introduction

Regurgitalites have the least extensive fossil record among 
bromalites and are the least studied. This results from both the 
relative infrequency of regurgitation among vertebrates and the 
difficulty in identifying these traces. 

History of Study
The description and discussion of regurgitalites started 

about a century after the first work on dentalites, coprolites and 
consumulites. Götzinger and Becker (1932) described discrete 
accumulations of small fragments of Inoceramus shells from the 
Upper Cretaceous of Austria. They tentatively interpreted them 
as coprolites. However, Häntzschel et al. (1968, p. 53) noted that 
they are “perhaps vomit balls, corresponding to the undigestible 
matter vomited by birds.”

Much of the work on regurgitalites in the second half of the 
Twentieth Century was conducted by German paleontologists, 
particularly with regard to the Jurassic Holzmaden and Solnhofen 
Lagersttäten (Frentzen, 1936; Broili, 1938; Wellnhofer, 1964; 
Janicke, 1970; Barthel and Janicke, 1970; Janicke and Schairer, 
1970; Keller, 1977; Barthel, 1978; Mehl, 1978; Böttcher, 1989, 
1990; Jäger, 1991) as well as some other localities (Wetzel, 
1953, 1960, 1964; Horstmann and Maier, 1957; Engesser and 
Storch, 1999). Italian paleontologists also conducted important 
studies (Pinna et al., 1985; Dalla Vecchia et al., 1989).

The most prominent work in the United States during this time 
period was Zangerl and Richardson’s (1963) meticulous study 
of the Pennsylvanian Carbondale Formation of Indiana. They 
recognized numerous regurgitalites and introduced terminology 
to distinguish different types. However, subsequent actualistic 
taphonomic studies have demonstrated that many of these 
specimens represent decayed fish (Elder, 1985; Elder and Smith, 
1988). Gawne (1975) described the first convincing strigilite 
from the Miocene of New Mexico. Other strigilites were noted 
in the western United States (Walton, 1990; Korth and Emry; 
Lillegraven et al., 1981). Stewart and Carpenter (1990), Hattin 
(1996) and Everhart (1999) described the first regurgitalites 
from the productive Cretaceous chalk of Kansas. Wilson (1977a, 
b, 1980, 1987) studied Eocene lacustrine regurgitalites of the 
Western United States and Canada. Hunt (1992) introduced the 
term regurgitalite in a study of Pennsylvanian bromalites from 
New Mexico.

Starting in the 1970s there was an increased interest in the 
origin of microvertebrate fossil accumulations. Much work was 
focused on strigilites (and other ornithoregurgitalites) as an 
important source of such accumulations (Dodson, 1973; Dodson 
and Wexlar, 1979; Mellett, 1975; Mayhew, 1977; Andrews, 
1990; Kusmer, 1990; Montalvo and Fernández, 2019). 

During the first decade of this century there was 
intermittent, but diverse, interest in regurgitalites. Aldridge et 
al. (2006) described the earliest putative regurgitalites from the 
Late Ordovician, and Sanz et al. (2001) published an influential 
paper in Science on a regurgitalite from the Lower Cretaceous 
of Spain. There were several reports of avian regurgitalites from 
the Paleocene of Argentina (Nasif et al., 2009) and the Eocene of 
the United States (Murphey et al., 2001; Alexander and Burger, 
2001) and from non-avian specimens from the Late Cretaceous 
Nammoûra Lagerstätte of Lebanon (Dalla Vecchia and Chiappe, 



22
mammals, some marine mammals–whales and most pinnipeds–
produce gastric pellets (e.g., Fea and Harcourt, 1997; Goodman-
Lowe, 1998; Clarke et al., 1998). 

Actualistic Studies
Following the recognition that avian regurgitalites are 

important in the development of microvertebrate accumulations 
(e. g., Dodson, 1973; Dodson and Wexlar, 1979; Mellett, 1975; 
Mayhew, 1977), there have been extensive actualistic studies of 
Recent regurgitations. Peter Andrews has been prominent in this 
work, with authorship of two comprehensive volumes (Andrews, 
1990; Fernández-Jalvo and Andrews, 2016). Recent works that 
provide access to this large literature include Fernández-Jalvo 
and Andrews (2016), Fernández-Jalvo et al. (2016), Denys et al. 
(2018) and Montalvo and Fernández (2019).

Recognition
Hunt (1992; Fig. 3) proposed the encompassing term 

bromalite in part because it can be difficult to distinguish a 
regurgitalite from a coprolite. The majority of studies have 
identified bromalites as either coprolites or regurgitalites, 
without considering other possibilities (Gordon et al., 2020). 
And, many regurgitalites may have been mistaken for coprolites 
(Myrhvold, 2011; Vallon, 2012). Note that Recent raptor pellets 
can be identified as to originator (e.g., Moon, 1940; Terry, 2007, 
2010). Regurgitalites have no single unique characteristics, 
but they can be recognized on the basis of a suite of features 
(Wilson, 1987; Myhrvold, 2011; Thies and Hauff, 2012; Hunt et 
al., 2015a; Klug and Vallon, 2018; Hoffman et al., 2019; Gordon 
et al., 2020; Freimuth, 2020, Friemuth et al., 2021):

1. Geometry. Putative regurgitalites range from three-
dimensional cylindrical or amorphous bodies to splatters of 
associated organic matter in a discrete area on a bedding plane 
(e.g., Hunt et al., 2012e, h; Hoffmann et al., 2019; Gordon et al., 
2020). 

2. Non-biotic content. Regurgitalites contain a relative (to 
coprolites) lack of phosphatic matrix, and some specimens have 
none (Hunt et al., 2015a; Klug and Vallon, 2018; Gordon et al., 
2020; Freimuth et al., 2021).

3. Biotic content.
a. Physico-chemical characteristics. The principal 

inclusions are elements that are not easy to digest, so they may 
be preferentially evacuated (e.g., vertebrate skeletal elements, 
invertebrate valves and cuticle, dermal elements – fur and 
feathers) (Myhrvold, 2011; Hunt et al., 2015a; Hoffman et 
al., 2019). It is important to note that some hard parts, such 
as invertebrate shells, can pass through the digestive tracts 
of durophagous fish and some birds (Cate and Evans, 1994; 
Zuschin et al., 2003). Nevertheless, the reverse could also be 
true, and regurgitalites could be characterized by materials that 
are easy to digest and that would not be present in coprolites 
(Gordon et al., 2020).

b. Size. Hard parts are comparably larger and articulated 
more often in regurgitalites than in coprolites (Hoffmann et al., 
2019).

c. Evidence of digestion. Regurgitalites should 
demonstrate evidence of digestion but less than coprolites 
(Bochenski et al., 1993, 1998; Hockett, 1996; Hunt et al., 2015a; 
Hoffmann et al., 2019; Gordon et al., 2020).

i. Physical – broken or rounded elements.
ii. Chemical – etched or pitting.

d. Dentalites. Evidence of predation is likely to be better 
preserved in elements in regurgitalites that have low residence 
time in the digestive tract than in coprolites (Hunt et al., 2015a). 

e. Element composition. Recent and fossil avian pellets 
can be characterized by a prevalence of skulls, articulated 
elements and the association of one or more discrete skeletons 
(Myhrvold, 2011; Hoffman et al., 2019; Freimuth et al., 2021).

f. Element orientation. Elements are often aligned about 
their long axes and closely packed (Myhrvold, 2011; Holgado 
et al., 2015).

Terminology
Hunt (1992) introduced the term regurgitalite to be 

consonant with coprolite, for bromalites egested through the 
mouth. Previously, a range of imprecise and inconsistently 
used terms had been applied to such specimens (see review in 
Hunt and Lucas, 2012a; Appendix B). Regurgitalite has since 
been widely used. Darroch et al. (2021) recently used the term 
“casting“ for fossil rergurgitalites. The verb “to cast“ is often 
used in Recent ornithology, but the noun “casting“ appears to 
derive from falconry and is usually only applied to hawks. It 
is widely accepted that ichnofossils use a different terminology 
than modern animal traces (Bertling et al., 2006; Hunt and 
Lucas, 2012a). Myrhvold (2011) coined the term emetolite for 
fossilized gastric pellets produced by routine vomiting (emesis). 

Hunt and Lucas (2012a) introduced the term purgolite for an 
accumulation of regurgitalites (accretionary, if concentrated by 
physical processes, and ethological, if by behavior) and others 
for specific types, including ejectalite (deriving from oral cavity 
or gastrointestinal tract anterior to the stomach), ekrhexalite 
(derives from the stomach), ornithoregurgitalite (produced by 
a bird) and strigilite (fossil owl pellets) (Appendix B). Gordon 
et al. (2012) rightly pointed out that some of these cannot be 
readily discriminated in the fossil record. 

Fossil Record
The majority of identified regurgitalites occur in marine or 

lacustrine environments characterized by low energy and fine-
grained sediments (Hoffman et al., 2019). Overviews of the 
fossil record of regurgitalites were provided by Thies and Hauff 
(2012), Klug and Vallon (2018) and Hoffmann et al. (2019). 
Paleozoic

The earliest putative regurgitalites are from the Late 
Ordovician Soom Shale Lagerstätte of South Africa (Aldridge et 
al., 2006). Aldridge et al. (2006) described compact, pellet-like 
clusters of fragmented conodont elements that they tentatively 
interpreted as regurgitalites produced by conodont animals. 

A regurgitalite, likely produced by a nautiloid, occurs in 
the Silurian of Poland (Brachaniec et al., 2016). This specimen 
consists of fragmented and intermingled angular and non-
abraded mollusc, brachiopod and crinoid remains (Brachaniec 
et al., 2016).

A definitive vertebrate regurgitalite is from the Early 
Devonian locality of Duntrune in Scotland (Burrow and Turner 
2010). From this locality, Burrow and Turner (2010) described 
and illustrated a bromalite that includes four tooth whorls, 
two fin spines, a scapulocoracoid, flank scales, tesserae, and 
umbellate scales of one individual of the acanthodian fish 
Nostolepis scotica. They also mentioned several hundred similar 
specimens from the important fish localities at both Duntrune 
and Tillywhandland, each of which includes elements from a 
single specimen of Ischnacanthus gracilis or Mesacanthus 
mitchelli. Klug and Vallon (2018) reported three regurgitalites 
containing cephalopods from the latest Devonian of Morocco. 
They contain dissolved ammonite shell fragments and ?jaws of 
?Mimimitoceras and are tentatively ascribed to a gnathostome. 

Salamon et al. (2014, figs. 6-7) reported one regurgitalite 
from the Devonian and nine from the Mississippian composed 
of shell fragments. Angular shell fragment debris may indicate 
the presence of durophagous fish, so the distribution of such 
material should parallel that of shell-rich regurgitalites (Oji et 
al., 2003; Salamon et al., 2014). This seems to be the case in 
the Devonian to the Mississippian (Salamon et al., 2014, fig. 
7). Thus, based on the work of Oji et al. (2003), we predict that 
there was a rise in such regurgitalites during the Paleogene and 
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a major increase in the Neogene. 

Regurgitalites are notable in several Pennsylvanian units 
of the United States. The Mississippian Bear Gulch Lagerstätte 
of Montana includes the ostracode-bearing regurgitalite 
Ostracobromus snowyensis (Hunt et al., 2012e), which is 
probably also present in the Pennsylvanian Hamilton Lagerstätte 
(Cunningham et al., 1993, p. 230). Zangerl and Richardson 
(1963) described faunas from the Early Pennsylvanian 
Carbondale Formation of Indiana. They distinguished two types 
of regurgitalites based on the degree of processing in the digestive 
tract – ejected prey (mastication, minor digestion) and gastric 
residues (more extensive digestion) (Zangerl and Richardson, 
1963). However, the putative regurgitalites containing 
vertebrate material probably mainly represent decayed fish 
instead of regurgitalites (Elder, 1985; Elder and Smith, 1988). 
Nevertheless, some of the accumulations of invertebrate debris 
(e.g., of the bivalve Myalina) do probably represent vertebrate 
regurgitalites (e.g., Zangerl and Richardson, 1963, pl. 44D). 

The Missourian Atrasado Formation at the Kinney Brick 
Quarry and Tinajas Lagerstätten in New Mexico, USA, 
yields large samples of bromalites, including the regurgitalite 
Conchobromus kinneyensis, which contains abundant 
conchostracans (Hunt et al., 2012e, h-i; Hunt and Lucas, 2021a). 
Huber (1992) and Scholtze et al. (2021) suggested that the 
groupings of conchostracans present in Conchobromus were 
caused by weak swirls of water. However, this seems unlikely 
since there is no other evidence for swirling currents at the 
Kinney Brick Quarry, and no other fossil specimens occur in 
such groupings in this Lagerstätte.
Mesozoic

Salamon et al. (2012) described a number of putative 
regurgitalites from the Middle Triassic Gogolin Formation in 
southern Poland. These are discrete accumulations composed 
primarily of angular bivalve shell fragments with sharp, non-
abraded margins and crinoid ossicles with many breaks. They 
are interpreted to represent regurgitalites of durophagous 
vertebrates, including sharks, colobodontid fish, placodonts and 
pachypleurosaurs or sauropterygian reptiles (Salamon et al., 
2012). Another possible regurgitalite from the same formation 
is fusiform in shape, composed of fragmented bivalve shells 
and, based on its size, is attributed to the sharks Acrodus or 
Palaeobates (Niedźwiedzki et al., 2021). These regurgitalites 
suggest that the “Mesozoic Marine Revolution” may have 
begun by the Middle Triassic and thus was a far more prolonged 
evolutionary event than its name implies (Salamon et al., 2012).

The Reingraben Shales in Austria yield a Late Triassic (early 
Carnian) Konservat-Lagerstätte that contains regurgitalites 
(Lukeneder et al., 2020; Lukeneder and Lukeneder, 2021). These 
specimens are large (> 40 mm long) and consist of flat ovoids with 
closely packed invertebrate debris, no matrix and evidence of 
acid etching (Lukeneder et al., 2020). The constituents are entire 
shells and fragments of the ammonoid Austrotrachyceras and 
rare teuthid arm hooks, and buccal cartilage of Phragmoteuthis 
(Lukeneder et al., 2020). The regurgitalites are attributed to 
durophagous sharks such as Acrodus (Lukeneder et al., 2020; 
Lukeneder and Lukeneder, 2021).

Dalla Vecchia et al. (1989) described a regurgitalite from 
the Late Triassic of northern Italy as containing pterosaur 
skeletal elements, but they were subsequently re-interpreted 
as pertaining to a protorosaurian similar to Langobardisaurus 
(Holgado et al., 2015). The producer is hypothesized to be a 
large fish such as Saurichthys, Birgeria or a coelacanthiform 
(Holgado et al., 2015). Gordon et al. (2020) described another 
Late Triassic regurgitalite from Arizona that is composed of 
a compact mass of skeletal material of the pseudosuchian 
archosaur Revueltosaurus. They interpret the producer as a 
phytosaur, rauisuchid, or temnospondyl. 

The Lower Jurassic Posidonia Shale of South Germany 
yields a number of regurgitalites. Keller (1977; also see Vallon, 
2012) considered a coiled-up skeleton of an 1.6-m-long specimen 
of the ichthyosaur Stenopterygius quadriscissus as a regurgitalite 
produced by the large predatory ichthyosaur, Temnodontosaurus 
(= Leptopterygius). Jäger (2001) interpreted disarticulated 
bones of a small ichthyosaur to be another regurgitalite 
produced by Temnodontosaurus. The type specimen of the 
small ornithischian Emausaurus ernsti may also represent a 
regurgitalite produced by a large ichthyosaur or marine crocodile 
(Haubold, 1990; Thies and Hauff, 2012). Thies and Hauff (2012) 
described a fourth regurgitalite that contains the remains of four 
specimens of the actinopterygian Dapedium sp. and a lower jaw 
of Lepidotes sp. It may have been produced by a chondrichthyan 
(Hybodus), actinopterygians (pachycormiforms) or by marine 
reptiles (crocodilians, ichthyosaurs, plesiosaurs). Hoffmann et 
al. (2019) regarded the “Seeball” described by Jäger (1991), 
which is composed of spines of the echinoid Diademopsis, to be 
a regurgitalite. Böttcher (1989, 1990) also noted regurgitalites 
from Holzmaden, and Frentzen (1936) described the ammonite 
Amaltheus from what he considered to be a fish consumulite, but 
it is more likely a regurgitalite. Pinna et al. (1985) and Garassino 
and Donovan (2000) described regurgitalites from the Early 
Jurassic of Italy containing fish centra and scales and coleoid 
hooks and ascribed them to thylacocephalan crustaceans, but 
they could pertain to vertebrates.

Zatoń and co-workers (Zatoń et al., 2007; Zatoń and 
Salamon, 2008) described regurgitalites from the Middle 
Jurassic of Poland. Nine specimens are composed of molluscs 
(scaphopods, gastropods, bivalves, ammonites and belemnites), 
articulate brachiopods and echinoderms (asteroids, crinoids and 
echinoids), and the probable producers are palaeospinacid sharks, 
although other vertebrates such as durophagous pycnodontiform 
fish, cannot be excluded (Zatoń et al., 2007). Zatoń and Salamon 
(2008) described another 11 specimens that contain remains 
of diverse taxa, including gastropods, scaphopods, bivalves, 
belemnites, ammonites, brachiopods, bryozoan, crinoids, 
echinoids, ophiuroids and even wood, which they interpreted to 
have been produced by an opportunistic generalist, most likely 
a fish.

The Middle Jurassic of the Bielefeld area of northern 
Germany has yielded possible regurgitalites of marine reptiles 
(Wetzel, 1953, 1964; Horstmann and Maier, 1957). These contain 
juvenile ammonites, belemnites, cephalopods, echinoderms, 
scaphopods and foraminiferans with smaller quantities of fish 
scales, crustacean limbs and reptile teeth (Wetzel, 1953, 1964; 
Horstmann and Maier, 1957). 

The majority of regurgitalites from the Late Jurassic derive 
from the Nusplingen and Solnhofen Lagerstätten of Germany. 
Stevens et al. (2014) described four closely associated belemnites 
from Nusplingen that they interpreted as a regurgitalite produced 
by an elasmobranch, holocephalan, or marine reptile. Other 
Nusplingen regurgitalites contain echinoid (Pseudodiadema, 
Nenoticidaris, Plegiocidaris) and sea star (Sphaeraster) remains 
that do not occur elsewhere in these limestones, and they are 
attributed to the pycnodont fish Gyrodus (Dietl and Schweigert, 
2001). Dietl and Schweigert (2001; Fig. 9) and Schweigert et 
al. (2001) reported a regurgitalite that contained bones of the 
pterosaur Rhamphorhynchus, possibly produced by a crocodile, 
Cricosaurus (Geosaurus) or Dakosaurus, or large predatory 
fish such as Caturus (Hoffmann et al., 2019) or possibly 
Aspidorhynchus (Frey and Tischlinger, 2012). Other Nusplingen 
regurgitalites contain the echinoid Plegiocidaris and the fishes 
Tharsisdubius and Caturus (Grawe-Baumeister et al., 2000; 
Vallon, 2012; Albersdörfer and Häckel, 2015; Viohl, 2015; 
Hoffmann et al., 2019).

Six coiled vertebral columns of the actinopterygian 
Leptolepis sprattiformis from the Solnhofen Lagerstätte represent 
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a regurgitalite (Janicke and Schairer, 1970). Janicke (1970) 
and Barthel (1978) described regurgitalites from Solnhofen 
containing the actinopterygian Caturus and interpreted them 
as produced by a large fish or crocodile. Hoffman et al. (2019) 
listed other fish regurgitalites from the Solnhofen strata, 
including: (1) multiple mollusks, among them ammonites, from 
Lepidotes (Wellnhofer, 1964; Barthel and Janicke, 1970); (2) 
lamellaptychi from sharks (Barthel and Janicke, 1970); and 
(3) lamellaptychi from Holostei, Amiiformes (e.g., Caturus) or 
Aspidorhynchiformes (Mehl, 1978). 

There are two Solnhofen pterosaurs associated with 
possible regurgitalites. The first is represented by a loose spiral 
of an articulated vertebral column of Leptolepides preserved 
adjacent to the mandibular tip of a specimen of Scaphognathus 
crassirostris (Bennett, 2014). This fish skeleton may have been a 
regurgitalite, or it may have been ejected from the animal during 
the decay process (Bennett, 2014). The second is a specimen of 
“Pterodactylus propinquus” from the Upper Jurassic of Germany 
(now lost) that preserves disarticulated fish debris around the 
gular pouch, which could have been regurgitated from the gut 
(Broili, 1938; Wellnhofer, 1970; Witton, 2018). 

Sanz et al. (2001) described a regurgitated pellet from 
the Early Cretaceous Los Hoyas Lagerstätte in Spain. This 
bromalite consists of partial skeletons of four juvenile birds 
that may have derived from a non-avian theropod or a pterosaur 
(Sanz et al., 2001). Pellets occur in several birds from the Jehol 
Lagerstätte in China (Wang et al., 2016; O’Connor, 2019). All 
appear to be incorporeal pelletites and not egested. Probable 
regurgitalites composed of fish scales and bones also occur 
with three specimens of the Jehol troodontid Anchiornis huxleyi 
(Zheng et al., 2018b).

The majority of Late Cretaceous regurgitalites contain 
vertebrate elements, but Neumann (2000) described sub-
rounded or elliptical lenses consisting of densely packed 
asteroid ossicles and/or other echinoderm remains from chalk in 
Germany. These pellets are interpreted as possible regurgitalites 
produced by bony fishes or sharks (Neumann, 2000). Similar 
bromalites have been found in the Late Cretaceous and Danian 
of northern Europe, although some have been attributed to large 
asteroideans (Wright and Wright, 1940; Rasmusseen, 1950; 

Müller, 1953; Gale, 1987; Neumann, 2000). 
Wetzel (1960, 1964) described possible regurgitalites from 

the Late Cretaceous of Chile. They contain ammonite larvae and 
adult Baculites as well as bivalves and plankton, and he ascribed 
them to plesiosaurs. 

Hattin (1996) described a regurgitalite from the chalk of 
Kansas in the United States. This bromalite includes not only 
bone, but also cirriped plates and coccoliths and is attributed 
to the chondrichthyan Ptychodus. Capasso (2019b) described 
a regurgitalite just exterior to the oral cavity of the pycnodont 
Acrorhinichthys poyatoi from the Middle Cenomanian of 
Lebanon. 

Everhart (2017) noted the occurrence of similar bromalites 
in the Kansas Cretaceous. Marine deposits of the Late 
Cretaceous of the Western Interior Seaway have yielded a 
variety of other regurgitalites. Bishop (1975) illustrated two 
regurgitalites, one containing disarticulated fragments of the 
crab Dakoticancer and the other of the mud shrimp Callianassa. 
Regurgitalites from Kansas include heavily-pitted bones of fish, 
marine reptiles (several mosasaurs, one plesiosaur) and the 
dinosaur Niobrarasaurus (Everhart, 1999, 2003, 2004b, 2017). 
A regurgitalite consisting of the front part of a juvenile mosasaur 
skull has teeth that are eroded down to the roots (Everhart, 
2017, fig. 4.3). An isolated mandible of the ornithocheiroid 
Pteranodon preserves a pellet between the mandibular rami, 
probably held in place by throat tissues before burial (Brown, 
1943; Bennett, 2001; Witten, 2018). This specimen preserves 
several fish vertebrae (Bennett, 2001). Stewart and Carpenter 
(1990) noted two other possible regurgitalites from Kansas: (1) a 
juvenile specimen of the ammonite ?Clioscaphites choteauensis 
with apatitic matrix in the outer whorl; and (2) a mass of teleost 
bones, batoid denticles and fragments of a teuthidid gladius. 
Martin and Tate (1976) described associated material with 
Baptornis advenus that could represent a regurgitalite (or a 
coprolite or evisceralite). 

Dalla Vecchia and Chiappe (2002) described a bird from 
the Late Cretaceous Nammoûra Lagerstätte of Lebanon. This 
skeleton is preserved in a ball-like mass of powdered bone 
mixed with carbonized feathers and represents a regurgitalite 
(Dalla Vecchia and Chiappe, 2002; Myrhvold, 2011).

Three multi-individual aggregates of mammalian skeletons 
from the Late Cretaceous nesting locality of Egg Mountain in the 
Unted States represent regurgitalites (Freimuth, 2020; Friemuth 
et al., 2021). One yields two individuals of the multituberculate 
Filikomys primaevus, and the other two are composed of three 
and 11 individuals, primarily of the marsupialiform Alphadon 
halleyi. These regurgitalites are interpreted as being produced 
by Troodon formosus on the basis of abundant shed teeth and 
nesting evidence, and this would be consistent with previous 
inferences of this predator as having a diet of small-bodied 
prey, manipulating prey during feeding, heightened metabolic 
processes, and potential nocturnality (Freimuth et al., 2021).
Cenozoic

The only described regurgitalite from the Paleocene is 
an ornithoregurgitalte (sensu Hunt and Lucas, 2012a) from 
the Salamanca Formation of Argentina at Punta Peligro 
(Muzzopappa et al., 2021). This orithoregurgitalite contains a 
single skeleton of the anuran Calyptocephalella sabrosa. 

Eocene regurgitalites occur in shallow lacustrine facies of 
the western United States and Canada. Wilson (1977a, b, 1980, 
1987) studied middle Eocene freshwater vertebrate fossils 
from the interior of British Columbia and northern Washington 
(Wilson, 1980). In 25 vertebrate fossil assemblages, he noted 
that up to 69% of fish remains occurred in pellets (fish-
bone coprolites), which were interpreted as principally avian 
regurgitalites (Wilson, 1987). Buskirk et al. (2015) described 
several morphotypes of bromalites from the Middle Eocene 

FIGURE 9. Regurgitalite from the Upper Jurassic Nusplingen 
Lithographic Limestone of Germany. The bromalite (SMNS 
Inv. Nr. 63990) contains bones of a pterosaur, probably 
Rhamphorhynchus, and is interpreted as having been produced 
by a large fish or a marine crocodile (Schweigert et al., 2001). 
The regurgitalite is approximately 4 cm tall. Image courtesy of 
Günter Schweigert.
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Florissant Formation of Colorado, including regurgitalites that 
are ovoid (rarely sinusoidal) in shape with little to no groundmass 
and with a high content of crushed invertebrate shells—these are 
likely regurgitalites. 

The Eocene Messel Lagerstätte in Germany yielded 
three regurgitalites that resemble Recent owl pellets and are 
considered to be strigilites (Mayr and Schaal, 2016). They 
contain various broken bird bones and may have been produced 
by the Messel owl Palaeoglaux artophoron, which would 
make it the oldest owl pellet identified so far. The two other 
gastric pellets with bird remains have more elongate shapes 
and probably derive from snakes or other squamates (Mayr 
and Schaal, 2016; Gunnell et al., 2018). Another regurgitalite 
reported from Messel includes a skeleton of the hyaenodontid 
mammal Lesmesodon edingeri and was likely produced by a 
large boid snake, probably Palaeopython (Morlo et al., 2012; 
Schaal, 2016; Gunnell et al., 2018). This specimen is deformed 
to a slender carcass with the forelimbs pressed against the body 
and contains a consumulite consisting of teeth, jaws and bone 
fragments of an amphibian or reptile and an insectivore (Morlo 
et al., 2012; Schaal, 2016; Gunnell et al 2018). Lastly, Messel 
yielded a skeleton of the gecko Ornatocephalus metzleri that 
is partially disarticulated, missing the pelvis, hind limbs and 
tail, and with the bone surfaces corroded. This is probably the 
regurgitalite of a raptor (Smith et al., 2018).

The Eocene Omomys Quarry in Wyoming in the United 
States consists almost exclusively of bones of the eponymous 
primate as well as bones of birds, including owls. It may be a 
strigilite purgolite (Murphey et al., 2001; Alexander and Burger, 
2001).

A specimen of the owl Stihanus from the latest Eocene 
Peanut Peak Member of the Chadron Formation in South Dakota 
is a possible strigilte (Hunt and Lucas, 2007a). Lucas et al. (2012; 
Fig. 10) described a purgolite composed of strigilites from the 
early Oligocene of eastern Wyoming, first mentioned by Walton 
(1990) and Korth and Emry (1991). The strigilites are preserved 
as calcareous nodules full of fossil mammal bones and yielded 
the type specimens of the sciurid rodent Cedromus wilsoni and 
the todid bird Palaeotodus emryi. The strigilite assemblage also 
includes the skeletons, bearing skulls, of at least three individual 
owls, which strongly reinforces the interpretation of these small 
masses of bone as owl pellets (Lucas et al., 2012). Other possible 
Oligocene occurrences from Wyoming include a skeleton of 
the insectivore Centenodon chadronensis that exhibits features 
suggestive of it originating in a strigilite (Lillegraven et al., 
1981), and pellets and possible owl bones from another locality 
(Walton, 1990). The late Oligocene of Germany also preserves 
presumed strigilites that contain rodent specimens (Engesser 
and Storch, 1999; Smith and Wuttke, 2015). 

Gawne (1975) distinguished a strigilite from the early 
Miocene of central New Mexico. This specimen is a small pellet 
containing tightly-packed cranial and postcranial specimens of 
two rodents (Proheteromys cejanus and P. aff. P. floridanus) 
(Gawne, 1975).

Two fossil regurgitalites from the Andalhuala Formation 
(Upper Miocene), Santa María of Argentina, are composed of 
articulated and disassociated bones and teeth of octodontid and 
cricetid rodents that show evidence of corrosion (Nasif et al., 
2009). Nasif et al. (2009) interpreted these as ornithoregurgitalites 
(sensu Hunt and Lucas, 2012a) of “terror birds” (Phorusrhacidae, 
Psilopterinae). This is the oldest record of a cricetid rodent in 
South America.

An early Miocene lake in eastern Spain yields “abundant 
clumps of scales and bones” of unidentified teleosts (Álvarez-
Parra et al. 2021, p. 10). These specimens are flat accumulations 
that lack phosphatic matrix. Álvarez-Parra et al. (2021) 
recognized them as bromalites, and they clearly represent 
regurgitalites.

The best example of Pliocene strigilites is a putative 
purgolite of slightly disaggregated strigilites from Arizona in 
the United States (Walton, 1990; Czaplewski, 2011). A less well 
documented occurrence occurs in the adjacent state of New 
Mexico (Walton, 1990). Many Pleistocene cave deposits and 
some archeological sites yield bone accumulations derived from 
raptor, notably owl, regurgitations (e.g., Andrews, 1990; Hunt 
and Lucas, 2007a). Rodents from Pleistocene cave deposits in 
Poland may derive from strigilites (Kowalski, 1960; Sulimski, 
1964). 

There are very few convincing examples, prior to the 
Pleistocene, of paleontological microvertebrate accumulations 
that comprise bones derived from raptor regurgitations (Lucas 
et al., 2012). However, many Pleistocene cave deposits and 
some archeological sites yield bone accumulations derived from 
raptor, notably owl, regurgitations (e.g., Andrews, 1990; Hunt 
and Lucas, 2007a; Montalvo et al., 2012). Indirect evidence of 
strigilites (or other ornithoregurgitalites) is based on analysis of 
microvertebrate accumulations (e.g., Mellett, 1975; Mayhew, 
1977; Kusmer, 1990). There is strong evidence that some cave 
microvertebrate accumulations, particularly of bats and lizards, 
resulted from accumulation by owls (e.g., Williams, 1952; 
Morgan, 1994).

Cenozoic marine regurgitalites are rare. Milner (in Hunt and 
Lucas, 2007a) noted fish regurgitalites from the Late Pleistocene 
calcareous concretions from the Champlain Sea Clays of eastern 
Canada. Baldanza et al. (2013) described fossil ambergris from 
the Pleistocene of Italy, but this is probably fecal in origin 
(Clarke, 2006). 

Ichnotaxobases and Ichnotaxonomy
Currently, there are only two named regurgitalite 

ichnotaxa, both from the Carboniferous of the United States - 
Ostracobromus snowyensis and Conchobromus kinneyensis 
(Hunt et al., 2012e, h). However, there is great potential to 
construct an ichnotaxonomy of regurgitalites that will further 
the study of these traces. Ichnotaxobases would include:

1. Composition
 a. Biologic
  i. Taxonomy of inclusions
  ii. Physical or chemical modification of inclusions
 b. Non-biologic
  i. Volume of matrix
  ii. Composition of matrix
2. Morphology
 a. Geometry 
 b. SizeFIGURE 10. Strigilite (regurgitalite) with anterior portion of 

skeleton of a small rodent from the Orella Member of the White 
River Formation (early Oligocene), Wyoming, USA (Lucas et 
al., 2012, fig. 4A).
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Utility

Regurgitalites have diverse utility, including:
1. Providing evidence of the evolution of predation and 

digestion.
2. Analysis of taphonomy and sedimentary environments.
3. Proxy for the presence of biotaxa.
4. Loci for exceptional preservation (Gordon et al., 2020). 
5. Biogeographic studies (Darroch et al., 2021).
6. Evaluating digestive processes of producer (Gordon et 

al., 2020).
7. Evidence of the evolution of durophagy.

Conclusions
Regurgitalites are not only the least studied bromalites, but 

they can also be the most difficult to identify. Bromalite pellets 
can represent coprolites or regurgitalites, and two-dimensional 
examples could be taphonomic artifacts (decayed specimens 
or physical concentrations). Many identified vertebrate 
regurgitalites were produced by fish or birds and are preserved 
in a limited range of environmental settings (e. g., aquatic low 
energy). Thus, the fossil record of regurgitalites is strongly 
controlled by both taxonomic and taphonomic factors. 

CONSUMULITES
Introduction

Hunt and Lucas (2012a) introduced the term consumulite 
to refer to material ingested and preserved within the 
gastrointestinal tract of a fossil vertebrate. We have attempted 
to compile data on all recorded specimens of consumulites 
older than Pleistocene. However, most published references 
to consumulites, particularly in the older literature, are within 
publications that have a different focus, so we recognize that 
the compilation is likely incomplete. The volume of literature 
on Pleistocene consumulites precludes a complete review, so 
we have only included representative examples. Previously, the 
“Extant Phylogenetic Bracket” approach was often utilized to 
reconstruct the digestive tract of extinct vertebrates (e.g., Bryant 
and Russell, 1992; Witmer, 1995), but consumulites can provide 
direct evidence of the structure.

History of Study
In 1829, William Buckland introduced the term coprolites 

for fossil feces (Buckland, 1829; Hunt and Lucas, 2012a). 
However, it is not generally appreciated that Buckland utilized 
the term coprolite in three different senses (Hunt and Lucas, 
2012a): 

1. Evacuated fecal material, as that term is now universally 
used. 

2. Un-evacuated, dispersed and un-pelletized material 
preserved within the gastro-intestinal tract–Buckland 
(1830, p. 23) noted that “in many of the entire skeletons of 
Ichthyosauri………..coprolites are seen within the ribs and 
near the pelvis.” Further, Buckland (1836, p. 149) stated that 
“the certainty of the origin of these coprolites is established 
by their frequent presence in the abdominal region of fossil 
skeletons of Ichthyosauri… One of the most remarkable of 
these is represented in Pl. 13.” Buckland (1836, pls. 13 and 
14) illustrated two skeletons of ichthyosaurs with dispersed, 
digested/partially digested material almost filling the extent of 
the rib cage in each case.

3. Infilled gastro-intestinal tract–Buckland (1829, p. 
142) introduced the term “Ichthyo-coprus” for food material 
preserved within the body cavity of a fish (later Ichthyocoprus: 
Buckland, 1835, p. 230). Subsequently, he named a variety of 
this form of coprolite as “Amia [sic]-coprus” (Buckland, 1830, 
p. 24) that clearly represents an infilled segment of a gastro-
intestinal tract (see Duffin, 2009, fig. 14). Thus, Buckland was 

the first to recognize material ingested and preserved within 
the gastrointestinal tract of a fossil vertebrate, which Hunt and 
Lucas (2012a) later termed consumulites. 

Here we also introduce the term aspirationalite for 
consumulites that preserve prey in the oral cavity with a 
significant portion extending exteriorly (Fig. 11). Aspiration 
is the medical term for breathing in a foreign object/sucking 
food into the airway. Grande (2013, p. 396) utilized the term 
“aspiration specimens” for “fossil fishes with other animals 
preserved in their mouth or stomach.” Aspirationalites occur 
in many large samples of articulated fish (e.g., Eocene Green 
River Formation, USA: Jepsen, 1967; Grande, 2013, figs. 
64 upper, 85 upper) and some tetrapods such as the pterosaur 
Rhamphorhynchus (Frey and Tischlinger, 2012). 

During the 19th Century, there was sporadic interest in 
consumulites of Mesozoic marine reptiles (e.g., Moore, 1856) 
and of Mesozoic (e.g., von Münster, 1842; Huxley, 1866; Davis, 
1887; Stewart, 1899) and of Paleogene fish (Agassiz, 1833-
1845a,b). Increased collection and study of mosasaurs later in 
that century, notably in western North America, resulted in more 
reports (e.g., Dollo, 1887a,b; Williston, 1898, 1899). 

The earliest described nonmarine consumulite was 
Pleistocene plant debris of Ephedra sp. and Salix sp. in the oral 
cavity of a frozen woolly rhinoceros (Coelodonta antiquitatis) 
from Russia (Ukraintseva, 1993). In 1900, the first complete 
frozen mammoth with a preserved gastrointestinal tract was 
found (Gerts, 1902). Subsequently, numerous frozen Pleistocene 
specimens of mammoths, bison and horse have yielded 
consumulites, principally in Russia, but also in North America 
(e.g., Ukraintseva, 1981, 1993; Guthrie, 1990; Boeskorov et al., 
2014).

There were relatively few reports of consumulites for the 
first nine decades of the 20th Century, and the majority were just 
noted in the context of morphological and taxonomic descriptions 
(e.g., Brown, 1900; Eastman, 1911, Cockerill, 1915; Neumayer, 
1929; Weiler, 1934; Broili, 1938; Camp, 1942; Arambourg, 
1954; Nybelin, 1958; Eaton, 1964; Pollard, 1968; Sorbini, 1972; 
Špinar, 1972; Wellnhofer, 1975a,b; Patterson and Rosen, 1977; 
Richter, 1981; Milner, 1982; Werneburg, 1988). Boucot’s (1990) 
influential compendium on the paleobiology of behavior and 
coevolution includes numerous references to consumulites and 
includes important review papers on consumulities in fish by 
Williams (1990) and Viohl (1990). In the past three decades, 
there has been increasing mention of consumulites, in general, 
and publications in which the main focus is these bromalites, in 
particular (e.g., Massare and Young, 2005; Wahl, 2012). Everhart 
and others have described a large number of consumulites from 
the Late Cretaceous of the Western Interior of North America 
(see Everhart, 2017). Another principal area of focus in the 21st 
Century has been the consumulites from the Early Cretaceous 
Jehol Lagerstätte of China, principally in theropods and birds, 
but also in a mammal, frog and choristodere (Hu et al., 2005; 
Wang et al., 2005; O’Connor, 2019; Xing et al., 2019; O’Connor 
and Zhou, 2020; Table A.9). 

FIGURE 11. Aspirationalite from the early Eocene of Wyoming, 
USA. Mioplosus labracoides swallowing Knightia eocaena. The 
specimen is approximately 50 cm long. Photograph courtesy of 
Vincent Santucci, National Park Service.
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Actualistic Studies

Preservation of consumulites is favored by a longer gut 
retention time and a lower digestive acidity (Miller and Pittman, 
2021). Gut retention times are influenced by overall ecology and 
short-term behaviours in birds (Miller and Pittman, 2021). In 
Recent birds, fully terrestrial species tend to have much longer 
gut retention times than flying taxa, with the most active having 
the lowest time (Jackson, 1992; Hilton et al., 1999; Caviedes-
Vidal et al., 2007; Frei et al., 2014). Gut retention is also related 
to aspects of diet including fiber content, lipid content, particle 
size and energy density (Balch and Campling, 1965; Warner, 
1981; Hilton et al., 1998, 2000a; McWhorter and Martínez del 
Rio, 2000; Levey and Del Rio, 2001). Short-term behavioral 
changes affecting retention include dietary switching (Hilton 
et al., 2000b), migration (McWilliams et al., 1999), and raising 
young (Thouzeau et al., 2004). Stomach acidities vary among 
Recent raptors, with less bone remaining in the pellets of raptors 
with lower stomach pH (Duke et al., 1975; Duke, 1997; Miller 
and Pittman, 2021). 

Recognition
Demalites are biogenic material putatively preserved 

within the body cavity of an animal that does not pertain to that 
animal (Hunt and Lucas, 2012a). They can have five principal 
sources: (1) apparent preservation as the result of stacked 
carcasses with parts of one skeleton seeming to be within the 
body outline of a superposed specimen, as has been proposed for 
specimens of the Late Triassic theropod dinosaur Coelophysis 
(Rinehart et al., 2009); (2) gignolites, such as embryos or eggs; 
(3) postmortem utilization of the carcass (e.g., shed carnivore 
teeth); (4) material introduced by sedimentological processes; 
and (5) true consumulites. Thus, consumulites are a subset of 
demalites referring specifically to fossilized, ingested food 
material preserved within the body cavity (Hunt and Lucas, 
2012a). In much of the vertebrate paleontological literature, 
consumulites are referred to informally as “stomach contents” 
or “gut contents.”

Consumulites, with the notable exception of evisceralites, 
cannot be unambiguously recognized unless they occur within 
an articulated or at least substantially complete skeleton. Voss 
et al. (2019) adapted identification criteria proposed for the 
recognition of gastroliths by Wings (2004) to apply to stomach 
contents, but these criteria are potentially relevant to all 
consumulites:

1. In association with the skeleton of “an appropriate 
consumer” – this can be useful, but some consumulites preserve 
prey that would be unexpected in the consumer (e.g., a fish within 
the apparently terrestrial theropod dinosaur Baryonyx: Charig 
and Milner, 1986, 1997) or an absence of expected prey (e.g., 
no insects within the pangolin Eomanis, a putative anteater: von 
Koenigswald et al., 1981; Richter, 1988).

2. In an anatomically correct position – there are 
definitely exceptions related to rupture or displacement of 
the gastrointestinal tract (e.g., Eocene Amia: Boreske, 1974; 
Grande, 1980).

3. Discrete clusters of bromalitic material – often the 
case, but it can be disseminated, e.g., clustered and separated 
by distance from other such clusters, and, in some cases, the 
putative consumulite could be an associated concretion (e.g., 
fish associated with Elasmosaurus: Everhart, 2017).

4. Found in a low-energy depositional setting in sediment 
finer in clast size than in the consumulite.

5. Dentalites present – dentalites are actually rarely 
reported in consumulites (an exception is the consumulite of 
Postosuchus alisonae: Sues et al., 2003; Peyer et al., 2008), and 
their absence can provide evidence of prey swallowed whole 
(e.g., conchostracan valves in the salamander Jeholotriton: 
Dong et al., 2012).

6. A further criterion is evidence of mechanical or 
chemical processing, which is relatively uncommon (e.g., 
etched headshield of Cephalapis in Ptomacanthus: Denison, 
1956; Allen and Tarlo, 1963; Miles, 1973).

Terminology
Consumulites are the bromalites with the most complicated 

terminological history (Table 1, Appendix B; Hunt and Lucas, 
2012a). Hunt and Lucas (2012a) reviewed the long history of 
terms applied to bromalites preserved within the body cavity 
and introduced the term consumulite to encompass all such 
trace fossils. They also redefined existing terms and introduced 
new ones to provide a refined terminology for all consumulites, 
including oralite (wholly or partially within the oral cavity), 
esophogalite (in the gastrointestinal tract anterior to the stomach), 
gastrolite (in the stomach), cololite (in the gastrointestinal tract 
posterior to the stomach), intestinelite (cololite in intestines), 
enterospira (cololite in a spiral valve) and incorporeal pelletite 
(pelletite preserved within the body cavity) (Hunt and Lucas 
2012a) (Fig. 3; Table 1). An evisceralite is a cololite that is a 
preserved segment of infilled fossilized intestines preserved 
independent of, or exterior to, a carcass.

Fossil Record
Introduction

Vertebrate consumulites have an extensive fossil record, 
which is compiled here for the first time (Fig. 12; Tables 
A.6-11). They occur in diverse environments, starting in the 
Devonian. Consumulites are principally associated with, or at 
least recognized in the context of, articulated skeletons (Hunt 
and Lucas, 2020b). The majority of articulated skeletons are 
from aquatic environments, as thus are many consumulites. 
Articulated skeletons thus are common in Lagerstätten that 
preserve vertebrate fossils (Hunt and Lucas, 2020b). Thus, the 
record of consumulites is biased towards Lagerstätten such as the 
Cleveland Shale (Devonian), Holzmaden (Jurassic), Solnhofen 
(Jurassic), Jehol (Cretaceous), Messel (Eocene), and Green 
River (Eocene). Beyond Lagerstätten, consumulites are most 
common in fine-grained deposits of low energy environments 
(Hunt and Lucas, 2020b). The vast majority of consumulites 
represent carnivorous animals because plant material is usually 
finely macerated during digestion, and it is much easier to 
recognize a bone as a foreign object than carbonaceous debris 
(Hunt and Lucas, 2020b). 

Large body size favors the recognition of consumulites. The 
combination of large body size and an aquatic lifestyle results in 
an extensive record of consumulites in large Mesozoic marine 
vertebrates, notably ichthyosaurs, plesiosaurs and mosasaurs. 

We will review the fossil record of consumulites, as with 
dentalites, by era and environment. Evisceralites are considered 
separately because of their limited fossil record. Significant 
sources of data on consumulites include Massare (1987), Boucot 
(1990), Viohl (1990), Cicimurri and Everhart (2001), Konuki 
(2008), Boucot and Poinar (2010), Naish (2014), Everhart 
(2017) and O’Connor (2019).
Evisceralites

Agassiz (1833-1845a, b, p. 676) introduced the term cololite 
to refer to the fossilized “more or less stuffed intestines of fish.” 
He used the term in relation to both infilled intestines preserved 
within a body cavity and also those preserved in isolation and 
not directly associated with a body cavity; the latter are now 
termed evisceralites (Hunt and Lucas, 2012a). A cited example 
of the latter was Lumbricaria, an enigmatic ichnotaxon common 
in the Upper Jurassic Solnhofen Limestone of Germany and now 
recognized as ammonite coprolites (e.g., von Münster, 1831; 
Muller, 1969; Janicke, 1970; Barthel et al., 1990; Knaust and 
Hoffman, 2021). Lumbricaria is not found associated with fish 
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skeletons, but “M. Agassiz has ingeniously explained this fact 
by observing the process of decomposition of dead fishes in the 
lakes of Switzerland. The dead fish floats on the surface with its 
belly upwards, until the abdomen is so distended with putrid gas, 
that it bursts: through the aperture thus formed the bowels come 
forth into the water, still adhering together in their natural state 
of convolution” (Buckland, 1835, p. 156). The best evidence for 
this type of preservation may derive from the Middle Jurassic 
(late Callovian) fish fauna of the Luciano Mesa Member of the 
Todilto Formation in eastern New Mexico, USA (Koerner, 1930; 
Schaeffer and Patterson, 1984; Lucas et al., 1985). Multiple 
specimens of the holostean fish Todiltia schoewei preserve 
consumulites, and the surrounding matrix also preserves isolated 
sections of intestinal tract (Schaeffer and Patterson, 1984; Lucas 
et al., 1985; Hunt and Lucas, 2014b; Fig.13). We term this type 
of evisceralite, in which a portion of the gastrointestinal tract is 
physically removed from a carcass, as dislocational. 

Buckland (1835, 1836) recognized that spiral coprolites 
were derived from fish with valvular intestines. Fritsch (1895) 
and Neumayer (1904) considered that some of the spiral 
bromalites actually represented fossilized valvular intestines 
rather than coprolites. Subsequently, Hoernes (1904) and Fritsch 
(1907) introduced terms for bromalites that represent infilled 
spiral-valved intestines, enterolite and enterospira, respectively. 
Hunt and Lucas (2012a) accepted the term enterospira over 
enterolite because of widespread usage. The idea that spiral 
bromalites represent infilled intestines has been re-examined 
several times (e.g., Williams, 1972; McAllister, 1985; Ward et 
al., 2020). A 300 to 500 µm separation between whorls could 
represent a thin mucusoal membrane and be used as a criterion 
to distinguish intestinal infillings (Ward et al., 2020). 

There are few other recorded examples of dislocational 
evisceralites. Clark (1989) described the earliest such 
evisceralite from the Late Mississippian (Serpukhovian) of 
Bearsden, Scotland. 

A second type of evisceralite results from preferential 
fossilization of the gastrointestinal tract, and we term this 
preservational. Some geologists of the U. S. Geological Survey 
and others first described unusual sideritic specimens from the 
Paleocene of North Dakota and the Miocene of Washington 
(Amstutz, 1958; Roberts, 1958; Brown, 1962). Subsequently, 
similar specimens were described from the Permian of China 
and the Late Cretaceous of Canada and Madagascar (Broughton 
et al., 1977; Broughton, 1981; Seilacher et al., 2001; Hunt and 
Lucas, 2016b). They were variously interpreted as coprolites, 
pseudofossils, or casts of internal organs (Amstutz, 1958; 
Broughton et al., 1977, 1978; Broughton, 1981; Schmitz 
and Benda, 1991; Spencer, 1993; Mustoe, 2000; Seilacher 
et al., 2001). Seilacher (Seilacher et al., 2001; Seilacher, 
2002) convincingly argued that they are both ichnofossils and 
cololites. Thus, they are interpreted as evisceralites prefossilized 
by bacterial activity and later transformed into siderite. All 
occurrences are in fluvial overbank deposits with no other 
vertebrate remains. The absence of skeletal fossils may be due 
to aquifer roll-fronts that destroyed phosphatic bones and teeth 
but favored siderite precipitation (Seilacher et al., 2001). Hunt 
et al. (2012b) designated one of the preservational evisceralites 
from North Dakota as the holotype of Hiabromus seilacheri. 
Broughton (2017) proposed an ad hoc hypothesis that multi-
decimeter-long specimens may be evisceralites of an unknown 
taxon of giant terrestrial earthworm (Oligochaeta) that existed 
from the Late Cretaceous to the Neogene. We consider this 
unlikely.
Paleozoic 
Marine

The earliest vertebrates were jawless, so they are considered 
to have been primarily filter feeders. Thus, it is not surprising that 

FIGURE 12. Temporal distribution of reports of consumulites. 
Sources are in the text; also see Tables A.6-11.
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FIGURE 13. Middle Jurassic consumulites and evisceralites in “holostean” fishes from the Luciano Mesa Member of the Todilto 
Formation at NMMNH locality L-1476, Bull Canyon (A-D, G), and NMMNH locality L-3520, Warm Springs (E-F) in New 
Mexico, USA. A, NMMNH P-32715, Todiltia schoewei in lateral view with consumulite. B, NMMNH P-32713, Todiltia schoewei 
in lateral view with consumulite. C, NMMNH P-32718, Todiltia schoewei in lateral view with consumulite. D, NMMNH P-32714, 
Todiltia schoewei in lateral view with adjacent evisceralite. E, NMMNH P-28700, evisceralite in lateral view. F, NMMNH P-28700, 
evisceralite in lateral view. G, NMMNH P-32712, Todiltia schoewei in lateral view with consumulite. All to same scale (Hunt and 
Lucas, 2014b, fig. 12).
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the earliest consumulite known consists of a gastrolite infilled by 
sediment within the furcacaudiform thelodont Pezopallichthys 
ritchie from the Middle Silurian of Canada (Wilson and Caldwell, 
1993, 1998). This strongly suggest that stomachs evolved before 
jaws in early vertebrates (Wilson and Caldwell, 1993). Other 
furcacaudiforms from the Early Devonian of Canda have similar 
arenaceous consumulites (Wilson and Caldwell, 1993, 1998), as 
do the endeiolepidiform Endeiolepis aneri and the euphanerid 
Euphanerops longaevus, both from the Late Devonian of Canada 
(Stensiö, 1939; Arsenault and Janvier, 1991; Janvier, 1996a, b; 
Janvier and Arsenault, 2007). 

The oldest known consumulites that contain recognizable 
prey are from the Early Devonian of England and include 
a Cephalaspis head shield within the shark Ptomacanthus 
and a small ostracoderm within an acanthodian (Denison, 
1956; Allen and Tarlo, 1963; Miles, 1973; Table A.6). Middle 
Devonian examples from Scotland occur in several specimens 
of Coccosteus and Glyptolepis as well as in acanthodians, 
actinopterygians and placoderms (Heintz, 1938; Miles and 
Westoll, 1968; Ahlberg, 1992; Davidson and Trewin, 2005). 
One Glyptolepis contains a small Glyptolepis (Ahlberg, 
1992). This is both the earliest record of cannibalism and the 
first to demonstrate a fish swallowing another head first. This 
orientation of prey acquisition is prevalent in gape-limited 
predatory fish throughout the Phanerozoic. Swallowing prey 
head-first significantly reduces: (1) esophageal abrasion; (2) 
escape rate of the prey; and (3) the prey manipulation period 
(Reimchen, 1999). These advantages diminish with small prey. 
Head-first prey acquisition also occurs in most, but not all (e.g. 
Braz and Marques, 2016) snakes and squamates. A significant 
literature demonstrates analagous causation: (1) reduce the 
resistance offered by the appendages and body covering of the 
prey; (2) reduce the prey-handling time, which decreases the 
period of vulnerability to other predators; and (3) advantageous 
to ophiophagous snakes because it decreases the resistance from 
posteriorly projecting overlapping ventral scales (Diefenbach 
and Emslie, 1971; Loop and Bailey, 1972; Loop, 1974; Greene, 
1976; Queiroz and de Queiroz 1987; Wiseman et al., 2019). As 
with fish the probability of head first ingestion increases with 
increasing prey size (Queiroz and de Queiroz, 1987).

The geographic distribution and volume of consumulite 
specimens increases substantially in the Late Devonian (Fig. 12; 
Table A.6). More than 50 fish from the Cleveland Shale in Ohio, 
USA, preserve consumulites (Williams, 1990). These include 
more than 40 sharks representing four species of Cladoselache, 
Ctenacanthus compressus and unidentified taxa. The majority 
of consumulites consist of paleoniscoid debris, but they also 
include a couple of complete fish (Kentuckia blavini), several 
contain arthropods and four yield conodonts. Three specimens 
contain the crustacean Concavicaris cf. C. bradleyi, which were 
swallowed tail first (Williams, 1990). Whereas most fish are 
swallowed head first, most invertebrates with appendages in the 
Devonian and later are swallowed tail first, presumably to avoid 
damage to the predator during ingestion. Other Late Devonian 
consumulites are from Russia (Zakharenko, 2008), Latvia 
(Upeniece, 2001, 2011), Canada (Arsenault, 1982; Janvier, 
1996b; Chevrinais et al., 2017) and Australia (Dennis and Miles, 
1981; Long, 1991, 1995; Choo et al., 2009).

Notably fewer records of consumulites come from the 
later Paleozoic (Fig. 12). There are reports of specimens from 
the early Carboniferous of England and Scotland (Traquair, 
1879; Watson, 1937; Viohl, 1990; Coates and Sequeira, 2001). 
The selachian Akmonistan zangerli from Scotland preserves 
the oldest incorporeal pelletite (Chondripilula zideki), and a 
second occurs in another shark (Cobelodus aculeatus) from the 
Late Pennsylvanian of the United States (Coates and Sequeira, 
2001; Hunt, 1992; Hunt et al., 2012h; Hunt and Lucas, 2021a). 
Typhloesus wellsi from the Bear Gulch Lagerstätte in the 

Lower Mississippian of Montana, USA, is a rare example of an 
invertebrate that preserves consumulites of vertebrates (fish) as 
well as conodont apparatuses and worm teeth (Conway Morris, 
1976, 1990).

Most Permian consumulites derive from Germany (Table 
A.6). Three specimens are known from the late Permian 
Kupferschiefer (Weigelt, 1928a, b, 1930a, b; Malzahn, 1968; 
Schaumberg, 1979), and the remainder are from earlier in the 
period (Heidtke, 2007; Kriwet et al., 2008). Lohmann and Sachs 
(2001) reported on consumulites through four ontogenetic stages 
of the temnospondyl amphibian Sclerocephalus haeuseri. The 
only reptilian consumulites from the marine Paleozoic pertain 
to the mesosaur Brazilosaurus sanpauloensis from the lower 
Permian of Brazil and include crustacean fragments and bones 
of very young mesosaurids (Silva et al., 2017).
Nonmarine

The pattern of nonmarine Paleozoic consumulites is a mirror 
image of that of the marine, but with increasing numbers through 
time (Fig. 12; Table A.7). There are no Devonian examples. 
Carboniferous specimens are currently only known from two 
Lagerstätten in the United States, Mazon Creek in Illinois 
(Richardson and Johnson, 1971; Richardson, 1980; Milner, 
1982; Viohl, 1990; Godfrey, 1997) and the Kinney Brick Quarry 
in New Mexico (Hunt, 1992; Hunt et al., 2012h; Werneburg 
et al., 2013, 2021). One host is a shark, but all the remaining 
pertain to small amphibians (body lengths less than 50 mm). 
The “branchiosaur” Milnerpeton huberi from New Mexico and 
an unidentified amphibian from Illinois each have ostracods 
as consumulites. The dvinosaurian Bermanerpeton kinneyi 
from Kinney preserves syncarid arthropods (Uronectes cf. U. 
kinniensis, Aenigmacaris cf. A. minima), spines of Acanthodes 
cf. A. kinneyi, actinopterygian scales and ribs and neural arches 
of amphibians in consumulites. Hunt and Lucas (2021a) named 
the ostracod-bearing consumulite Werneburgichnus kinneyensis, 
and that containing more diverse content is named W. varius. 
Chondripilula zideki is a pelletal body preserved within the 
posterior intestines of sharks (Hunt and Lucas, 2021a). No 
identifiable food items occur in the specimens from Mazon 
Creek (Godfrey, 1997). 

Small “branchiosaur” amphibians from the lower Permian 
of Germany preserve a variety of consumulites that range from 
conchostracans to other amphibians (e.g., Werneburg, 1986, 
1988, 1989, 2020; Witzmann, 2009). These strata also yielded 
the first consumulite within a consumulite, which is the shark 
Triodus sessilis, which ingested two amphibians, Archegaurus 
decheni and Cheliderpeton latirostre; the latter had swallowed 
a specimen of Acanthodes bronni. Two early Permian reptile 
skeletons from the United States contain oralites. A specimen of 
the captorhinimorph Romeria sp. from Texas contains a smaller 
skull and partial skeleton of probably the same species (Case, 
1911; Eaton, 1964). Two skulls of the parareptile Delorhynchus 
priscus from Oklahoma preserve fragments of arthropod cuticle 
between the palatal teeth (Modesto et al., 2009; Reisz et al., 
2014). 

Late Permian reptile skeletons with consumulites occur 
in Tanzania and Germany (Table A.7). A specimen of the 
gorgonopsid “Aelurognathus” parringtoni from Tanzania 
includes a mandibular symphysis of the dicynodont Katumbia 
parringtoni as a gastrolite (Maisch, 2009). Both Weigelt (1928a) 
and Munk and Sues (1993) described ovules of the conifer 
Ullmannia frumentaria associated with different specimens of 
the early archosauromorph reptile Protorosaurus speneri from 
Germany. The first report had been regarded with skepticism 
(e.g., Haubold and Schaumberg, 1985) because the plant 
material was scattered within a disarticulated skeleton, but 
the latter demonstrated the presence of plant material within 
an articulated ribcage. Munk and Sues (1993) also described 
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coarse clastics with interspersed carbonized material (that they 
interpreted as macerated plant matter) in a consumulite of the 
pareisaurian parareptile Parasaurus geinitzi.
Mesozoic 
Marine

The Mesozoic marine record of consumulites is extensive 
and dominated by sharks, bony fish and the three main clades of 
marine reptiles (ichthyosaurs, plesiosaurs and mosasaurs). The 
frequency of occurrences increases through the Mesozoic and 
reaches its maximum during the Late Cretaceous (Fig. 12; Table 
A.8).

An Early Triassic specimen of the ray-finned fish Birgeria 
from Madagascar yields conspecifics as a demalite. This was 
originally interpreted as an example of ovoviparity by Beltan 
(1977), but these specimens more likely represent a consumulite 
(Viohl, 1990). Middle Triassic fish consumulites occur in 
specimens of Saurichthys in China and in the Monte San 
Giorgio Lagerstätte in Switzerland (Wu et al., 2015; Argyriou 
et al., 2016). Monte San Giorgio also yields consumulites in 
a nothosaur and a pachypleurosaur (Tschanz, 1989; Diedrich, 
2015). Ichthyosaur consumulites occur not only at this Swiss 
locality (Rieber, 1970; Brinkmann, 2004) but also in the Early 
Triassic of Norway (Buchy et al., 2004) and the Late Triassic 
of China (Cheng et al., 2006) and the United States (Camp, 
1930; Druckenmiller et al., 2014). The gastrointestinal tracts of 
Early and Middle Triassic ichthyosaurs yield only cephalopod 
hooklets, but the Late Triassic examples include both vertebrate 
remains and mollusk shell fragments (Rieber, 1970; Camp, 
1980; Brinkmann, 2004; Buchy et al., 2004; Cheng et al., 2006; 
Druckenmiller et al., 2014).

The Early Jurassic Holzmaden Lagerstätte of Germany has 
produced many specimens of consumulites (Table A.8). These 
records include about 250 belemnite guards in a specimen 
of the shark Hybodus (Brown, 1900; Pollard, 1990; Doyle 
and McDonald, 1993) and coleoid remains in the bony fishes 
Saurostomus and Pachycormus (Urlichs et al., 1994; Přikryl 
et al., 2012). Mateer (1974) documented an indeterminate 
organic area above the sacral area in a specimen of the marine 
crocodylomorph Steneosaurus bollensis. However, the majority 
of consumulites from the Jurassic Posidonienschiefer pertain to 
ichthyosaurs. These include more than 35 specimens found in 
skeletons of Stenopterygius spp. and Leptopterygius spp. (von 
Wurstemberger, 1876; Keller, 1976; Massare, 1987; Böttcher, 
1989; Bürgin, 2000). These consumulites principally contain 
cephalopod hooklets, but also include an actinopterygian fish, 
juvenile Stenopterygius and rare wood fragments (e.g., Keller, 
1976; Massare, 1987; Böttcher, 1989; Bürgin, 2000). Dick et al. 
(2016) studied a large sample of consumulites in Stenopterygius 
quadriscissus and demonstrated that ontogenetic shifts in the 
size and shape of the dentition coincide with dietary changes. 
The smallest specimens fed on small, burst-swimming fishes, 
with a progressive shift with increasing body size towards 
consuming faster moving fish and, ultimately, cephalopods. 

Ichthyosaur consumulites also occur in the Lower Jurassic 
of England in several species of Ichthyosaurus (Buckland, 
1858; Pollard, 1968; Lomax et al., 2019; Fig. 14). The majority 
of specimens yield only cephalopod hooklets, but Buckland 
(1858) reported some Pholidophorus fish scales and spines. 
Middle Jurassic consumulites also derive from England from 
the Oxford Clay. They include cephalopods in the plesiosaurs 
Simolestes vorax and Peloneustes sp. (Andrews, 1910; Martill, 
1992; Cicimurri and Everhart, 2001) and the crocodyliform 
Metriorhynchus sp. (Martill, 1985a). 

Late Jurassic consumulites are more geographically 
widespread but are not numerous (Fig. 12). They include 
amorphous gut contents in the fish Allothrissops in Europe 
(Patterson and Rosen, 1977) and cephalopod remains in the 

ichthyosaurs Pantosaurus striatus and Ophthalmosaurus natans 
from the United States (Massare and Young, 2005; Wahl, 
2012). One American plesiosaur (cf. Pantosaurus striatus) has 
ichthyosaur embryos in its digestive tract (O’Keefe et al., 2009), 
and another (cf. Tatenectes laramiensis) contains hybodont shark 
teeth, spines and denticles in addition to coleoid cephalopod 
hooklets (Wahl, 1998; Cicimurri and Everhart, 2001). Late 
Jurassic plesiosaur skeletons in Russia and England also contain 
consumulites with hooklets as well as fish (Zhuravlev, 1943a, 
b; Gekker and Gekker, 1955; Tarlo, 1959). Two skeletons 
of Metriorhynchidae from Germany preserve consumulites 
(Spindler et al., 2021). Taylor et al. (1993) described a specimen 
of Pliosaurus brachyspondylus that contains ornithischian 
dinosaur osteoderms, the oldest example of clearly terrestrial 
vertebrate remains in a marine consumulite. 

Consumulites are geographically widespread in the Lower 
Cretaceous, but the majority of the specimens come from 
two countries, Brazil and Australia (Table A.8). The Aptian 
Santana Formation of Brazil yields at least 10 examples of fish 
consumulites that contain identifiable fish that were ingested 
head first (Patterson and Rosen, 1977; Case, 1982; Viohl, 1990; 
Wilby and Martill, 1992; Maisey, 1994, 1996; Mulder, 2013). 
The Early Cretaceous of Australia has produced consumulites 
in the turtle cf. Notochelone sp. (inoceramids), the ichthyosaur 
Platypterygius longmani (turtle, bird, fish), two specimens of 
the pliosaur Kronosaurus (fish, turtle, elasmosaur) and two 
elasmosaurs (principally invertebrates) (Kear et al., 2003; 
McHenry et al., 2005; Kear, 2006; McHenry, 2009). The 
plesiosaur Nichollsia borealis from Canada contains fish in a 
consumulite (Druckenmiller and Russell, 2009).

The very extensive record of Late Cretaceous consumulites 
is heavily biased toward the well excavated and researched 
vertebrate fauna of the Western Interior seaway of North 
America, notably in the United States, and particularly the 
state of Kansas (Table A.8). There are six occurrences of shark 
consumulites from the United States, and one each from Italy 
and Lebanon, which preserve a wide range of prey including 
fish, turtle, plesiosaur and mosasaur (Sternberg, 1917; Martin 
and Rothschild, 1989; Viohl, 1990; Druckenmiller et al., 1993; 
Shimada, 1997; Everhart, 2003; Amalfitano et al., 2017). 

Arguably the most famous consumulite is the Gillicus 
arcuatus swallowed by Xiphactinus audax (Fig. 15), the “fish 
within a fish” from Kansas that is on display at the Sternberg 
Museum of Natural History (e.g., Walker, 2006; Everhart, 
2017, fig. 5.1). The Kansas chalk yields at least half a dozen 
more specimens of Xiphactinus with consumulites as well as 
several other bony fishes that exhibit similar examples (Table 
A.8; see discussions and/or listings in Bardack, 1965; Konuki, 
2008; Everhart, 2017). There is also a significant record of 
osteicthyans with consumulites from Lebanon (Davis, 1887; 
Woodward, 1901; Viohl, 1990; Konuki, 2008; Amalfitano et al., 
2017). Other examples are known from Brazil (Viohl, 1990), 
Morocco (Arambourg, 1954; Cavin, 1999), France (Poplin, 
1986) and Germany (Diedrich, 2012b). 

A large number of mosasaur skeletons preserve 
consumulites (Table A.8). Most examples are from the United 
States (e.g., Konuki, 2008; Everhart, 2017), but specimens also 
occur in Canada (Konishi et al., 2011, 2014), Belgium (Dollo, 
1887a, b, 1913) and Angola (Strganac et al., 2015). Mosasaur 
consumulites contain a large range of vertebrate prey items, 
including turtles (Dollo, 1887a,b; Konishi et al., 2011), sharks 
(Martin and Bjork, 1987), bony fishes (Williston, 1899, 1914; 
Camp, 1942; Martin and Bjork, 1987; Konishi et al., 2014; 
Everhart, 2017), plesiosaurs (Everhart, 2004c), mosasaurs 
(Martin and Bjork, 1987; Bell and Barnes, 2007; Strganac et 
al., 2015) and birds (Martin and Bjork, 1987). The invertebrate 
content of mosasaur consumulites includes belemnites (Dollo, 
1913), echinoids (Dollo, 1913) and bivalves (Martin and Fox, 
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FIGURE 14. Consumulites in ichthyosaur skeletons from the Lower Lias (Hettangian-Lower Pliensbachian) of Lyme Regis, UK. 
A, Consumulite in lateral view (OUM J10320). B, Consumulite in lateral view (OUM J13593), also see Buckland, 1836, pl. 14).

2004).
Late Cretaceous plesiosaur consumulites occur in the 

United States (Cope, 1868, 1872; Brown, 1904; Martin and 
Kennedy, 1988; Storrs, 1999; Cicimurri and Everhart, 2001), 
Canada (Nicholls, 1988) and Japan (Matsumoto et al., 1982; 
Sato and Tanabe, 1998; Sato and Storrs, 2000). Most of these 
consumulites contain cephalopods (Brown, 1904; Sato and 
Tanabe, 1998; Sato and Storrs, 2000; Cicimurri and Everhart, 
2001), fishes (Cope, 1868; Brown, 1904; Martin and Kennedy, 
1988; Nicholls, 1988; Cicimurri and Everhart, 2001), mosasaurs 
(Cope, 1872; Storrs, 1999) and pterosaurs (Brown, 1904).

There is a single example of a Cretaceous pterosaur 
consumulite. This bromalite occurs in the throat of Pteranodon 
sp. and includes partially digested fish material, so it may be 

a regurgitalitic mass in the process of being egested (Brown, 
1943; Bennett, 2001).
Nonmarine

There are many instances of Mesozoic nonmarine 
consumulites, but a large percentage are associated with two 
Lagerstätten, the Late Jurassic Solnhofen Limestone of Germany, 
which is dominated by fish, and the Early Cretaceous Jehol biota 
of China in which most bromalites occur in tetrapods (Fig. 12; 
Table A.9). Hunt et al. (2018) reviewed the consumulite record 
from the Late Triassic.

There are no reported Early or Middle Triassic consumulites. 
There are eight Late Triassic examples in terrestrial reptiles and 
one in a pterosaur. Three phytosaurs from the United States 
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and India preserve consumulites that indicate consumption of a 
range of tetrapods, including the metoposaurid Apachesarus and 
reptiles, including Vancleavea, Trilophosaurus (=Malerisaurus: 
Spielmann et al., 2006), a phytosaur and a rhynchosaur 
(Chatterjee, 1978, 1980; Hunt, 1991, 1994, 2001; Hunt and 
Lucas, 2014b). The paracrocodylomorph Postosuchus alisonae 
from the eastern United States contains a gastrolite with a 
diverse assortment of prey, including a partial skeleton of a 
small aetosaur (cf. Aetosaurus), a snout, left coracoid, and left 
humerus of the traversodont cynodont Plinthogomophodon 
herpetairus, two articulated phalanges of a large dicynodont, 
and a fragment of an unidentified ?temnospondyl bone. Some of 
the bones have dentalites, and others display periosteal erosion 
likely caused by digestion (Sues et al., 2003; Peyer et al., 2008).

Specimens of the Late Triassic theropod Coelophysis bauri 
from the western United States contain oralites, incorporeal 
dentalites and a gastrolite with a specimen of Hesperosuchus 
(Nesbitt et al., 2006; Rinehart et al., 2009; Hunt and Lucas, 
2014b). The Italian theropod Notatesseraeraptor frickensis has 
a consumulite that includes a maxilla of the rhynchocephalian 
Clevosaurus (Unterrassner, 2009).

There are no reported Early Jurassic consumulites, but 
Middle Jurassic specimens include fish, amphibians and a 
dinosaur (Fig. 12; Table A.9). Many specimens of the bony 
fish Todiltia schoewei and a few of Hulettia americana from 
a Middle Jurassic Todilto Formation in New Mexico contain 
gastrolites and intestinilites (Lucas et al., 1985b; Hunt and 
Lucas, 2014b; Fig. 13). Post-Paleozoic amphibian consumulites 
are rare, but there are three examples from the Middle Jurassic 
of China, including Jeholotriton paradoxus and Chunperpeton 
tianyiensis, which contain conchostracans, and a specimen of C. 
tianyiensis that yields insects (Gao and Shubin, 2003; Dong et 
al., 2012). The theropod Poekilopleuron bucklandii from France 
contains a tooth of the hybodont shark Polyacrodus sp. and bone 
fragments that resemble skeletal elements of cartilaginous fishes 
(Eudes-Deslongchamps, 1838).

There are more than 120 consumulites from the Upper 
Jurassic of the Solnhofen area in Germany (including the Ettling 
Lagerstätte of Ebert et al., 2015), which principally relate to 
fish and pterosaur skeletons. More than 110 fish skeletons 
representing more than 20 taxa yield consumulites that contain 
fishes (Table A.9: e.g., Viohl, 1990; Ebert et al., 2015). The 
coelacanth Undina penicillata is the only taxon from Solnhofen 
to have undoubtedly ingested a conspecific, and this was 
initially interpreted as evidence of ovoviparity but more recently 
of predation (Watson, 1927; Schultze, 1972). Five specimens 
of the pterosaurs Rhamphorhynchus and two of Pterodactylus 
contain consumulites composed of fish material (Broili, 1938; 
Wellnhofer, 1970, 1975a, b; Kellner, 2006; Frey and Tischlinger, 
2012; Witton, 2013, 2018; Hone et al., 2013, 2015). The holotype 

of the theropod Compsognathus longipes contains a skeleton 
of the lepidosaur Bavarisaurus cf. B. macrodactylus (Ostrom, 
1978). Outside of Solnhofen, there are four Late Jurassic fishes 
and a turtle that also contain consumulites (Eastman, 1911; De 
Saint Seine, 1949; Joyce et al., 2021).

The majority of consumulites from the Lower Cretaceous 
derive from the Jehol Lagerstätte in northeastern China and 
include specimens from a frog, a choristodere, nine theropods, 
13 birds, a pterosaur and a mammal (Table A.9). The frog 
Genibatrachus baoshanensis contains as a consumulite a 
skeleton of a salamander, cf. Nuominerpeton (Xing et al., 
2019). Seven juvenile skulls of the choristodere Monjurosuchus 
splendens were found within the skeleton of an adult, indicating 
cannibalism in this taxon (Wang et al., 2005). The diversity of 
small, derived theropods and birds and their consumulites from 
Jehol provides important information about the development 
of the crop, proventriculus and ventriculus (O’Connor et al., 
2019) discussed below. We introduce the term cropalite for 
preserved contents of the crop, and the term proventrilite for 
contents of the proventriculus. Mayr et al. (2021) demonstrated 
that several putative ovarian follicles in some Jehol birds 
actually represent propagules assignable to Carpolithes 
multiseminalis: (1) carbonaceous or originally carbonaceous; 
(2) putative follicles have similar dimensions in differently 
sized birds; (3) simultaneous maturing of multiple follicles 
unlikely; (4) no evidence of medullary bones; and (5) unlikely 
in specimens with little or no soft tissue preservation. We 
follow O’Connor (2019) and O’Connor and Zhou (2019) in the 
recognition of other paravian consumulites from Jehol (Table 
A.9). The gastrolite of the mammal Repenomamus robustus is 
significant in that it provides direct evidence of predation on 
dinosaurs, as it contains remains of a juvenile of the ceratopsian 
Psittacosaurus (Hu et al., 2005). Surprisingly, Ji et al. (2016) 
reported fish remains in the presumably herbivorous ankylosaur 
Liaoningosaurus paradoxus.

A salamander and a bird from the Early Cretaceous of 
Spain yield consumulites (Sanz et al., 1996; Evans, 2016; 
O’Connor, 2019). Two theropods contain consumulites, the 
large English theropod Baryonyx walkeri contains fish and 
Iguanodon bones, and the Italian Scipionyx samniticus yields 
fish and lepidosaurian bones (Charig and Milner, 1986, 1997; 
Dal Sasso and Signore, 1998; Dal Sasso and Maganuco, 2011). 
The ornithischian ankylosaur Mimni sp. from Australia contains 
a consumulite with plant debris and seeds (Molnar and Clifford, 
2000, 2001). Ludodactylus sibbicki is a pterosaur from Brazil 
with the unusual oralite of a leaf between mandibular rami (Frey 
et al., 2003; Witton, 2018). 

There are less than a dozen reports of consumulites from 
the Late Cretaceous, and they all represent tetrapods (Fig. 12; 
Table A.9). The two examples that do not pertain to dinosaurs or 

FIGURE 15. Xiphactinus audax (FHSM VP-333) from the Upper Cretaceous Smoky Hill Chalk of Kansas, USA, with a consumulite 
of Gillicus arcuatus (Everhart, 2017, fig. 5.1). Length of Xiphactinus is approximately 4 m long and Gillicus is 1.8 m long. 
Photograph courtesy of Michael Everhart.
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birds are both from Brazil. These are an unidentified frog and the 
baurusuchid crocodyliform Aplestosuchus sordidus (Leal and 
Martill, 2007; Godoy et al., 2014). Theropods are represented 
by three specimens from Mongolia and the United States. The 
American example is acid-etched vertebrae and a fragmentary 
dentary from a juvenile hadrosaur found in association with 
Daspletosaurus sp. (Varricchio, 2001). The Mongolian (Hone 
et al., 2012; Lee et al., 2014), or putative Mongolian (Sereno 
et al., 2009; Fowler et al., 2011), specimens are Deinocheirus 
mirificus (fish), the enigmatic ?Raptorex kreigsteini (Lycoptera 
or Ellimmichthyiformes) and Velociraptor mongoliensis 
(azhdarchid pterosaur). At least four hadrosaurs from Canada and 
the United States contain plant debris that has been interpreted 
as consumulites (Kräusel, 1922; Ostrom, 1964; Taggert and 
Cross, 1997; Currie et al., 1995; Tweet et al., 2008, 2016). 
The sole Late Cretaceous bird consumulite of Enantiophoenix 
electrophyla is from Lebanon and is interesting because blebs of 
amber were interpreted to be evidence of feeding on sap (Dalla 
Vecchia and Chiappe, 2002; Cau and Arduini, 2008).
Cenozoic 
Marine

There are relatively few consumulite reports from the 
Paleogene-Quaternary. The majority pertain to fish, with four 
examples from whales and one from a bird (Fig. 12; Table A.10).

The early Eocene Pesciara di Bolca Konservat–Lagerstätte 
in Italy has yielded nine examples of consumulites from fish–
two from sharks and the remainder from bony fish (Table A.10; 
Agassiz, 1833-1845a, b; Sorbini, 1972; Fanti et al., 2016; 
Friedman and Carnevale, 2018). The presence of remains of the 
barracuda Sphyraena bolcensis within the shark Galeorhinus 
cuvieri is interesting because there is a predator: prey 
relationship between these genera in modern reef systems (Fanti 
et al., 2016). Other consumulite examples occur in a Miocene 
shark and a whale from Peru (Lambert et al., 2015; Collareta et 
al., 2017c) and bony fish in the Oligocene of Germany (Weiler, 
1934) and Romania (Paucă, M., 1933), the Miocene of Algeria 
(Carnevale and Pietsch, 2006), Peru (Collareta et al., 2017c) 
and the United States (Crane, 1996) and the Pliocene of Italy 
(Sorbibi in Boucot, 1990; Viohl, 1990).

Three late Eocene whales from Egypt contain consumulites. 
Basilosaurus isis yields bones of a juvenile whale (Durodon 
atrox) and large fishes (Pycnodus mokattamensis), B. cetoides 
contains fishes and sharks, and D. atrox contains fishes (Swift 
and Barnes, 1996; Uhen, 2004; Voss et al., 2019). Martínez-
Cáceres et al. (2017) describe another example from Peru. An 
undescribed late Miocene whale contains bones of the sardine 
Sardinops, which provides the first evidence of piscivory in 
an edentulous mysticete (Collareta et al., 2015). Lambert et al. 
(2015) described specimens of the clupeiform Sardinops sp. 
cf. S. sagax in the odontocete Messapicetus gregarius from the 
same strata in Peru. An early Oligocene loon (?Colymboides 
metzleri) from Germany has a gastrolite consisting of fragments 
of small fish (Mayr, 2004).
Nonmarine

The consumulite record from nonmarine Cenozoic rocks 
is skewed by large samples from several Lagerstätten, notably 
the Eocene Green River Formation of the United States and 
the Middle Eocene Messel Lagerstätte of Germany (Fig. 
12; Table A.11). The Paleocene Menat Lagerstätte in France 
yields the oldest Cenozoic consumulites, with a fish within a 
crocodylomorph and a gastrolite within an insectivore (Guth, 
1962; Wedmann et al., 2018).

The lacustrine Green River Formation includes a number 
of fish consumulites (Jepsen, 1967; Boreske, 1974; Ulrich, 1978 
– cited by Boucot, 1990; Grande, 1980). A notable specimen 
is an example of a consumulite within a consumulite – Amia 

uintaensis consumed Diplomystus, which, in turn, had consumed 
Knightia (Boreske, 1974; Grande, 1980). 

The Middle Eocene of Messel has yielded many 
consumulites, notably from multiple mammals (Franzen, 1976, 
1977, 1984, 1985; Richter and Storch, 1980; von Koenigswald 
et al., 1981, 1992; Maier et al., 1986; Richter, 1988; Collinson, 
1990; Storch, 2001) and birds (Mayr and Peters, 1998; Mayr 
and Mourer-Cauvré, 2000; Mayr, 2002, 2009, 2013; Mayr et al., 
2004, 2006; Morlo, 2004; Mayr and Richter, 2011; Table A.11). 
These consumulites pertain to both carnivores and herbivores. 
Multiple specimens of Rhenanoperca minuta and Thaumaturus 
intermedius yield insects, crustaceans and fish (Richter and 
Baszio, 2001a, 2006). Two lizards and two snakes contain 
gastrolites (Greene, 1983; Schall, 2004;Weber, 2004; Smith and 
Scanferia, 2016; Scanferia and Smith, 2020). One specimen of 
Eoconstrictor fisheri has the lizard Geiseltaliellus maarius in 
its stomach that in turn contains an insect in its digestive tract 
(Smith and Scanferia, 2016). This is only the second example 
of a consumulite within a consumulite. Five specimens of the 
putative pangolin Eomanis waldi have gastrolites of coarse sand 
and plant debris rather than the insects that might be expected 
(von Koenigswald et al., 1981; Richter, 1988). 

Other terrestrial mammals from Messel with consumulites 
represent nine families (Pantolestidae, Dichobunidae, Equidae, 
Gliridae, Ischyromyidae, Choeropotamidae, Adapidae, 
Proviverridae and Amphilemuridae). The bat Palaeochiropteryx 
tupaiodon principally yields lepidopteran wings but also some 
hair that presumably was derived from grooming (Richter and 
Storch, 1980; Richter, 1988). Other bats contain moths, caddis 
flies and beetles (Habersetzer et al., 1994). Several birds yield 
consumulites. Eleven taxa of birds yield gastrolites and cropalites 
(Mayr and Peters, 1998; (Mayr and Mourier-Chauviré, 2000; 
Mayr, 2002, 2009, 2013, 2015; Morlo, 2004; Mayr et al., 2006; 
Mayr and Richter, 2011; Mayr and Wilde, 2014). For example, 
the mousebird Masillacolius brevidactylus yields a large seed 
(Mayr, 2015).

Alexander and Burger (2001) described a crocodilian, 
Pristiochampsus vorax, from the middle Eocene of the United 
States, which had ingested a hindlimb of the perissodactyl 
Helaletes sp. Oligocene specimens include the frog 
Palaeobatrachus sp. from Germany with ingested fish (Wuttke 
and Poschmann, 2010), tadpoles of Pelobates decheni and 
Eopelobates anthracinus from Germany with granular gut 
contents, the tortoises Stylemys sp. and Stylemys nebrascensis 
from the United States with hackberry seeds (Marron and 
Moore, 2013) and the bird Oligocolius psittacocephalon from 
Germany with fruit stones in its crop (Mayr, 2013).

Miocene consumulites include the fish Lepidocottus from 
Germany, which fed on planorbid snails (Wuttke and Poschmann, 
2010), and Rama pueyoi frogs and their tadpoles from Spain, 
respectively, which preserve gastrolites composed of gastropod 
shells (with rarer plants, arthropods and larval anurans) and fine 
debris that includes diatoms (McNamara et al., 2009, 2010; 
Wuttke and Poschmann, 2010). The only recorded Miocene 
mammalian consumulite is from the canid Carpocyon from the 
United States, which ingested the rabbit Hypolagus and other 
small mammals (Green, 1948; Stirton, 1959; Tedford in Boucot, 
1990). We have found no records of Pliocene consumulites.

There are many examples of Pleistocene consumulites. The 
frozen mummies of large herbivores that contain consumulites, 
notably Mammuthus, Coelodonta, Equus and Bison, have been 
extensively studied (Ukraintseva, 1981, 1993; Guthrie, 1990; 
Harington, 2007; van Geel et al., 2008; Boeskorov et al., 2011, 
2014; Kosintsev et al., 2012). Several studies confusingly use the 
terms “feces” and “dung” to refer to fragments of consumulites 
of M. primigenius (e.g., Van Geel et al., 2004, 2011; Mol et al., 
2006).
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Ichnotaxobases and Ichnotaxonomy

There are currently only four named consumulites, three 
preserved within the body cavity, Werneburgichnus kinneyensis, 
W. varius and Chondripilula zideki (Hunt and Lucas, 2021a), 
and the evisceralite Hiabromus seilacheri (Hunt et al., 2012b). 
Evisceralites are discrete bodies, so ichnotaxobases include 
shape, size, content, composition and surface texture. However, 
there are distinct morphologies and content that should allow 
the erection of other ichnotaxa of consumulites preserved within 
body cavities. Bromalite content representing different diets 
would represent different ichnotaxa because they represent 
different behaviors. Potential ichnotaxobases include: (1) 
location of bromalite in digestive tract; (2) morphology, e.g., 
pellet, infilling that follows form of digestive tract; (3) nature 
of contents and inclusions (including taxonomic identification 
of inclusions); and (4) degree of mechanical and biochemical 
processing. 

Utility
Consumulites provide the most compelling evidence of 

diet, as they are direct evidence of what a vertebrate animal 
consumed. However, the study of consumulites is in an early 
stage of development, though they also have great potential to 
provide direct evidence of aspects of patterns of digestion, such 
as:

1. Assessing the chemistry of digestive systems by 
examining the etching and erosion of consumulite materials 
(e.g., degradation of bones within mosasaurs: Strganac et al., 
2015)

2. Studying the evolution of the components of the 
digestive system, as has been done so successfully with early 
birds (e.g., O’Connor et al., 2019) and also with fish (Janvier 
and Arsenault, 2007). 

3. Analyzing dietary changes through ontogeny, as has 
been done with “branchiosaurs” (e.g., Werneburg et al., 2007) 
and ichthyosaurs (Dick et al., 2016).

4. Evaluating the evolution of diets within clades (e.g., 
ichthyosaurs: Druckenmiller et al., 2014).

5. Identifying environmental tolerances (e.g., nonmarine 
ostracods in larval amphibians indicate that the amphibians were 
not marine: Werneburg et al., 2021).

Consumulites preserve a wide range of organic elements 
with a poor fossil record, ranging from lepidopteran wings to hair 
(Richter and Storch, 1980; Richter, 1988) to embryos (O’Keefe 
et al., 2009) and thus can be Lagerstätten as first proposed by 
Wilby and Martill (1992). In addition, consumulites can also 
preserve tissues of the gastrointestinal tract (Wilby and Martill, 
1992). The systematic study of consumulites will undoubtedly 
yield significant records of contained fossils as has the recent 
focus on the content of coprolites. 

Conclusions
This review demonstrates that there is an extensive and 

under appreciated fossil record of consumulites. This record 
provides the most direct evidence of who was eating who in 
the past and has substantial potential to address a number of 
evolutionary and paleoecological issues, notably the evolution 
of digestive systems, including the function and location of 
organs, the evolution of diets within clades and the ontogeny 
of species. 

GASTROLITHS
Terminology

We use the term gastrolith to refer to sand and/or gravel 
swallowed by an animal and retained in the digestive tract. 
Wings (2004, 2007) provided a detailed review of some of 
the terminology of gastroliths. We reprise that review here 
and discuss additional terminological issues not covered by 

Wings. Thus, our focus is on these terms: gastrolith, geophagy, 
lithophagy, gizzard, grit and stone.

Though its first use apparently was by Mayne in 1854 
(Baker, 1956), the term gastrolith (Greek gastros, stomach and 
lithos, stone) has only been in frequent use since the early 1900s. 
In some of the literature, particularly that dealing with extant 
animals, the terms “stomach stone” and “gizzard stone” are used 
interchangeably with gastrolith. In dictionaries of geological 
terms, gastroliths are usually referred to as “stomach stones” 
used as “an aid to digestion” (Whitten and Brooks, 1983, p. 198, 
428; Currie, 1997), and some note that “such stones acquire a 
rounding and polish” (Allaby and Allaby, 1991, p. 152). Thus, 
AGI (1960, p. 119; 1974, p. 201) defines gastroliths (in 1960) 
and stomach stones (in 1974) as “highly polished, well-rounded 
pebbles associated with saurian skeletons,” even though 
gastroliths are often associated with many non-reptilian (non-
“saurian”) tetrapods. 

“Gastrolith” has also been applied in an extensive literature 
to calcic/phosphatic accretions that form inside the bodies of 
some decapod crustaceans (lobster and crayfish) just before 
molting (ecdysis) (Huxley, 1880). The crustaceans remove 
CaCO3 from their exoskeletons to form these “gastroliths” and 
usually reabsorb them after molting (Tucker and Tucker, 2018). 
Found as fossils in the Eocene of Texas and Louisiana, these 
“gastroliths” have received the taxonomic name Wechesia pontis 
(Frizzell and Exline, 1958; Frizzell and Horton, 1961). Frizzell 
and Exline (1958) noted that, to avoid confusion, these structures 
should be referred to as “crustacean gastroliths.” Importantly, 
they should be regarded as part of the body (a derivative of the 
exoskeleton) of the crustaceans that produced them, not as trace 
fossils.

Skoczylas (1978) referred to gastroliths as “pebbles, stones 
and gravel residing in the alimentary tract.” Johnston and 
Enter (1999, p. 507) stated that gastroliths are “usually made 
of silicates and are rounded, highly polished and have a waxy 
feel.” Schmeisser and Gillette (2009, p. 453) presented a simple 
definition of gastrolith: “gastroliths are stones ingested by extant 
and extinct animals that are retained in the digestive tract.” 
Schmeisser and Flood (2008, p. 72) defined “paleogastrolith” as 
“stomach stones associated exclusively with extinct animals.” 
However, we do not make such a distinction, as the gastroliths 
of extinct animals are, in principle, the same as those of extant 
animals in terms of origin and function (actualism). 

Wings (2007, p. 2) defined gastrolith as “a hard object 
of no caloric value (e.g., a stone, a natural or pathological 
concretion) which is, or was, retained in the digestive tract of an 
animal.” This brings the “crustacean gastroliths,” pathological 
concretions that form in some mammal’s stomachs (“Bezoar 
stones:” DeBakey and Ochsner, 1939; Tomassini et al., 2019; 
Rothschild and Biehler-Gomez, 2021) and swallowed “stones” 
(sand/gravel) together under the single term gastrolith. So, it 
refers to objects formed by three very different processes. We 
do not endorse that definition, as it groups together three kinds 
of objects with different origins and function, so we prefer to 
restrict the term gastrolith to sand and/or gravel swallowed by 
an animal and retained in the digestive tract.

Because Wings (2007) grouped objects with different 
origins under the single term gastrolith, he proposed to add 
prefixes to the word gastrolith to create terms that identified their 
different origins: “bio-gastrolith” for the calcareous concretions 
formed in the bodies of some crustaceans; “patho-gastrolith” 
for concretions formed in the stomach pathologically; and 
“geo-gastroliths” for swallowed rock particles. These terms 
are unnecessary if gastrolith is restricted to the meaning we 
advocate, which is the same as Wing’s “geo-gastrolith.”

Wings (2007) also advocated using the term “exolith” for 
“stones” that might be gastroliths but lack a convincing skeletal 
association. This term, however, enshrines the widespread 
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misconception that highly polished “stones” are gastroliths, 
regardless of any skeletal association (see later discussion). It 
also lacks specificity, as any polished “stone” anywhere could be 
called an exolith. Thus, we do not use the term exolith.

The terms lithophagy and geophagy have also been applied 
by some to refer to the process of acquiring gastroliths, and 
some use them interchangeably (e. g., Sokol, 1971; Skoczylas, 
1978). Lithophagy has a standard definition as the ingesting 
of “stones” to aid in digestion. But, geophagy refers to eating 
earth, particularly chalk or clay, and especially by humans, 
though some nonhuman animals (such as some bats) do engage 
in geophagy (e.g., Abrahams, 2003). The consumption of 
earth is either as a dietary supplement or is an eating disorder 
(Geophagia). Geophagy should not be used in reference to the 
ingestion of “stones,” which is correctly called lithophagy.

When Brown (1904) suggested that plesiosaur gastroliths 
resided in a “gizzard-like arrangement,” Eastman (1904) 
rebuked him, stating that only birds have gizzards (see below). 
In birds, the gizzard (ventriculus or muscular stomach: Figs. 16-
17) is an anatomical structure separate from and posterior to the 
stomach (Romer and Parsons, 1977, figs. 272C, 273E). Other 
vertebrates lack such a structure. Nevertheless, the term gizzard 
(or “pyloric gizzard”) has been applied by some workers to a 
distinct muscular compartment of the posterior portion of the 
stomach in crocodiles (e.g., Pernkopf, 1929; Sokol, 1971; Romer 
and Parsons 1977; Luppa, 1978; Skoczylas, 1978; Parson and 
Cameron, 1997; Schwenk and Rubega, 2005). This is because 
the crocodilian stomach has two chambers, fundus and pyloris, 
and the pyloric part is sometimes called a gizzard (Varrichio, 
2001, argued that such a two-part stomach is a synapomorphy 
of archosaurs).

Sokol (1971, p. 70) stated that in crocodiles “the posterior 
end of the stomach [is] modified to form a distinct gizzard.” This 
“pyloric gizzard” of crocodiles may be homologous with the 

true gizzard of birds, but there are real questions about whether 
the primary function of gastroliths in crocodiles is to grind food, 
as it is in the birds (see below). Therefore, we would rather not 
say that crocodilians have (had) a gizzard, but simply say that 
they retain gravel in a posterior part of the stomach. 

The term grit is widely used to refer to the rock particles 
swallowed by birds (e.g., Gionfriddo and Best, 1999). However, 
grit, generally defined as a hard and sharp (rock) granule, has 
no size specificity except in industrial applications (sandpaper, 
etc.). If we follow the Wentworth scale used by most geologists 
for particle size, gastroliths in living birds, which are about 1-10 
mm in size range, are very fine to coarse sand to granules and 
pebbles (Fig. 18). Gastroliths of plesiosaurs and some dinosaurs 
are larger, as large as cobbles on the Wentworth scale. Thus, we 
do not advocate continued use of the imprecise term “grit” in 
reference to avian gastroliths.

Stone is another imprecise term widely used in the 
gastrolith literature. It has vernacular definitions such as a hard, 
solid, nonmetallic mineral matter that rocks are made of, or a 
hard earthen substance. As the definitions of gastrolith given 
above indicate, the terms gastrolith and stone are often used 
interchangeably. However, like grit, stone has no specific size 
limits, and the sand particles that comprise many gastroliths, 
particularly in birds, would not be called stones. Thus, we 
abandon the imprecise term stone when referring to gastroliths 
and replace it with clast, or with more precise terms based on 
the Wentworth scale, namely sand, granules, pebbles or cobbles 
(Fig. 18).

We do not consider uroliths (bladder stones, kidney stones), 
gallstones or bezoars herein since they are pathologic in origin 
and thus are not technically trace fossils (sensu Bertling et 
al., 2006). However, they could be confused with gastroliths 
(Rothschild and Biehler-Gomez, 2021).

FIGURE 16. A modern bird, indicating the position of the 
esophagus, crop and the gizzard (modified from Zheng et al., 
2011).

FIGURE 17. Comparison of crocodile and bird alimentary tracts 
(modified from O’Connor, 2019). Abbreviations are: cec = ceca; 
cr = crop; eo = esophagus; int = intestines; prv = proventriculus; 
py = pyloric chamber; ven = ventriculus.
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Some History
According to Skoczylas (1978), in 1668 the German natural 

philosopher Henry Oldenburg (1619-1677) described “stomach 
stones” in an extant crocodile. This report by Oldenburg (1668) 
was actually of observations of gastroliths in a caiman made 
by a Dr. Stubbes. Wings (2004) notes that Spallanzini (1785) 
described gastrolith use by birds. Baker (1956) stated that 
Mayne (1854) first used the term Gastrolithus to refer to a “stone 
or calculus in the stomach.” Lequat (1708) may be the oldest 
published reference to gastroliths in an extinct vertebrate. He 
noted their presence in a recently extinct (within historical times) 
bird, the solitaire (Pezophaps) from the Island of Rodrigues, east 
of Madagascar in the Indian Ocean (also see Caldwell, 1875).

Seeley (1877, p. 546) reported gastroliths in a British 
Cretaceous elasmosaur, suggesting that “a structure analogous 
to a gizzard, or the stomach of an edentate, may have used these 
pebbles to assist in breaking up or crushing the food on which 
this saurian lived.” Mudge (1877) made similar observations 
on American plesiosaur gastroliths, though the first American 
plesiosaur skeletal material associated with gastroliths was 
likely collected in the 1860s (Everhart, 2005e).

Real discussion of gastroliths in extinct vertebrates began in 
the early 1900s. Thus, Brown (1904, p. 185) briefly commented 
on stones associated with plesiosaur skeletons in the Cretaceous 
of Kansas, USA, and stated that they had formed a “gizzard-like 
arrangement” used to aid digestion. As noted above, Eastman 
(1904) countered Brown’s idea, arguing that a gizzard is a 
feature exclusive to birds. In contrast, Henderson (1906) stated 
that similar stones are swallowed by extant sea lions and held in 
the stomach, concluding that the diets of plesiosaurs were similar 
to those of the sea lions. Williston (1904), replying to Brown 
(1904), noted that stones are common in the abdominal regions 
of both European and North American plesiosaur skeletons, and 
that the British paleontologist Seeley (1877) had first suggested 
their use in digestion in a “gizzard.” Williston (1904), however, 
did not believe the plesiosaurs swallowed stones to aid in 
digestion, but instead used them as ballast to regulate buoyancy. 

Williston (1906) noted that Mudge (1877) and Williston 
(1891) had described siliceous pebbles associated with 
elasmosaurs from the Upper Cretaceous of Kansas and Wyoming. 
He concluded that “the plesiosaurs had a real, muscular bird-
like gizzard, which utilized the pebbles in whatever way the 
crocodiles may use them” (Williston, 1906, p. 227).

Wieland (1906, p. 820) joined the discussion, “coining” 

the term gastrolith: “stomach stones, or gastroliths, as I shall 
conveniently call them.” (note that Johnston and Enter, 1999, 
erroneously attributed the term to Brown, 1907). Wieland 
noted polished stones associated with a “sauropod” bone 
from the Upper Jurassic of the northern Bighorn Mountains in 
Wyoming-Montana, USA. Wieland (1920) later referred to these 
as “pebbles of a singular smoothness.” Nevertheless, Wieland 
(1906, p. 821) initially regarded the highly polished surfaces 
as primary (polished before they were ingested), not polish 
produced after swallowing, identifying “secondary or gastral 
wear” as producing a roughened surface. 

Cannon (1906) stated that such pebbles were associated 
with Morrison Formation sauropod fossils from Colorado. 
Eastman (1906) expressed further skepticism. In rejoinder, 
Wieland (1907, p. 66), contrary to his earlier opinion, stated 
that in dinosaurian gastroliths “their entire surface may exhibit a 
higher polish than wind or water ever produces.” Brown (1907) 
endorsed the idea of high polish characterizing gastroliths, but 
he expressed doubt about the identity of the dinosaur gastroliths 
described by Wieland. 

This discussion between Brown, Williston, Wieland and 
Eastman set up three ideas about gastroliths that have been 
much discussed in later studies: (1) plesiosaurs had gastroliths 
that were used either for diet or buoyancy control; (2) sauropod 
dinosaurs had gastroliths; and (3) high polish is characteristic 
of gastroliths. What followed for about one century is a diffuse 
literature that has documented gastroliths in various fossil 
vertebrates (particularly plesiosaurs) and a less extensive 
literature that has debated their function. Particularly important 
was the work of Bryan (1931), who cogently argued that high 
polish does not character gastroliths, a conclusion ignored by 
many subsequent workers. 

Much literature has focused on dinosaur gastroliths, in 
particular, identifying clasts without skeletal associations or 
with very loose skeletal associations as gastroliths, simply 
because they are highly polished. Archeologists have followed 
suit, identifying polished sand/pebbles at archaeological sites as 
bird gastroliths, although they lack any association with avian 
bones. And, some geologists have identified dropstones and 
other exotic clasts as gastroliths.

Wings (2004) undertook the first extensive study of 
gastroliths in extinct vertebrates, and his results seem not to have 
been fully appreciated yet. Thus, his work supports the concept 
that high polish does not characterize gastroliths and reinforces 
earlier conclusions that without a plausible skeletal association 
(i.e., mass of stones in the abdominal cavity), no sand/gravel can 
be verified as gastroliths.

Actualistic Basis
Overview

Extensive reviews of gastroliths in extant vertebrates have 
been published (Wickes, 1908; Baker, 1956; Taylor, 1993; 
Whittle and Everhart, 2000; Wings, 2004, 2007), obviating the 
need for a detailed review here. Gastroliths are rare among living 
fishes (a handful of osteichthyans swallow sand and/or gravel to 
grind food, and possible gastroliths in Devonian placoderms are 
discussed by Long and Trinajstic, 2010), and none are known 
among extant amphibians. Among mammals, some pinnipeds 
swallow gravel, likely for buoyancy control (Emery, 1941; 
Fleming, 1951; Taylor, 1993; Wings, 2007). Modern pangolins 
have a muscular stomach and swallow fine gravel that is retained 
in the stomach (e.g., Walker, 1968). In contrast, many living 
reptile and bird species swallow sand and/or gravel. Thus, some 
living turtles, snakes, lizards and crocodilians (see more below) 
swallow sand/gravel, mostly to grind food (Sokol, 1971), and 
many birds (in particular, most herbivorous and omnivorous 
birds) use gastroliths to aid digestion. 

Nevertheless, the distribution of gastroliths is very irregular 

FIGURE 18. Wentworth scale for size of sedimentary particles.
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in extant vertebrates and is often related to the presence of a 
muscular gizzard (Fig. 19). For example, a few species of 
crocodilians swallow gravel, whereas others do not, and, 
in a population of crocodilians that swallow gravel, some 
individuals apparently do not. As Whittle and Everhart (2000, 
p. 77) well observed, “lithophagy in extant turtles, lizards and 
marine Mesozoic diapsids appears to be species-specific.” We 
would add that the literature suggests that swallowing or not 
swallowing sand/gravel can be specific to some individuals 
within a species as well. The literature on extant crocodilian and 
bird gastroliths is most extensive, so we discuss these two taxa 
separately.
Crocodilia

Most of the scientific literature on gastroliths in extant 
reptiles focuses on crocodilians, especially the Nile crocodile 
(Crocodilus niloticus) and American alligator (Alligator 
mississippiensis), two species long known to have gastroliths 
(e.g., Cott, 1961; Neill, 1971). Nevertheless, there has long 
been disagreement over the function of the gastroliths in 
extant crocodilians, divided into those who see them as used in 
digestion to grind food (e.g., Pooley and Gans, 1976) and those 
who advocate that crocodilians use the gastroliths to control 
buoyancy (Cott, 1961).

In a much cited and highly influential article, Cott (1961) 
argued that the gastroliths of living crocodilians were not used 
in digestion but instead increased stability while in water. 
However, Henderson (2003) undertook three-dimensional 
computer modeling of the effects of gastroliths on a crocodilian 
to conclude that they would have little to no effect on buoyancy 
or stability while in water. Thus, the gastroliths in his model 
represent less than 4% of body mass and had much less effect on 
depth of immersion or inclination than did the crocodile simply 
inflating/deflating the lungs. 

Platt et al. (2006) documented that gastroliths are present 
in all of the growth stages (from hatchlings to adults) of at least 
one crocodilian species, and argued that this indicates they are 
not for buoyancy control. Platt et al. (2006) concluded that the 
gastroliths are used to break down ingested prey.

Nevertheless, the idea of buoyancy control by crocodiles 
using gastroliths has had, and continues to have, wide support 
(e.g., Cott, 1961; Seymour, 1982; Grigg and Kirshner, 2015; 
Uriona et al., 2018). Particularly compelling were experiments 
by Uriona et al. (2018) on dive duration by juvenile American 

alligators. As little as 2.5% of body weight in gastroliths 
increased the duration of dives by 88-117%. The reasoning is that 
the gastroliths increase specific gravity, thus allowing a greater 
lung volume in order to prolong the dive. This increases the time 
of submersion and may also be important to the Nile crocodile, 
which normally drowns prey items while submerged (Cott, 
1961). It may also be consistent with the modeling of Henderson 
(2003), as his model indicates the interplay between gastrolith 
mass and lung volume. Furthermore, there seems to be little if 
any direct evidence that extant crocodiles use their gastroliths 
in digestion (see Wings, 2004), so their use in buoyancy by 
crocodiles may be the most well supported function.
Aves

Most of the extant species of vertebrates that swallow sand/
gravel are birds, who use them in a gizzard to aid digestion, 
particularly herbivorous birds (e.g., Pough et al., 2002). After 
birds swallow food, if necessary, they store it in the crop, a 
chamber connected to the esophagus (a ventral pouch anterior to 
the furcula) (Figs. 16, 17). They then pass food into the gizzard 
(ventriculus or muscular stomach) where it can be ground by 
sand/gravel that has been swallowed and stored in that chamber. 
Once processed in the gizzard, the food is passed to the true 
stomach. This differs from crocodilians, whose swallowed 
pebbles go directly to the stomach and, if retained, are then 
stored in the posterior (pyloric) portion of the stomach (see 
above). 

A diverse literature on the gastroliths of living birds exists, 
much of it summarized by Gionfriddo and Best (1999), who 
concluded: (1) most birds swallow sand/gravel to mechanically 
grind and pulverize food in their gizzards, though some sand/
gravel is swallowed for mineral extraction (especially calcium) 
or to stimulate/facilitate digestion; (2) the size of the swallowed 
clasts correlates to body size and ranges in diameter from < 0.1 
mm to > 25 mm (in ostriches: Meinertzhagen, 1954); (3) the 
larger the sand/gravel swallowed, the harder and coarser the 
diet; (4) most birds selectively swallow rough and angular sand/
gravel that can become more rounded in the gizzard; and (5) 
some birds prefer sand/gravel of a certain color (also see Milton 
et al., 1994; Tryon, 2002).

As noted above, in the ornithological literature, the clasts 
swallowed by birds are usually referred to as “grit.” However, 
on the Wentworth size scale they are very fine sand to gravel 
(Fig. 18). 

Fritz et al. (2011) demonstrated that gizzard-based reduction 
in particle size in herbivorous birds is as efficient as mastication 
by herbivorous mammals (also see Moore, 1999). Thus, the 
evolution of the avian gizzard presents a solution for birds to the 
problem of how to grind vegetation to produce more effective 
digestion (and secondarily compensating for the loss of teeth).

Function of Gastroliths
A variety of functions have been suggested for gastroliths, 

only two of which are of significance: use in digestion to 
grind, pulverize and/or disintegrate food or use as ballast for 
buoyancy control (see Wings, 2004, 2007, for a thorough 
review). Some gastroliths are swallowed while feeding, either 
by accident (mostly by herbivores browsing close to the ground) 
or incidentally as the gastroliths inside of a prey item that was 
consumed. 

The function of gastroliths in terrestrial tetrapods seems 
clear–they are used in digestion. But, in aquatic tetrapods, a 
digestive function and/or use as ballast for buoyancy control have 
been advocated and have long been a source of disagreement. 

Taylor (1993, 1994) studied the distribution of gastroliths in 
extant and extinct aquatic tetrapods to conclude that the stones 
were swallowed as ballast for buoyancy control. Thus, his analysis 
indicated no correlation between the possession of gastroliths 

FIGURE 19. Simplified vertebrate phylogeny showing the 
distribution of the muscular gizzard (after O’Connor, 2019).
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and diet among marine tetrapods. However, according to Taylor, 
the gastroliths do correlate with a mode of locomotion called 
“underwater flying,” employed by the Mesozoic plesiosaurs, 
and now by sea lions and penguins. Taylor noted that crocodiles 
may also swallow stones for ballast (see above), but aquatic 
tetrapods that use the hind limbs or caudal fin for propulsion 
(ichthyosaurs, mosasaurs, some pinnipeds and cetaceans) do not 
swallow stones. Taylor reasoned that the stones are much denser 
than bone, so they provide an efficient way to take on ballast 
that can also be released by vomiting and thus provide for rapid 
regulation of buoyancy.

Nevertheless, gastroliths have been recognized in 
swimmers that are/were not underwater flyers, including 
some cetaceans and seals (see review by Wings, 2007). This 
contradicts the correlation between gastroliths and a specific 
mode of locomotion (underwater flying) in marine tetrapods, 
and thus undermines Taylor’s (1993, 1994) conclusion that these 
gastroliths were used only for buoyancy control (Wings, 2007). 
Indeed, as discussed further below, the case for plesiosaurs using 
gastroliths for buoyancy control is a weak one. It seems likely 
that some crocodiles and marine mammals use/used gastroliths 
for buoyancy control, but all other gastrolith-bearing vertebrates 
appear to have used them in digestion.

Does High Polish Characterize Gastroliths?
Identification of fossil gastroliths is only certain when the 

sand/gravel are found as a concentrated mass in an anatomically 
plausible position within the abdominal region of a fossil 
skeleton. This conclusion has long been advocated by various 
authors (e.g., Bryan, 1931; Dorr, 1966; Lucas, 2000; Wings, 
2004, 2007; Schmeisser and Flood, 2008). Nevertheless, many 
pebbles and granules are identified as gastroliths that lack such 
a skeletal association.

The idea that high polish characterizes gastroliths, first 
articulated by Wieland (1906) and Brown (1907), has dominated 
the quest to recognize gastroliths that lack a skeletal association. 
Indeed, many authors state a priori that gastroliths are highly 
polished. For example, Johnston et al. (1994, p. 159), who 
asserted that “a particularly striking characteristic of gastroliths 
is that they are highly polished.” This, despite the fact that the 
gastroliths of living birds are not highly polished nor are most 
bona fide fossil gastroliths, especially those of plesiosaurs.

In a classic review of ventifacts, Bryan (1931) stated that 
the high polish of so-called gastroliths from the Upper Jurassic 
Morrison Formation in the western USA must have been 
acquired after the pebbles left the gastrointestinal tracts of the 
dinosaurs. He based this argument on the observation that quartz 
pebbles from the gizzard of an extant turkey are not polished, but 
instead have a “matte” or “frosted” surface texture of numerous 
conchoidal fractures produced by the impact of the pebbles 
against each other. As Bryan (1931, p. 36) noted, “the pebbles in 
a bird’s gizzard click together and are abraded by impact” and 
that “they attained a smooth but not polished surface…formed 
by innumerable impact fractures.” Bryan (1931) concluded that 
most so-called gastroliths are actually wind-polished stones 
(ventifacts).

Dorr (1966, p. 272) concurred with Bryan and stated 
that “no smooth, rounded, or even highly polished stones can 
be identified as gastroliths unless they are found within the 
fossilized skeleton of an animal in an area formerly occupied by 
the digestive tract.” Miller (1987) also agreed, noting that many 
polished and rounded ventifacts from the Pleistocene of New 
Jersey are identical to so-called gastroliths. And, Schmeisser and 
Flood (2008, p. 72) well observed that “conclusive identification 
of paleogastroliths not associated with skeletal remains continues 
to be problematic.”

Actualistic studies convinced Wings and Sander (2007, p. 
637) that “natural stones taken up by a bird will not develop any 

polish in its gastric mill.” Indeed, Wings (2009) simulated an 
avian gastric mill, and it did not polish stones. This is contrary 
to Hoskin et al. (1970), who claimed, without analysis, that the 
longer the stones are in a bird’s gizzard the more rounded and 
polished they become. Rounded, yes (see Gionfriddo and Best, 
1999), but polished, no.

Despite these conclusions, the literature abounds in diverse 
identifications of polished “stones” as gastroliths where there 
is no skeletal association. Particularly striking are identification 
of dinosaurian gastroliths in Cretaceous strata of Kansas and 
Minnesota, USA, hundreds of kilometers from the nearest 
coeval dinosaur bones (Schaffner, 1928; Stauffer, 1945). 

Various studies of gravel clasts from the Upper Jurassic 
Morrison Formation that lack a skeletal association have claimed 
that particular types or a high degree of polish characterize 
gastroliths (Kemp, 1936; Minor, 1937; Frison, 1939; Brown, 
1941; Salo, 1942; Greene, 1956; Sperry, 1957). These clasts 
are usually seen as out of sedimentological context–granules, 
pebbles or cobbles in fine-grained sediments. They are mostly 
siliceous (quartz, chert, quartzite) and highly polished (Fig. 20). 
Stokes (1942) first expressed skepticism about these Morrison 
Formation “gastroliths,” suggesting that they are actually stream 
or pediment gravels polished by the wind (ventifacts). He based 
this largely on their lack of association with dinosaur skeletons, 
and the fact that they are not coextensive geographically or 
stratigraphically with the Morrison Formation (they tend to be 
concentrated in the upper part of the formation). 

Stokes (1964) later reported a Morrison Formation 
sauropod skeleton from Utah with “stomach contents,” though 
the identification of the stomach contents is open to question 
(Hunt and Lucas, 2014). He noted that “here and there are small 
rounded pebbles of amorphous siliceous material that may have 
been ingested as lumps of clay” (Stokes, 1964, p. 576) but no 
gastroliths. Nevertheless, Stokes (1987) subsequently changed 
his mind about polished siliceous pebbles of the Morrison 
Formation, accepting their origin as gastroliths, though he noted 
that there are no gastroliths in the extensive Cleveland-Lloyd 
dinosaur bonebed in Utah (nor are they present in abundance in 
any of the extensive Morrison bonebeds: Lucas, 2000; Wings 
and Sander, 2007; Wings, 2015b). Petrographically, according to 
Stokes, these pebbles had an origin to the west of the Morrison 
depositional basin. 

The most recent addition to the analysis of such Morrison 
“gastroliths” is Malone et al. (2019, 2021). They examined three 
red quartzite pebbles from the Morrison Formation in Utah that 
lack any skeletal association, but identified them as dinosaur 
gastroliths. According to Malone et al. (2019, 2021), the detrital 
zircons in these pebbles are most similar to Neoproterozoic 
red quartzite from the Lake Superior region (well to the east 
of the Morrison depositional basin), though they do note that 
there is Neoproterozoic red quartzite in the Cordilleran belt 
from California to Idaho. In contrast, we regard as questionable 
identifying three isolated quartzite pebbles as gastroliths. 
Furthermore, the sample size is too small to identify what 
seems a highly unlikely source area for these pebbles hundreds 
of kilometers east of the Morrison depositional basin, in which 
paleoflow was mostly to the east.

Highly polished stones without any skeletal association 
from the Lower Cretaceous Cloverly Formation of Wyoming-
Montana have also been called gastroliths (Hares, 1917; Stokes, 
1942, 1944, 1952, 1987). But, various workers (e.g., Moberly, 
1960; Mirsky, 1962; Ostrom, 1970) doubted that attribution. 
Relatively recently, Zaleha and Wiesemann (2005) argued that 
the highly polished siliceous clasts in the Cloverly Formation 
were simply polished by transport in ash-laden hyperconcentrated 
flows. Given the volume of volcanic detritus in the Morrison 
Formation, and the similarities between the Morrison and the 
Cloverly fluvial systems, it seems likely that transport in ash-
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laden hyperconcentrated flows could also have polished many 
of the “gastroliths” from the Morrison Formation. 

Two methods have been used to document and/or quantify 
the polish of supposed gastroliths: high magnification of 
surface textures by SEM and measuring reflectance. The 
SEM examination has brought inconsistent results. Thus, 
Chatelain (1991, 1993) studied the surface texture of more 
than 400 Morrison formation “gastroliths” to conclude they 
show a “diagnostic, grid-like pattern of shallow, fine scratches 
on the highly polished surfaces,” which could be duplicated 
by tumbling similar stones with conifer and cycad foliage. 
Unfortunately, his work was only published in two abstracts and 
not further documented.

Whittle and Onorato (2000) concluded that gastroliths show 
pronounced pitting and rill-like features at 50 x magnification. 
Schmeisser and Flood (2004, 2008) treated the pebbles 
associated with the partial skeleton of the Late Jurassic sauropod 
dinosaur “Seismosaurus” as bona fide gastroliths (but see Lucas, 
2000) and concluded that ostrich gastroliths are highly pitted, 
lapidary stones have deep gouges, fluvially polished stones 

have rough textures and multiple cresentric gouges, and the 
Seismosaurus “gastroliths” have curved and parallel polish 
grooves. They argued that small particles and stomach muscle 
movement produced the polish grooves. Schmeisser and Flood 
(2004, 2008) concluded that such “polish grooves” diagnose 
gastroliths, in contrast to the results of Chatelain (1991, 1993) 
and Whittle and Onorato (2000).

Johnston et al. (1990, 1994), Manley (1989, 1991a, b, 1993) 
and Cox (1994, 1997, 1998) used video and laser instruments 
to scatter light from known gastroliths, suspected gastroliths 
and other “stones” to quantify surface polish (concentrated 
reflectance = high polish). Manley (1991b) argued that pebbles 
not associated with bones can be identified as gastroliths if they: 
(1) have high polish; (2) come from stratigraphic units with 
fossils of known “stone” swallowers; and (3) the “stones” are 
not in their perceived lithologic or sedimentological context. She 
quantified polish using a profilometer and laser light scattering. 
The profilometer measures smoothness, whereas laser light 
scattering measures light reflectance. 

However, the methodology of all of these studies is 
questionable. For example, Schmeisser and Flood (2004, 2008) 
did not control for rock type in their comparisons. And, Lucas 
(2000) noted that Manley’s (1991b, 1993) analysis needs to 
be repeated with unquestioned gastroliths, and the gastroliths 
should be compared to fluvial clasts of identical petrology. 
Significantly, none of the researchers who claim that high polish 
characterizes gastroliths actually compared the polish on bona 
fide gastroliths to the polish on bona fide ventifacts. 

Darby and Ojakangas (1980, p 549) expressed skepticism 
about the diagnostic utility of high polish and used the term 
“gastromyth” to refer to stones thought to be gastroliths of 
uncertain origin (also see Lucas, 2000). Everhart (2005c, fig. 
7.8; 2017, fig. 7.13; also see Cicimurri and Everhart, 2001) 
documented plesiosaur gastroliths with conchoidal fractures that 
he inferred were formed by the stones hitting one another while 
in the plesiosaur’s digestive tract (Fig. 21). Again, Wings (2009) 
simulated a bird gastric mill, and it did not polish stones.

Gastroliths have also been invoked as a possible biogenic 
source of dropstones (lonestones), but we are not aware of any 
specific cases of a dropstone being definitively identified as a 
gastrolith (e. g., Hawkes, 1951; Bennett et al., 1996; Ahlberg 
et al., 2002). In the Lower Cretaceous Wessex Formation of 
England, a Late Jurassic ammonite steinkern was considered to 
be a regurgitated gastrolith by Martill and Baker (2000). Other 
polished stones in the British Lower Cretaceous have also been 
identified as dropstones or gastroliths (Radley, 1993, 1994, 2005; 
Sweetman and Underwood, 2006). However, identification of 

FIGURE 21. A plesiosaur gastrolith showing scratch marks 
inferred to have been made by adjoining gastroliths while the 
clasts were in the alimentary tract of the plesiosaur. Photograph 
courtesy of Mike Everhart.

FIGURE 20. A, Siliceous fluvially-transported pebbles 
(conglomerate) in sandstone, Jackpile Member of Morrison 
Formation (Upper Jurassic), central New Mexico. B, Some of 
the supposed gastroliths of the Morrison sauropod dinosaur 
“Seismosaurus” from the Brushy Basin Member of the Morrison 
Formation (Upper Jurassic), central New Mexico.
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these clasts as gastroliths is primarily based on their high polish, 
not on any skeletal association, so their identity as gastroliths is 
open to question. 

Ernst et al. (1996) identified the stones in a Cenomanian 
pebble bed from the Saxony basin in Germany as scattered 
gastroliths, largely because they are highly polished (also see 
Wilmsen and Nieburh, 2002; Kruger, 2003). Bartholommäus et 
al. (2004) interpreted these stones as plesiosaur gastroliths that 
came from sources about 300 km distant. However, these stones 
lack a skeletal association, so we are skeptical of their origin as 
gastroliths. 

The important point, echoing Bryan (1931), is that there are 
various ways to polish stones, notably by the wind to make them 
ventifacts (there is even tectonic polish: Clifton, 1965). Polished 
clasts identified as gastroliths are siliceous, mostly quartz or 
chert. These clasts could have been polished by wind and/or 
water, both before ingestion by an animal and/or after excretion 
or other removal from an animal’s digestive tract. Furthermore, 
how a stomach or gizzard would polish siliceous clasts (which 
are very hard) is also unclear, and such polishing does not occur 
in extant birds. Only a small minority of bona fide gastroliths, 
particularly those of plesiosaurs, are highly polished (also see 
Rothschild and Biehler-Gomez, 2021, especially their figure 
9). M. Everhart (written commun., 2021) notes that plesiosaur 
gastroliths are only temporary in the plesiosaur, being ground 
down by use until the remaining clasts are small enough to pass 
out of the gut. Thus, the gastroliths would need to be periodically 
replaced, and an accumulation of gastroliths inside a plesiosaur 
specimen would have included a mixture of material of various 
ages.

There is thus an inability to establish when and where 
the clasts were polished, and inferring that they acquired their 
polish while gastroliths is not supported by actualistic studies of 
gastroliths. The idea that any highly polished clast is a gastrolith 
needs to be abandoned. 

Gastroliths in Fossil Vertebrates
Introduction

Diverse fossil vertebrates of late Permian to Pleistocene 
age are associated with gastroliths. The most extensive and well 
documented record comes from plesiosaurs, the long-necked 
marine reptiles of the Mesozoic. Though there are relatively few 
bona fide gastrolith-dinosaur associations, a diverse literature 
has been published on dinosaur gastroliths, a good example of 
the Taxophile Effect. Some fossil birds have gastroliths, and, 
importantly, exceptionally preserved specimens from China 
document that both the crop and the gizzard had already evolved 
in birds during the Early Cretaceous. 
Plesiosaur gastroliths

Plesiosaurs have the most extensive and unambiguous 
gastrolith record of any fossil vertebrates (Fig. 22). Since the 
1870s (e.g., Seeley, 1877; Mudge, 1877), numerous articulated 
or semi-articulated skeletons have been collected with closely 
associated clasts of granule to cobble size, often aggregated as 
masses in the abdominal cavity. O’Gorman et al. (2014) also 
noted that several plesiosaurs have been documented with sand 
in their abdominal cavities, indicating that not just gravel was 
being swallowed (e.g., Andrews, 1910; O’Keefe et al., 2009). 

Indeed, more than a century ago, Williston (1904) stated 
that he knew of at least 30 plesiosaur skeletons from Europe 
and North America with gastroliths, and many more have been 
described since. There is now an extensive literature on plesiosaur 
gastroliths, mostly from the long-necked elasmosaurids (e. g., 
Riggs, 1939; Welles and Bump, 1949; Shuler, 1950; Storrs, 
1981; Nicholls, 1988; Chatterjee and Small, 1989; Matsumoto et 
al., 1982; Nakaya, 1989; Stewart and Martin, 1993; Ludvigsen 
and Beard, 1994, 1997; Cicimurri and Everhart, 2001; Everhart, 

2000, 2005e-f; Whittle and Everhart, 2000; Everhart, 2004a; 
Schumacher and Everhart, 2005; McHenry et al., 2005; 
Thompson et al., 2007; Liggett, 2005; Sato et al., 2006; 
Druckenmiller and Russell, 2008; Cerda and Salgado, 2008; 
O’Gorman et al., 2012, 2013, 2019), but also from the short-
necked forms (e.g., Andrews, 1910; Fraas, 1910; Zhuravlev, 
1943a, b; Ritchie, 1991; Taylor, 1992; Sato and Storrs, 2000; 
Schumacher, 2007; Smith, 2007; Druckenmiller and Russell, 
2009; O’Keefe et al., 2009; Schmeisser and Gillette, 2009; Kear, 
2016). Gastroliths have thus been documented in the plesiosaur 
families Pliosauridae, Rhomaleosauridae, Elasmosauridae and 
Polycotylidae. Clearly, there are more elasmosaurid records 
than of other families, but the pattern of gastrolith possession in 
plesiosaurs is complex, as it is in other tetrapod groups. Space 
prevents a review of all of these examples, most of which are 
very well documented, so we add texture by detailing a few here. 

Riggs (1939, fig. 113) described an elasmosaurid specimen 
from the Upper Cretaceous of southeastern Montana that had 
206 granitic clasts, 20-102 mm in diameter, scattered around 
the coracoids and paddles. He described them as “rounded and 
smooth, but in no case do they have a high polish” (Riggs, 1939, 
p. 390). 

Welles and Bump (1949) described a skeleton of an 
elasmosaurid from the Upper Cretaceous of South Dakota that 
had 254 siliceous clasts massed in an area of 194 cm2 and 18 
cm deep immediately anterior to the pelvis and ventral to some 
dorsal vertebrae. These clasts (Welles and Bump, 1949, p. 523, 
fig. 2) were mostly quartzite, 11-128 mm in diameter and had 

FIGURE 22. Two masses of gastroliths from Cretaceous 
elasmosaurids. Photographs courtesy of Mike Everhart.
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“no luster or polish.”

Shuler (1950, p. 18, figs. 11, 14) described an elasmosaurid 
skeleton from the Upper Cretaceous of Texas that, within the 
rib cage, contained at least 70 siliceous clasts that “range in size 
from well-worn, rounded and highly polished pebbles, half an 
inch [12.7 mm] in section, to a large rectangular block of flint–2 
by 4 inches [50 x 100 mm] and weighing almost a pound–with 
a rough unaltered surface.” Shuler (1950, p. 18) claimed that 
“an alternating rhythmic squeeze of great gizzard muscles gave 
the flints their beautiful polish.” He also observed that “close 
association with an actual skeleton is the only direct proof” 
that such clasts are gastroliths. Darby and Ojakangas (1980) 
documented the 197 gastroliths associated with an elasmosaurid 
skeleton from the Upper Cretaceous of Montana. They noted 
that among these gastroliths, which they concluded resemble 
river cobbles, sphericity decreases with size. These gastroliths 
were mostly quartzite with a dull finish. 

Cicimurri and Everhart (2001) documented an elasmosaurid 
with a mixture of fish bones and gastroliths posterior to the 
pectoral girdle. These are 95 gastroliths up to 151 mm in diameter, 
and they are shaped as disks, spheres or cylinders. Those made 
of chert were polished, but those made of quartzite had a dull, 
pitted texture. They concluded that the association of food and 
stones demonstrates a dietary function for the gastroliths. 

In a polycotylid plesiosaur skeleton from the Upper 
Cretaceous of Utah, Schmeisser and Gillette (2009) reported 
289 pebbles up to 34.5 mm diameter with varied degrees of 
polish. However, we note that these pebbles were scattered, not 
concentrated in a mass inside the abdominal cavity, so it is not 
certain that they are gastroliths. 

From these details and a review of the other literature 
on plesiosaur gastroliths, we can conclude that: (1) many 
plesiosaurs used gastroliths, especially elasmosaurids; (2) 
plesiosaur gastroliths are numerous in one individual (usually 
50-200 pebbles, but as many as 793 in one individual: O’Gorman 
et al., 2014), show a wide range in size (up to 170 mm maximum 
diameter: Everhart, 2005c) and are mostly siliceous pebbles of 
varied shapes; (3) most plesiosaur gastroliths are not highly 
polished; and (4) plesiosaur gastroliths are mostly found in the 
posterior part of the abdominal region, but it is not certain whether 
the plesiosaur held them in a separate structure (“gizzard”) or in 
the posterior region of the stomach, like modern crocodiles.

Gastroliths have provided important inferences about 
plesiosaur behavior. Thus, in the American Late Cretaceous, 
plesiosaurs generally swam above muddy or chalky sea floors 
that offered no clasts of the same lithology as their gastroliths. 
Analysis indicates that such clasts as bedrock were often 
hundreds of km (maximum estimate = 600 km: Cicimurri and 
Everhart, 2001) distant from the location of the plesiosaur fossil 
skeleton with gastroliths (e.g., Cicimurri and Everhart, 2001; 
Everhart, 2005e; McHenry et al., 2005; and see Vincent et al., 
2017 for a Jurassic example). Furthermore, as was first noted 
by Darby and Ojakangas (1980), the gastroliths of plesiosaurs 
resemble river cobbles. Thus, O’Gorman et al. (2013, 2014) 
demonstrated that the sphericity metrics of plesiosaur gastroliths 
(Darby and Ojakangas, 1980; Everhart, 2000; Cerda and 
Salgado, 2008; O’Gorman et al., 2012) show a close similarity 
to fluvial pebbles (cf. Dobkins and Folk, 1970). This, and the 
fact that many plesiosaur skeletons with gastroliths are found 
in marine shale and chalk units that are hundreds of km from 
a possible source of pebbles, indicate that plesiosaurs were 
prodigious swimmers that likely went very close to shore or 
ashore to swallow stones in estuaries or along river courses. As 
O’Gorman et al. (2014) noted, this also suggests that habitat 
partitioning by adult (deep offshore) and juvenile (shallow 
nearshore) plesiosaurs (advocated by Wiffen and Moisley, 1986; 
Wiffen et al., 1995) could only have happened part of the time.

Less clear has been the function of plesiosaur gastroliths. 

As already noted, the first observers (Seeley, 1877; Mudge, 
1877) inferred that plesiosaur gastroliths were used as an aid 
to digestion (also see Martin and Kennedy, 1988). But, as 
already discussed, Taylor (1993, 1994; also see Sander et al., 
1997; Lingham-Soliar, 2000) argued for their use as ballast 
for buoyancy control. Nevertheless, Reiss and Frey (1991) 
reviewed underwater flight in plesiosaurs and concluded that 
ballasting was not needed for buoyancy control. Storrs (1993, 
p. 74) stated that plesiosaur gastroliths were ballast “needed to 
maintain a neutrally buoyant position within the water column” 
but suggested they may also have had a digestive function.

Cicimurri and Everhart (2001) made the very cogent 
observation that the gastroliths of plesiosaurs represent only 
1-2% of total body mass, so their function in buoyancy control 
seems unlikely (also see Everhart, 2005e). Henderson (2006) 
undertook three-dimensional modelling of plesiosaur swimming 
and rejected a role for gastroliths in buoyancy control. Henderson 
(2006) thus documented that if the gastroliths amount to less 
than 10% of the body mass of the plesiosaur (which is always 
the case), they would have had a negligible effect on buoyancy. 
Yet, he did find that the gastroliths suppressed the dorso-ventral 
oscillation of the head and neck in floating elasmosaurids. 

The function of plesiosaur gastroliths has been debated 
for more than a century. The current “consensus” favors their 
use in digestion, not in buoyancy control. However, most other 
tetrapods (especially birds) that use gastroliths for dietary 
purposes are herbivores. Plesiosaurs, like crocodiles, were not 
herbivorous, so whether or not these predatory marine reptiles 
would use gastroliths to grind their food is not above discussion. 
As suggested by Storrs (1993), the possibility that plesiosaurs 
used gastroliths for both digestion and some amount of buoyancy 
control remains plausible. More research is needed here.
Dinosaur gastroliths

An extensive literature has been published on dinosaur 
gastroliths, even though there are relatively few records of bona 
fide dinosaurian gastroliths; indeed, only a few taxa of dinosaurs 
had demonstrable gastroliths. These taxa are some prosauropods, 
sauropods, theropods, an ornithopod and some members of the 
ceratopsian genera Yinlong and Psittacosaurus. 

Most impressive are the gastroliths found in the skeletons 
of some prosauropod dinosaurs, notably Massospondylus from 
the Lower Jurassic of southern Africa (Bond, 1955; Raath, 1974; 
Cooper, 1981). Thus, Raath (1974, p. 4) described as many as 50 
subrounded “more or less polished” stones inside the rib cages 
of articulated skeletons of Massospondylus. According to Raath, 
these were composed of quartz, quartzite and chalcedony, used to 
grind food and were stream pebbles chosen by the prosauropod. 
These gastroliths have been viewed as forming “gastric mills” 
for pulverizing and disintegrating the vegetation eaten by the 
herbivorous prosauropods (Galton, 1976, 1985, 1986).

Nevertheless, prosauropods are a group of dinosaurs with a 
Pangea-wide distribution during part of the Late Triassic-Early 
Jurassic, and few had demonstrable gastroliths. Weems et al. 
(2007) argued that stones without any skeletal association from 
the Upper Triassic of Virginia, USA, were likely prosauropod 
gastroliths. These were mostly quartzite with moderate to 
high polish, up to 105 mm diameter and unlike nearby fluvial 
conglomerate pebbles. But, given the lack of any skeletal 
association, we see this as a problematic record.

The case for gastroliths in sauropod dinosaurs is a weak 
one, despite the fact that a diverse literature identifies gastroliths 
in these, the largest of all terrestrial tetrapod herbivores (see, for 
example, Christiansen, 1996). Calvo (1994) first drew attention 
to this, noting that Wieland’s (1907) original report of sauropod 
gastroliths was actually of clasts near a stegosaur skeleton 
(Brown, 1907). Calvo (1994, p. 206) concluded that the evidence 
of gastroliths associated with sauropod bones is “very restricted 
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to fragmentary sauropod remains; thus, these evidences should 
be interpreted with caution” (also see Lucas, 2000).

Wings and Sander (2007) accepted that some sauropods had 
gastroliths but argued that these dinosaurs lacked a gastric mill 
as is found in birds. They thus noted that in examples that they 
considered bona fide gastroliths in sauropods (“Seismosaurus,” 
Cedarosaurus, Dinheirosaurus) the stones are much less than 
0.1% of body mass, whereas in herbivorous birds they are 1% of 
body mass. They also noted that autochthonous sauropod bone 
beds lack gastroliths, as did Calvo (1994), Lucas (2000) and 
Wings (2015b). 

Wings (2015b) reviewed the classic dinosaur bonebeds in 
the Upper Jurassic Morrison Formation (Bone Cabin quarry, 
Cleveland-Lloyd quarry, Como Bluff, Dinosaur National 
Monument, Dry Mesa quarry, Howe quarry) and stressed 
the almost total lack of any evidence of sauropod gastroliths, 
even from articulated/semi-articulated sauropod skeletons in 
these bonebeds. Indeed, once you eliminate the taphonomic 
possibilities for gastrolith removal, these quarries generally lack 
gastroliths. 

We should note, however, that the case for gastroliths in 
“Seismosaurus” is unconvincing (Lucas, 2000, and see below). 
Dinheirosaurus has a convincing record of gastroliths according 
to Wings and Sander (2007), but no gastroliths are mentioned in 
the original description by Bonaparte and Mateus (1999), and 
they have not been otherwise documented.

Galton (1986) and Farlow (1987b) accepted a gastric mill 
in sauropods based on the reports of Janensch (1929), Cannon 
(1906) and Brown (1941), although these are unconvincing 
records of one or a few polished stones associated with a 
sauropod fossil (see below). Bakker (1971, 1980, 1986), like 
Galton and Farlow, argued that sauropod heads and dentitions 
were so small that they needed a gastric mill to digest the vast 
amounts of vegetation such behemoths consumed (also see 
Weishampel and Norman, 1989; Taggart and Cross, 1997; 
Upchurch and Barrett, 2000). This found its fullest expression 
in Bakker (1986, p. 126-138), who presented a lengthy argument 
for gastroliths in sauropods largely based on his idea that they 
were endothermic and lacked the masticatory apparatus to 
process the large quantities of vegetation they ate. He envisioned 
huge gizzards in sauropods but admitted that direct evidence of 
sauropod gastroliths was sparse. Indeed, sauropods likely used 
fermentation to process large amounts of consumed vegetation 
according to Wings and Sander (2007), as the ability to process 
vegetation in the mouth was minimal, and there is no compelling 
evidence of a gastric mill in any sauropod. 

Cannon’s (1906) claim of sauropod gastroliths was never 
documented. Janensch (1929) described supposed “gastroliths” 
(German: Magensteine) associated with some of the Jurassic 
sauropod bones at the famous East African dinosaur locality 
Tendaguru. These were composed of gneiss or quartz, rounded, 
not polished and up to 60 mm in diameter. However, all 
were isolated clasts found in proximity to vertebrae, so their 
identification as gastroliths is questionable. 

Bird (1985, p. 65) published a photograph of about 64 
polished siliceous cobbles between the pelvis and ribs of one 
sauropod skeleton at the Howe quarry in the Upper Jurassic 
Morrison Formation in Wyoming, USA. Farlow (1985) and 
Schwartz et al. (2007) accepted this as a record of sauropod 
gastroliths, and it may be the first published substantiation of 
gastroliths in a sauropod skeleton, though this is difficult to 
confirm without additional documentation.

Calvo (1994) mentioned a complete skeleton of 
Rebbachisaurus from the Cretaceous of Argentina associated 
with six igneous rocks that he identified as likely gastroliths. 
Calvo and Salgado (1995, p. 27) described this fossil but only 
provided minimal information about the gastroliths, namely that 
the igneous rocks “have roughened and rugose surfaces.” We 

regard this supposed gastrolith record as questionable.
Gillette (1990, 1991, 1994, 1995) reported 240 pebbles/

cobbles as gastroliths associated with the partial skeleton of the 
Late Jurassic sauropod “Seismosaurus” (= Diplodocus: Lucas 
et al., 2006). Artwork in Gillette (1995, p. 113) shows both a 
crop and gizzard in this sauropod. However, Lucas (2000) 
argued that there is no clear skeletal association of these stones–
they do not define a crop or gizzard in a plausible abdominal 
position surrounded by articulated bones. Instead, the sizes, 
shapes, textures and orientations of the stones are consistent 
with their origin as stream-deposited cobbles of a channel-lag 
deposit according to Lucas (2000). The fact that some of these 
clasts were imbricated along trough crossbeds (Lucas, 2000, 
fig. 4) provides compelling evidence of concentration by fluvial 
processes. These supposed gastroliths of “Seismosaurus” show a 
wide range of polish matched by similar clasts from the Morrison 
Formation that are not associated with bones (Fig. 20). 

Dantas et al. (1998) stated that more than 100 gastroliths 
were located in a “crop” near the anterior dorsal and posterior 
cervical vertebrae of a skeleton of the sauropod Lourinhasaurus. 
They described these as mostly well-polished quartz pebbles, 56-
217 mm in diameter that had variable shapes, mostly discoidal 
or spheroidal. These may be gastroliths, but we question the 
identification of a “crop” in a sauropod dinosaur. Jennings and 
Hasiotis (2006) identified as gastroliths 14 polished quartz clasts 
10-130 mm in diameter between the ischia and caudal vertebrae 
of an incomplete skeleton of Camarasaurus. However, we 
regard this as a problematic record because of the location of the 
stones outside of the abdominal cavity.

The only compelling and well documented example of a 
sauropod skeleton with gastroliths is that of Cedarosaurus from 
the Lower Cretaceous of Utah, USA (Sanders and Carpenter, 
1998; Sanders et al., 2001; Myers, 2004). A mass of 115 stones 
was located in the abdominal cavity (posterior to the coracoid, 
ventral to dorsal vertebrae) of the skeleton of this sauropod. 
These pebbles were mostly highly polished chert and quartzite 
up to 165 mm in diameter, and range in shape from oblate 
spheroids to blades and cylinders. 

Among theropod dinosaurs, gastroliths are most common 
among the Maniraptorifirmes, which are the theropods closest to 
bird ancestry. However, there are some reports from other kinds 
of theropods: (1) a single clast near the skeleton of Baryonyx 
judged (we believe questionably) to be a gastrolith by Milner 
and Charig (1997); (2) a skeleton of Pokilopleuron with stomach 
contents that include 10 small, rounded pebbles interpreted to 
be gastroliths among fish bones (Eudes-Deslongchamps, 1838; 
Allain, 2005); (3) a skeleton with gastroliths in the abdominal 
cavity of the Jurassic ceratosaur Limusaurus, which is a beaked 
theropod (Xu et al., 2009); (4) in a partially articulated skeleton 
of Nqwebasaurus, 12 scattered pebbles were present that are 
5.2-14.5 mm in diameter and are mostly polished quartzite (De 
Klerk et al., 2000), a problematic record; and (5) Mateus (1998) 
described a very incomplete skeleton of an allosaurid that had 32 
clasts and impressions of 3 more in the rib cage below the 11th 
dorsal vertebra. These were associated with bone fragments he 
interpreted as food remains. 

As noted above, the theropods closest to bird ancestry have 
an impressive record of gastroliths that indicates that the crop 
and gizzard had evolved in some dinosaurs during the Early 
Cretaceous. Pebbles form a crop and a gizzard in the theropod 
Caudipteryx (Fig. 23; Ji et al., 1998; Zhou et al., 2000; Zhou and 
Wang, 2000; Zhang, 2001). Twelve ornithomimind skeletons 
(Sinornithomimus) with crops that contain small siliceous grains 
were documented by Kobayashi et al. (1999; Kobayashi and Lü, 
2003; also see Varrichio et al., 2008). A skeleton of the Lower 
Cretaceous ornithomimosaur Shenzhusaurus has concentrated 
pebbles in the abdomen anterior to the gastral basket that are 
smooth to pockmarked, and rounded to angular (Ji et al., 2003). 
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Indeed, Zanno and Makovicky (2011) indicated that gastroliths 
provide important evidence of herbivory in some coelurosaurs, 
notably the toothless ornithomimosaurs and oviraptorosaurs.

There are relatively few records of gastroliths in 
ornithischian dinosaurs. Carpenter (1987, 1990) reported 
gastroliths in one specimen of the Late Cretaceous ankylosaur 
Panoplosaurus, but these have not been described. K. Carpenter 
(written commun., 2020) has informed us that these stones were 
catalogued (presumably collected) with the fossil, but there are 
no records of their original association in the sediment. Thus, 
this is a problematic record. A skeleton of Minmi paravertebra 
from the Upper Cretaceous of Australia has an extensive cololite 
but no gastroliths (Molnar and Clifford, 2001). However, Brown 
et al. (2020) recently documented bona fide gastroliths in an 
ankylosaur from the Early Cretaceous of Canada.

Early reports of gastroliths associated with the hadrosaur 
Edmontosaurus (“Claosaurus”) by Brown (1907) and with 
Iguanodon by Rivett (1956) are not of a mass of gastroliths in 
the abdominal region and thus are problematic (Wings, 2004). 
Cerda (2008), nevertheless, published a bona fide gastrolith 
record in an ornithopod dinosaur. These are clusters of pebbles 
in the abdominal regions of three articulated skeletons of 
Gasparinsaura from the Upper Cretaceous of Argentina. Up to 
17 mm in diameter, these pebbles are mostly of igneous rocks, 

subrounded and not polished. 
Xu (1997) well described gastroliths from a skeleton of the 

Early Cretaceous ceratopsian Psittacosaurus (also see Brown, 
1907; Osborn, 1924; Sereno, 1990). At least 36 pebbles up to 
20 mm diameter were preserved as a mass around the sacral 
vertebrate. They range in shape to include spheroids, disks, 
blades and cylinders. Some other specimens of Psittacosaurus 
have gastroliths (You and Dodson, 2004), as does the Jurassic 
ceratopsian Yinlong (Xu et al., 2006).
Fossil birds

The fossil record of birds is mostly of isolated and/or 
incomplete bones, not complete skeletons. This likely explains 
why there are relatively few documented cases of fossil avian 
gastroliths. These are mainly of late Cenozoic age (e. g., Stirling 
and Zietz, 1900; Lambrecht, 1931; Voorhies, 1980; Yeh, 1981; 
Yang and Yang, 1994). Notable among this is the extensive 
subfossil record of moas, extinct giant birds from New Zealand, 
the skeletons of which famously contain many gastroliths that 
are mostly semi-round, white quartz pebbles (Chapman, 1884; 
Forbes, 1892; Navás, 1922; Duff, 1949; Baker, 1956; Burrows 
et al., 1981; Anderson, 1989; Johnston et al., 1994). These clasts 
range in size from “gravel” to 100 mm in diameter. Importantly, 
the clasts are all of lithologies local to the skeletons that contain 
them. This suggests that moas were localized, only moving tens 
of kms during their lifetimes, not the long distances travelled by 
some other large, flightless birds, such as ostriches (Anderson, 
1989). 

Importantly, the spectacular record of fossil birds from the 
Early Cretaceous strata of northeastern China demonstrates 
that the avian crop and gizzard had already evolved in the 
Early Cretaceous. Thus, Zheng et al. (2011) documented Early 
Cretaceous birds from China with masses of fossilized seeds 
in the region of the crop. Many Early Cretaceous birds with 
gizzards have been documented, and these birds are therefore 
thought to have been herbivorous.

Zhou et al. (2004) described some specimens of the 
Early Cretaceous bird Yanornis with fine sand- and gravel-
sized particles that are quartz grains 0.2-2.7 mm diameter and 
subangular to subrounded. To explain the presence of gastroliths 
in some specimens of Yanornis and their absence in others, Zhou 
et al. (2004) suggested “gizzard plasticity,” which is seen in some 
modern birds due to seasonal changes in diet (Starck, 1999a, 
b). This kind of phenotypic flexibility of the gastrointestinal 
tract in response to changes in diet or organismal demand is 
seen in some extant birds and mammals and generally indicates 
fluctuating environments (Starck, 1999a, b). Zhou et al. (2004) 
aptly observed that the distribution of gastroliths in Yanornis 
may indicate that such phenotypic plasticity had evolved early 
in the Cretaceous. 

Zhou and Zhang (2003), Zheng et al. (2011) and O’Connor 
(2019) described the gastroliths of Sapeornis. Zheng et al. 
(2011) argued that the evolution of the gizzard in birds likely 
preceded the evolution of the crop. Furthermore, the presence of 
the crop in Early Cretaceous birds indicates seed eating, and the 
development of the crop may have facilitated the loss of teeth in 
beaked birds.

Wang et al. (2016) described an entantiornithine bird with 
a gizzard. Wang et al. (2018; also see Zhou and Zhang, 2003; 
Zhou et al., 2013; Wang and Zhou, 2016) documented multiple 
specimens of the stem bird Archaeorhynchus from the Lower 
Cretaceous of China that have gastroliths clustered in the 
abdominal cavity (~ 100 gastroliths in one specimen). Gastroliths 
in the ornithuromorph Hongshanornis were described by 
Chiappe et al. (2014). On one of the specimens they described, 
the gastroliths are located in a ventral position, consistent with 
the location of the ventriculus in the abdominal cavity. O’Connor 
et al. (2018) documented gastroliths in Jeholornis. Possible 

FIGURE 23. Skeleton of the maniraptoriform theropod dinosaur 
Caudipteryx, with a large mass of gastroliths in its abdominal 
area. Skeleton of Caudipteryx is about 1 meter long. Photograph 
courtesy of the late Stephen Czerkas.
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gastroliths in the enantiornithine bird Bohaiornis were studied 
in some detail, but were demonstrated to be mineral precipitates, 
not gastroliths (Liu et al., 2021).

We note that the avian gizzard could have been inherited 
from non-avian theropods or evolved independently. Thus, 
the phylogenetic bracket of theropods with gastroliths (see 
above) suggests birds inherited it from dinosaurian ancestors, 
but note that the oldest bird, Late Jurassic Archaeopteryx, lacks 
gastroliths. 

Louchart and Viriot (2011) stated that during the Jurassic-
Cretaceous, dental reduction occurred at least six times 
independently among Aves. They concluded that the horny beak 
(rhamphotheca) and gizzard replaced the dentition, so the loss of 
teeth in birds is correlated to the evolution of a muscular gizzard 
(also see Dilger, 1957). 

O’Connor (2019) regarded fossil birds with gizzards as 
herbivores, and those with crops as granivores (but see Miller 
and Pittman, 2021 for a different analysis of the diets of early 
birds). She also noted that the role of gizzards in the tooth 
loss of birds is complicated by the presence of gastroliths in 
some toothed birds (Jeholornis, Sapeornis). So, tooth loss and 
gastrolith acquisition are not clearly correlated according to 
O’Connor (2019). 
Other fossil vertebrates

Various records of gastroliths in fossil vertebrates other 
than plesiosaurs, dinosaurs and birds are mostly single reports, 
many of which are problematic. Trewin (1986) documented a 
placoderm fish (Coccosteus) from the Old Red Sandstone with 
pebbles in the visceral area.

Moodie (1912), Shimada (1997) and Everhart (2000) 
discussed a large lamniform shark with apparent black chert 
gastroliths, and Sternberg (1922) and Everhart (2004c) described 
a mosasaur with apparent gastroliths. Everhart (2005e) stated that 
both the shark and the mosasaur likely acquired the gastroliths 
from preying on plesiosaurs. 

The only claim of gastroliths in a fossil amphibian is of the 
temnospondyl Acerastea from the Lower Triassic of Australia. 
Warren and Hutchinson (1987) stated that the holotype partial 
skeleton had 10 angular, polished pebbles immediately posterior 
to the skull that are 20-60 mm in diameter. These pebbles were 
metamorphic mudstone (5 pebbles), sandstone (2 pebbles), 
quartz (1 pebble) and mudstone (2 pebbles). But, given their 
size, composition and location with respect to the fossil bones, 
these pebbles are highly unlikely to have been gastroliths.

The oldest published tetrapod gastroliths are in a late 
Permian pareiasaur from Germany (Munk and Sues, 1993). 
The abdominal cavity of this pareiasaur had a mass of unsorted 
granules and pebbles of quartz and chert of varied roundness up 
to 10 mm in diameter interspersed with carbonized particles that 
Munk and Sues interpreted as macerated organic matter. They 
suggested that herbivorous pareiasaurs may have ingested the 
stones while foraging close to the ground.

Cheng et al. (2006) documented gastroliths in a Triassic 
ichthyosaur from China. Given that few other known 
ichthyosaurs have gastroliths (e.g., Keller, 1976; Long et al., 
2006), they concluded that this specimen represents an example 
of accidental ingestion. Silva et al. (2017) suggested that a 
few quartz grains and other mineral clasts in some mesosaur 
skeletons may be gastroliths. 

Many skeletons of tangasaurid eosuchians (aquatic reptiles 
from the upper Permian of Madagascar) have masses of gravel 
in their abdominal regions (Piveteau, 1926; Haughton, 1930; 
Currie, 1981) (Fig. 24). The most extensive analysis of these 
pebbles by Currie (1981, p. 115-12, figs. 3, 5-7) led him to 
conclude that they were used for buoyancy control. These clasts 
in Hovasaurus are of two sizes, large pebbles and gravel up to 
200 mm in diameter and much smaller sand and granules that 

are 0.5-2.0 mm in diameter. They are mostly quartz and not 
polished. These clasts are located between the ribs and gastralia 
of multiple specimens of different body sizes, though two 
articulated specimens lack any gastroliths. 

Currie (1981) argued that these gastroliths were too far 
posterior to have been held in the stomach, though Haughton 
(1930) saw the pebbles as having a digestive function. Currie 
(1981, p. 119) further concluded that they were stored in a 
“blind sac” in the abdominal cavity that shifted the center of 
gravity backward to maximize the tail-based propulsion of 
the tangasaur, and we regard this as reasonable speculation. 
Estimating the weight of the specimen illustrated here (Fig. 24) 
as about 300-500 grams, and the weight of the pebbles as ~ 25 
grams, Currie noted that this would raise the tangasaur’s specific 
gravity by 5-10%, to a value within the range of the specific 
gravity of aquatic turtles (Zug, 1971). 

Fossil crocodiles have a diverse but not prolific record 
of gastroliths. These include a few records in nonmarine 
crocodilians (e.g., Berckheimer, 1928; Hölder, 1955; Keller and 
Schaal, 1992; Vasconcellos et al., 2008; Nascimiento and Zaher, 
2010) and marine crocodiles (e. g., Westphal, 1962; Kobatake 
and Kamei, 1966; Buffetaut, 1979, 1982; Martill, 1986; Walkden 
et al., 1987; Keupp and Kohring, 1993; Denton et al., 1997). 
However, we question the gastrolith identity of some of these 
records. For example, we doubt Keupp and Kohring (1993), 
who identified as a gastrolith a single stone in a concretion found 
near some bones of an Early Jurassic crocodilian. 

There are a few records of gastroliths in coprolites, 
presumably excreted by the animal that swallowed the 
gastroliths. These are records primarily in fossil crocodile 
coprolites (Weigelt, 1927; Walter and Weigelt, 1932; Young, 
1964; Wings, 2012).

Codorniú et al. (2013) reported gastroliths from a specimen 
of the pterosaur Pterodaustro from the Lower Cretaceous of 
Argentina. These comprised fine gravel up to 8.4 mm in diameter 
in an area of 24 cm2 just in front of the pelvis surrounded by 
gastralia and ribs. Most of the gastroliths were angular, abraded 
metaquartzite. They noted the rarity of gastroliths in pterosaurs 
(many complete skeletons lack gastroliths) and suggested that 
this pterosaur used the gastroliths to break up hard-shelled 
crustaceans in its food. 

Gastrolith records in fossil mammals are almost unknown. 
The only record we are aware of is a skeleton of an Eocene 
pangolin, Eomanis, from Germany that had coarse sand in the 
visceral area (von Koenigswald et al., 1981). Extant pangolins 
similarly swallow sand and gravel as an aid to digestion (e. g., 
Walker, 1968). 

Gastroliths in Archeology and Pedology
Although our focus is on paleontology, it is worth noting 

that there is a diverse literature on supposed gastroliths in 
archeological sites and in very young loessic paleosols, often in 
an archeological context (Lucas and Hunt, 2021). 

The archeological literature is very biased by the notion that 
high polish characterizes gastroliths, so that any highly polished, 
“out-of-place” stone can be called a gastrolith, even though it 
lacks any avian skeletal association (Lucas and Hunt, 2021). 
The archeological analyses are largely focused on identifying 
gastroliths as evidence of the consumption of birds by humans 
(e.g., Hardcastle, 1889; Young, 1967; Hoskin et al., 1970; 
Powers et al., 1983; Powers and Hoffecker, 1989; Gautier, 1993, 
but see Thorson and Hamilton, 1977; Tryon, 2002). It ranges 
from simply calling any polished stone at an archeological site 
a gastrolith (e. g., Bottema, 1975) to more nuanced treatments 
at hunting camps where the harvesting of birds finds evidence 
beyond their supposed gastroliths (e. g., Brooks et al., 2012). 

Pebbles that lack any osteological association in loessic soils 
of late Pleistocene age have also been identified as gastroliths. 
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FIGURE 24. Dorsal (left) and ventral (right) views of the abdominal region of the tangasaurid Hovasaurus showing gastroliths 
(modified from Currie, 1981).

Particularly interesting is the work of Cox (1994, 1997, 1998), 
who identified pebbles 4 to 64 mm in diameter as avian gastroliths 
that are buried in “stone lines” in Pleistocene loessic soils in 
Illinois and Mississippi, USA. Cox accepted the conclusions 
of Johnston et al. (1990, 1994) and Manley (1991b, 1993) that 
high polish diagnoses gastroliths. He concluded that the pebbles 
in these stone lines were avian gastroliths that had been moved 
downward to their current stratigraphic positions by invertebrate 
bioturbation in the loess. However, identification of the loessic 
pebbles as gastroliths rested totally on the unsubstantiated idea 
that high polish identifies gastroliths. 

To determine polish, Cox (1994) used the methods of 
Johnston et al. (1990, 1994) and Manley (1991b, 1993), by 

which the reflectance of light (which is an indicator of the degree 
of polish) scattered from the pebbles is quantified. However, 
the data of Cox (1994, table 4.1) show, as other workers have 
demonstrated, that most of the gastroliths of extant birds are not 
highly polished (an average of 16% of gastrolith pebbles from the 
modern birds Cox listed are highly polished). Because most of 
the loessic pebbles studied by Cox are not highly polished (only 
8.8% to 21% of the pebbles in the populations of loess pebbles 
he studied are highly polished), Cox concluded that these loessic 
pebbles are gastroliths. But, if high polish diagnoses gastroliths 
fide Cox, then only a small minority of the pebbles he studied 
could be gastroliths by his own stated criterion.

Cox’s (1994) idea that invertebrate bioturbation moved 
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the gastroliths to stratigraphic levels that are within loessic 
paleosols (they are in A, E and upper B horizons of the 
paleosols), instead of at levels that were paleoland surfaces, 
is also open to question. Cox (1994) argued that if the stones 
are gastroliths, they must have been regurgitated, defecated or 
otherwise left on the paleoland surface by Pleistocene birds (the 
“gastrolith rain” of Van Nest, 2002), and moved stratigraphically 
downward later. But, he presents no evidence that invertebrate 
bioturbation moved the stones–no ichnofabric data or evidence 
of bioturbation in the form of biogenic structures in the loess. 
Thus, bioturbators moved the stones to a stone line below the 
paleosurface, and because the stones are so organized, they must 
have been moved by bioturbators–a perfectly circular argument. 
The fact is that plausible inorganic processes to organize the 
loessic stones in the sediment were published long ago (e. g., 
Shaler, 1891; Savage, 1915).

Cox’s (1994, 1997, 1998) work was done in the context 
of understanding “biomantles” as stone lines overlain by sand 
and silt created by invertebrate burrowers (notably earthworms: 
Darwin, 1881) that moved the stones downward to their 
current stratigraphic levels (e.g., Johnson, 1990, 1993, 2002; 
Johnson and Balek, 1993; Johnson et al., 2005a, b; Johnson and 
Schaetzl, 2015). Most of these articles also endorse the pebbles 
in the loessic stone lines as avian gastroliths. However, a more 
insightful discussion by Van Nest (2002) recognized that only 
some of these exotic pebbles may actually be avian gastroliths, 
as there are many ways for such stones to arrive at and be buried 
in loesses and at archeological sites. 

We also note that not a single bird bone was found in the 
loess anywhere near the pebbles studied by Cox (1994). Some 
loessic pebbles Cox studied are as much as 64 mm in diameter, 
so they are much larger than the pebbles that the largest 
birds, extinct and extant (moas, ostriches), are known to have 
swallowed. Thus, high polish = gastrolith needs to be abandoned 
in archeological and pedological studies. There needs to be a 
more rigorous appraisal to determine the origin of polished 
pebbles lacking an osteological association at archeological 
sites and in soil profiles (Lucas and Hunt, 2021).

Gastroliths as Trace Fossils
Bertling et al. (2006, p. 266), in their effort to standardize 

the study and terminology of trace fossils, defined a trace fossil 
as “a morphologically recurrent structure resulting from the 
life activity of an individual organism (or homotypic organism) 
modifying the substrate.” They regarded gastroliths as trace 
fossils, but they classified them as in a “gray zone” with 
coprolites, “regurgitaliths” (sic) and bite and gnaw structures that 
have not been considered trace fossils by some workers. Thus, 
gastroliths receive no mention in a very comprehensive book on 
ichnology by Buatois and Mángano (2011). Nevertheless, much 
earlier, Abel (1935), in a classic treatise on trace fossils, devoted 
13 pages to reviewing the then published records of gastroliths. 
And, in their treatise on fossil behavior, Boucot and Poinor 
(2010; also see Boucot, 1990) regard gastroliths primarily as 
of use in digestion and assigned them as fossilized evidence of 
behavior to their highest category 1, or “frozen behavior.”

As is currently the case in ichnology, Bertling et al. (2006) 
argued that all trace fossils need ichnotaxonomic nomenclature 
governed by the International Commission on Zoological 
Nomenclature. No ichnotaxonomy has been proposed for 
gastroliths. Bertling et al. (2006) state that gastroliths stand on the 
boundary between the work of (trace fossil) and the product of 
(not a trace fossil) an animal. They only list the etched sculpture 
of some gastroliths as a possible morphological character that 
could be of use in an ichnotaxobase.

However, we see gastroliths clearly as the work of 
an animal. Unlike eggs, for example, the sand/gravel that 
comprise gastroliths (our definition) is not made by animals–it 

is swallowed by, concentrated by, transported by and, in some 
cases, altered by animals. So, the trace-fossil status of gastroliths 
is unimpeachable by the Bertling et al. (2006) definition of a 
trace fossil.

We advocate development of an ichnotaxonomy for 
gastroliths. Ichnotaxonomic names, however, should not be 
assigned to individual grains/clasts of sand/gravel of fossil 
gastroliths. As the review above indicates, the numerous sand 
grains/gravel found in a fossil vertebrate digestive tract are often 
diverse in number, size, shape and composition. Naming single 
sand grains/gravel clasts would thus produce a bewildering 
plethora of names. Instead, we favor naming the entire gastrolith 
mass from a single abdominal cavity. Ichnotaxobases could be 
the number of gastroliths in the mass, their general petrographic 
composition, and their overall size, shape, surface texture and 
other shared morphological features. This likely would produce 
a workable ichnotaxonomy that recognizes ichnotaxa that are 
readily distinguished by morphological differences that are a 
direct reflection of varied behavior. 

One problem little addressed is the taphonomy of gastroliths. 
Does a decomposing vertebrate carcass lose its gastroliths 
rapidly (cf. Everhart, 2005b), and could gastroliths be all that 
remain of a carcass otherwise disintegrated? To our knowledge 
the only taphonomic study of gastroliths is Wings (2003), whose 
actualistic studies suggest gastroliths are rapidly released from 
carcasses in water. Wings (2003) also noted that the integrity of 
a vertebrate animal’s integument matters, as there are numerous 
crocodiles (strong integument) with gastroliths, and almost no 
birds (weak integument) with gastroliths at the Eocene Messel 
Lagerstätte in Germany. Further studies of gastrolith taphonomy 
are needed. 

Gastroliths are a limited and somewhat perplexing part of 
the ichnological record of vertebrate consumption. Other than 
birds, relatively few vertebrate taxa utilize/utilized gastroliths 
in digestion to pulverize and disintegrate food (Fig. 19). Most 
of these non-avian vertebrates and the gastrolith-using birds are/
were herbivores or omnivores. But, a compelling case has been 
made that plesiosaurs used gastroliths for digestion, yet they 
were predators. 

We view gastroliths as a behavioral strategy primarily to 
grind food, mostly plant matter. Use for ballast in buoyancy 
control may have been the function of gastroliths in some 
animals, notably some crocodiles and marine mammals, but 
this is a little employed strategy for the use of gastroliths. 
Nevertheless, these strategies for gastrolith use have only 
been adopted idiosyncratically. Many taxa that could use a 
“gastric mill” lack it. Some members of taxonomic groups have 
gastroliths, whereas close relatives do not and, in populations of 
some vertebrate species that use gastroliths, not all individuals 
have gastroliths. These complexities of gastrolith distribution 
await further explanation, if an explanation is possible. 

Gastroliths not only provide important information about 
feeding and buoyancy control, but the need for the animal to 
collect them provides insight into habitat. Thus, some plesiosaurs 
must have travelled hundreds of kilometers to acquire their 
gastroliths, whereas the gastroliths of moas are all of local 
origin, indicating little travel by these avian giants. 

Thus, gastroliths are trace fossils in need of ichnotaxonomy. 
They provide important insights into various behaviors, notably 
diet, digestion, buoyancy control and habitat preferences.

COPROLITES
Introduction

There is an extensive literature on coprolites, fossilized 
feces, large portions of which we have reviewed elsewhere 
(Hunt et al., 2007, 2012d, 2013b, 2018; Hunt and Lucas, 2013, 
2014a, 2016c, 2018c, 2021b). After footprints, they are the most 
studied vertebrate trace fossils, and coprolites are the subject of 
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an extensive and rapidly growing literature.

History of Study
Several authors have reviewed the history of study of 

vertebrate coprolites (e.g., Reinhard and Bryant, 1992; Duffin, 
2009, 2012a, b; Bryant and Reinhard, 2012; Hunt et al., 2012d; 
Pemberton, 2012; Shillito et al., 2020; Hunt and Lucas, 2021b), 
obviating the need for a lengthy review here. Bromalites, 
later identified as coprolites, have been known since the late 
seventeenth century (Duffin, 2012a). In the 1820s, Buckland 
identified aggregates of apatitic subspheroidal objects from a 
Pleistocene deposit in Kirkdale Cave in northern England as 
fossil hyena feces (Buckland, 1822, 1824). This was a relatively 
easy conclusion, as the cave contained many hyena bones, 
and Buckland could demonstrate that the new specimens were 
comparable to modern hyena feces. 

Buckland made a much more important breakthrough in 
1829, when he recognized spiral objects from the Early Jurassic 
of southern England as also representing what he then called 
coprolites (Buckland, 1829). This recognition, possibly aided by 
the famed fossil collector Mary Anning (Duffin, 2012a), led him 
to identify these types of fossil from many stratigraphic intervals 
from the Carboniferous to the Neogene (Buckland, 1829, 1835). 
Buckland realized that modern sharks and rays have spiral 
valves, and he filled modern shark intestines with Roman cement 
to demonstrate that they might produce spiral feces (Buckland, 
1835). Despite this innovative study, he still referred some spiral 
coprolites to ichthyosaurs. In an impressive decade of early 
research on vertebrate trace fossils, Buckland also recognized 
dentalites (fossil bite marks) and fossil footprints, and was 
equally diligent in conducting actualistic studies – feeding cow 
bones to modern hyenas to examine the feces they produced and 
the bite marks they left on the bones, and making tortoises walk 
across wide sheets of pastry to compare their footprints to fossil 
tracks (Buckland, 1822, 1824, 1829, 1835, 1836; Pemberton et 
al., 2007).

Buckland’s recognition of fossil feces sparked interest, and it 
inspired what Duffin (2012a) termed “copromania,” particularly 
in Victorian England, but also in Europe and in the United States, 
that lasted till about the middle of the nineteenth century (e. g., 
DeKay, 1830a, b; Geinitz, 1842; Hitchcock, 1844; Dana, 1845; 
Henslow, 1845; Quadrat, 1845; Fischer, 1856; Reuss, 1856). 
But, during the subsequent 100 years, there was only intermittent 
interest in coprolites. Notable publications included the first 
study of human coprolites by Young (1910), descriptions of 
large coprofaunas from the Permian and Cretaceous (Bertrand, 
1903; Neumayer, 1904) and the first paper by Eric Callen (1912-
1970) on archaeological coprolites (Callen and Cameron, 1955).

There was increased study of coprolites between 1960 
and 1990. Callen’s discovery of a methodology to reconstitute 
desiccated coprolites using trisodium phosphate (Callen and 
Cameron, 1960) ushered in a three-decade-long “Golden Age 
of Coprolite Analysis” for human specimens (Bryant, 1994; 
Bryant and Reinhard, 2012). This work focused largely on North 
America, principally in the western (e.g., Fry, 1969; Hall, 1969; 
Heizer and Napton, 1969; Callen and Martin, 1969; Napton 
and Heizer, 1970) and southwestern (e.g., Williams-Dean and 
Bryant, 1975; Irwin-Williams and Shelley, 1980; Reinhard, 
1988) United States, including Texas (e.g., Bryant, 1969, 1974; 
Williams-Dean, 1978; Sobolik, 1988, 1994). Other human 
coprolites were described from the southeastern United States 
(e.g., Watson and Yarnell, 1966; Bryant, 1974; Schoenwetter, 
1974), Mexico (e.g., Callen, 1963, 1967a, 1967b, 1968; Bryant, 
1975) and South America (e.g., Callen and Cameron, 1960; 
Callen, 1965). De Lumley (1969) and Trevor-Deutsch and 
Bryant (1978) studied coprolites of Homo erectus, Callen (1969) 
studied those of Neanderthals, all from France, and others 
worked on younger European latrinites (e.g., Callen, 1969). 

Earlier studies in Europe tended to focus on latrinites (cess pits, 
latrines) because these are prevalent, and isolated coprolites that 
characterize cave sites in the Americas, are rare (Shillito et al., 
2020). Lipid biomarkers have been the focus of increased study 
of archaeological coprolites during the past 20 years around the 
world (e.g., Shillito et al., 2013; Zhang et al., 2019, 2020).

The decades of the 1960s through 1990s also saw an 
increased interest in paleontological coprolites. As the work of 
Callen had stimulated studies of human coprolites, Paul S. Martin 
(1928-2010) had a similar effect on the study of Pleistocene 
vertebrate coprolites. Martin and his students and collaborators, 
notably Jim I. Mead, became the driving force behind the 
study of the desiccated coprolites from caves in the American 
Southwest (Martin, 2005; Mead and Swift, 2012; Mead et al., 
2020). Much of this work was focused on the palynology and 
paleobotany of coprolites and their ages and relationship to late 
Pleistocene extinctions (e.g., Martin et al., 1961, 1985; Hansen, 
1978, 1980; Mead et al., 1984, 1986a, b, 1993, 2020; Agenbroad 
and Mead, 1987, 1989; Mead and Agenbroad, 1989, 1992). 
Outside of the Americas work has focused on hyena coprolites 
and their palynology, principally in caves in Europe, Africa and 
Asia (Hunt and Lucas, 2020a and references cited therein).

The development of the study of older coprolites was 
slower during this timeframe. The majority of this work was on 
the coprolites of the Paleozoic (e.g., Zangerl and Richardson, 
1963; Williams, 1972; McAllister, 1985, 1988, 1996), Triassic 
(e.g., Ochev, 1974; Duffin, 1979; Jain, 1983) and Cretaceous fish 
(e.g., Stewart, 1978) and of Cenozoic mammals (e.g., Jepsen, 
1963; Vogeltanz, 1965, 1967; Clark et al., 1967; Lemley, 1971; 
Edwards, 1973a, b; Edwards and Yatkola, 1974; Packard and 
Allison, 1980).

Karen Chin did much to popularize the study of coprolites 
within paleontology in the 1990s and 2000s as she and co-
workers studied the coprolites of the most glamorous of fossil 
vertebrates, the dinosaurs (e.g., Chin, 1996; Chin and Gill, 1996; 
Chin et al., 1998, 2003, 2009; Chin and Kirkland, 1998; Chin, 
2007). In a similar timeframe, we began to collect and analyze 
large samples of coprolites, especially of Triassic age (e.g., Lucas 
et al., 1985a; Hunt, 1992; Hunt et al., 1994a, 1998, 2007, 2018). 
This period also saw the first applications of DNA analysis to 
the study of ground sloth coprolites (Höss et al., 1996; Poinar 
et al., 1998, 2003). Ironically, as the study of human coprolites 
declined (Bryant and Reinhard, 2012), work on pre-Pleistocene 
coprolites intensified. Coprolite studies expanded in South 
America, notably due to the work of Souto and of Dentzien-Dias 
and their co-workers (e.g., Souto, 2001, 2007, 2008, 2010; Souto 
and Schwanke, 2010; Souto and Fernandes, 2015; Dentzien-
Dias et al., 2012, 2013, 2017, 2021), and, in Europe, notably due 
to Qvarnström, Niedźwiedzki and Bajdek and their co-workers 
(Bajdek, 2013, 2014; Badjek et al., 2014, 2016, 2017, 2019; 
Niedźwiedzki et al., 2016b; Qvarnström et al. 2019a, b, c, 2021; 
Bajdek and Bienkowska-Wasiluk, 2020; Qvarnström, 2020b). 
Hunt et al. (1998) applied the first binomial ichotaxonomy to 
vertebrate coprolites, and several ichnotaxa have subsequently 
been named (Table 3). The study of parasites in coprolites 
has a long history in archeology (Bryant and Reinhard, 2012; 
Camacho and Reinhard, 2020; Blong and Shillito, 2021). There 
is a now an extensive and growing literature on parasites in 
paleontological coprolites (Dentzien-Dias et al., 2013, 2017; 
Cardia et al., 2019, 2021; Ferreira et al., 2019; Barrios-de 
Pedro et al., 2020b; Agustín et al., 2021; De Baets et al., 2021; 
Oyarzún-Ruiz et al., 2021).  

Hunt et al. (2012d) edited the first academic volume on 
vertebrate coprolites, which included diverse contributions 
that discussed the history of study, terminology, distribution 
and importance of bromalites. The last decade has been 
characterized by the use of new methodologies of study and 
a focus on inclusions in coprolites of fossils of organisms in 
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coprolites such as bacteria and beetles, and structures such as 
hair that otherwise have a very limited and poor fossil record, 
as well as biochemicals (e.g., Dentzien-Dias et al., 2012, , 2021; 
Cosmidis et al., 2013; Beltrame et al., 2014; Khosla et al., 2015, 
2016; Bajdek et al., 2016, 2017; Robin et al., 2016; Cin et al., 
2017; Qvarnström et al. 2019a, b, c, 2021; Qvarnström, 2020b; 
Umamaheswaran et al., 2019; Runge et al., 2021; Tripp et al., 
2021) culminated by the recognition by Qvarnström et al. (2016) 
of coprolites as Lagerstätten. 

Terminology
Buckland (1829; see review in Hunt and Lucas, 2012a) 

introduced the term coprolite for preserved feces. The term 
coprolite has been consistently utilized for expelled feces, 
although there are a few examples of the term being utilized for 
consumulites (Hunt and Lucas, 2012a, 2020). Hunt and Lucas 
(2012a) reviewed all usage of terminology related to coprolites 
and introduced other terms including latrinite (accretionary 
and ethological) for accumulations of coprolites and guanolite 
(ornithoguanolite, pinnipedaguanolite, chiropteraguanolite) for 
fossil guano (Appendix B). 

Neumayer (1904) first introduced a terminology for spiral 
coprolites from the early Permian of Texas. He recognized that 
some spiral coprolites have spirals that are distributed roughly 
evenly along the long axis in lateral view (amphipolar), whereas 
others have the spirals concentrated at one end (heteropolar) 
(Appendix B). Heteropolar coprolites are much more common 
throughout the fossil record than amphipolar forms. Scroll 
coprolites represent a third major morphology of spiral coprolites 
(Hunt and Lucas, 2012b). Hunt et al. (2007) recognized two 
forms of heteropolar morphology – microspiral, in which the 
posterior spire constitutes less than 50% of the length of the 
coprolite in lateral view, and macrospiral, in which it represents 
50%-75% of the length of the coprolite (Appendix B). Several 
authors proposed different descriptive terminologies for spiral 
coprolites (e.g., Jain, 1983; McAllister, 1985; Laojumpon et 
al., 2012), and Hunt and Lucas (2012b) synthesized aspects of 
these schemes (coils, lip) and defined new terms (anterior coil, 
posterior spire) (Appendix B).

Non-spiral coprolites display a wide range of morphologies 
(e.g., Häntzschel et al., 1968, fig. 1). Thulborn (1991) noted 
that many coprolites have terminations of different shapes. He 
applied the term anisopolar to this type of coprolite and the 
term isopolar to forms in which the two ends are of the same 
shape (Appendix B). Typically, the posterior (distal) end of an 
anisopolar coprolite that emerges first from the anus/cloaca is 
broadly rounded, and the anterior (proximal) end is tapered to 
a point (mucro of Thulborn, 1991). The trailing end is pinched 
by the constriction of the cloaca/anal margins as it closes 
(Thulborn, 1991). Hunt and Lucas (2012b) proposed the term 
segments for the discrete longitudinal elements of a coprolite 
(pellets of Diedrich, 2012a; Appendix B). 

Actualistic Studies
Buckland (1822, 1824) conducted the first actualistic studies 

of coprolites when he fed cow bones to a hyena and studied 
the resulting feces to assist in the identification of coprolites 
from a Pleistocene cave. Subsequently, Buckland recognized 
spiral coprolites, which he hypothesized were produced by 
chondrichthyans. Thus, he dissected extant rays and scyliorhinid 
sharks (dogfish) in order to study the spiral valves of their 
intestinal tracts, and subsequently he injected the intestines with 
Roman cement (Buckland, 1835; Duffin, 2009). The injection 
process produced “artificial coprolites that in form are exactly 
similar to many of our fossil specimens” (Buckland, 1835, p. 
234). Zangerl and Richardson (1963) conducted analogous 
experiments. 

Modern feces have been the subject of extensive study, Ic
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but actualistic studies of coprolites have been mainly limited 
to anecdotal comments (e.g., Jain, 1983; McAllister, 1996), 
although there are a few notable exceptions (e.g., Esteban-Nadal 
et al., 2010; Milàn and Hedergaard, 2010; Milàn, 2012; Wings, 
2012). However, many neontological studies provide important 
data for the study of coprolites such as the particle size of ingesta 
(Fritz, 2007; Fritz et al., 2009), fecal dimensions relative to body 
size (Platt et al., 2020) and fecal composition, diet and digestive 
physiology (Canfield and Fairburn, 1983; Doherty, 2009). There 
is clear potential for more actualistic studies related to coprolites.

Fossil Record
Introduction

We have previously reviewed the fossil record of coprolites 
(Hunt et al., 2012d) and some of the coprofaunas from the 
Carboniferous-Permian (Hunt and Lucas, 2013), Triassic (Hunt 
et al., 2007, 2013b, 2018), Jurassic (Hunt and Lucas, 2014a), 
Cretaceous-Paleogene (Hunt and Lucas, 2007a, 2016a; Hunt et 
al., 2015c), Cenozoic (Hunt and Lucas, 2007a) and Pleistocene 
(Hunt and Lucas, 2018c, 2020a).
Paleozoic

The oldest vertebrate body fossils are from the lower 
Cambrian of China (e.g., Shu et al., 1999, 2003; Shu, 2008). 
Cambrian coprolites occur at a number of localities, but all have 
been attributed to invertebrates (e.g., Peel, 2015; Shen et al., 
2014; Kimmig and Strotz, 2017; Kimmig and Pratt, 2018). Some 
larger forms could have arguably been produced by vertebrates, 
such as round masses of fragmented skeletal material from the 
middle Cambrian Spence Shale of Utah. These were identified 
as coprolites by Conway Morris and Robison (1986), and 
attributed either to very large individuals of the arthropod 
predator Anomalocaris or to another unidentified large predator. 

There are several occurrences of clusters of conodont 
elements from the Early Ordovician of Kazakhstan, Sweden 
and Australia that probably represent coprolites (Tolmacheva, 
1996; Tolmacheva and Purnell, 2002; Stewart and Nicoll, 2003). 
These coprolites were most likely produced by conodont animals 
(Tolmacheva and Purnell, 2002). 

The Middle Ordovician Winneshiek Lagerstätte of Iowa 
in the United States and the Late Ordovician Soom Shale 
Lagerstätte of South Africa both preserve diverse bromalites 
that probably include some of vertebrate origin (Aldridge et 
al., 2006; Hawkins et al., 2018). The Winneshiek Shale yields 
a variety of vermiform bromalites that are principally preserved 
three-dimensionally and composed of calcium phosphate with 
a minority preserved as carbonaceous compressions (Briggs et 
al. 2015; Liu et al. 2017; Hawkins et al., 2018). Hawkins et al. 
(2018) identified five morphotypes that may have been produced 
by eurypterids, agnathans and/or conodonts. Inclusions 
identified in thin sections are principally conodonts but also 
include phyllocarids, other small arthropods such as ostracods, 
and linguloids. Some Winneshiek bromalites preserve a 
concentrically layered internal structure, which is characteristic 
of the coprolites of animals with a valvular intestinal tract 
such as chordates (Hawkins et al., 2018). The abundance and 
diversity of the Winneshiek bromalites may provide independent 
evidence of predation in the fauna during the Great Ordovician 
Biodiversification Event (Hawkins et al., 2018).

Aldridge et al. (2006) described five principal morphotypes 
of Ordovician bromalites, including coprolites. Brachiopod-
bearing coprolites could pertain to conodont animals or 
several groups of invertebrates. Some coprolites, or possibly 
regurgitalites, are composed of conodont elements more 
fragmented than those in the Early Ordovician specimens, and 
they were probably produced by conodont animals (Aldridge 
et al., 2006). Corrugated⁄spiral bromalites, coiled coprolites 
and wrinkled coprolites could all have been produced by 

vertebrates. The most likely vertebrate coprolites are those that 
are amphipolar spiral in morphology (Aldridge et al., 2006, pl. 
1, figs. 9-10). This corresponds to the intestinal morphology 
of many early fish (McAllister, 1987). While eurypterids also 
possessed a partially spiraled gut, there is no evidence that 
they produced spiral coprolites. Caster and Kjellesvig Waering 
(1964) described a putative eurypterid coprolite containing 
fragments of the exoskeleton of the eurypterid Megalograptus 
ohioensis and a trilobite cephalon, in association with body 
fossils of M. ohioensis from the Ordovician of Ohio, as evidence 
of cannibalism. Unstructured masses containing disarticulated 
agnathan fragments are common in the Monks Water fish bed 
in the Silurian Hagshaw Hills inlier in Scotland, together with 
the eurypterid Lanarkopterus dolichoschelus, and these were 
interpreted by Selden (1979) as eurypterid coprolites. These 
examples suggest eurypterid coprolites consist of unstructured 
material. Thus, we consider the spiral morphology to be 
diagnostic of vertebrates.

There are few putative Early or Middle Silurian vertebrate 
coprolites. There are Early Silurian coprolites from Scotland 
and Nova Scotia of a size that they could have been produced 
by vertebrates, but they have been attributed to large predatory 
eurypterids such as Lanarkopterus (Gilpin, 1886; Rolfe, 1973; 
Selden, 1984; Turner, 1999). Late Silurian coprolites include 
two unusual morphologies. Gilmore (1992) described more than 
150 scroll and non-spiral coprolites from western Ireland and 
southern Scotland. The coprolites are composed of argillaceous 
clastic material. These coprolites occur with body fossils of 
agnathans, to which they are attributed. Scroll coprolites are 
uncommon in the fossil record (e.g., Hunt et al., 2012b; Stringer 
and King, 2012), and the only other examples of non-phosphatic 
spiral coprolites are from the Permian of Antarctica (Retallack 

FIGURE 25. Stratigraphic distribution of Paleozoic bromalite 
ichnogenera.
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and Krull, 1999). 

The Telychian/Llandovery agnathan locality of Birk 
Knowes, Lanarkshire, Scotland, yields a large number of 
coprolites. They are composed principally of agnathan fragments 
with little matrix. Specimens at the Hunterian Museum in 
Glasgow preserve two principal morphologies. The majority of 
the bromalites are flattened ovoids averaging 30 mm in length 
and 40 mm in height. A small number of specimens are parallel-
sided linear ribbons with a maximum length of 105 mm and 
a width of 24 mm. The lack of matrix may suggest that these 
bromalites represent regurgitalites. However, the abundance of 
specimens and the regular size of the pellets suggest they are 
coprolites, albeit unusual ones. 

The Ludlow bone bed (Ludlow Bone Bed Member of 
Downton Castle Sandstone Formation) is a Late Silurian source 
of vertebrates in the area along the border between England 
and Wales. Coprolites have long been known to be locally 
common in the Ludlow bone bed (Strickland and Hooker, 1853; 
Murchison, 1867). They include spiral morphologies and are 
phosphatic, and are thus similar to many geologically younger 
coprolites (Murchison, 1839, p. 607, pl. 2, figs. 46-47, 54- 55). 

Vertebrate coprolites become more common in the Devonian, 
with the most important assemblages derived from fossil-fish 
localities in Scotland, and Lagerstätten elsewhere. The most 
significant Early Devonian coprolites from Scotland derive from 
the Lochkovian Tillywhandland Quarry, Forfarshire (Trewin and 
Davidson, 1996). Many coprolites contain spines and scales of 
the acanthodian fish Mesacanthus and were probably produced 
by Ischnacanthus (Trewin and Davidson, 1996; Trewin, 2008; 
Newman and Davidson, 2010). The Mesacanthus spines are 
usually oriented anteriorly, which indicates head first ingestion 
of spiny acanthodians (Trewin, 2008). Most coprolites are 
flattened. A second important assemblage of coprolites occurs at 
Duntrune Quarry in Angus. Spiral coprolites are uncommon in 
the nonmarine assemblages of the Early Devonian of Scotland.

The Early Devonian Hunsrück Slate Lagerstätte of Germany 
yields pyritized coprolites of various morphologies and includes 
local concentrations (Bartels et al., 1998; Wagner and Boyce, 
2006; Kühl et al., 2012). Small strings of feces that represent 
deposit feeders are widespread, but larger coprolites attributed 
to fish are only common in the northern Hunsrück where body 
fossils are rare (Bartels et al., 1998). These coprolites range from 
ovoids to spirals in morphology and locally are concentrated in 
thin layers (Bartels et al., 1998, fig. 220; Kûhl et al., 2012, fig. 
119).

The Achanarras Quarry in the Upper Flagstone Group of 
the Middle Old Red Sandstone of Caithness (Eifelian–Givetian) 
yields a large sample of Middle Devonian coprolites (Rayner, 
1963; Trewin, 1986; Hamilton and Trewin, 1988, 1994). Other 
Scottish Middle Devonian coprolites derive from Orkney and 
Moray. Most coprolites are preserved three dimensionally and 
include several examples of spiral coprolites, and one with a 
scroll morphology.

McAllister (1996) published a detailed study of more than 
120 bromalites, principally coprolites, from the Upper Devonian 
Escuminac Formation of the Miguasha Lagerstätte, Quebec, 
Canada. These coprolites are typical of Devonian assemblages 
in that spiral forms are relatively uncommon (only 3-4 in the 
Escuminac) as are specimens over 4-5 cm in length, and larger 
forms are very rare. Small vertebrate coprolites occur in the Late 
Devonian of Poland, and one larger spiral specimen contains 
conodont elements (Zatoń and Rakociński, 2014; Zatoń et al., 
2017). Devonian coprolites have been reported from other areas, 
including Brazil (Maisey and Melo, 2005), Latvia/Estonia (Hunt 
et al., 2012b) and the United States (e.g., Branson, 1914).

Carboniferous strata record the first large samples of 
vertebrate coprolites (Turner, 1999; Fig. 25). This is a strictly 
Laurussian record that increases in diversity and abundance from 

the Mississippian into the Pennsylvanian. Mansky et al. (2012) 
described coprolites from the Early Mississippian (Tournaisian) 
Horton Bluff Formation of Nova Scotia. In Scotland, there are 
Early Mississippian coprolites (e.g., Pollard, 1985) as well as 
large collections of coprolites from three Middle Mississippian 
(Viséan) localities: (1) East Kirkton, West Lothian; (2) Wardie, 
Midlothian; and (3) Anstruther, Fife (Buckland, 1836; Sumner 
1991,1994). The Wardie and Anstruther localities yield the oldest 
coprofaunas dominated by spiral coprolites. These coprolites 
occur in concretions and average about 5 cm in length. Very 
large coprolites from East Kirkton measuring more than 17 cm 
in length have been attributed to eurypterids (Sumner, 1994). 
The Late Mississippian (Serpukhovian) of Bearsden, East 
Dunbartonshire, Scotland, yields a large sample of coprolites, 
as does the similar age Bear Gulch Lagerstätte of Montana, 
USA (Zidek, 1980; Clark, 1989; Hunt et al., 2012e). Other 
Mississippian coprolites occur in the USA (e.g., Fayetteville 
Shale of Arkansas and Oklahoma, Michigan Formation of 
Michigan, Buffalo Wallow Formation of Kentucky) and England 
(Hunt and Lucas, 2013; Greb et al., 2015). 

The first abundant samples of vertebrate coprolites occur in 
the Pennsylvanian (Fig. 25). Coprolites are found in marine and 
lagoonal shales at many localities as well as in some nonmarine 
coal successions (Hunt and Lucas, 2013). Four bromalite faunas 
of Late Pennsylvanian (Missourian/Kasimovian) age in New 
Mexico, USA, represent an ecological transect from lacustrine 
to basinal marine: (1) Tinajas Lagerstätte – lacustrine; (2) 
Kinney Brick Quarry Lagerstätte – lagoonal; (3) Erickson site 
– nearshore marine; and (4) Sacramento Mountains (Fig. 26) – 
offshore marine (Hunt and Lucas, 2017a). There are clear trends 
through these ichnofaunas from lacustrine to offshore marine in 
terms of a trend of flattened preservation to three dimensional 
preservation, decreasing diversity of kinds of bromalites 
(regurgitalites, consumulites) and increasing proportions of 
spiral coprolites (Hunt and Lucas, 2017a). 

There are several Pennsylvanian examples of 
stratigraphically narrow but geographically widespread zones 
rich in spiral coprolites in marine shales in Colorado (Weber 
Formation, lower Belden Formation) and West Virginia 
(Conemaugh Group) in the USA, and in Germany (Göttelborner 
Beds) (Price, 1927; Johnson, 1934; Guthörl, 1959; Kneuper and 
Schönenberg, 1962; Hunt et al., 2012b; Hunt and Lucas, 2013). 
A variety of Pennsylvanian Lagerstätten in the United States 
preserve coprolites, including Mazon Creek in Illinois, the 
Hamilton Quarry of Kansas and the Kinney Brick Quarry and 
Tinajas localities of New Mexico (McAllister, 1988; Shabica 
and Godfrey, 1997; Hunt et al., 2012h, i; Hunt and Lucas, 2017a, 
2021b; Tripp et al., 2021). Marine invertebrates in coprolites 
from Hamilton aid in paleoenvironmental interpretation 
(Cunningham et al., 1993). Zangerl and Richardson (1963) 
conducted a classic and extensive study of the paleoecology of 
the Middle Pennsylvanian (Desmoinesian/Moscovian) Mecca 
Quarry Shale and Logan Quarry members of the Carbondale 
Formation in western Indiana, USA, and described multiple 
bromalites (coprolites and regurgitalites: Elder, 1985; Elder and 
Smith, 1988). 

Dawson (1854, 1862) first noted common coprolites in the 
fossil-bearing tree stumps of the Early Pennsylvanian Joggins 
Formation of Nova Scotia, and they have been described from 
various localities in eastern Canada (Brown, R. and Lyell, 
C., 1845; Keighley and Pickerill, 1997; Falcon-Lang et al., 
2006; Ó Gogáin et al., 2016; Chipman, 2017; Chipman et al., 
2020; Bingham-Koslowski et al., 2021). Other coal-bearing 
Pennsylvanian strata in England, Scotland, Belgium, Germany 
and Poland yield coprolites (e.g., Buckland, 1836; Bayer, 1934; 
Anderson et al., 1997; Hunt et al., 2012b, c; Hunt and Lucas, 
2013; Krzykawski et al., 2014, Lomax et al., 2016). Hodnett 
and Lucas (2018) described an unusual, large coprolite that 
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FIGURE 26. Selected spiral coprolites from the Late Pennsylvanian (Missourian) Beeman Formation, Otero County, New Mexico, 
USA. A-D, Liassocoprus hawkinsi, NMMNH P-42547, coprolite in A-B, axial and C-D, polar views. E-H, Hyronocoprus isp., 
NMMNH P-63521, coprolite in E-F, axial and G-H, polar views. I-K, Heteropolacoprus texaniensis, NMMNH P-63514, coprolite 
in I-J, axial and K, polar views. L-O, Hyronocoprus amphipola, NMMNH P63520, coprolite in L-M, axial and N-O, polar views. 
P-S, Kalocoprus oteroensis, NMMNH P-63511, coprolite in P-Q, axial and R-S, polar views. T-W, Heteropolacoprus isp., NMMNH 
P-63517, coprolite in T-U, axial and V-W, polar views. X-CC, Kalocoprus oteroensis. X-Y, NMMNH P-63527, coprolite in axial 
views. Z-CC, NMMNH P-63523, coprolite in Z-AA, axial and BB-CC, polar views. DD-EE, Kalocoprus oteroensis, NMMNH 
P-63513, coprolite (holotype) in axial views. FF-HH, Hyronocoprus amphipola, NMMNH P-63519, coprolite in FF-GG, axial 
and HH, polar views. II-LL, Heteropolacoprus texaniensis, NMMNH P-63524, coprolite in II-KK, axial and LL, polar views. 
MM, Hyronocoprus amphipola, NMMNH P-63518, coprolite in axial view. NN-SS, Bibliocoprus beemanensis. NN-PP, NMMNH 
P-63515, coprolite in axial views. QQ-SS, NMMNH P-63503, coprolite (holotype) in QQ, polar and RR-SS, axial views (from Hunt 
et al., 2012g, fig. 1).
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FIGURE 27. Stratigraphic distribution of Triassic and Jurassic bromalite ichnogenera.
contained body fossils of fishes and a tetrapod from the Upper 
Pennsylvanian of New Mexico that may represent a fecal cloud 
derived from a large shark.

Many Pennsylvanian coprolites have a spiral morphology, 
and most of these are heteropolar in form, including 
Crassocoprus and Heteropolacopros (Hunt et al., 2012a, b, 
c, 2013c; Hunt and Lucas, 2017a; Chipman et al., 2020; Figs. 
25-26). Amphipolar morphologies, such as Kalocoprus and 
Hyronocoprus, are less common, and scroll coprolites (e.g., 
Bibliocoprus) are only locally present (Hunt et al., 2012g; Hunt 
and Lucas, 2017a; Chipman et al., 2020; Fig. 26). The Benxi 
Formation of Mississippian/Pennsylvanian (Serpukhovian to 
Bashkirian) age in northern China yields small coprolites that 
could have been produced by fish (Gong et al., 2010).

Whereas the Carboniferous coprolite record is strictly 

Laurussian, the Permian coprolite record globalizes to include 
records from Gondwana (Hunt and Lucas, 2013). A similar 
pattern is seen in the bone record, and this is due, at least in part, 
to the glaciations in Gondwana during parts of the Carboniferous-
earliest Permian, which restricted the distribution of vertebrates 
in the southern continents (Lucas, 2006). Permian coprolites are 
even more abundant than those of the Pennsylvanian and are 
particularly common in redbeds. 

Early Permian coprolites occur in redbeds of the American 
Southwest in New Mexico (Hunt et al., 2005b, 2013a; Cantrell 
et al., 2012), Texas (Neumayer, 1904; Olson, 1966; Olson and 
Mead, 1982; Sander, 1989; Hunt and Lucas, 2005a, b, Hunt et 
al., 2005a, 2012c) and Oklahoma (Olson, 1971, 1977; Hunt et 
al., 2012b), and in marine strata in Kansas (Williams, 1972; 
McAllister, 1985). These ichnofaunas principally yield spiral 
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coprolites that are commonly heteropolar (Heteropolacopros, 
“Megaheteropolacopros,” Liassocoprus, Malericoprus, 
Saurocoprus), although amphipolar (Hyronocoprus) and non-
spiral forms (Alococopros, Dakyronocopros, Strophocoprus) are 
also present (Neumayer, 1904; Hunt and Lucas, 2005a, b; Hunt 
et al., 2005a, 2012a, b, 2013a; Cantrell et al., 2012; Fig. 26). 
Similar age coprolites are present in the lower Permian Dunkard 
Group of West Virginia in the eastern United States (Bowen, 
2013; Lucas, 2013; Hembree and Blair, 2016; Hembree and 
Bowen, 2017).

Coprolites are common in the Rotliegend strata of Western 
and Central Europe, including France (Gaudry, 1887), Germany 
(Lohmann and Sachs, 2001; Eichler and Werneburg, 2010) and 
the Czech Republic (Lemke and Weiler, 1942; Zajíc, 2014). 
Other early Permian coprolites are found in Brazil and Namibia 
and include specimens associated with skeletons of Mesosaurus 
(Ruedemann, 1929; Horsthemke et al., 1990; Warren et al., 2001; 
Silva et al., 2017). Middle Permian coprolites are less common, 
but they are present in Brazil (Dentzien-Dias et al., 2012, 2013, 
2017), Russia (Ochev, 1974) and Antarctica (Retallack and 
Krull, 1999). The Antarctic specimens are of note because they 
are composed of arenaceous matrix (Retallack and Krull, 1999). 
Late Permian coprolites have been reported from England (Bell 
et al., 1979) and South Africa (Smith, 1993; Smith and Botha-
Brink, 2011), but they are most common in Russia where one 
specimen contains possible pre-mammalian hair (Owocki et al., 
2012; Sennikov and Golubev, 2012; Bajdek et al., 2016, 2017; 
Niedźwiedzki et al., 2016b).
Mesozoic

There is an abundant record of vertebrate coprolites in the 
Triassic that increases in abundance and diversity through the 
period (Hunt et al., 2018; Fig. 27). As in the Permian, Triassic, 
coprolites are particularly abundant in nonmarine redbeds. 
Early Triassic coprolites are geographically widely dispersed 
but relatively small in number. The largest sample is from 
the Arcadia Formation (Induan) in Queensland, northeastern 
Australia (Northwood, 1997, 2005). This ichnofauna includes 
Hyronocopros amphipola, Alococopros triassicus, Eucoprus 
sp. and indeterminate coprolites (Hunt et al., 2007). Other 
significant nonmarine coprofaunas occur in the Burgersdorp 
Formation (Olenekian) of South Africa (Bender and Hancox, 
2004; Yates et al., 2012), the Vokhama Formation in Russia 
(Niedźwiedzki et al., 2016b) and the Bulgo Sandstone in 
Australia (Niedźwiedzki et al., 2016a). Other coprolites occur 
in units of the Buntsandstein in France (Gall, 1971; Gall and 
Grauvogel-Stamm, 1993) and Germany (e.g., Dachroth, 1985) 
and the Beaufort Group in South Africa (Smith and Botha-Brink, 
2011). Early Triassic coprolites from marine strata of Japan and 
Poland have been utilized to address changing ecosystems after 
the PTB extinctions and in relation to the “Mesozoic Marine 
Revolution” (Nakajima and Izumi, 2014; Brachaniec et al., 
2015). Similarly, Luo et al. (2017) utilized a diverse coprolite 
fauna from the Middle Triassic of Luoping, China to indicate 
the emergence of complex trophic ecosystems in the Anisian as 
evidence for biotic recovery after the Early Triassic extinctions.

Middle Triassic nonmarine coprolite localities are widely 
dispersed in North (USA) and South America (Argentina, 
Brazil), Europe (England, France, Germany, Switzerland, Italy, 
Poland, Slovenia), Asia (Russia, Kazakhstan, India, China) and 

Africa (South Africa) (Hunt et al., 2013b). The best described 
Middle Triassic ichnofaunas are from Brazil (Santa Maria 
Formation: Souto, 2001; Hunt et al., 2013b; Francischini et 
al., 2018), Argentina (Potrerillos, Cacheuta, Río Blanco and 
Chañares formations: Rusconi, 1947, 1949; Mancuso et al., 
2004; Fiorelli et al., 2013; Loinaze et al., 2018; Mancuso et al., 
2018), the United States (Moenkopi Formation: Benz, 1980; 
Morales, 1987; Boy et al., 2001; Schoch et al., 2010), Russia 
(Karagachka, Donguz I and Bukobay localities: Ochev, 1974), 
Kazakhstan (Mollo-Khara-Bala-Kantemir locality: Ochev, 
1974) and Poland (Muschelkalk: Chrzastek, 2008; Kowal-Linka 
and Bodzioch, 2012). The Santa Maria Formation of Brazil 
yields the earliest unambiguous vertebrate herbivore coprolites, 
Rhynchocopros and Santamariacopros (Hunt et al., 2013b; but 
see Francischini et al., 2018). The oldest latrinite is from the 
Chañares Formation of Argentina (Fiorelli et al., 2013). 

The Late Triassic sample of coprolites is by far the largest 
from this period, and the majority of specimens are from 
nonmarine strata (Figs. 27-28). There are records in the USA 
(Lucas et al., 1985a; Wahl et al., 1998; Hunt et al., 1998, 2007, 
2013b, 2018), Greenland (Milàn et al., 2012b, 2021; Hansen, 
2014; Hansen et al., 2016), England (Duffin, 1979; Swift and 
Duffin, 1999; Hunt et al., 2013b), The Netherlands (Klompmaker 
et al., 2010), Switzerland (Fluckiger, 1861), Germany (Fraas, 
1891; Schoch, 2012), Poland (Badjek et al., 2014, 2019; Zatoń 
et al., 2015; Qvarnström et al., 2019a, b, 2021), India (Matley, 
1939a, b; Sohn and Chatterjee, 1979; Jain, 1983; Vijaya et 
al, 2009; Rakshit et al., 2019; Umamaheswaran et al., 2019), 
Thailand (Laojumpon et al., 2012), Argentina (Contreras, 1995; 
Hollocher et al., 2005), Brazil (Langer, 2005), Morocco (Hunt 
et al., 2013b), Madagascar (Burmeister et al., 2006) and South 
Africa (Anderson et al., 1998). The majority of specimens are 
from the nonmarine Chinle Group and Newark Supergroup of 
western and eastern North America, respectively, and the marine 
Rhaetic bonebeds in Europe (Duffin, 1979; Swift and Duffin, 
1999; Hunt et al., 2013b). 

The largest and most studied Late Triassic coprolite 
assemblages are from about 20 stratigraphic units of the Chinle 
Group of the western and southwestern United States (Arizona, 
New Mexico, Colorado, Texas, Utah, Wyoming: Hunt et al., 
1998, 2007, 2013b, 2018; Fig. 28). Late Triassic nonmarine 
coprofaunas include a wide diversity of morphologies 
representing large herbivores (Dicynodontocopros) and 
carnivores with heterospiral (Heteropolacopros), scroll and non-
spiral (Alococoprus, Eucoprus) coprolite morphologies (Hunt et 
al., 2013b, 2018; Badjek et al., 2014; Zatoń et al., 2015; Rakshit 
et al., 2018; Bajdek et al., 2019; Qvarnström et al., 2019a, 2021; 
Fig. 28). The most abundant marine coprolites are from Rhaetian 
bonebeds of western Europe, notably the United Kingdom, 
and morphotypes include spiral and nonspiral forms (Duffin, 
1979; Swift and Duffin, 1999; Hunt et al., 2013b; Cueille et al., 
2020). Coprolites also occur in the marine Carnian of Austria 
(Lukeneder et al., 2020; Lukeneder and Lukeneder, 2021).

Jurassic coprolites are much less common than those 
in the Triassic and understudied, with the notable exception 
of those from the Lias of England, which yields several 
ichnotaxa, including multiple spiral forms such as Liassocoprus, 
Strabelocoprus and Saurocoprus (Hunt et al., 2007, 2012a; 
Duffin, 2009, 2010, 2012a; Fig. 27). Other Early Jurassic marine 
units in Europe yield relatively few coprolites, for example the 

FIGURE 28. (facing page) Late Triassic (Adamanian) coprolites from the Ciniza pond locality, Bluewater Creek Formation, New 
Mexico, USA (NMMNH locality 1864). A-C, NMMNH P-25717, two conjoined coprolites of Eucoprus cylindricatus, in A-B, axial 
and C, polar views. D-F, NMMNH P-25692, heterospiral coprolite in D-E, axial and F, polar views. G-J, NMMNH P-25686 from 
NMMNH locality 1864, cf. Heteropolacopros isp. in G-I, axial and J, polar views. K-N, NMMNH P-25707, Eucoprus cylindricatus, 
in K-L, axial and M-N, polar views. O-Q, NMMNH P-25706, Alococopros triassicus in O-P, axial and Q, polar views. R-S, 
NMMNH P-1864, large Heteropolacopros texaniensis in axial views. T-U, NMMNH P-25706, partial Heteropolacopros texaniensis 
in axial views. V-Y, NMMNH P25709, segment of Heteropolacopros texaniensis in V-X, axial and Y, polar views (from Hunt et 
al., 2013, fig. 6).
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Posidonienschiefer of Germany (e.g., Hauff, 1921). Garassino 
and Donovan (2000) describe possible coprolites of marine 
reptiles, some containing coleoid hooks, which are common in 
ichthyosaur consumulites, from the Early Jurassic of Italy. 

The Early Jurassic portion of the nonmarine Newark 
Supergroup in eastern North America contains coprolites that are 
little studied (e.g., Hitchcock, 1844; Dana, 1845; Gilfillian and 
Olsen, 2000; Lanzirotti et al., 2000), and a smaller number occur 
in the Glen Canyon Group of the southwestern USA (Clark and 
Fastovsky, 1986). Górecki et al. (2019) described plant material 
from the coprolite of a large predatory dinosaur from the Early 
Jurassic of Poland.

Nomarine Middle Jurassic coprolites are rare (as are 
terrestrial vertebrate body fossils). Hill (1976) described a mass 
of small pellets containing the plant Ptilophyllum in England and 
tentatively assigned them to an ornithopod dinosaur or mammal, 
although the latter is highly improbable given their size (about 
1 cm in diameter) and age. The Natural History Museum in 
London has coprolite collections from the marine Purbeck 
Limestone and Oxford Clay formations of England, which are 
largely unstudied (Hunt et al., 2007, 2012c). The Oxford Clay is 
notable for yielding many vertebrate coprolites (Martill, 1985a).

Several lithographic limestone Lagerstätten of Late Jurassic 
age in Germany contain coprolites. Schweigert and Dietl 
(2012) described specimens from the Nusplingen Lithographic 
Limestone, and specimens are also common in the Solnhofen 
and Ettling Lagerstätten (Barthel et al., 1990; Kemp and 
Trueman, 2003; Röper, 2005; Ebert et al., 2015). Hone et al. 
(2015) described rare pterosaur coprolites from Solnhofen, and 
Qvarnström et al. (2019b) described others from Poland. The 
Talbragar Fish Bed Lagerstätte in New South Wales, Australia, is 
of Kimmeridgian-Tithonian age and yields abundant coprolites 
(Beattie and Avery, 2012; Schwarzhans et al., 2018). 

Despite the local abundance of dinosaur body fossils in 
the Late Jurassic, their coprolites are rare. Hunt and Lucas 
(2014a) reviewed the record of Late Jurassic coprolites from 
the United States. It includes probable theropod specimens and 
putative specimens produced by herbivorous dinosaurs from 
the Morrison Formation (Chin and Kirkland, 1998; Chin and 
Bishop, 2004, 2007). 

Cretaceous coprolites are more numerous and more 
widespread than in any earlier time period (Fig. 29). Early 
Cretaceous coprolites are mainly known from nonmarine 

settings and are relatively poorly documented, although their 
occurrences are widespread (North and South America, Africa, 
Australasia and Europe) (Hunt and Lucas, 2016c). Bertrand 
(1903) authored the first monograph on vertebrate coprolites, 
based on specimens that had been found in strata that yielded 
multiple skeletons of Iguanodon from Belgium. He ascribed 
them to theropod dinosaurs (see also Casier, 1960, 1978), but 
they more likely pertain to crocodiles (Abel, 1935). Multiple 
coprolites also occur in an Iguanodon bonebed at Nehden in 
Germany (Norman, 1987). Other notable coprofaunas from 
Early Cretaceous nonmarine strata include the Maceió and 
São Sebastião formations of Brazil (Souto, 2008; Souto and 
Schwanke, 2010), the Wealden Group of England (Buckland, 
1835; Martill and Naish, 2001; Goldring et al., 2005), the 
Escucha Formation (Alcalá et al., 2012; Vajda et al., 2016) and 
La Huérguina Formation (Las Hoyas Konservat-Lagerstätte: 
Barrios-de Pedro et al., 2018, 2020a,c) of Spain, the Angeac-
Charente bonebed of France (Rozada et al., 2021) and the Jehol 
Lagerstätte of China (Burnham, 2008; Pan et al., 2011, 2013). 
Other nonmarine Early Cretaceous coprolites are present in the 
United States, Mexico, Denmark, Tunisia and Mongolia (Hunt 
and Lucas, 2016c).

Marine reptile coprolites are uncommon. Early Cretaceous 
ichthyosaur coprolites occur with a large concentration of 
skeletons in the Zapata Formation at Torres del Paine National 
Park in Chile (Stinnesbeck et al., 2014). The lagoonal Civita 
di Pietraroja Lagerstätte in Italy has yielded coprolites of a 
herbivorous fish, possibly Notagogus (Russo et al., 2015).

The record of Late Cretaceous coprolites is much more 
extensive and more widespread than for the earlier part of the 
period (Hunt and Lucas, 2016c). In addition, there are much 
larger samples from marine units, reflecting the great extent 
of continental flooding. And, Late Cretaceous-Paleogene 
phosphorites yield coprolites over a wide area from northwest 
Africa to the Middle East (Hunt and Lucas, 2016c). 

Woodward (1729) was the first to describe Late Cretaceous 
specimens that were later recognized as coprolites, from the 
marine Grey Chalk Group (Cenomanian) in England (Duffin, 
2009; Hunt et al., 2015b). Subsequently, Mantell (1822) 
described and illustrated similar specimens and others from 
the Turonian-Maastrichtian White Chalk Group (Turonian-
Maastrichtian), which Buckland (1835) ultimately identified 
as coprolites. Subsequently, several coprolites, principally 

FIGURE 29. Stratigraphic distribution of Cretaceous-Quaternary bromalite ichnogenera.
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heteropolar in form, were described from the Chalk of 
southern England (Longbottom and Patterson, 2002; Hunt 
et al., 2015b). Elsewhere, Late Cretaceous marine coprolites 
are widely distributed in three principal areas: (1) Europe; (2) 
Middle East/North Africa; and (3) North America. Many of the 
coprolites from Europe are spiral forms from chalk facies in the 
Netherlands, Belgium, Sweden, Germany, the Czech Republic, 
Austria and Poland (e.g., Hunt et al., 2015c; Milàn et al., 2015; 
Hunt and Lucas, 2016b). Non-spiral forms are locally common 
(Hunt and Lucas, 2018b). Large samples demonstrate a diversity 
of morphotypes (e.g., Eriksson et al., 2011; Anagnostakis, 
2013), and coprolites from Austria and Poland are composed 
of Inoceramus shell fragments (Götzinger and Becker, 1932; 
Bajdek, 2013). 

Phosphorites are nonrandomly distributed in space and 
time (e.g., Cook and McElhinny, 1979; Dornboss, 2011). The 
North Africa/Middle East phosphogenic province ranges in age 
from Late Cretaceous to Eocene and is part of the South Tethyan 
Phosphogenic Province (STPP) (e.g., Sheldon, 1964; Klemme, 
1985). It yields reports of marine coprolites from Togo to Iraq, 
including Late Cretaceous specimens from Jordan, Israel, Syria, 
Egypt, Mauritania, Tunisia, Senegal, Morocco, Mali and Niger 
(Tapanila et al., 2008; Hunt and Lucas, 2016c). Many coprolites 
are correctly identified, but some of the putative coprolites are 
probably concretions (cf. Horton, 2012; Hunt and Lucas, 2016c). 
Capasso (2019b) described a coprolite of a pycnodont from the 
Cenomanian of Lebanon that is not associated with phosphorites 
and that appears to have been expelled just before fossilization.

The Western Interior Seaway in North America yields 
abundant marine coprolites. The first published record of a North 
American coprolite was a heteropolar specimen from the Upper 
Cretaceous of New Jersey (DeKay, 1830a, b; Buckland, 1835). 
Subsequently, coprolites have been described from elsewhere in 
the eastern United States, in New Jersey (Hunt and Lucas, 2016b, 
c), North Carolina (Hunt et al., 2012a), South Carolina (Hunt et 
al., 2012b; Schwimmer et al., 2015a, b), Georgia (Harrell and 
Schwimmer, 2010; Hunt et al., 2012b) and Alabama (Hunt et al., 
2012a). The majority of the coprolites from the western United 
States derive from Kansas (e.g., Stewart, 1978; Hattin, 1996; 
Everhart, 2005e, 2017), but they also occur in Texas (Friedman, 
2012), Colorado (Shimada et al., 2006; Hunt et al., 2012b) 
and Wyoming (Hunt and Lucas, 2016b). Mosasaur coprolites 
occur in southern Saskatchewan (Mahaney et al., 2013; Hunt 
and Lucas, 2018c), and other specimens occur in Cenomanian 
bonebeds in Saskatchewan and Manitoba (Schröder-Adams et 
al., 2001; Cumbaa et al., 2006; Phillips, 2008; Underwood and 
Cumbaa, 2010). 

The majority of vertebrate coprolites from the nonmarine 
Late Cretaceous derive from North America, and there are also 
specimens from Europe, India and Africa. Many of the nonmarine 
units in the Western Interior of North America (Canada, United 
States, Mexico) that produce vertebrate body fossils, also yield 
coprolites, but there are relatively few published descriptions. 
The most extensive described samples in North America are 
from the San Juan Basin in New Mexico (Suazo et al., 2012; 
Sullivan and Jasinski, 2012; Hunt et al., 2012b), and the largest 
individual specimens are putative tyrannosaur coprolites from 
Saskatchewan and Alberta (Chin et al., 1988, 2003). Apart from 
putative coprolites of herbivorous dinosaurs from Montana (Chin 
and Gill, 1996; Hollocher et al., 2001; Chin, 2007; Chin et al., 
2009) and possibly Coahuila, Mexico (Rodriguez de la Rosa et 
al., 1998) and Utah (Ridgewell et al., 2015), all other occurrences 
represent carnivores and include specimens from Texas, Utah, 
Wyoming, Montana and Alaska in the United States (Rowe et 
al., 1992; Baghai-Riding and DiBenedetto, 2001; Hollocher 
at al., 2010; Hunt et al., 2012b; Hunt and Lucas, 2016c), and 
Alberta in Canada (Waldman and Hopkins, 1970; Coy, 1995; 
Hunt and Lucas, 2016c). Other nonmarine Late Cretaceous 

coprolites occur in India (e.g., Matley, 1939a, b; Ghosh et al., 
2003; Hunt et al., 2007; Khosla et al., 2016), France, (Robertson, 
1834), Hungary (Segesdi et al., 2017), Austria (Ősi et al., 2021), 
Brazil (Souto, 2010; Souto and Fernandes, 2015; Ferreira et al., 
2019; de Oliveira et al., 2021), Madagascar (Rogers et al., 2013) 
and Kazakhstan (Nesov, 1995, 1997; Averianov et al., 2015).
Paleogene

The majority of Paleogene coprolite localities are in 
nonmarine strata, although the largest sample sizes are from 
marine deposits (Hunt and Lucas, 2016c). North America has 
the best described record of Cenozoic vertebrate coprolites 
(Hunt and Lucas, 2007a, 2016b), with nonmarine specimens 
from every epoch and notably large samples from the Eocene 
Green River Formation (e.g., Edwards, 1976; Grande, 1980; 
2013; Wilson, 1987; Wells et al., 1993; Hunt et al., 2012b) and 
Eocene/Oligocene White River Group, including a latrinite 
(e.g., Sinclair, 1921; Wanless, 1923; Abel, 1926, 1935; Stovall 
and Strain, 1936; Vogeltanz, 1965, 1967; Clark et al., 1967; 
Lemley, 1971; Edwards, 1973a, b; Edwards and Yatkola, 1974; 
Retallack, 1983; LaGarry, 1997; DiBenedetto, 2004; Hembree 
and Hasiotis, 2004, 2007; Meehan, 2007; Hunt and Lucas, 
2007a; Hunt et al., 2012b, g).

Nonmarine Paleogene coprolites are present at several 
localities in South America, including the Paleocene of Brazil 
(Souto, 2007), Paleocene/Eocene of Argentina (Krause et al., 
2007; Krause and Piña, 2012) and Oligocene of Brazil (Castro et 
al., 1988). Lucas et al. (2012) described a large coprofauna from 
the late Eocene of northeastern Kazakhstan, and other Asian 
localities are in the Paleocene of China (Young, 1964; Meng 
and Wyss, 1997) and the middle Eocene of Pakistan (Gingerich, 
1977). Paleocene coprolites occur in the Menat Lagerstätte in 
France (Wedmann et al., 2018).

 Coprolites, principally from crocodiles and fish, are known 
from both of the famous German Eocene Lagerstätten of Geiseltal 
(Voigt, 1934) and Messel (Fikentscher, 1933; Nürnberger, 1934; 
Schmitz, 1991; Richter and Baszio, 2001a, b; Richter and 
Wedmann, 2005). Baranov et al. (2021) described an unusual 
occurrence of fly larvae in a specimen of a mammalian coprolite 
within Eocene Baltic amber. Other nonmarine coprolites from 
Europe occur in the Eocene London Clay (Buckland, 1835; 
Cloutier et al., 2000; Rayner et al., 2009) and the Oligocene of 
France (Buckland, 1835; Duffin, 2009). 

Paleogene phosphorites yield marine coprolites over a 
wide area of the South Tethyan Phosphogenic Province (STPP) 
from northwest Africa to the Middle East, including Iraq, 
Jordan, Egypt, Algeria, Senegal, Mali, Morocco, Algeria, Togo 
and Nigeria (Hunt and Lucas, 2016c). The marine Eocene is 
characterized by very large samples (> 1K specimens) of marine 
coprolites, notably the early Eocene Potapaco Member of the 
Nanjemoy Formation, Virginia (Dentzien-Dias et al., 2021) and 
the upper Eocene Yazoo Clay, Louisiana (Stringer and King, 
2012), both in the United States, and from the middle Eocene 
Fürstenau Formation of Germany (Diedrich and Felker, 2012). 
The latter two coprofaunas consist principally of heteropolar 
spiral coprolites. Other marine coprolites occur in the Paleocene 
of Denmark (Milàn, 2010; Milàn et al., 2012b; Milàn and Hunt, 
2016), the Oligocene of Germany (Weiler, 1922; Zotz, 1928; 
Martini, 1965), Oligocene of Denmark (Milàn et al., 2018), 
Oligocene of Poland (Bajdek and Bienkowska-Wasiluk, 2020) 
and the Paleocene and Eocene of France (Meillet, 1842) and 
Belgium (Buckland, 1835). 
Neogene

The Neogene coprolite record is dominated by nonmarine 
assemblages with relatively few marine examples. Miocene 
coprolites have an almost worldwide distribution and occur in 
South, North and Central America, Europe, Asia, Africa and 
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Australasia. Virtually all examples are from nonmarine strata, 
and they include an increased number of coprolites attributed to 
herbivores relatively to older time intervals.

Some of the most significant Miocene coprofaunas from 
Europe are from Spain and yield the earliest hyena coprolites 
(Pesquero et al., 2011, 2013a, b), which were to become 
prevalent during the latest Neogene and Quaternary (Hunt and 
Lucas, 2020a). Abella et al. (2021) described two morphotypes 
of bone-consuming carnivores from Spain. Antunes et al. (2006a, 
b) reported the unusual occurrence of mammalian footprints in 
coprolites from Portugal. Miocene tetrapod coprolites occur in 
the Czech Republic (Fejfar et al., 2003; Mikuláš and Dvorák, 
2010), and aquatic coprolites occur in Spain and Malta (Pedley, 
1978; Peñalver and Gaudant, 2010).

One of the largest coprolite ichnofaunas from the Miocene of 
South America is from the Uranco Formation of Venezuela, and 
it includes specimens produced by herbivorous and carnivorous 
mammals and reptiles (Royo and Gomez, 1960; Dentzien-Dias 
et al., 2018). There are several localities yielding coprolites in 
Argentina (Tauber et al., 2007; Verzi et al., 2008; Tomassini and 
Montalvo, 2010; Aceñolaza, 2012; Montalvo et al., 2016, 2019; 
Tomassini et al., 2019), and specimens have been reported from 
Colombia (Carlini et al., 1997) and in northwestern Amazonia 
(Hoorn, 1994). In Central America, coprolites occur in Miocene 
strata in Panama (Whitmore and Stewart, 1965; Hastings et al., 
2013).

Wang et al. (2018) described coprolites of the bone-cracking 
dog Borophagus from the Miocene of California in the western 
United States that Hunt and Lucas (2021d) subsequently named 
Borocopros wangi. Other borophagine coprolites occur in New 
Mexico and Texas (Hunt and Lucas, 2021a). Martin (1981) 
documented other carnivore coprolites to the north in Oregon. 
There are other undescribed Miocene coprolites from North 
America, including Miocene rhinoceros coprolites from Mexico 
(Hunt and Lucas, 2007a).

There are relatively few reports of Neogene coprolites from 
Africa and Asia, but they include specimens from terrestrial and 
lacustrine environments in Uganda and Kenya, respectively 
(Greenwood, 1951; Bishop, 1964), and crocodilian coprolites 
from India (Sharma and Patnaik, 2010). Australasian Miocene 
coprolites occur in a fluvial deposit in central Australia (Megirian 
et al., 1996) and a lacustrine maar Lagerstätte in New Zealand 
(Lindquist and Lee, 2009; Lee et al., 2016). 

Miocene marine coprolites are uncommon, and most derive 
from the Calvert Cliffs of Maryland in the United States (e.g., 
Godfrey and Smith, 2010). Specimens of note include one 
yielding feather impressions and another that includes dentalites 
produced by a shark (Wetmore, 1943; Godfrey and Smith, 2010). 
Another dentalite-bearing coprolite derives from northern Italy 
(Collareta et al., 2019b).

The record of Pliocene coprolites is principally from 
nonmarine strata in Africa, Europe and South America. Most 
Pliocene African coprolites were discovered during studies of 
early hominins in the eastern and central parts of the continent, 
including Ethiopia (Jacobs, 1985), Tanzania (Harrison, 2011; 
Njau and Blumenschine, 2012) and Zaire (Harris et al., 1987). 
Other Pliocene coprolites occur in Namibia (Morales et al., 
2011) and Libya (Muftah, 2020; Muftah et al., 2020). Pliocene 
or Villafranchian (late Pliocene-early Pleistocene) coprolites, 
principally derived from hyenas, are known from multiple 
localities in Europe, including Spain (Arribas et al., 2009; 
Madurell-Malapeira et al., 2010, 2011), France (Delson et al., 
2006; Argant and Bonifay, 2011) and Italy (Girotti et al., 2004). 

South American Pliocene coprolite records are principally 
from Argentina (Aceñolaza, 2012; Tomassini and Montalvo, 
2013; Cenizo et al., 2016). The North American Pliocene has 
produced few coprolites. Hunt et al. (2019, 2021b) described 
a specimen of the borophagine coprolite Borocopros from 

southwestern New Mexico in the United States. There are 
possible Pliocene coprolites from China (Kao, 1962).

There are few records of Pliocene marine coprolites. Hunt et 
al. (2016b) named Helicoprus clarki for a spiral chondricthyan 
coprolite from the Red Crag Formation (upper Pliocene-lower 
Pleistocene) of England.
Quaternary

There are numerous Quaternary coprolites in paleontological 
and archeological sites worldwide, which include hominin 
specimens. The largest Quaternary coprolite fossil record is in 
North America, where the caves of the arid Southwest have 
yielded large accumulations of coprolites, including latrinites 
(e.g., Rampart Cave, Bechan Cave) of megaherbivore coprolites 
such as those of ground sloth and mammoth (Castrocopros, 
Mammuthocopros) as well as of smaller herbivores (Martin et 
al., 1961; Mead et al., 1984, 1986a, b, 1993, 2020; Glowiak, 
2007; Mead and Swift, 2012; Hunt and Lucas, 2018c, 2020c; 
Figs. 29-30). The most extensive record is from small rodents 
such as Neotoma (Tweet et al., 2012). Neotoma coprolites also 
occur at the Rancho La Brea (tar pits) Lagerstätte (Rice et al., 
2019; Mychajliw et al., 2020a).

There is a smaller but similar Quaternary coprolite record 
in South America (e.g., Spillmann, 1929; Verde and Ubilla, 
2002; Kerber and Oliveira, 2008; Hunt and Lucas, 2018c). 
The Old World is characterized by caves with hyena coprolites 
and latrinites (Buckland, 1822, 1824, 1827; Chow, 1955; Kao, 
1962; Musil, 1962; Mitzopoulos and Zapfe, 1963; Mohr, 1964; 
Scott, 1987; Fernandéz-Rodrìguez et al., 1995; Tournepiche and 
Couture, 1999; Diedrich, 2012a, c; Hunt and Lucas, 2020a). 
New Zealand and other Pacific islands yield locally abundant 
and important records of bird coprolites that are Quaternary and 
Holocene in age (James and Burney, 1997; Horrocks et al., 2004; 
Wood et al., 2008, 2012a, b). Human coprolites are present at a 
large number of archeological sites, but their study is generally 
in a separate literature from the paleontological literature, and 
there is little communication between the two sciences (e.g., 
Bryant and Reinhard, 2012; Shillito et al., 2020).

Davis (Davis et al., 1977; Davis, 1987; Davis and 
Shafer, 2006)) first recognized that spores of the dung 
fungus Sporormiella became abundant following the historic 
introduction of grazing herbivores in the western United States. 
During the Holocene this fungus is rare. However, Sporormiella 
spores are abundant before the extinction of Pleistocene 
megaherbivores, and they have been recovered from coprolites 
of Mammuthocopros from Bechan Cave in Arizona (Davis, 
1987; Gill et al., 2013). So, Sporormiella spores are a proxy 
for an abundance of large terrestrial herbivores and can provide 
evidence for their extinction (Davis, 1987). Thus, Sporormiella 
spores have been widely utilized to study patterns of extinction 
or/and the immigration or introduction of moas in New Zealand 
(Wood et al., 2011), giant tortoises in the Galapagos Islands 
(Froyd et al., 2013), giant lemurs, elephant birds and the pygmy 
hippopotamus in Madagascar (Burney et al., 2003) and cattle in 
Brazil (Raczka et al., 2016). 

Ichnotaxonomy
Bertling et al. (2006, p. 265) noted that “The need to name 

trace fossils…has unambiguously been accepted for decades.” 
However, vertebrate ichnologists have been slow to name 
coprolites. Hunt et al. (1998) named the first valid ichnotaxa 
of vertebrate coprolites (Dicynodontocopros maximus, 
Heteropolacopros texaniensis). Indeed, the description and 
naming of vertebrate coprolites has allowed detailed analyses 
of distribution patterns, including a robust biostratigraphy 
and biochronology for the Triassic, utilizing 17 ichnogenera 
(Hunt et al., 2018, fig. 12.11; Fig. 27) and construction of 
paleoenvironmental transects in the Pennsylvanian using seven 
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FIGURE 30. Late Pleistocene herbivore coprolites. A–B, USNM PAL 720155, Castrocopros martini, holotype coprolite from 
Rampart Cave, Arizona, USA, in lateral (A) and terminal (B) views. C–D, YPM 10574, Castrocopros hauthali, holotype coprolite 
from Cueva de Milodón, Ultima Esperanza Province, Chile in lateral views. E–G, GLCA 381, Mammuthocopros allenorum, 
holotype coprolite from Bechan Cave, Utah, USA, in terminal (E–F) and lateral (G) views. H–J, GLCA 2379, Three coprolites of 
Suaviocopros harrisi from Hooper’s Hollow, Utah, USA, in lateral view (from Hunt and Lucas, 2020a, fig. 2).
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ichnogenera (Hunt and Lucas, 2017a, fig. 1). Why, then, have 
relatively few other workers used a formal ichnotaxonomy 
for vertebrate coprolites, with a few notable exceptions (e.g., 
Duffin, 2010; Laojumpon et al., 2012; Milàn, 2018; Rakshit et 
al., 2019; Rummy et al., 2021; Table 3)? 

Several authors have explicitly advocated the use of 
morphotypes rather than ichnotaxa for coprolites because: (1) 
different animals may produce similar fecal morphologies; (2) 
differing morphologies and contents of feces are driven by 
seasonal or ontogenetic factors; and (3) there is variation in 
preservation (Chin in Hunt et al., 1994a; Bajdek et al., 2014; 
Francischini et al., 2018). The first two arguments are based on 
the misconception that modern feces are not distinguishable 
because of variability, even though wildlife biologists routinely 
track and study the distribution of extant taxa based on the 
distinct morphologies of their feces (e.g., Murie, 1974; Jenkins 
and Burrows, 1980; Stuart and Stuart, 2000; Chame, 2003). 

In large part, this reluctance to name coprolites stems from 
the fact that primates (such as ourselves) produce unusually 
variable morphologies of feces (Hunt et al., 2012d). However, 
the majority of vertebrates (carnivores and herbivores) produce a 
consistent morphology of feces, which, as just noted, is apparent 
from studies of Recent animal traces. Authors who decline to 
erect ichnotaxa discriminate morphotypes (e.g., Eriksson et 
al., 2011; Hansen et al., 2016; Francischini et al., 2018), which 
are ichnotaxa without names. A nomenclature that recognizes 
repetitive morphologies is essential for synthetic ichnology. 
Seilacher (1964, 1967) could not have recognized ichnofacies 
if all invertebrate ichnologists had described ichnofaunas in 
terms of ad hoc morphotypes. Thus, we strongly advocate the 
application of a rigorous ichnotaxonomy to vertebrate coprolites 
for both philosophical and practical reasons.

Ichnotaxobases
Vallon (2012) first explicitly discussed ichnotaxobases for 

coprolites. The most utilized ichnotaxobases for coprolites are:

1. External morphology – Coprolites and Recent feces 
display a range of morphotypes that are useful for definition 
(Häntzschel et al., 1968; Chame, 2003; Hunt and Lucas, 2012b). 

2. Internal structure – Many coprolites have a spiral 
or scroll internal structure (Hunt and Lucas, 2012b). Spiral 
coprolites are either amphipolar or heteropolar (microspiral or 
macrospiral) in form (Appendix B). Many ichnotaxa are based 
on these structures (e.g., Heteropolacopros: Hunt et al., 1998; 
Scrollocoprus: Rummy et al., 2021). 

3. Surface texture – Some coprolites such as Strophocopros 
have distinct surface textures (Hunt and Lucas, 2005b). 

4. Size – Size by itself is not usually an ideal ichnotaxobase 
except in cases where there are very distinct size classes (e.g., 
Megaheteropolacopros: Hunt et al., 2005a). 

5. Inclusions – Certain coprolites contain distinct and/
or abundant inclusions, such as conchostracan valves in 
Crustacoprus (Hunt et al., 2012i). 

6. Mineralogy – Most coprolites are phosphatic in 
composition, but others have different mineralogies, such as 
Rhynchocopros soutoi and Santamariacopros elongatus, which 
are calcareous (Hunt et al., 2013).

Producer
The majority of vertebrate coprolites represent those of 

carnivorous animals, because of two main factors: (1) herbivores 
defecate a large proportion of undigested vegetable material 
that is the basis of a diverse micro-ecosystem of bacterial and 
other scavengers that diminish and/or destroy the bolus, whereas 
carnivore feces are largely composed of unattractive waste 
products; and (2) the calcium phosphate in consumed bone 
facilitates the lithification of most carnivore feces (Hunt et al., 
1994; Hollocher and Hollocher, 2012).

The main lines of evidence to identify the specific producer 
of a vertebrate coprolite type are:

1. Morphology - Some coprolites have a very distinctive 
morphology and structure. Notably, spiral coprolites that are 

FIGURE 31. Late Pleistocene biogeographic provinces based on vertebrate coprolites. The Castrocopros province (green squares) 
characterized by Castrocopros ispp. produced by ground sloths and the Hyaenacoprus province (red circles) by Hyaenacoprus 
bucklandi produced by hyenas. Each symbol represents a single country. For details of localities see Hunt and Lucas (2020a, table 
1 and Supplemental Data file) (from Hunt and Lucas, 2021b, fig. 9, adapted from Hunt and Lucas, 2020, fig. 1).
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produced by sharks, rays or less advanced fish with spiral valves 
have been studied extensively to investigate their origins (Hunt 
and Lucas, 2012b).

2. Analogy – In the case of late Cenozoic animals, it is often 
possible to compare the morphology and content of coprolites 
with those of living animals. Thus, comparison of putative 
mammoth coprolites with elephant dung has been useful in 
identification of the producers (Mead et al., 1986a; Hunt and 
Lucas, 2020a). 

3. Association in digestive tract – In a few rare instances, 
coprolites have been found within the body cavity of Paleozoic 
fish, Mesozoic dinosaurs and Cenozoic crocodilians, thus 
establishing their producers.

4. Association with skeletal remains (articulated carcass or 
bone bed) – Some coprolites are found in close association with 
skeletons but not within them, such as Dicynodontocopros at the 
Late Triassic Placerias quarry bone bed, which is dominated by 
the bones of dicynodonts (Hunt et al., 1998). The association 
thus suggests the producer.

5. Biochemistry – Pleistocene and Holocene coprolites are 
often identifiable to species level because of the preservation of 
complex organic molecules, including DNA (Poinar et al., 1998, 
2003; Karpinksi et al., 2017).

6. Inclusions – Inclusions in coprolites can provide 
information about diet that may help identify the producer. 

7. Size – Size can be of some use in the identification of the 
producer of coprolites, as small animals cannot produce large 
coprolites. In cases of very large dimensions, size may allow 
attribution. For example, very large Late Cretaceous coprolites 
have reasonably been attributed to tyrannosaurid dinosaurs, the 
only vertebrate taxon at that time large enough to produce such 
large coprolites (Chin et al., 1988, 2003).

Utility of Coprolites
Introduction

Coprolites can serve as proxies for biotaxa (the animals that 
produced them). The producer of individual vertebrate coprolites 
can usually only be identified at a high taxonomic level (order or 
higher) with very few exceptions before the Pleistocene, such as 
dicynodont therapsids from the Late Triassic of the United States 
and hyperodapedontid rhynchosaurs from the Middle Triassic of 
Brazil (Hunt et al., 2013b). Most Pleistocene vertebrate coprolites 
can be identified at the specific level on the basis of morphology 
and DNA (e.g., Hyaenocoprus derives from Crocuta: Bon 
et al., 2012). Regardless of the known taxonomic level of the 
producer, the distribution of a coprolite ichnotaxon is a proxy for 
a biological taxonomic unit. Vertebrate coprolites provide some 
biochronology in the Pennsylvanian to the Quaternary (Figs. 
25, 27, 29), and invertebrate coprolites, although represented by 
far fewer ichnotaxa, provide a biochronology through the entire 
Phanerozoic (Knaust, 2020). 

Vertebrate coprolites can delimit biogeographic regions. For 
example, there are two distinct biogeographic and taphonomic 
provinces for vertebrate coprolites in the Pleistocene (Fig. 31). 
The Castrocopros province of the New World characterized by a 
dominance of herbivore coprolites, which are preserved almost 
exclusively in caves, and the Hyaenacoprus province in the Old 
World, which is dominated by hyena coprolites that also occur 
mainly in caves (Hunt and Lucas, 2020a; Fig. 31).

All trace fossils, including coprolites, are facies fossils. Spiral 
vertebrate coprolites in shallow marine environments define the 
Crassocoprus ichnofacies that ranges from the Mississippian 
to the Eocene. On a finer scale, vertebrate coprolites allow the 
discrimination of three ichnocoenoses in the nonmarine Late 
Triassic and four in an ecological transect from lacustrine to 
shallow marine conditions in the Late Pennsylvanian (Hunt and 
Lucas, 2017a). 

The first important inclusions to be recognized in coprolites 

were spores in arthropod coprolites and pollen in vertebrate 
herbivore coprolites. Subsequently, a wide range of organic 
materials, including soft tissues, have been identified in 
vertebrate coprolites, particularly muscle tissues, eggs, hair, 
parasites, bacteria, fungi and feathers. Thus, some coprolites 
represent Lagerstätten (Qvarnström et al., 2016).

Coprolites obviously represent the end point of digestion, 
so they can provide evidence about the evolution of feeding, diet 
and digestion. For example, vertebrate coprolites of the Silurian 
to Carboniferous demonstrate changing patterns of predation and 
food processing among carnivorous fishes as demonstrated by an 
increase in groundmass, increase in size and the diversification 
of spiral morphologies (Hunt and Lucas, 2016b). 

Coprolites provide ecological information about their 
producers, and Niedźwiedzki and co-workers have utilized them 
to reconstruct ecosystems and analyze diversity (Niedźwiedzki 
et al., 2016a, b). Coprolites are also of utility in a number of 
other areas from the study of the evolution of human diseases 
to sedimentology to providing mineable resources (guanolite) 
(Hunt, 1992; Bryant and Reinhard, 2012; Hunt et al., 2012d).
Ichnofacies

Coprolites are trace fossils and thus facies fossils. Hunt and 
co-workers (Hunt et al., 1994, 1998, 2007, 2013a; Hunt and 
Lucas 2007b) first recognized discrete associations of vertebrate 
coprolites and sedimentary facies in the Late Triassic of western 
North America. Hunt and Lucas (2017a) recognized that four 
bromalite ichnofaunas of Missourian (Late Pennsylvanian) age 
in New Mexico represent an ecological transect from lacustrine 
to basinal marine: (1) Tinajas Lagerstätte – lacustrine; (2) 
Kinney Brick Quarry Lagerstätte – lagoonal; (3) Erickson site 
– nearshore marine; and (4) Sacramento Mountains – offshore 
marine. There are clear trends through these ichnofaunas 
(Tinajas-Kinney-Erickson-Sacramentos): (1) flattened 
preservation in matrix to isolated three dimensional; (2) diverse 
bromalites to only coprolites; and (3) increasing proportion 
of spiral coprolites, so that the most basinward ichnofauna 
is dominated by spiral coprolites. In addition, the Kinney 
ichnofauna is typical of lagoonal/estuarine ichnofaunas of the 
Paleozoic and Mesozoic. Hunt et al. (2015c) had identified the 
presence of abundant spiral coprolites as being characteristic of 
certain marine environments. 

Buckland (1829, 1835) largely based his definition of 
coprolites on the recognition that heteropolar “bezoar stones” 
from the Early Jurassic of Lyme Regis in southwestern England 
represent fossil feces. Heteropolar coprolites occur in large 
numbers in shallow marine strata from the Mississippian to 
the Eocene (e.g., Hunt et al., 2015c). Hunt et al. (2018) defined 
the Crassocoprus ichnofacies to include marine trace fossil 
ichnocoenoses dominated by heteropolar coprolites and that 
include coprolites of low to moderate ichnodiversity. Shale 
substrates typify the Crassocoprus ichnofacies. The name is 
for Crassocoprus, a macrospiral heteropolar coprolite from the 
Pennsylvanian that is attributed to a chondrichthyan (Hunt et al., 
2012i). 

Heteropolar coprolites date back to the Devonian and first 
became abundant during the Pennsylvanian (Hunt and Lucas, 
2013). The principal large samples of heteropolar coprolites 
(shallow marine setting unless indicated otherwise) occur in 
the: 1. Middle-Late Mississippian Wardie, Midlothian, Scotland 
(Middle Mississippian: Viséan) (Buckland, 1835; Sumner, 
1991) Anstruther, Fife, Scotland (Middle Mississippian: Viséan) 
(Sumner, 1991). Bearsden, East Dunbartonshire, Scotland 
(Late Mississippian: Serpukhovian) (Clark, 1989). 2. Late 
Pennsylvanian of Park and Chaffee counties, Colorado, USA 
(Johnson, 1934), Bassam Park, Colorado, USA (Houck et al., 
2004), Morgantown, West Virginia, USA (Price, 1927) and 
Sacramento Mountains, New Mexico, USA (Hunt et al., 2012g). 
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3. Early Permian Manhattan, Kansas, USA (Williams, 1972; 
McAllister, 1985). 4. Middle/late Permian southern Brazil – 
lacustrine (Dentzien-Dias et al., 2012). 5. Late Permian/Early 
Triassic European Russia – nonmarine (Niedźwiedzki et al., 
2016b). 6. Early Jurassic Lyme Regis, England (Buckland, 
1835; Hunt et al., 2012a). 7. Late Cretaceous southern England, 
Western Europe (Hunt et al., 2015c). 8. Middle-Late Eocene 
northern Germany (Diedrich and Felker, 2012) and Alabama, 
USA (Stringer and King, 2012).

Hunt et al. (2018) also named the Gaspeichnus Ichnofacies 
for traces developed on the substrate of a coprolite. Feces provide 
a source of food for some insects and vertebrates. Coprolites 
also undergo bioerosion and are the subject of accidental 
contact by vertebrates. Therefore, coprolites preserve a variety 
of traces including vertebrate dentalites, vertebrate footprints 
and invertebrate borings. The Gaspeichnus Ichnofacies was 
thus defined to include marine and nonmarine trace fossil 
ichnocoenoses of low diversity dominated by macroscopic 
borings and vertebrate dentalites and footprints that utilize 
coprolites as a substrate. The name is for Gaspeichnus, a sinuous 
coprolite boring from the Devonian (Hunt et al., 2018). Other 
examples of the Gaspeichnus Ichnofacies include: (1) flask-
shaped borings in both bone and coprolites from the Cretaceous-
Eocene of Mali that represent the putative bivalve boring 
named Gastrochaenolites ornatus (Tapanila et al., 2004); (2) an 
amphipolar coprolite with an invertebrate boring from the Rio 
do Rasto Formation (middle/upper Permian) in southern Brazil 
(Dentzien-Dias et al., 2012); (3) small holes in Late Triassic 
coprolites from Arizona, USA, produced by insects, such as 
dipteran larvae (Wahl et al., 1998); (4) putative examples 
of coprophagy traces of dung beetles in the Cretaceous and 
Paleogene of the USA (Bradley, 1946; Chin and Gill, 1996); 
(5) Miocene mammalian footprints preserved in coprolites from 
Portugal, including a tridactyl footprint that can be ascribed 
to a right foot of the rhinoceros Hispanotherium matritensis, 
a tridactyl, left foot impression of a perissodactyl, possibly an 
Anchitherium-like equid, and a didactyl track from a small-sized 
ruminant, most probably a cervid, genus Procervulus (Antunes 
et al., 2006b); and (6) coprolites containing dentalites (e.g., 
Godfrey and Smith, 2010; Godfrey and Palmer, 2015). 
Biostratigraphy and Biochronology

Vertebrate coprolites can serve as proxies for biotaxa and 
thus are of biostratigraphic and biochronological utility (e.g., 
Hunt, 1992; Hunt et al., 1998, 2005a, 2007, 2013b, b, 2018; 
Figs. 25, 27, 29). However, vertebrate ichnotaxa almost always 
correspond to higher level taxonomic groups than do body 
fossils. Thus, footprint ichnogenera are often equivalent to the 
family (or higher) taxonomic level of body fossils (Lucas, 2007). 
Pre-Pleistocene coprolites probably represent, in most cases, 
even higher level taxonomic groups (“order” or above) (Hunt 
et al., 2007, 2013b). Examples of lower level identifications 
would be coprolites attributed to dicynodont therapsids from 
the Late Triassic of the United States (Hunt et al., 1998) and 
to tyrannosaurid theropods from the Late Cretaceous of Canada 
(Chin et al., 1988, 2003). Most Pleistocene vertebrate coprolites 
can be identified at the specific level on the basis of morphology 
(e.g., Mead and Swift, 2012) and more recently by DNA. For 
example, Hyaenocoprus derives from Crocuta (Bon et al., 
2012), and Mammuthocoprus derives from Mammuthus columbi 
(Karpinski et al., 2017). However, all coprolite ichnotaxa do 
have defined stratigraphic ranges that parallel the stratigraphic 
ranges of the producing animals, so the coprolites have potential 
utility in biostratigraphy and biochronology (Hunt and Lucas, 
2005c; Hunt et al., 2007, 2013a, b; Figs. 25, 27, 29). Indeed, 
coprolites have demonstrated biochronologic utility, particularly 
in the Late Triassic-Early Jurassic (Hunt et al., 2018, fig. 12.11: 
Figs. 25, 27, 29).

Biogeography
Vertebrate coprolites can delimit biogeographic regions 

as proxies for biotaxa. For example, there are two distinct 
biogeographic and taphonomic provinces for vertebrate 
coprolites in the Pleistocene (Hunt and Lucas, 2020a). The 
Castrocopros province of the New World is characterized by a 
dominance of herbivore coprolites, which are preserved almost 
exclusively in caves, and the Hyaenacoprus province in the Old 
World is dominated by hyena coprolites that occur mainly in 
caves (Hunt and Lucas, 2018c, 2019, 2020a; Fig. 31). Coprolites 
as proxy for biotaxa can record the presence of a taxon in the 
absence of bones (e.g., dicynodonts in the Late Triassic: Hunt 
et al., 2013b).
Lagerstätten

The first important inclusions to be recognized in vertebrate 
coprolites were pollen in herbivore coprolites (Martin et al., 
1961; Hunt and Fiaconni, 2018). Subsequently, a wide range of 
organic materials, including soft tissues, have been identified 
in vertebrate coprolites, particularly muscle tissues, eggs, hair, 
parasites, bacteria, fungi and feathers (e.g., Chin et al., 1998, 
2003). Recent studies have also highlighted that coprolites 
contain diverse body fossils of delicate and rare organisms 
(Dentzien-Dias et al., 2013, 2017; Bajdek et al., 2016; Chin et 
al., 2017; Qvarnström et al., 2016, 2017, 2019, 2021). Thus, 

FIGURE 32. Age distribution of radioisotopic ages on ground 
sloth coprolites from caves in North and South America. These 
data demonstrate increased cave utilization during the latest 
Pleistocene, which is likely climate driven. There is virtually 
no evidence of humans hunting sloths, which would be another 
explanation for this behavioral shift. Thus, the giant sloth 
demise is more likely related to climatic factors than to human 
overkill, which are the two most prevalent hypotheses for their 
extinction. Age data from Hunt and Lucas (2018c, table 3) (from 
Hunt and Lucas, 2018c, fig. 8).
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Qvarnström et al. (2016) concluded that the term Lagerstätte is 
applicable to some coprolites.
Paleoecology

Coprolites can provide diverse information about the diet 
and digestion of their producers (e.g., Hansen, 1978; McAllister, 
1988; Qvarnström et al., 2019a, b). They can also inform analysis 
of ancient and modern human health (Bryant and Reinhard, 
2012). 
Faunal Evolution and Extinction

Coprolites can also be used as biotaxa proxies to analyze 
ecosystem evolution, extinction and diversity patterns (e.g., 
Nakajima and Izumi, 2014; Niedźwiedzki et al., 2016a, b; Fig. 
32). 

Conclusions
Coprolites have an extensive fossil record that has proven 

potential to address a broad range of paleontological issues. 
A challenge to their increased utility is the necessity for more 
comprehensive ichnotaxonomy.

1. Coprolites as proxy for biotaxa have utility in 
biochronology, biogeography and faunal turnover.

2. Coprolites as trace fossils can delimit a hierarchy of 
ichnocoensoes and ichnofacies.

3. Coprolites as end products of the gastrointestinal tract 
can provide evidence of digestive processes.

4. Internally, coprolites can be Lagerstätten that preserve 
a wide range of organisms with an otherwise poor fossil record.

OTHER BROMALITES
Digestilites

Food stuffs that pass through the digestive tract are subject 
to chemical and physical processes that result in characteristic 
damage that can be recognized in regurgitated or defecated 
material (e.g., Crandall and Stahl, 1995; Fernández-Jalvo et al. 
2002, 2014, 2016; Esteban-Nadal et al., 2010; Cohen, 2003; 
Cohen and Kibii, 2015; Fernandez-Jalvo and Andrews, 2016; 
Meador, 2017; Montalvo and Fernández, 2019). For example, 
crocodilian-digested bones most closely resemble bones 
exposed to hydrochloric acid as opposed to the damage due 
to a mix of hydrochloric acid and digestive enzymes exhibited 
by bones consumed by mammalian and avian predators 
(Fernández-Jalvo et al., 2014; Meador, 2017). This exposure 
to digestive acid produces a number of unique and identifiable 
characteristics on bones and teeth, including: (1) surface 
etching; (2) corrosive pitting; (3) rounding; (4) enamel erosion; 
(5) foramen excavation; (6) reduction of cortical thickness; 
(7) corrosive holes; (8) undulations; (9) desquamation; (10) 
cupules; and (10) polishing (e. g., Lyman, 1994; Crandall and 

Stahl, 1995; Esteban-Nadal et al., 2010; Cohen, 2003; Cohen 
and Kibii, 2015; Brown et al., 2016; Meador, 2017; Montalvo 
and Fernández, 2019). Such specimens clearly represent 
morphologically recurrent structures resulting from the life 
activity of an individual organism modifying the substrate, and 
thus are trace fossils (Bertling et al., 2006). We propose the 
term digestilite, from the Latin digestus (digestion), for fossil 
specimens that preserve evidence of digestion.

The investigation of damage to ingested vertebrate hard 
tissue was initially stimulated by the study of the accumulation 
mechanisms of micromammal taphocoenoses (Dodson, 1973; 
Dodson and Wexlar, 1979; Korth, 1979; Fisher, 1981a,b; 
Andrews and Evans, 1983; Andrews, 1990). However, larger 
bones, such as a hominin bone from Zhoukoudian in China, 
also show clear evidence of digestion (Boaz et al., 2000). Thus, 
Zhoukoudian Homo erectus Femur V exhibits a breakage pattern 
characteristic of hyenas and also has rounded edges and pitting 
associated with ingestion and partial digestion (Weidenreich, 
1941; Boaz et al., 2000). 

Digestilites record evidence of mechanical and/or chemical 
digestion and may derive from regurgitation (e.g., Boaz et al., 
2000) or defecation (e.g., Fisher, 1981a,b). The most well-
known digestilite is probably the Denisova 11 hominid, which 
is the fragmentary limb bone of a Denisovan and Neantherdal 
hybrid from Denisova Cave, Siberia (Brown et al., 2016; Slon 
et al., 2018). 

Ingested hard tissue constitutes an important contribution 
to the fossil record. It is widely recognized that many terrestrial 
microvertebrate fossil faunas are composed of digestilites, the 
majority from bird regurgitalites, but also from carnivore and 
crocodile coprolites (Dodson, 1973; Mellet, 1975; Dodson 
and Wexlar, 1979; Korth, 1979; Fisher, 1981a,b; Andrews and 
Evans, 1983; Andrews, 1990; Fernández-Jalvo and Andrews, 
1992; Williams, 2003; Denys, 2011; Fernández-Jalvo et al., 
2016; Denys et al., 2018; Montalvo and Fernández, 2019). Thus, 
for example, Coco et al. (2020) described late Pleistocene bones 
of owls (Tyto, Athene, Glaucidium) that exhibit breakage and 
weathering, consistent with digestion by the giant strigiform 
Asio ecuadoriensis. 

The other major importance of digestilites is in the processing 
of invertebrate hard parts into the sedimentological record. 
Thus, Oji et al. (2003) and Salamon et al. (2014) conducted 
actualistic studies that demonstrated that predation by fish on 
bivalves produces shell fragments with sharp, angular margins, 
in contrast to non-biogenic physical processes that produce 
abraded and rounded shell fragments. They thus utilized angular 
shell fragments as a proxy for the feeding of durophagous fish in 
the Paleozoic (and later). Digestilites composed of invertebrate 
material may encompass a significant portion of shell beds from 
the Mississippian to the Recent (Oji et al., 2003; Salamon et al., 
2014). Vertebrate predation is also important in the production 
of Recent coral sands from reefs, notably by scarid parrotfish 
(Peyrot-Clausade et al., 2000).

Digestilites are also important in other taphonomic 
settings. Wilson (1987) suggested that fish bones in some 
Eocene lake deposits of British Columbia and Washington are 
partly dissolved due to possible ingestion, probably by birds.. 
Digestilites also occur in the Late Cretaceous marine strata of 
western North America, representing fish, turtles, mosasaurs and 
dinosaurs (Everhart, 2017, figs. 3.19, 4.3, 6.12, 12.2; Fig. 33). 

Pabulites
Montalvo et al. (2016) introduced the term “leftover prey 

remains,” which represent accumulations of uneaten prey 
remains discarded by a predator. These remains are identified on 
the basis of anatomical representation, degree of bone breakage 
and the presence of dentalites. They based the term on late 
Miocene microvertebrate accumulations from Argentina. It may 

FIGURE 33. Digestilite composed of etched skeletal elements 
of a hatchling turtle (FHSM VP-17572) from lower Santonian 
chalk, Kansas, USA. Scale bar in mm (Everhart, 2017, fig. 6.12 
partim). Photograph courtesy of Michael Everhart.
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have some utility in assessing microvertebrate accumulations 
to distinguish the genesis of the assemblage that result from 
concentrations produced by digestion (regurgitalites or 
coprolites). 

Klug et al. (2021a) coined the formal term pabulite for 
fossilized food that never entered the digestive tract. They note 
that pabulites are normally incomplete animals that preserve 
traces of predation. They describe the example of the belemnite 
Passaloteuthis laevigata from the Toarcian Posidonienschiefer 
Lagerstätte. Most of the soft parts are missing, but the arm 
crown is one of the best preserved that is known. Klug et al. 
(2021a) suggest that the belemnite represents the remnant of the 
food of a predatory fish, possibly the shark Hybodus huffianus. 
Subsequently, Klug et al. (2021b) described another possible 
pabulite from the Cenomanian of Lebanon. A specimen of the 
cymatoceratid cephalopod Syrionautilus libanoticus preserves 
soft tissues but lacks the arms and the hood, and the plane of 
symmetry is perpendicular to bedding. This specimen may be a 
pabulite or represent incomplete scavenging (Klug et al., 2021b).

The development of the study of pabulites requires: (1) 
ichnotaxobases – see Montalvo et al. (2016); (2) actualistic 
studies; (3) documentation of new examples; and (4) review 
of their fossil record. Pabulites may be difficult to recognize 
in the absence of other traces. For example, a partial skeleton 
with some bite marks was likely scavenged, so it is probably 
a pabulite, whereas an incomplete carcass with no dentalites 
could have other causation. Many vertebrate specimens exposed 
on an oxygenated substrate are probably subject to scavenging 
and may represent pabulites (cf. Early Jurassic Holzmaden 
ichthyosaurs). 

Micturalites
Micturalites are trace fossils produced by interaction 

between liquid urine and substrate (Hunt and Lucas, 2012). These 
ichnofossils are rare. McCarville and Bishop (2002) interpreted 
a sub-circular depression (scour?) at a Late Jurassic tracksite in 
Colorado, USA as eroded by liquid urine of a sauropod. There is 
no evidence that this trace fossil resulted from urine impacting 
the substrate. Fernandes, and Souto and co-authors, described 
a more convincing trace ichnofossil from the Early Cretaceous 
of Brazil (Fernandes et al., 2004; Souto and Fernandes, 2015). 
They compared this “urolite” to erosional depressions produced 
in the substrate by liquid waste of the Recent ratite Struthio 
camelus (ostrich).

OTHER TRACE FOSSIL EVIDENCE OF VERTEBRATE 
FEEDING

Introduction
Dentalites, gastroliths and bromalites are not the only trace 

fossils that provide evidence of vertebrate feeding. Footprints, 
some nests and other traces also can record evidence of vertebrate 
predation and consumption.

Footprints and Handprints
There are several examples of trackways that purport to 

capture an act of predation. The first specimen to be so recognized 
was from the Early Cretaceous of Texas and purports to show a 
theropod attacking a sauropod (Bird, 1954, 1985; Thomas and 
Farlow, 1997). The theropod repeatedly stepped in the prints 
made by the sauropod, and the trackways of both made a turn 
at the same point, which may suggest that the carnivore was 
following the herbivore (Farlow, 1987a, b; Thomas and Farlow, 
1997). Bird (1954, 1985) believed that the theropod actually 
attacked the sauropod as indicated by a missing left carnivore 
footprint, which was interpreted to represent the animal being 
dragged off its feet by the forward motion of the much larger 
herbivore (Bird, 1985, p. 173; Thomas and Farlow, 1997). 

However, the subsequent footprint’s location and morphology 
do not support that hypothesis (Lockley and Hunt, 1995; Hunt 
and Lucas, 1998; Farlow et al., 2012). 

The Lark Quarry tracksite from the Early Cretaceous 
of Australia was originally interpreted to represent a large 
predatory theropod causing a stampede of small ornithopods and 
theropods (Thulborn and Wade, 1979, 1984). However, there is 
a lack of clarity about the taxonomy of the trace makers, the 
contemporaneity of the trackways and the speed of the smaller 
dinosaurs, so the predatory theropod hypothesis is problematic 
(Romilio and Salisbury, 2011; Romilio et al., 2013; Thulborn, 
2013, 2017).

Weems (2018, 2020) described a theropod trackway of 
Kayentapus minor from the Late Triassic of the Culpeper Quarry 
in Virginia, USA, that is purported to be a possible record of 
predation. This trackway preserves changing locomotion of an 
individual – acceleration, running, slowing, slight skid, walking, 
stopping and slight shifting of position. This is interpreted as 
the behavior associated with the capture of prey, but it is not a 
convincing interpretation. 

There are five examples from the Permian of trackway 
terminations of vertebrates and invertebrates that have been 
interpreted as evidence of predation (Lockley and Madsen, 
1993; Kramer et al., 1995; Hunt and Lucas, 1998; Santi and 
Stoppini, 2005; Citton et al., 2012). In each case, one trackway 
appears to terminate at another with no change of pace. 
Nevertheless, none of these examples satisfy more than one of 
the five criteria established by Hunt and Lucas (1998) to evaluate 
trackway evidence of predation in such cases: (1) in the case 
of intersecting trackways, one trackway should terminate at the 
other; (2) in the case of parallel pursuit trackways, one trackway 
should end; (3) there should be evidence of a pursuer adjusting 
length of stride to sync with prey stride length; (4) one or both 
trackways should demonstrate change in direction or/and speed 
-evasion and compensation; and (5) the trackway of the prey 
should show evidence of a struggle – slowing, terminating or 
lateral movement. In addition, it is not clear in the cases of 
supposed Permian trackway documentation of predation that the 
trackways are synchronous or even on the same bedding plane.

Theropod tracks and inferred trampling have been found 
associated with large bone accumulations, and this could be 
evidence of scavenging (e.g., Lockley et al., 1998; Jennings and 
Hasiotis, 2006; Augustin et al., 2020a). An absence of tracks but 
a presence of broken bones that could have been impacted by 
trampling together with shed teeth has also been considered as 
evidence of scavenging (Eberth and Getty, 2005; Snyder et al., 
2020). Simpson et al. (2010) described putative digging traces 
produced by a maniraptoran theropod dinosaur in association 
with mammalian den complexes from the Late Cretaceous of 
Utah, which they interpreted as evidence of predation. 

Nests
Lucas and Hunt (2006) defined a nest as the structure made 

by, or the place chosen by, an animal for spawning, breeding and/
or laying eggs and sheltering young. Carnivore nests, notably 
dens of Pleistocene hyenas in caves of the Old World, preserve 
abundant evidence of predation in terms of trace fossils such as 
dentalites and coprolites, but also body fossils that demonstrate 
aspects of prey selection, processing and utilization (e.g., Boaz 
et al., 2000; Marra et al., 2004; Stiner, 2004; Sala et al., 2012). 
The most abundant nests in the fossil record are of rodents, 
notably pack rats (Neotoma), which are widely distributed in the 
Late Pleistocene-Holocene of North America and other areas 
(e.g., Betancourt et al., 2010; Tweet et al., 2012). Discarded food 
items can also commonly be found below raptor nests, as may 
be the case for the South African Taung Child mentioned above 
(Berger and Clarke, 1995).
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Tooth Wear

Fossil teeth preserve wear that has long been recognized as 
evidence of the nature of the food that is being processed. The 
study of tooth wear as it relates to diet became a robust tool with 
the examination of mammalian microwear (particularly with 
the SEM) in the late 1970s and early 1980s (e.g., Walker et al., 
1978; Covert and Kay, 1981; Kay and Covert, 1983; Teaford and 
Walker, 1984). The majority of wear studies have been on the 
teeth of terrestrial mammals, but the same methodology has been 
subsequently applied to other groups such as marine mammals 
(e.g., Lambert and Bianucci, 2019) and reptiles (e.g., Fiorillo, 
1998, 2011). Tooth wear is a type of trace fossil because it falls 
within “bite and gnaw structures” and reflects the interaction of 
an organism and a substrate (Bertling et al., 2006, table 1). Thus, 
we propose the term mololite from the Latin molo (to grind) 
for wear features, both mesowear and microwear (Fortelius and 
Solounias, 2000; Green and Croft, 2018), on fossil teeth. The 
study of microwear is now widespread, particularly with regard 
to hominins and other mammals (e.g., Merceron et al., 2005; 
Scott et al, 2005; Williams and Patterson, 2010; DeSantis, 2016; 
Ungar et al., 2016; Pappa et al., 2019) but also of fish (e.g., 
McLennan and Purcell, 2021) and of reptiles (e.g., Bestwick et 
al., 2019, 2020a-b; Winkler et al., 2019). 

Association
The most famous association of vertebrates that has been 

interpreted as signs of predation (or at least of combat) are the 
“fighting dinosaurs” from the Upper Cretaceous Djadokhta 
Formation of Mongolia. Kielan-Jaworowska and Barsbold 
(1972) first described the entwined skeletons of Velociraptor 
mongoliensis and Protoceratops andrewsi, which have generally 
(e.g., Carpenter, 1998) but not exclusively (Osmólska, 1993) 
been interpreted as two animals that died while in the midst of 
a struggle. 

Wilson et al. (2010) described multiple associations 
between the snake Sanajeh indicus and sauropod eggs from 
the Late Cretaceous of India. They interpreted this pattern 
as an ‘‘ethofossil’’ that preserves feeding behavior. Other 
associations interpreted as evidence of predation or scavenging 
are shed theropod or shark teeth in the absence of dentalites 
(e.g., Repenning and Packard, 1990; Schwimmer et al., 1997; 
Jennings and Hasiotis, 2006; Konuki, 2008; Meso et al., 2021). 

Trace Elements
Feeding produces chemical signatures that provide evidence 

of diet (e.g., Toots and Voorhies, 1965; Boaz and Hampel, 1978; 
Sillen et al., 1995; Bourgon et al., 2020; Mychajliw et al., 
2020b). However, a trace fossil is defined as a “morphologically 
recurrent structure” (Bertling et al., 2006, p. 266), so these 
chemicals are not trace fossils, though they may serve as proxies 
for traces and the behaviors they indicate.

THE ICHNOLOGICAL RECORD OF VERTEBRATE 
CONSUMPTION

Introduction
The fossil record of trace fossils provides substantial 

information about the evolution of vertebrate feeding. In 
addition, vertebrate (e. g., Lucas, 2019) and invertebrate (e. 
g., Buatois and Mángano, 2016a, b; Mángano and Buatois, 
2006b, c) ichnofossils provide significant insight into major 
evolutionary events (Fig. 34). 

Cambrian Explosion
The oldest record of predation on macroscopic organisms is 

ichnological. Thus, there are putative borings in Cloudina shells 
that coincide with the beginning of the radiation of skeletonized 

animals during the terminal Neoproterozoic (Bengtson and Zhao, 
1992; Hua et al., 2003; Buatois and Mángano, 2016a; Mángano 
and Buatois, 2006a, 2021). However, these traces have also 
been interpreted as the result of the dissolution of microcrystals 
of dolomite (Debrenne and Zhuravlev, 1997), in which case 
the earliest ichnological evidence of predation may be early 
Cambrian ichnofossils from Mexico that have been interpreted 
to show a Planolites tracemaker consuming the producer of 
Rusophycus multilineatus (McMenamin, 2001, 2003). 

Subsequently, during the Cambrian Explosion, there was a 
rapid diversification of macroscopic and anatomically complex 
predators that may have accelerated evolutionary diversification 
(Bengtson, 2002; Marshall, 2006; Leighton, 2011, but see Zhang 
et al., 2014; López-Villalta, 2016). These predators included 
conodonts and agnathan vertebrates, although there are some 
disagreements about phylogenetic relationships (Briggs, 1992; 
Donoghue and Purnell, 2009; Sansom et al., 2010; Turner et 
al., 2010). Coprolites are the only putative vertebrate feeding 
traces in the Cambrian, but they are diverse and reflect the 
Cambrian explosion of carnivores. Microscopic coprolites first 
are found in the lowest Cambrian strata (e.g., Chen and Chen, 
1980), and macroscopic forms are present in several early 
Cambrian Lagerstätten, principally Burgess Shale-type (BST) 
deposits, of China (Vannier and Chen, 2005), the United States 
(Kimmig and Strotz, 2017) and the Czech Republic (Mikuláš, 
1995). Macroscopic coprolites are also widespread in the middle 
Cambrian of Canada (Kimmig and Strotz, 2017; Kimmig and 
Pratt, 2018), the United States (Conway Morris and Robison, 
1988; Kimmig and Strotz, 2017), China (Lin et al., 2010) and 
Sweden (Eriksson and Terfelt, 2007). Kimmig and Pratt (2018) 
demonstrate the earliest examples of coprophagy and the 
importance of fecal matter as an important source of nutrition 
in the Cambrian food web. However, no Cambrian coprolites 
have been attributed to vertebrates despite the fact that such 
organisms were present, and some larger coprolites could have 
arguably been produced by vertebrates (e.g., Conway Morris 
and Robison, 1988, fig. 10.2).

Great Ordovician Biodiversification Event
The only putative ichnofossils from the Ordovician 

possibly related to vertebrates are coprolites, principally 
from Lagerstätten. Clusters of conodont elements from the 
Early Ordovician of Kazakhstan, Sweden and Australia may 
represent coprolites of conodont animals, which are chordates 
and considered by some to be vertebrates (Tolmacheva 1996; 
Tolmacheva and Purnell 2002; Stewart and Nicoll 2003; 
Fig. 34). Middle Ordovician coprolites from the Winneshiek 
Lagerstätte have a concentrically layered internal structure, 
formed by animals with a valvular intestinal tract, such as some 
vertebrates (Hawkins et al., 2018). Spiral coprolites from the 
Late Ordovician Soom Shale Lagerstätte of South Africa are 
the first undoubted vertebrate coprolites (Aldridge et al., 2006; 
Fig. 34). This approximately correlates with the oldest record of 
jawed vertebrate body fossils and is a component of the Great 
Ordovician Biodiversification Event.

Ordovician vertebrate macrofossils are rare, and most 
complete body fossils represent arandaspid agnathans and allied 
genera and are from the second half of the period (Gagnier 
et al., 1986; Friedman and Sallan, 2012). Isolated vertebrate 
bone fragments and ichthyoliths from the later Ordovician 
lack definitive morphological characteristics, and have been 
erroneously assigned to more derived taxa such as heterostracan- 
and placoderm-grade taxa and even to gnathostomes such as 
chondrichthyans or acanthodians (Friedman and Sallan, 2012). 
The earliest putative regurgitalites are from the Late Ordovician 
and are tentatively assigned to conodont animals (Aldridge et 
al., 2006; Fig. 34). 
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Silurian

The Silurian record of vertebrate trace fossils related to 
feeding is still dominated by coprolites, but it includes more 
definitive examples as well as the oldest dentalite. There are a 
few putative Early or Middle Silurian coprolites that have been 
generally assigned to eurypterids, but may have been made 
by vertebrates, and they deserve more study (Gilpin, 1886; 
Rolfe, 1973; Selden, 1979, 1984; Turner, 1999). The oldest 
dentalite is on an unidentified cyathaspid element from the 
Middle Silurian Wenlock (Randle and Sansom, 2019a, b; Fig. 
34), which indicates the presence of jawed fish at this time, 
preceding the unambiguous oldest occurrence of their body 
fossils. The Late Silurian first preserves a diversity of vertebrate 
coprolite morphotypes, including: (1) arenaeous scroll and non-
spiral forms from Ireland and Scotland; (2) accumulations of 
agnathan fragments with little matrix from Scotland; and (3) 
phosphatic spiral and non-spiral coprolites from England that 
are characteristic of post-Silurian ichnofaunas (Murchison, 
1839, 1867; Strickland and Hooker, 1853; Gilmore, 1992). 

The impact of the end-Ordovician (Hirnantian) extinctions 
on fishes, except for conodonts, is difficult to assess because of 
a paucity of articulated specimens, particularly in the Lower 
Silurian (Friedman and Sallan, 2012). Sallan and Galimberti 
(2015) postulated a large reduction in body size in vertebrates 
following the end-Ordovician extinctions, but this is not 
currently testable in the coprolite record. Later in the period, 
the first well-preserved body fossils of gnathostomes appear in 
the latest Ludlow (Zhu et al., 1999, 2009; Zhang et al., 2010). 
The diversification of jawed fish in the later Silurian to Early 
Devonian is both taxonomic and ecological, with a major shift 
from benthic to nektonic lifestyles (Anderson et al., 2011; Klug 
et al., 2011; Friedman and Sallan, 2012). The diversification of 
vertebrate coprolite morphotypes in the Late Silurian presumably 
reflects the diversification of gnathostomes (and agnathans). 

Devonian
The Devonian yields the first large samples of vertebrate 

feeding traces, both in terms of numerous specimens (e.g., 
dentalites, coprolites) and all of the different kinds of feeding 
traces (dentalites, regurgitalites, consumulites, gastroliths, 
coprolites), as well as the first nonmarine occurrences. This 
reflects: (1) increased abundance of fish in the fossil record; 
(2) large numbers of articulated skeletons, notably in the Upper 
Devonian Cleveland Shale (Fig. 34) – required for recognition of 
consumulites and gastroliths; (3) rise of the biting gnathostomes; 
(4) a succession of substantial body faunas through the span 
of the period, with many from Scotland; and (5) increased 
vertebrate exploitation of freshwater and ultimately terrestrial 
environments. This latter feature is part of the “terrestrialization” 
of the nonmarine biota that took place during the Devonian (e.g., 
Isozaki and Servais, 2017; Lucas, 2019). 

Fish assemblages of macrofossils are dominated by jawless 
forms until the end of the Early Devonian, after which jawed 
gnathostomes dominate (Boucot and Janis, 1983; Anderson 
et al., 2011). However, dentalites increase at the onset of the 
Devonian and peak in the Givetian (Lebedev et al., 2009; Randle 
and Sansom, 2019a). Early Devonian coprolites from Scotland 
yield common acanthodian elements, although jawless fish 
dominate the associated body-fossil faunas. The orientation 
of acanthodian spines in Early Devonian coprolites, and a 
Middle Devonian consumulite, both provide the oldest evidence 
of head-first swallowing, which has been prevalent in fish 
predation until the Recent (Ahlberg, 1992; Trewin, 2008). Tail-
first swallowing of invertebrates with tentacles is first recorded 
in the Late Devonian Cleveland Shale (Williams, 1990). Marine 
and nonmarine Devonian fish coprolites are mainly fusiform, 
with only a minority displaying a spiral morphology. There 
is no major change in mean size or morphology of coprolites 

during the Devonian. The Devonian yields some of the earliest 
regurgitalites in the Lower Devonian of Scotland and the Upper 
Devonian of Morocco, indicating that early gnathostomes 
undertook regurgitation (Burrow and Turner, 2010; Klug and 
Vallon, 2018).

The first terrestrial(?) dentalites occur on a tetrapod 
bone, a humerus, from the Famennian of the Canadian Arctic 
(Shubin et al., 2004; Fig. 34). Given the underived dentitions 
and jaw musculature of early tetrapods, it is unlikely that they 
manipulated their prey effectively, so Devonian dentalites would 
be predicted to be infrequent.

Devonian Extinctions and the Middle Paleozoic Marine 
Revolution

Early paleontologists, such as Agassiz (1833–1845a,b) and 
Marsh (1877), recognized that there were significant changes in 
vertebrate faunas between the “Age of Fishes” (Devonian) and 
the “Age of Amphibians” (Carboniferous). Newell (1952, 1962) 
and Schindewolf (1953) later first identified a Late Devonian 
mass extinction. This mass extinction is actually a series of 
events. The Kellwesser Crisis of the Frasnian-Fammenian 
boundary was previously considered the most significant for 
vertebrates (Long, 1995), but more recently the Hangenberg 
Crisis of the end Fammenian (end of the Devonian) is recognized 
to have had a more major impact on vertebrate (fish) extinctions, 
except for tetrapods (Sallan and Coates, 2010; Kaiser et al., 
2016; Lucas, 2021). 

Signor and Brett (1984) analyzed changes in predation 
patterns in the marine Devonian-Carboniferous, and they 
are widely credited with having introduced the term “Mid-
Palaeozoic Revolution” (MPR) (e.g., Borszcz and Zatoń, 2013) 
or “Middle Paleozoic Marine Revolution” (MPMR) (e.g., 
Salamon et al., 2014), though they did not explicitly use either 
of these terms. Brett et al. (2002, p. 98) apparently first utilized 
the term Middle Paleozoic Revolution (MPR), and Baumiller 
and Gahn (2004) introduced the term Middle Paleozoic Marine 
Revolution (MPMR). We prefer the latter term, as it is more 
precise. The marked increase in durophagous fish during the later 
Devonian and Carboniferous (Signor and Brett, 1984, fig. 1) that 
resulted is documented by an increase in angular digestilites of 
invertebrates in the Missisippian (Salamon et al., 2014).

The first large ichnofaunas of coprolites are found in the 
Carboniferous, and they are significantly different from those 
of the Devonian, and thus document both the extinction and 
subsequent fish diversification and the MPMR. Other traces 
such as dentalites, evisceralites and consumulites are much less 
common in the Carboniferous relative to the Devonian. 

The Carboniferous is characterized by shallow marine 
coprofaunas dominated by spiral forms, and, in several examples, 
the spiral forms are present to the near exclusion of other 
morphologies. Notable among the latter are the Mississippian 
Wardie Shale of Scotland, first reported by Buckland (1835), and 
the Pennsylvanian Weber Formation and Conemaugh Group of 
the United States (Price, 1927; Johnson, 1934). Hunt et al. (2017) 
named this recurrent association of spiral coprolites in shallow 
marine environments, which ranges from the Carboniferous to 
at least the Eocene, the Crasssocoprus Ichnofacies. 

The heterospiral coprolites clearly pertain to chondrichthyans 
(e.g., McAllister, 1985; Williams, 1872; Diedrich, 2012b). Most 
or all of the pre-Carboniferous spiral coprolites, such as in the 
Ordovician, presumably derived from other fish that had spiral 
valves (McAllister, 1987). Chondrichthyan feces must have 
elevated preservational potential relative to those of other fish, 
because many coprofaunas dominated by spiral coprolites of the 
Crassocoprus Ichnofacies are often associated with body fossil 
faunas dominated by other fish. There is clearly a disparity 
between the high taxonomic diversity of some fish faunas, 
notably in the Pennsylvanian, Late Cretaceous and Eocene, 
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and the low diversity of associated chondrichthyan-dominated 
coprolite ichnofaunas, and Hunt et al. (2015c) termed this the 
“Shark Surplus Paradox.”

There is a marked reduction in dentalites in marine 
environments from the Devonian to the Carboniferous, which 
presumably is largely due to the Devonian extinctions of 
the armored fishes, whose extensive skeletons preferentially 
preserved such traces. Most nonmarine trace fossils derive 
from Lagerstätten, which in the Carboniferous notably yield 
several consumulites from sharks and amphibians. Among 
Carboniferous amphibians, consumulites have been analyzed 
to distinguish dietary changes during ontogeny in branchiosaurs 
(e.g., Werneburg et al., 2007).

Permian
Whereas most vertebrate feeding traces in the Carboniferous 

are marine rather than nonmarine, the reverse is true in the 
Permian. The earliest example of dentalites documenting 
extensive scavenging of a terrestrial tetrapod is from the 
early Permian of the United States (Reisz and Tsuji, 2006). 
Consumulites from the Permian of the United States and 
Germany provide direct evidence of insectivory and herbivory 
in tetrapods (Munk and Sues, 1993; Modesto et al., 2009; Reisz 
et al., 2014). 

Nonmarine coprolites are abundant for the first time in 
Permian redbeds in the southwestern United States and have a 
wide distribution throughout the nonmarine strata of Permian 
Pangea (Hunt and Lucas, 2013). The majority of specimens 
represent aquatic organisms, and many have a heterospiral or 
scroll morphology. The first common evisceralites occur in the 
nonmarine Permian of China (Seilacher et al., 1991). 

End-Permian Extinctions
It is not clear that the end-Permian extinction (PTME: 

Permian-Triassic Mass Extinction) had a significant impact 
on marine (Friedman and Sallan, 2012) or nonmarine (Lucas, 
2009, 2017) vertebrates. However, Niedźwiedzki et al. (2016) 
studied the distribution of vertebrate coprolites across the 
nonmarine Permo-Triassic boundary in Russia and interpreted 
the results to demonstrate an extinction. Nevertheless, given 
the tenuous attribution of coprolite morphotypes to body-fossil 
taxa, the magnitude of the turnover supposedly demonstrated by 
coprolites is unclear. 

“Mesozoic Marine Revolution”
Marine bromalites are well known from the Triassic, 

and they have the potential to provide information about the 
evolution of diet at the beginning of the Mesozoic Marine 
Revolution (MMR). Vermeij (1977) introduced the term MMR 
for macroecological and macroevolutionary predation-driven 
changes in marine ecosystems, predominantly during the later 
Mesozoic. “This term might seem to imply that a dramatic 
development of marine predators was initiated at the Triassic; 
a continuous intensification of predator-prey relationships 
has been envisaged. In actuality, the Mesozoic and Cenozoic 
evolution of predators involved a series of episodes” (Walker 
and Brett, 2002, p. 119). Nevertheless, this was probably too 
protracted an event (it lasted from the Triassic through much 
of the Cretaceous) to deserve the term “revolution” (Lucas and 
Tanner, 2018). 

Early Triassic coprolites have been used to suggest that 
the MMR began early in the Triassic (Nakajima and Izumi, 
2014; Brachaniec et al., 2015; Antczak et al., 2020), as is also 
suggested by evidence from body fossils (e.g., Hu et al., 2011; 
Stubbs and Benton, 2016). There is evidence from ichnology for 
increased vertebrate predation on invertebrates (Tables A.1-2, 5, 
8-9) in the Jurassic and Cretaceous, including regurgitalites (e.g., 
Zatoń et al., 2007; Borszcz and Zatoń, 2013), consumulites (e.g., 
Pollard, 1968; Přikryl et al., 2012) and digestilites (e.g., Oji et al., 

2003). Consumulites of ichthyosaurs demonstrate some feeding 
changes, as Early and Middle Triassic specimens yield only 
cephalopod hooklets, whereas Late Triassic examples include 
both vertebrate remains and mollusk-shell fragments (Rieber, 
1970; Camp, 1980; Brinkmann, 2004; Buchy et al., 2004; Cheng 
et al., 2006; Druckenmiller et al., 2014). This corresponds to 
an ecomorphological diversification documented by hard parts 
(Stubbs and Benton, 2016). Marine coprolites occur throughout 
the Triassic, but are most abundant in the Rhaetic bonebeds in 
England and elsewhere in Europe (Cueille et al., 2020).

Triassic Terrestrial Radiations
Coprolites occur throughout the Triassic but are most 

numerous and widely dispersed in redbeds of Late Triassic 
age. The oldest vertebrate herbivore coprolites are from 
the Middle Triassic of Brazil (Hunt et al., 2013b: Fig. 34). 
Nonmarine dentalites are abundant in the Late Triassic, but rarer 
earlier in the period. The Late Triassic is also a time interval 
characterized by the presence of extensive osteoderms in a 
wide range of carnivorous (phytosaurs, paracrocodylomorphs, 
crocodylomorphs) and herbivorous (non-archosaurian 
archosauriforms, pseudosuchians, aetosaurs, turtles, Doswellia) 
reptiles, suggesting a substantial amount of evolutionary 
escalation. More armor and more dentalites are characteristic of 
both the aquatic Devonian and the terrestrial Late Triassic. 

Terminal Triassic Extinction
Contrary to a large volume of literature, there is no single 

mass extinction at the end of the Triassic that affects either fish 
(e. g., McCune and Schaeffer, 1986; Bambach et al., 2004) 
or tetrapods (Lucas and Tanner, 2015, 2018). The record of 
vertebrate coprolites similarly shows no significant turnover 
across the Triassic/Jurassic boundary (Hunt and Lucas, 2018a; 
Hunt et al., 2018).

Jurassic
The  majority of marine trace fossils of vertebrate 

consumption in the Jurassic are dentalites and consumulites 
related to the development of ecosystems with diverse marine 
reptiles of large body size, a trend that started in the Early 
Jurassic. Large bones aid in the recognition of dentalites, 
and consumulites are more easily identified in relatively 
large, articulated skeletons. While the majority of Jurassic 
consumulites pertain to ichthyosaurs that ingested coleoids 
or belemnites, many dentalites were produced by predatory 
pliosaurs, plesiosaurs and marine crocodylomorphs. Jurassic 
marine coprolites are not abundant, except in the Lias of 
England where multiple large spiral forms such as Liassocoprus, 
Strabelocoprus and Saurocoprus indicate that chondrichthyans 
were important predators during the Early Jurassic. 

Nonmarine coprolites in the redbeds of the Lower Jurassic 
of western and eastern North America are little different from 
those of the Upper Triassic, supporting the absence of a mass 
extinction of vertebrates on land across the Triassic-Jurassic 
boundary. The most significant Jurassic vertebrate trace 
fossils occur in the Upper Jurassic. The Solnhofen and related 
Lagerstätten of Germany (Fig. 34) produce over 100 fish 
consumultites as well as specimens preserved in pterosaurs and a 
theropod that facilitate the construction of food webs (Wellnofer, 
1970; Ostrom, 1978; Viohl, 1990; Ebert et al., 2015). The first 
large samples of terrestrial dentalites occur in Late Jurassic 
dinosaurs. These demonstrate that dinosaur communities yield 
significantly fewer dentalites than mammal communities, 
because non-avian dinosaurs lacked the dentition or jaw 
mechanics to adeptly manipulate and modify bones (Fiorillo, 
1991a). Jurassic and Cretaceous dentalites demonstrate that 
crocodylomorphs only preyed on smaller bodied animals, such 
as other crocodylomorphs or turtles, and that only theropods 
attacked large dinosaurs.
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Origin of the Avian Digestive Bauplan

One of the most important aspects of the record of vertebrate 
trace fossils is the documentation of the development of the 
avian digestion system (crop, two-part stomach – proventriculus 
and ventriculus) as demonstrated by gastroliths, consumulites, 
regurgitalites and coprolites from small, derived theropods and 
birds, principally from the Early Cretaceous Jehol Lagerstätte 
but also from the Late Jurassic Yanliao Biota (O’Connor and 
Zhou, 2015, 2020; O’Connor et al., 2019; Fig. 34, Table A.9). 
This documents a trophic shift from carnivory to herbivory 
(fruit, seed, and/or nut eater) with the origin of birds (Wu, 
2021). Among the conclusions based on examination of the 
ichnofossils record are (O’Connor, 2019): (1) the two-part 
stomach evolved outside Aves; (2) evolution of the crop and use 
of the esophagus to store food is only documented in Aves among 
the Theropoda; (3) Jeholornis (the only long, bony-tailed bird 
other than Archaeopteryx) and Sapeornis both ate seeds, and, 
like living granivores, utilized a gastric mill, although only the 
more derived Sapeornis possessed a crop for food storage; (4) 
a modern alimentary canal was present in the earliest members 
of Ornithuromorpha, but the Enantiornithes were characterized 
by a primitive alimentary canal – no grinding gizzard, crop or 
bidirectional peristalsis; (5) the two-part stomach is inferred to 
have evolved outside Aves, but the evolution of the crop and 
use of the esophagus to store food occurred later and is thus far 
only documented in Aves among the Theropoda; (6) the role of 
the gizzard in the loss of teeth in Aves is more complex than in 
non-avian theropod lineages and may not be entirely indicative 
of herbivory, although this diet does appear to correlate with 
complete tooth loss in this clade; and (7) whole fish and clusters 
of macerated fish remains in specimens of Yanornis suggests that 
food items that were difficult to digest could be moved between 
parts of the digestive tract through peristalsis-antiperistalsis and 
regurgitated, increasing digestive efficiency; and (8) advanced 
digestive abilities like those observed in living birds are probably 
unique to the Ornithuromorpha and may represent a major factor 
in the current success of this clade.

Cretaceous Acme of Feeding Traces and the Cretaceous 
Terrestrial Revolution

The Cretaceous yields the largest record of vertebrate trace 
fossils prior to the Quaternary (Fig. 34). With the exception of 
gastroliths, the majority of specimens of vertebrate ichnofossils 
derive from the Late Cretaceous. This is in large part a taphonomic 
artifact associated with the abundance of fossils preserved within 
continental floodings with related tectonic sediment sourcing. 
It also partly reflects the Taxophile Effect, particularly with 
regard to dinosaur dentalites. An apparent expansion of dinosaur 
diversity occurred in the mid-Cretaceous, with the emergence 
of new groups (e.g. neoceratopsians, ankylosaurid ankylosaurs, 
hadrosaurids and pachycephalosaurs), but this is a sampling 
artifact not related to the Cretaceous Terrestrial Revolution 
(KTR) (Lloyd et al., 2008). However, the KTR undoubtedly 
affected food webs and vertebrate feeding with potential for 
documentation from ichnofossils. For example, Prasad et al. 
(2005) document the inclusion of grasses in dinosaur diet based 
on Late Cretaceous coprolites from India.

Ichnofossils from the nonmarine Late Cretaceous provide 
diverse evidence of feeding and other behavior in dinosaur 
communities, including the digestion of tyrannosaurs (e.g., 
Chin et al., 1998), scavenging of dinosaurs by mammals (e.g., 
Longrich and Ryan, 2010), the disparity between the density of 
dentalites on ceratopsians and hadrosaurs (Jacobsen, 1998) and 
intraspecific head biting among large theropods (e.g., Brown et 
al., 2020a). Many smaller Late Cretaceous coprolites probably 
pertain to crocodylomorphs, so there is a scant record of small 
theropod coprolites (Hunt and Lucas, 2017b).

Ichnofossils of marine ecosystems of the Late Cretaceous 

document disproportionate evidence of predation by two groups, 
sharks and mosasaurs. The earliest known shark dentalites were 
produced by a cretoxyrhinid on a specimen of Kronosaurus from 
the Early Cretaceous of Australia (Holland, 2018). Subsequently, 
dentalites produced by sharks, notably Squalicorax and 
Cretoxyrhina, are abundant in the Late Cretaceous and 
demonstrate widespread predation on marine tetrapods that 
continued into the Cenozoic. Large chondrichthyans and 
teleosts, the latter undergoing a substantial radiation during this 
time (Underwood, 2006; Cavin and Forey, 2007; Cavin et al., 
2007; Guinot et al., 2012), also exhibit dentalites predominantly 
produced by large sharks. Sharks dominate the record of both 
marine coprolites and dentalites from the Late Cretaceous 
onwards. 

A large number of mosasaur dentalites and consumulites 
in the Late Cretaceous demonstrate the diversification and 
importance of this group as predators in Late Cretaceous marine 
environments. Marine coprolites are very abundant, particularly 
in the South Tethyan Phosphogenic Province, and in chalk facies 
(Hunt et al., 2015; Hunt and Lucas, 2016c).

K-Pg Extinctions
The change in mean body size and taxonomic composition 

of terrestrial vertebrates across the K/Pg boundary resulted 
in large changes in the ichnofaunas. The rare but very visible 
and much studied dentalites of dinosaurs are replaced by more 
common but much less studied and recognized dentalites on 
small mammal bones in the Paleocene. 

There is a limited change in coprolite morphotypes across the 
K-Pg boundary in nonmarine environments (Suazo et al., 2012; 
Hunt and Lucas, 2016c). Thus, for example, Alococopros and 
Eucoprus extend across the boundary, and there is no significant 
change in the overall median size of coprolites (except for the 
loss of the rare putative tyrannosaurid coprolites). This suggests 
that ornithischian and non-avian theropod coprolites are not 
commonly preserved in the Cretaceous. Most small carnivore 
coprolites probably represent crocodylomorphs, which do not 
demonstrate significant changes across the boundary (Sullivan, 
1987; Mardwick, 1998; Vasse and Hua, 1998; but also see 
Puertolas-Pascual et al., 2016). Similarly, there is also no 
significant change in coprolite morphologies across the K/Pg 
boundary in marine environments (Hunt and Lucas, 2016c). This 
is consistent with the hypothesis that many marine coprolites 
represent chondrichthyans (Hunt et al., 2015b), which exhibit 
limited extinction across the boundary (Adolfssen and Ward, 
2014; Bazzi et al., 2021). 

Cenozoic
There is a significant reduction in marine vertebrate 

ichnofossils in the Paleogene. This is probably largely due to 
the extinction at the K-Pg boundary of the large-bodied marine 
reptiles, whose body fossils preferentially preserve such traces, 
but also to the significant retreat of the epicontinental seas 
that preserved them. The largest number of reports of marine 
dentalites from the Cenozoic are related to large, non-delphin 
cetaceans from the Neogene that were bitten by large sharks (Fig. 
34). Spiral shark coprolites of the Crassocoprus Ichnofacies 
dominate many shallow marine ichnofaunas, particularly those 
of large size from the Eocene (Diedrich and Felker, 2012; 
Stringer and King, 2012). There is a small but widespread record 
of dentalites on fossil penguins, whose robust bones give them 
both an enhanced preservational potential over those of other 
birds and a better chance of preserving bite marks. 

There are well known ichnofaunas of coprolites from the 
nonmarine Paleocene that show little change from those of 
the Late Cretaceous except for the absence of the extremely 
rare, large specimens attributed to tyrannosaurs (Suazo et al., 
2012). This is probably due to the fact that the most common 
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carnivorous coprolites of Late Cretaceous and Paleogene are 
small in size and represent crocodylomorphs rather than small 
theropods or mammals (e.g., Alococoprus). 

Digestilites of marine invertebrates composed of angular 
fragments increase dramatically from the Paleogene to Neogene 
in Japan (Oji et al., 2003). This suggests increased durophagy by 
teleosts during the Cenozoic.

Dentalites remain common but relatively understudied 
throughout the Cenozoic. Paleogene Lagerstätten, notably 
Messel and the Green River, produce abundant ichnofossils, 
in particular consumulites, regurgitalites and even gastroliths. 
Messel yields the oldest evidence of owl predation by strigilites, 
which become increasingly common later in the Neogene. 

Quaternary Acme
Pleistocene vertebrate ichnofossils are abundant. Buckland 

first found coprolites and dentalites in a Pleistocene cave, and this 
environment is disproportionately important in the preservation 
of vertebrate trace fossils in the Quaternary (e.g., Brain, 1981; 
Andrews, 1990; Hunt and Lucas, 2018c, 2020a). 

Terminal Pleistocene Extinctions
One of the primary motivations for the study of the extensive 

Pleistocene coprolites of the Western United States was to better 
understand extinctions of the megafauna (Martin et al., 1985; 
Mead and Agenbroad, 1992; Martin, 2005; Hunt and Lucas, 
2018c, 2020a). Paul Martin and his co-workers conducted the 
majority of this work, and they are proponents of the human 
overkill hypothesis of terminal Pleistocene extinction (e.g., 
Martin et al., 1985; Martin, 2015). However, Hunt and Lucas 
(2018c; Fig. 33) concluded that the pattern of preservation of 
sloth coprolites suggests that climate rather than overkill was 
most significant in the extinction of ground sloths. Sporormiella, 
serving as a proxy for coprolites, has widespread utility in 
analyzing the timing of extinctions (Davis, 1987; Perotti, 2018). 

PROSPECTUS
Introduction

There is a large fossil record of diverse ichnofossils that 
relate to the feeding of vertebrates. This database provides an 
opportunity to investigate a number of significant issues in 
paleobiology.

Data Set
There is a substantial and growing literature on vertebrate 

coprolites that documents an extensive fossil record (e.g., 
Dentzien-Dias et al., 2012, 2021; Hunt et al., 2012a, b, c, 
2018; Qvarnström et al., 2016, 2017, 2019a-d). Here, we 
have documented that there is also a substantial record of 
other ichnofossils related to feeding that include dentalites, 
consumulites, gastroliths and, to a lesser extent, regurgitalites 
(see Tables A.1-11), There are still notable areas of understudy 
such as dentalites in Paleogene mammals, and coprolites in 
many Lägerstatten. The trace-fossil record of vertebrate feeding 
also has systematic biases, mostly documents vertebrate-on-
vertebrate interactions and suffers from a paucity of herbivore 
traces. Overall, however, the large datasets encompassed by 
dentalites, consumulites, gastroliths and regurgitalites provide 
diverse opportunities for further research.

Methodologies
Significant methodological innovations have been 

introduced into the study of coprolites in the last decade (e.g., 
micro CT scans, biogeochemical analyses, SEM, etc: Milàn 
et al., 2012a; Wang et al., 2018; Qvarnström et al., 2019a, b; 
Umamaheswaran et al., 2019; Cueille et al., 2020; Qvarnström, 
2020b). These techniques have only been utilized to a very 
limited extent in other bromalites (e.g., Gordon et al., 2020) and 

have great potential to further the study of other trace fossils, 
notably consumulites. 

Taphonomy
The nature and pattern of the fossil record of vertebrate 

ichnology has received relatively little attention (e.g., Hunt 
et al., 2018). There are clearly both biological and physical 
factors that influence the nature of the fossil record of traces 
related to vertebrate feeding (and other ichnofossils) that can be 
investigated. For example, how much is the Late Cretaceous acme 
of all types of traces related to tectonics and sea-level changes 
and how much to the diversification of sharks, mosasaurs and 
the large theropods that produce a seemingly disproportionate 
amount of the fossil record of coprolites and dentalites?

Ichnotaxonomy
Vertebrate ichnology, with the exception of the study of 

tracks and more recently dentalites, has been hindered by a 
reluctance to utilize a formal ichnotaxonomy. This is particularly 
notable with regard to bromalites (coprolites, consumulites 
and regurgitalites) and gastroliths. Synthetic studies require a 
common framework of ichnotaxonomy that is generally lacking 
with regard to the ichnofossils related to vertebrate feeding.

Evolution of Ecosystems
Vertebrate feeding traces provide direct and indirect 

information on trophic levels and food webs in ancient 
communities and can aid in the study of ecosystem evolution. 
Notably, digestilites composed of invertebrate debris provide a 
particularly important insight into the evolution of durophagous 
fish and also constitute a significant sediment source, particularly 
in the Cenozoic. This large topic is deserving of substantial 
study. 

Predation and Evolution
Predation has had a significant impact on macroevolution 

(e.g., Huntley and Kowalewski, 2007; Stanley, 2008; Sallan et 
al., 2011). However, predator–prey interactions are thought to be 
“notoriously difficult to define in the fossil record” (Sallan et al., 
2011, p. 8335). Previously, there was recognition of a significant 
volume of data on the ichnology of invertebrate predation 
(e.g., Huntley and Kowalewski, 2007), and herein we review 
an extensive trace fossil record of vertebrate predation. The 
ichnological record of vertebrate feeding is clearly significant in 
its extent and can be utilized in modeling evolutionary scenarios.

Predation and Environment
Predation is known to vary among Recent environments 

(e.g., Harper and Peck, 2016; Sanford, 1999; Sperling et al., 
2013; Klompmaker et al., 2019). Environmental factors related 
to predation include water depth, substrate, oxygenation, 
temperature and ocean acidification (Klompmaker et al., 2019). 
Large ichnological data sets, such as from the Late Cretaceous 
of North America, allow the investigation of environmental 
factors related to vertebrate feeding traces.

Lagerstätten Without
Lagerstätten yield a disproportionate number of 

consumulites. However, with a few notable exceptions (e.g., 
Hunt, 1992; Schweigert and Dietl, 2012; Barrios-de Pedro et 
al., 2018, 2020a, b), there has been relatively little study of the 
numerous coprolites and other bromalites from Lagerstätten. 

Lagerstätten Within
Bromalites are loci for exceptional preservation and thus 

constitute Lagerstätten (Wilby and Martill, 1992; Qvarnström 
et al., 2016; Gordon et al., 2020). Coprolites preserve muscle 
tissues, eggs, hair, parasites, bacteria, fungi and feathers 
(Qvarnström et al., 2016), consumulites preserve lepidopteran 
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wings, hair and embryos (Wilby and Martill, 1992) and 
regurgitalites preserve muscle tissue (Gordon et al., 2020). There 
is clearly great potential to examine the plethora of bromalites 
discussed above for the preservation of organic materials that 
have an otherwise under-represented fossil record.

Vertebrate Predation on Invertebrates
Vertebrate predation is often cited as an important influence 

on invertebrate evolution (e.g., Vermeij, 1977; Walker and Brett, 
2002; Baumiller and Gahn, 2004; Klompmaker et al., 2019). 
However, the ichnological record of predation of invertebrates 
by vertebrates is extremely limited. This record needs to be 
further developed and requires much more research. 

Defense
A significant portion of the literature on predation on 

invertebrate fossils relates to the development of protective 
measures preserved in hard tissues of organisms, such as 
thickened shells and the evolution of spines (e.g., Vermeij, 
1977; Brett and Walker, 2002). An equivalent arms race 
occurred during vertebrate evolution, and this invites varied 
research questions. For example, what is the significance of the 
relative prevalence of dentalites among unarmored nonmarine 
herbivores (dicynodonts) in the Late Triassic relative to armored 
herbivores (aetosaurs). 

Conclusions
1. There is a long tradition of inferring feeding in fossil 

and Recent animals indirectly from functional morphology. 
Ichnology provides direct evidence of feeding.

2. The bromalite and dentalite records are highly skewed 
towards carnivores and also have distinct size and facies biases.

3. There is an almost 200 year-long history of naming 
vertebrate tracks, but there is reluctance to apply a binomial 
ichotaxonomy to traces relating to feeding that impedes the 
development of their study.

4. There is a large fossil record of vertebrate dentalites, 
principally on bony substrates but also on invertebrate hard 
parts, coprolites, lithic substrates and others. The record requires 
more synthetic study, an ichnotaxonomy and the development of 
criteria for establishing inferences about behavior.

5. Regurgitalites are the least studied bromalites and the 
most difficult to identify. Their record is strongly controlled 
by taxonomic and taphonomic factors. Avian (notably owl) 
regurgitalites are a significant source of microvertebrate faunas.

6. There are many descriptions of consumulites, but they 
are often hidden within publications with a different focus. 
Consumulites provide the most unambiguous attribution of the 
tracemaker of any bromalites and provide direct evidence of the 
nature of digestion and the structure of the digestive tract. They 
are particularly important in comprehending the evolution of the 
avian digestive system.

7. Most records of gastroliths are from plesiosaurs, birds 
and some dinosaurs that provide important insights into varied 
behaviors, including diet, digestion, buoyancy control and 
habitat preferences. None are highly polished. Gastroliths are in 
need of an ichnotaxonomy. 

8. Coprolites serve as proxies for biotaxa with 
demonstrated utility in biochronology, biogeography and the 
understanding of extinction dynamics. 

9. Diverse other ichnofossils provide some information 
on feeding, including tracks, nests, pabulites and mololites 

10. Digestilites are an important source of microvertebrate 
assemblages, provide insight into the evolution of durophagous 
fish and constitute an important sediment source in the Cenozoic.

11. The first large sample of vertebrate ichnofossils related 
to feeding is from the Devonian, but the largest acme is in the 
Late Cretaceous, which results from taphonomy (continental 
flooding), the evolution of predators and the Taxophile Effect.

12. Vertebrate feeding traces provide important evidence 
for major evolutionary events.

13. Bromalites are Lagerstätten that provide important 
preservational environments. 
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Note Added in Proof
Zonneveld et al. (2021) described Nihilichnus nihilicus 

and cf. Nihilichnus isp. on a left front peripheral of a tortoise 
(Testudininei indeterminate) from the early Miocene Moghra 
Formation of Egypt. They attribute these traces to the bites 

of an unidentified mammalian carnivore during predation or 
scavenging. 

Reference
Zonneveld, J.P., AbdelGawad, M.K. and Miller, E.R., 2021, 
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APPENDIX A

Fossil Record of Vertebrate Dentalites and Consumulites (tables)

TABLE A.1. Mesozoic marine dentalites on bony substrate.
Mesozoic marine dentalites on bony substrate

Higher level taxon of 
substrate Taxon of substrate Age Location References Notes/biter

Chondrichthyes Cretoxyrhina mantelli Late Cretaceous Italy Amalfitano et al. 
(2019)

Cretoxyrhina mantelli Late Cretaceous USA Shimada (1997) Squalicorax falcatus,  
tooth in dentalite

Eumylodus laqueatus Late Cretaceous USA Cicimurri et al. 
(2008) Squalicorax sp.

Osteichthyes Leedsichthys sp. Middle Jurassic UK Martill (1985b) Metriorhynchus 
tooth in dentalite 

Xiphactinus audax Late Cretaceous USA Shimada and 
Everhart (2004)

embedded 
Cretoxyrhina 
mantelli tooth 

Enchodus sp. Late Cretaceous USA Konuki (2008) Squalicorax
plethodid 
Martinichthys sp. Late Cretaceous USA Everhart and 

Everhart (1994) 
Martinicthys sp. Late Cretaceous USA Konuki (2008)

Protosphyraena nitida Late Cretaceous USA Schwimmer et 
al. (1997) 2 specs Squalicorax

Protosphyraena spp. Late Cretaceous USA Schwimmer et 
al. (1997) 10 specs Squalicorax

Pachyrhizodus 
caninus Late Cretaceous USA Schwimmer et 

al. (1997) Squalicorax

Cooyoo australis Early Cretaceous Australia Wretman and 
Kear (2014) 

perhaps a 
polycotylid 
plesiosaurian, 
ornithocheiroid 
pterosaur, 
ichthyosaurian 
Platypterygius 
australis 

Testudines Large chelonioid Late Cretaceous Italy Amalfitano et al. 
(2017)

shark lamniform 
Cretodus sp. in 
consumulite

Protostega gigas Late Cretaceous USA
Shimada and 
Hooks (2004); 
Everhart (2017)

2 specimens 
Cretoxyrhina 
mantelli 

Protostega gigas Late Cretaceous USA Everhart (2013, 
2017)

mosasaur 
?Tylosaurus

Protostega sp. Late Cretaceous Angola Mateus et al. 
(2012) shark

Protostega sp. Late Cretaceous USA Konuki (2008)
Squalicorax 
dentalites and tooth 
in dentalite

Chelospargus advena Late Cretaceous USA Schwimmer 
(2010) crocodilian

Plesiochelys sp. and 
Plesiochelyidae indet. Late Jurassic Switzerland Meyer (1991) Machimosaurus 
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Mesozoic marine dentalites on bony substrate
Higher level taxon of 
substrate Taxon of substrate Age Location References Notes/biter

Testudines Bothremys barberi Late Cretaceous USA Schwimmer et 
al. (1997) Squalicorax kaupi 

Toxochelys latiremis Late Cretaceous USA Konuki (2008)
Squalicorax 
and Xiphactnus, 
Cretoxyrhina

Toxochelys? sp. Late Cretaceous USA Schwimmer et 
al. (1997) Squalicorax

Desmatochelys lowii Late Cretaceous USA Schwimmer et 
al. (1997) Squalicorax

Osteopygis sp. Late Cretaceous USA Grandstaff 
(1998)

Mosasaurus 
maximus

Protostega dixie 
(=gigas) Late Cretaceous USA Schwimmer et 

al. (1997) shark

Gigantatypus salahi Late Cretaceous Jordan Kaddumi (2006) Squalicorax?
Allopleuron hofmanni Late Cretaceous Netherlands Mulder (2003a) ?mosasaur

Allopleuron hofmanni Late Cretaceous Netherlands Jagt et al. (2020)
Machichnus isp., 
possibly produced by 
enchodontid fish

Chedighaii 
(Bothremys) barberi Late Cretaceous USA Schwimmer 

(2010) Deinosuchus

Ctenochelys tenuitesta Late Cretaceous USA Zangerl (1953) ?mosasaur
Catapleura repanda or 
cf. Bothremys sp.

Late Cretaceous/
Paleogene USA Boles (2016) Cretolamna 

appendiculata

indeterminate Late Cretaceous/
Paleogene USA Boles (2016) hexanchid

indeterminate Late Cretaceous/
Paleogene USA Boles (2016) shark

indeterminate Late Cretaceous/
Paleogene USA Boles (2016) Bottosaurus harlani 

or a mosasaur

indeterminate Late Cretaceous USA Becker et al. 
(2006) shark

Mosasauroidea Tylosaurus sp. Late Cretaceous Germany Massare (1987)
Tylosaurus 
kansasensis Late Cretaceous USA Everhart 

(2005g) mosasaur

Tylosaurus sp. Late Cretaceous USA Everhart 
(2005g)

tips of three 
Cretoxyrhina teeth 
embedded in the 
skull and lower jaws

Tylosaurus 
nepaeolicus Late Cretaceous USA

Schumacher 
(1993); Everhart 
(2002) 

mosasaur

Platecarpus 
tympaniticus Late Cretaceous USA Everhart (2008) mosasaur

Tylosaurus 
nepaeolicus  Late Cretaceous USA Rothschild and 

Martin (1993) head biting
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Mesozoic marine dentalites on bony substrate
Higher level taxon of 
substrate Taxon of substrate Age Location References Notes/biter

Mosasauroidea Tylosaurus 
nepaeolicus  Late Cretaceous USA Everhart (2008)

two partially healed 
puncture wounds on 
the left-lateral side 
of the premaxilla, 
consistent with 
the “head biting” 
scenario 

Clidastes propython Late Cretaceous USA Everhart (2008)

skull partially healed 
puncture wounds 
on the frontal, 
right prefrontal and 
right articular from 
mosasaur 

Clidastes sp. Late Cretaceous Germany
Hans-Volker 
and Nyhuis 
(2012)

Clidastes sp. Late Cretaceous USA Rothschild 
Martin (1993)

Squalicorax, 
dentalite and tooth in 
dentalite

Clidastes sp. Late Cretaceous USA Konuki (2008) Squalicorax

Prognathodon 
saturator Late Cretaceous Netherlands

Dortangs et 
al. (2002); 
Rothschild et al. 
(2005)  

shark, associated 
teeth of Squalicorax 
and Plicatoscyillium

Prognathodon kianda Late Cretaceous Angola Strganac et al. 
(2015) 

Squalicorax 
pristodontus

cf. Ectenosaurus 
clidastoides Late Cretaceous USA Everhart 

(2004c)

Cretoxyrhina 
mantelli and 
Squalicorax falcatus, 
dentalites and tooth 
in dentalite

Mosasaurus conodon Late Cretaceous ? Bell and Martin 
(1995) mosasaur

Mosasaurus hoffmanni Late Cretaceous Netherlands Lingham-Soliar 
(2004) dentary mosasaur?

Platecarpus ictericus Late Cretaceous USA Lingham-Soliar 
(2004) dentary – mosasaur?

Platecarpus sp. Late Cretaceous USA Everhart (1999)
unhealed 
Cretoxyrhina bite 
marks on the skull 
and dorsal vertebrae 

Platecarpus sp. Late Cretaceous USA Rothschild and 
Martin (1993) Squalicorax

?Platecarpus sp. Late Cretaceous USA
Shimada (1997); 
Rothschild et al. 
(2005)

one of several 
punctures includes 
Cretoxyrhina tooth

Plioplatecarpus sp. Late Cretaceous USA Bell and Martin 
(1995) mosasaur

Plioplatecarpus 
marshi Late Cretaceous Belgium Bardet, et al. 

(1998) shark

Plioplatecarpus 
marshi Late Cretaceous The 

Netherlands Jagt et al. (2020) Linichnus cf. 
serratus
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Mosasauroidea plioplatecarpine Late Cretaceous USA Carr et al. 
(2020) 

plioplatecarpine 
mosasaur head biting

Platecarpus ictericus Late Cretaceous USA
Schwimmer 
et al., (1997); 
Jacobsen and 
Bromley (2009)

shark with serrations, 
Knethichnus 
parallelum

Platecarpus ictericus Late Cretaceous USA Konuki (2008)
one is tooth 
in dentalite, 
Squalicorax

Platecarpus 
coryphaeus Late Cretaceous USA Konuki (2008) Squalicorax

Platecarpus sp Late Cretaceous USA Schwimmer et 
al. (1997) Squalicorax

Platecarpus sp Late Cretaceous USA Schwimmer et 
al. (1997) serrated shark

Platecarpus sp. Late Cretaceous USA Konuki (2008) Squalicorax

Tylosaurus proriger Late Cretaceous USA Schwimmer et 
al. (1997) serrated shark

Tylosaurus proriger Late Cretaceous USA Everhart 
(2005b) Squalicorax falcatus

Tylosaurus 
kansasensis Late Cretaceous USA Everhart (2002) tooth in dentalite, 

Cretoxyrhina

Tylosaurus sp. Late Cretaceous USA Schumacher 
(1993) mosasaur

Tylosaurus sp. Late Cretaceous USA Konuki (2008)
Squalicorax, 
Cretoxyrhina, 
Squalicorax and 
Cretoxyrhina

tylosaurine Late Cretaceous USA Hamm and 
Shimada (2007) 

Pseudocorax laevis 
and Squalicorax 
pristodontus

indeterminate Late Cretaceous Spain Corral et al. 
(2004)

shark, maybe 
Squalicorax kaupi 
(Agassiz, 1843) 
or Cretolamna 
appendiculata, both 
from same unit

indeterminate Late Cretaceous USA
Everhart et al. 
(1995); Shimada 
(1997)

Cretoxyrhina

indeterminate Late Cretaceous USA
Everhart (1999); 
Rothschild and 
Everhart (2015)

shark bite on the tail, 
2 age sets of bites

indeterminate Late Cretaceous USA Schwimmer et 
al. (1997) striated shark

indeterminate Late Cretaceous USA Schwimmer et 
al. (1997) striated shark

indeterminate Late Cretaceous USA
Welton and 
Farish (1993); 
Schwimmer et 
al. (1997)

Squalicorax
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Mosasauroidea mosasaur Late Cretaceous USA Konuki (2008)
Squalicorax, 
Squalicorax and 
Cretoxyrina

Plesiosauria cf. Cryproclidus sp. Middle Jurassic UK Martill et al. 
(1994)

propodeal bitten by 
pliosaur

cf. Dolichorhynchops 
osborni Late Cretaceous USA Everhart (2003) 

polycotylid Late Cretaceous Sweden Einarsson et al. 
(2010) mosasaur

Dolichorhynchops sp Late Cretaceous USA Schwimmer et 
al. (1997) Squalicorax

Trinacromerum 
willistoni Late Cretaceous USA Schwimmer et 

al. (1997) shark

Trinacromerum 
willistoni Late Cretaceous USA Riggs, 1944 ?shark

Brachauchenius lucasi Late Cretaceous USA Schwimmer et 
al. (1997) Squalicorax

Ogmodirus martini Late Cretaceous USA
Williston and 
Moodie (1917); 
Everhart (2006)

bite marks were 
serrated, scavenging 
by Squalicorax

Albertonectes 
vanderveldei Late Cretaceous Japan Kubo et al. 

(2012) shark

Futabasaurus suzukii Late Cretaceous Japan
Sato et al. 
(2006); Shimada 
et al. (2010) 

shark – teeth in 
dentatlites

Eromangasaurus 
carinognathus Early Cretaceous Australia

Thulborn and 
Turner (1993); 
Kear (2005); 
McHenry 
(2009)

pliosaur - 
Kronosaurus

indeterminate 
elasmosaur Late Cretaceous Chile Otero et al. 

(2014) 
indeterminate 
elasmosaur Late Cretaceous USA Everhart 

(2005a)
Cretoxyrhina 
mantelli

indeterminate 
elasmosaur Late Cretaceous Angola Araújo et al. 

(2015)
Squalicorax 
pristodontus

indeterminate 
elasmosaur Late Cretaceous New 

Zealand
Barnes and 
Hiller (2010)

mosasaur 
Prognathodon 
waiparaensis and 
shark, similar to 
or smaller than 
Cretoxyrhina 
mantelli

cf. Cryptoclidus sp. Middle Jurassic UK Martill et al. 
(1994) pliosaur

Cryptoclidus sp. Middle/Late 
Jurassic UK Forrest (2000)

75% of sample 
have bite marks of 
pliosaur

Cryptoclidus sp. Middle Jurassic UK Forrest (2003) marine crocodile 
Metriorhynchus
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Plesiosauria Late Cretaceous USA Konuki (2008)
Tylosaurus, 
Squalicorax falcatus, 
Pseudocorax laevis

Cryptoclidus 
eurymerus Middle Jurassic England Rothschild et al. 

(2018)
Peloneustes (a small 
pliosaur, healed)

cf. Cryproclidus Late Jurassic England Martill et al. 
(1994)

indeterminate Late Jurassic USA Wahl (2006) ? juvenile propodial

Pliosaurus sp. Early Jurassic England Grange et al. 
(1996)

Kronosaurus sp. Early Cretaceous Australia McHenry 
(2009) Kronosaurus

Kronosaurus 
queenslandicus Early Cretaceous Australia Holland (2018) cretoxyrhinid 

lamniform 

indeterminate Late Jurassic Mexico Buchy (2007) pliosaur + 
indeterminate 

Ichthyosauria Leptonectes cf. 
tenuirostris Early Jurassic England Maisch and 

Matzke (2003) ?angular, healed

Temnodontosaurus sp. Early Jurassic Germany Pardo-Pérez et 
al. (2018)

5 specimens, 
possibly 
Temnodontosaurus, 
crocodylomorph or 
Steneosaurus

Dearcmhara 
shawcrossi Middle Jurassic Scotland Brusatte et al. 

(2015) humerus

indeterminate Middle Jurassic England Martill (1996) pliosaur 
Liopleurodon

Platypterygiinae gen. 
et sp. indet. Late Jurassic Russia Zverkov et al. 

(2015)
medium-sized 
pliosaur.

Cryopterygius 
kielanae Late Jurassic Poland Tyborowski 

(2016) 

?ophalmosaurid Late Jurassic Norway
Druckenmiller 
et al. (2012); 
Novis (2012)

pelvic area

Platypterygius 
australis Late Cretaceous Australia

Zammit, (2011); 
Zammit and 
Kear (2011) 

Platypterygius 
australis

Marine reptiles? marine reptiles? Late Cretaceous USA McKean and 
Gillette (2015)

Crocodyliformes Geosaurus saltillense Late Jurassic Mexico Buchy et al. 
(2006) crocodilian

Geosaurus vignaudi Late Jurassic Mexico Frey et al. 
(2002)

Pachycheilosuchus 
trinquei Early Cretaceous USA Rogers (2003) large predator

? Rhabdognathus 
keiniensis Late Cretaceous Mali Hill et al. (2015)

neoselachian  - 
Linichnus serratus, 
serrate-toothed 
- Knethichnus 
parallelum 
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Crocodyliformes Oceanosuchus 
boecensis Late Cretaceous France Hua et al. 

(2007)
Neosuchian 
crocodylomorph Late Cretaceous Netherlands Mulder et al. 

(2016) femur, Linichnus isp. 

Thoracosaurus 
neocesariensis

Late Cretaceous/
Paleocene USA Boles and 

Lacovara(2013) Squalicorax

Pterosauria Pteranodon cf. P. 
longiceps Late Cretaceous USA Ehret and 

Harrell (2018)

Squalicorax kaupi, 
and a small to 
moderate-sized 
saurodontid fish, 
such as Saurodon or 
Saurocephalus

Pteranodon sp. Late Cretaceous USA
Konuki (2008); 
Hone et al. 
(2018b)

Cretoxyrhina 
mantelli tooth and 
possibly missing, 
damaged neural 
spines

Late Cretaceous USA Bennett in 
Witton (2018)

tooth gouges made 
by the serrated teeth 
of Squalicorax

Anhanguera sp. Early Cretaceous Brazil
Buffetaut et al. 
(2004); Kellner 
(2004)

dentalite infilled by 
spinosaur tooth

Hadrosauroidea indeterminate Late Cretaceous USA Schein and 
Poole (2014)

Cretalamna 
appendiculata 
or Odontaspis 
cuspidata, and 
possibly secondarily 
by Hexanchus sp. 

indeterminate Late Cretaceous USA Everhart and 
Ewell (2006)

no serrations
Cretoxyrhina 
mantelli

indeterminate Late Cretaceous USA Schwimmer et 
al. (1997)

Squalicorax, tooth in 
dentalite

Indeterminate 
?lambeosaur Late Cretaceous USA Brownstein and 

Bissell (2021)
shark without 
serrated dentition, 
possibly Cretalamna

Nodosauridae Niobrarasaurus coleii Late Cretaceous USA Everhart and 
(Hamm, 2005)

Cretoxyrhina 
mantelli

Theropoda ornithominimosaur Late Cretaceous USA Brownstein 
(2018) shark, on femur

theropod Late Cretaceous USA Brownstein 
(2018) crocodile, on tibia

Aves Hesperornis sp Late Cretaceous USA Martin et el. 
(2016)

polycotylid 
plesiosaur
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bird Late Cretaceous USA Hanks and 
Shimada (2002) Squalicorax

TABLE A.2. Mesozoic nonmarine dentalites on bony substrate.

Mesozoic nonmarine dentalites on bony substrate
Higher level taxon of 
substrate Taxon of substrate Age Location References Notes/biter

Temnospondyli Broomistega putterilli Early 
Triassic

South 
Africa

Fernandez et al. 
(2013)

two punctures above 
left orbit may be 
dentalites

Koskinonodon perfectum Late 
Triassic USA Rinehart et al. 

(2006)
Heterodontichnites 
hunti; phytosaur

Testudines Foxemys trabanti Late 
Cretaceous Hungary Botfalvai et al. 

(2014) crocodilian

Plesiochelys solodurensis Late 
Jurassic Germany Karl (2012)

machimosaurid, 
velociraptorine, 
dromaeosaurid, 
survived both

turtle Early 
Cretaceous France Rozada et al. 

(2021) Goniopholididae

Eurysternum wagleri Late 
Cretaceous Germany McCoy et al. 

(2012) Goniopholis

Rionegrochelys caldieroi Late 
Cretaceous Argentina de Valais et al. 

(2020) crocodyliform

turtle Late 
Jurassic Germany Karl and Tichy 

(2004) crocodile

turtle Late 
Cretaceous USA Noto et al. (2012) crocodyliform

turtle Late 
Cretaceous USA Carpenter and 

Lindsey (1980) Brachychampsa

Solnhofia parsonsi Late 
Jurassic Germany Joyce (2000) broad nosed 

crocodilian

Pleurosternon bullockii Early 
Cretaceous France Gônet et al. 

(2019) Crocodile

turtle, crocodyliform and 
dinosaur

Late 
Cretaceous Romania Augustin et al. 

(2019)

multituberculate 
mammals, (4) 
ziphodont theropod 
dinosaurs or 
crocodyliforms

Mongolemys elegans Late 
Cretaceous Mongolia Szczygielski and 

Surmik (2020)

Rhynchocephalia Clevosaurus brasiliensis Late 
Triassic Brazil

Romo-de-Vivar-
Martínez et al. 
(2017) 

Clevosaurus 
brasiliensis 

Archosauromorpha protorosaurian Late 
Triassic Italy Holgado et al. 

(2015) 

large fish, perhaps 
Saurichthys or a 
coelacanthiform, 
protorosaurians

Choristodera Champsosaurus sp. Late 
Cretaceous Canada Longrich and 

Ryan, (2010) ?multituberculate
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Serpentes Nidophis insularis Late 
Cretaceous Romania Venczel et al. 

(2015)
crocodyliform or a 
theropod

Pseudosuchia Revueltosaurus 
callenderi

Late 
Triassic USA

Hunt et al. 
(2005c); Hunt 
and Lucas (2014)

?crocodylomorph

Phytosauria Nicrosaurus sp. Late 
Triassic Germany Abel (1922a); 

Ruben (1990) Nicrosaurus

Pseudopalatus sp. Late 
Triassic USA Camp (1930); 

Ruben (1990). Pseudopalatus

Aetosauria Typothorax coccinarum Late 
Triassic USA

Drymala and 
Bader (2012); 
Drymala et al. 
(2021)

phytosaur or 
paracrocodylomorph

Desmatosuchus sp. Late 
Triassic USA Zeigler et al. 

(2002) possibly phytosaur

Paracrocrodylomorpha paracrocodylomorphs Late 
Triassic USA Drumheller et al. 

(2014) phytosaur

Postosuchus kirkpatricki Late 
Triassic USA Weinbaum (2013)

Crocodylomorpha Dromicosuchus grallator Late 
Triassic USA Sues et al. (2003) paracrocodylomorph

Crocodyliformes Anteophthalmosuchus 
epikrator

Early 
Cretaceous England Ristevski et al. 

(2018) another goniopholid

Goniopholis simus Early 
Cretaceous England Andrade et al. 

(2011) Goniopholis simus

goniopholid Early 
Cretaceous Spain Buscalioni et al. 

(2013) Goniopholis

?Brachychampsa sealeyi Late 
Cretaceous USA Williamson 

(1996)
?Brachychampsa 
sealeyi 

Baurusuchus pachecoi Late 
Cretaceous Brazil Avilla et al. 

(2004) baurusuchid

Baurusuchus 
salgadoensis

Late 
Cretaceous Brazil

de Vasconcellos 
and Carvalho 
(2010) 

baurusuchid

Baurusuchus sp. Late 
Cretaceous Brazil

de Araújo Júnior  
and da Silva 
Marinho (2013) 

small baurusuchid or 
theropod

Iharkutosuchus makadii Late 
Cretaceous Hungary Botfalvai et al. 

(2014) crocodilian

peirosaurid Late 
Cretaceous Argentina Fiorelli (2010) theropod

crocodilian Late 
Cretaceous Romania Codrea et al. 

(2010, 2012) crocodilian

Theropoda Herrerasaurus 
ischigualastensis

Late 
Triassic Argentina Sereno and Novas 

(1994) 
parietal and splenial; 
Herrerasaurus 

Monolophosaurus jiangi Middle 
Jurassic China

Tanke and Currie 
(1998); Brown et 
al. (2021)

head; 
Monolophosaurus 
jiangi

Sinraptor dongi Late 
Jurassic China Tanke and Currie 

(1998) Sinraptor dongi
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Theropoda Allosaurus fragilis Late 
Jurassic USA

Chure et 
al. (1998); 
Drumheller et al. 
(2020); Brown et 
al. (2021)

Ceratosaurus, 
Torvosaurus or 
Allosaurus

“Labrosaurus ferox” 
Allosaurus?

Late 
Jurassic USA

Gilmore (1920); 
Tanke and Currie 
(1998)

bitten off symphysis?

Acrocanthosaurus 
atokensis

Early 
Cretaceous USA

Harris (1997, 
1998); Eddy and 
Clark (2011)

2 skeletons, skull, 
vertebrae and ribs 

ornithominosaur Early 
Cretaceous France Rozada et al. 

(2021) Goniopholididae

Carcharodontosaurus 
saharicus

Late 
Cretaceous Algeria

Tanke and Currie 
(1998); Brown et 
al. (2021a)

skull; 
Carcharodontosaurus 
saharicus

Albertosaurus 
sarcophagus

Late 
Cretaceous Canada

Bell (2010); 
Brown et al. 
(2021a)

dentary; 
Albertosaurus

Albertosaurus 
sarcophagus

Late 
Cretaceous Canada

Tanke and Currie 
(1998); Currie 
and Eberth 
(2010); Brown et 
al. (2021a) 

numerous 
skull elements; 
Albertosaurus 
sarcophagus 

Gorgosaurus libratus Late 
Cretaceous Canada

Tanke and Currie 
(1998); Bell and 
Currie (2010); 
Brown et al. 
(2021a)

many specimens; 
Gorgosaurus

Daspletosaurus torosus Late 
Cretaceous Canada Brown et al. 

(2021a)
many skull elements; 
Daspletosaurus

Daspletosaurus sp. Late 
Cretaceous Canada

Tanke and Currie 
(1998); Hone and 
Tanke (2010); 
Brown et al. 
(2021a)

many skull elements; 
Daspletosaurus

Tarbosaurus bataar Late 
Cretaceous Mongolia Tanke and Currie 

(1998) Tarbosaurus

Tyranosaurus rex Late 
Cretaceous USA

Horner and 
Lessem (1993); 
Brochu (2003)

“Sue;” tyrannosaur 

Tyrannosaurus rex Late 
Cretaceous 

USA/
Canada

Longrich et al. 
(2010) Tyrannosaurus rex

Tyrannosaurus rex Late 
Cretaceous USA Peterson et al. 

(2020)
juvenile 
Tyrannosaurus rex

Tyrannosaurus sp. Late 
Cretaceous USA Stein (2021)

two large, sub-
circular holes on the 
lateral anterior end of 
dentary

Tyrannosaurus sp. Late 
Cretaceous USA Larson (2001)

Thanatotheristes 
olegrootorum

Late 
Cretaceous Canada Brown et al. 

(2021)
Thanatotheristes 
olegrootorum
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Theropoda tyrannosaurs Late 
Cretaceous USA Dalman and 

Lucas (2020)
3 specimens; 
tyrannosaur  

tyrannosaur Late 
Cretaceous USA Peterson et al. 

(2009, 2021) Tyrannosaurus

tyrannosaur Late 
Cretaceous Canada Bell and Currie 

(2010)
tyrannosaur, tooth in 
dentalite

tyrannosaur Late 
Cretaceous USA

McLain (2016); 
McLain et al. 
(2018)

Tyrannosaurus rex;
Knethichnus 
parallelum;
Linichnus serratus

tyrannosaurids Late 
Cretaceous Canada

Jacobsen (1995, 
1998); Jacobsen 
and Bromley 
(2009)

theropod

six genera of 
tyrannosaurs

Late 
Cretaceous

USA/
Canada

Rothschild and 
Molnar (2008) theropods

Deinocheirus sp. Late 
Cretaceous Mongolia Bell et al. (2012) Tarbosaurus bataar

Vitakridrinda sulaimani Late 
Cretaceous Pakistan Malkani (2006, 

2009, 2010) Vitakridrinda

Majungasaurus 
crenatissimus

Late 
Cretaceous Madagascar

Rogers et al. 
(2004); Gutherz 
et al. (20220)

3 specimens; 
Majungasaurus 

Aniksosaurus darwini Late 
Cretaceous Argentina Ibiricuet al. 

(2013) vertebrate

Buitreraptor 
gonzalezorum 

Late 
Cretaceous Argentina Gianechini and de 

Valais (2016) mammal

Saurornitholestes 
langstoni

Late 
Cretaceous Canada Jacobsen and 

Bromley (2009) tyrannosaur

Saurornitholestes 
langstoni

Late 
Cretaceous Canada

Tanke and Currie 
(1998); Jacobsen 
(2001)

small tyrannosaur, 
Saurornitholestes

Stenonychosaurus 
inequalis 

Late 
Cretaceous Canada

Currie (1985); 
Tanke and Currie 
(1998)

ornithomimosaur Early 
Cretaceous France Gônet et al. 

(2019) crocodile

theropod Early 
Jurassic Antarctica Hammer and 

Hickerson (1993) small theropod

Gobiraptor minutus Late 
Cretaceous Mongolia Lee et al. (2019)

Velociraptor 
mongoliensis

Late 
Cretaceous Mongolia Saneyoshi et al. 

(2011) mammal

Velociraptor 
mongoliensis

Late 
Cretaceous Mongolia Norell et al. 

(1995)
multiple dentalites 
on dorsal braincase; 
Velociraptor? 

Tetanurae Early 
Cretaceous Australia Poropat et al. 

(2019) small theropod

theropod Late 
Cretaceous USA Schwimmer 

(2010) Deinosuchus
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Sauropoda Lufengosaurus huenei Early 
Jurassic China Xing et al. (2018) ?Sinosaurus; 

osteomyalitis

Cetiosauriscus greppini Late 
Jurassic Switzerland Meyer and 

Thüring (2003)
femur;  
Machimosaurus 

Titanosauriform Early 
Cretaceous Spain Alonso et al. 

(2017) theropod

Apatosaurus sp. Late 
Jurassic USA Osborn (1904) Allosaurus

Camarasaurus supremus Late 
Jurassic USA Chure et al. 

(1998) Allosaurus

Camarasaurus supremus Late 
Jurassic USA Jacobsen (1998) theropod

Camarasaurus lewisi Late 
Jurassic USA Jensen (1988); 

Hunt et al. (1994)
Torvosaurus or 
Allosaurus

three Camarasaurus, 
a partial diplodocid 
skeleton, left pes 
and right manus of a 
brachiosaur

Late 
Jurassic USA Bader et al. 

(2009) 
theropod or 
crocodilian

Camarasaurus sp. Late 
Jurassic USA Jennings and 

Hasiotis (2006) Allosaurus

Apatosaurus sp. Late 
Jurassic USA Kirkland et al. 

(2005) theropod

Apatosaurus sp. Late 
Jurassic USA Matthew (1908) Allosaurus

Diplodocus sp. Late 
Jurassic USA

Myers (2004); 
Myers and Storrs 
(2007); Storrs et 
al. (2013) 

sauropods, theropods, 
ankylosaur, other

Late 
Jurassic USA Drumheller et al. 

(2020)

of 2368 vertebrate 
fossils, 28.885% 
preserve at least 
one theropod bite 
mark; Allosaurus, 
Torvosaurus, 
Saurophaganax

mamenchisaurid Late 
Jurassic China Augustin et al. 

(2020b) mammal

diplodocoid Late 
Jurassic USA Hone and Chure 

(2018)
young diplodocoid; 
large theropod 
?Allosaurus

Europasaurus holgeri Late 
Jurassic Germany

Slodownik and 
Wings (2015); 
Wings (2015)

small crocodilians or, 
less likely, sharks

Dongbeititan dongi Early 
Cretaceous China Xing et al. (2012) small theropod tooth 

in dentalite

Rapetosaurus sp. Late 
Cretaceous Madagascar Rogers and 

Krause (2007) 
Majungatholus 
atopus

Brasilotitan nemophagus Late 
Cretaceous Brazil Machado et al. 

(2013) 

sauropod Early 
Cretaceous Korea Paik et al. (2011) small and large 

theropod
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Sauropoda Opisthocoelicaudia 
skarzynskii 

Late 
Cretaceous Mongolia Borsuk-

Bialynicka (1977) 

anterior border of 
iliac blade “strongly 
damaged by 
predators”

sauropod Late 
Cretaceous Mongolia Currie et al. 

(2018) caudal vertebra

titanosaur Late 
Cretaceous Brazil da Silva Marinho 

et al. (2011) 
osteoderm; large 
crocodyliform or 
theropod dinosaur     

titanosaur Late 
Cretaceous Brazil Paes Neto et al. 

(2018) 
theropod or 
crocodilian

sauropod Late 
Jurassic USA Hasiotis (2004) Allosaurus

sauropods Late 
Cretaceous Madagascar Rogers et al. 

(2004) Majungasaurus 

sauropods Late 
Jurassic USA Hunt et al. (1994) theropods

Mamenschisauridae indet Late 
Jurassic China Augustin et al. 

(2020a)
large theropod, 
probably 
metriacanthosaurid

Ankylosauria Mymoorapelta maysi Late 
Jurassic USA Kirkland et al. 

(2005) theropod

Tarchia sp. Late 
Cretaceous Mongolia

Tumanova et al. 
(1998); Gallagher 
et al. (1998)

Tarbosaurus

Hypsilophontidae hypsilophodontid  Late 
Cretaceous USA

Drumheller and 
Boyd (2011); 
Boyd et al. (2013) 

crocodyliform 
feeding on juvenile

Ankylopollexia Camptosaurus sp. Early 
Cretaceous Romania Grigorescu 

(1992) 

Parkosauridae Thescelosaurus neglectus Late 
Cretaceous USA Longrich et al. 

(2010) Tyrannosaurus rex

Iguanodontia Tenontosaurus tilletti Early 
Cretaceous USA Gignac et al. 

(2010)
Deinonychus 
antirrhopus

Lurdusaurus arenatus Early 
Cretaceous Niger Taquet  and 

Russell (1999) 
left prepubis with two 
tooth punctures?

iguanodont Early 
Cretaceous Romania Posmoşanu 

(2003) 

Thescelosaurus neglectus Late 
Cretaceous USA Longrich et al. 

(2010) Tyrannosaurus rex

Hadrosauroidea Hypacrosaurus sp. Late 
Cretaceous USA Chin (1997)

fibula with a tooth 
embedded in it, 
Tyrannosaurus

Kritosaurus notabilis Late 
Cretaceous Canada Pinna (1979) theropod

Naashoibitosaurus 
ostromi

Late 
Cretaceous USA

Horner (1992), 
Tanke and 
Rothschild 
(2002); this paper

compression fractured 
gouge on the dorsal 
aspect of the left 
squamosal; “healed 
remnants of a 
predator’s bite?”
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Hadrosauroidea Edmontosaurus regalis Late 
Cretaceous USA Bell and 

Campione (2014)
Dromaeosaurus 
albertensis or juvenile 
tyrannosaurs 

Edmontosaurus 
annectens

Late 
Cretaceous USA Ullman et al. 

(2017) dromaeosaur

Edmontosaurus 
annectens,
Triceratops horridus

Late 
Cretaceous USA McLain (2016)

tyrannosaur, 
crocodilians and 
theropods

Edmontosaurus sp. Late 
Cretaceous USA

Carpenter (1998); 
Tanke and 
Rothschild (2014)

Tyrannosaurus 
rex; osteomyelitis 
resulting from an 
infection of a wound, 
but see Tanke and 
Rothschild (2014) for 
alernative hypothesis 
of damage caused by 
trampling

Edmontosaurus sp. Late 
Cretaceous USA Longrich et al. 

(2010) Tyrannosaurus rex

Edmontosaurus sp. Late 
Cretaceous USA Erickson and 

Olson (1996)

Edmontosaurus sp. Late 
Cretaceous USA Peterson et al. 

(2020)
juvenile 
Tyrannosaurus rex

Edmontosaurus sp. Late 
Cretaceous USA

Gangloff et al. 
(1999); Gangloff 
and Fiorillo 
(2010)

Edmontosaurus sp. Late 
Cretaceous USA Stein (2021)

Telmatosaurus 
transylvanicus 

Late  
Cretaceous Romania

Codrea et al. 
(2010); Codrea 
and Solomon 
(2012) 

crocodilian

Amurosaurus riabinini Late 
Cretaceous Russia Lauters et al. 

(2008) theropod

Brachylophosaurus sp. Late 
Cretaceous USA Murphy et al. 

(2006) tyrannosaur

Brachylophosaurus sp. Late 
Cretaceous USA Murphy et al. 

(2013) tyrannosaur tail

Brachylophosaurus sp. Late 
Cretaceous USA LaRock (2000)

Gryposaurus sp. Late 
Cretaceous USA Dinter (2013) crocodyliform

Saurolophus sp. Late 
Cretaceous  Mongolia Hone and Watabe 

(2010) Tarbosaurus

?Velafrons coahuilensis Late 
Cretaceous Mexico Rybakiewicz et 

al. (2019) crocodilian

lambeosaurine Late 
Cretaceous Canada Holland et al. 

(2021)
possibly smaller 
tyrannosaurid
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Hadrosauroidea hadrosaur Late 
Cretaceous Canada Brown et al. 

(2021)

pedal ungual with 
multiple bites 
from adult-sized 
dromaeosaurid, 
or a very young 
tyrannosaurid in 
late-stage carcass 
consumption 

hadrosaur Late 
Cretaceous Canada Brown et al. 

(2021) three unguals

hadrosaur Late 
Cretaceous USA Rothschild and 

DePalma (2013)

hadrosaurid skin 
associated with 
a skull, showing 
healed bone around 
tooth score traces; 
tyrannosaurid 

hadrosaur Late 
Cretaceous USA Campagna (2000) on dentaries

hadrosaur Late 
Cretaceous USA Fiorillo (1991a, 

b) large theropod

hadrosaur Late 
Cretaceous Mexico Rivera-Sylva et 

al. (2009, 2011) Deinosuchus

hadrosaur Late 
Cretaceous Mexico Rivera-Sylva et 

al. (2012) tibia; tyrannosaurine 

hadrosaur Late 
Cretaceous Mexico

Serrano-Brañas 
and Espinosa-
Chavez (2017) 

crocodilian

hadrosaur Late 
Cretaceous Spain Canudo et al. 

(2005)
osteomyelitis 
resulting from an 
infection of a wound

hadrosaur Late 
Cretaceous USA DePalma et al. 

(2013) 
Tyrannosaurus rex 
tooth in dentalite in 
fused caudal centra

hadrosaur Late 
Cretaceous USA

Gangloff and 
Fiorillo (2010); 
Fiorillo et al. 
(2010)

theropod

hadrosaurine Late 
Cretaceous USA Robinson et al. 

(2015) theropod

hadrosaur Late 
Cretaceous USA Peterson and 

Daus (2019) Tyrannosaurus rex

hadrosaurs Late 
Cretaceous USA Schwimmer 

(2010) Deinosuchus

hadrosaurs Late 
Cretaceous USA Varricchio 

(1995a, b) theropod

hadrosaurs Late 
Cretaceous Canada

Jacobsen (1995, 
1998); Jacobsen 
and Bromley 
(2009)

theropod

hadrosaurs Late 
Cretaceous USA Longrich et al. 

(2010) Tyrannosaurus rex

hadrosaur Late 
Cretaceous USA Lewis (2011) crocodilian
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Ornithischia ornithopod Late 
Cretaceous USA Noto et al. (2012) crocodyliform

ornithopod Late 
Cretaceous Romania Benton et al. 

(2006)
phalanges and 
vertebrae; theropods 

ornithischian Late 
Cretaceous Canada Longrich et al. 

(2010) Tyrannosaurus rex

Stegosauria Stegosaurus sp. Late 
Jurassic USA Carpenter et al. 

(2005) Allosaurus

Pachycephalosauridae Prenocephale 
edmontonensis

Late 
Cretaceous Canada Sullivan (2000) Albertosaurus or 

Daspletosaurus

Ceratopsia Psittacosaurus sp. Lower 
Cretaceous Thailand Buffetaut et al. 

(2007)

Protoceratops sp. Late 
Cretaceous Mongolia Saneyoshi et al. 

(2011) mammal

Bagaceratops sp. Late 
Cretaceous Mongolia Saneyoshi et al. 

(2011) mammal

Brachyceratops sp. Late 
Cretaceous USA Sampson in 

Rogers (1990)
Pachyrhinosaurus 
lakustai

Late 
Cretaceous USA Fanti et al. (2015) small theropod

small Centrosaurus sp. Late 
Cretaceous Canada Hone et al. (2018) dromaeosaurid or 

young tyrannosaur

Styracosaurus sp. Late 
Cretaceous USA Rogers (1990) Albertosaurus

 chasmosaurine Late 
Cretaceous USA Dalman and 

Lucas (2018) tyrannosaur

Eotriceratops 
xerinsularis

Late 
Cretaceous Canada Wu et al. (2007)

Triceratops sp. Late 
Cretaceous USA Gignac and 

Erickson (2017)
Tyrannosaurus rex, 
repetitive localized 
biting

Triceratops sp. Late 
Cretaceous USA Erickson and 

Olson (1996) Tyrannosaurus rex

Triceratops sp. Late 
Cretaceous USA Erickson et al. 

(1996) Tyrannosaurus rex

Triceratops sp. Late 
Cretaceous USA Longrich et al. 

(2010) Tyrannosaurus rex

Triceratops sp. Late 
Cretaceous USA Rothschild (2015) 

occipital condyles, 
not bites for 
feeding, but play; 
tyrannosaurid 

Triceratops sp. Late 
Cretaceous USA Happ (2008) Tyrannosaurus rex

Triceratops sp. Late 
Cretaceous USA de Rooij (2020) crocodilian

ceratopsids Late 
Cretaceous 

USA/
Canada

Longrich et al. 
(2010) Tyrannosaurus rex

ceratopsian Late 
Cretaceous USA Fowler and 

Sullivan (2006) Daspletosaurus
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Ceratopsia ceratopsian Late 
Cretaceous Canada Jacobsen and 

Bromley (2009)
Linichnus serratus 
matching denticles of 
Troodon

ceratopsians Late 
Cretaceous Canada Jacobsen (1995, 

1998) Theropod

ceratopsian Late 
Cretaceous Canada Jacobsen and 

Bromley (2009) Tyrannosaur

Dinosauria ornithischians Late 
Cretaceous Canada Longrich and 

Ryan (2010) ?multituberculate

sphenodontids, 
crocodyliforms and 
theropod dinosaurs

Late 
Cretaceous Argentina de Valais et al. 

(2012)

mainly mammals 
were scavenging 
on the carcasses; 
non-mammalian 
marks also found 
on the skeletons  
possibly made by 
crocodyliforms, 
dromaeosaurids and 
snakes

Pterosauria ornithocheiroid Early 
Cretaceous Australia Kellner et al. 

(2010)
wing metacarpal with 
small depressions

azhdarchid pterosaur Late 
Cretaceous Canada Currie and 

Jacobsen (1995) 
Saurornitholestes 
langstoni tooth in 
dentalite

Eurazhdarcho 
langendorfensis 

Late 
Cretaceous Romania Vremir et al. 

(2013)

bite marks on cervical 
vertebrae and distal 
metacarpal IV 
(possibly made by 
Crocodyliformes) 

Quetzalcoatlus sp Late 
Cretaceous USA Kellner and 

Langston (1996)
three openings in 
the quadrate may be 
punctures

pterosaur vertebra Early 
Cretaceous ?Brazil Buffetaut et al. 

(2004)
spinosaurid tooth in 
dentalite

Dicynodontia Lystrosaurus sp. Early 
Triassic

South 
Africa

Modesto and 
Botha-Brink 
(2010) 

dicynodont Middle 
Triassic Tanzania Cruickshank 

(1986)
Mandaodontites coxi; 
archosaur 

cf. Ischigualastia sp. Late 
Triassic USA

Lucas and Hunt 
(1993); Hunt and 
Lucas (2014)

phytosaur - 
Heterodontichnites 
hunti 

dicynodont Late 
Triassic Poland

Budziszewska-
Karwowska et al. 
(2010) 

tibia; multiple 
dentalites

dicynodont Late 
Triassic Poland

Dzik et al. 
(2008); 
Niedźwiedzki et 
al. (2010) 

Linichnus serratus, 
Knethichnus 
parallelum and 
Nihilichnus nihilicus; 
attributed to theropod 
dinosaurs

Jachaleria candelariensis Late 
Triassic Brazil Braunn et al. 

(2001)
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Dicynodontia dicynodonts Late 
Triassic Brazil Vega-Dias and 

Schultz (2007) archosauriform

Cynodontia Exaeretodon sp. Late 
Triassic Brazil Müller et al. 

(2015) ecteniniid cynodont 

Mammalia Eodelphis sp. Late 
Cretaceous Canada Longrich and 

Ryan (2010) ?multituberculate

TABLE A.3. Cenozoic marine dentalites on bony substrate.
Cenozoic marine dentalites on bony substrate

Higher level taxon 
of substrate Taxon of substrate Age Location References Notes/biter

Chondrichthyes Anoxypristis? Pliocene Italy Collareta et al. (2017a)

Pristis sp. Pliocene USA
Purdy et al. (2001), 
but see Collareta et al. 
(2017a)

Carcharhinus sp. Miocene USA Godfrey (2003) Carcharhinus tooth 
in dentalite

Carcarodon 
megalodon Pliocene USA Purdy et al. (2001) shark; tooth on tooth 

Osteichthyes fossil tuna, Thunnus Pliocene USA Schneider and Fierstine 
(2004) istiophorid billfishes 

Testudines Cheloniidae Paleocene Denmark Myrvold et al. (2018)
crocodilian and 
shark, carapace 
fragment

Ctenochelys cf. 
stenoporus Paleocene Denmark Myrvold et al. (2018) crocodilian, 

hypoplasstron

Chelonioidea 
indeterminate Paleocene Denmark Milàn et al. (2011)

shark; Machichnus 
bohemicus, others - 
sharks or fish

Crocodyliformes dyrosaurid Paleocene Niger Martin (2013) crocodilian

Protocetidae Aegyptocetus tarfa Eocene Egypt Bianucci and Gingerich 
(2011)

dentalites on ribs, 
large shark

Basilosauridae Dorudon atrox Eocene Egypt Fahlke (2012)
Basilosaurus isis 
(both Cetacea, 
Basilosauridae)

Dorudon atrox Eocene Egypt Uhen (2004) Basilosaurus isis
Dorudon atrox Eocene Egypt Voss et al. (2019) Basilosaurus isis

Cetiotheriidae Piscobalaena nana Miocene Peru Collareta et al. (2017b) Carcharocles 
megalodon 

Cetotherium capellinii Pliocene Italy Freschi (2017) Carcharodon 
carcharias

cetothere cetacean Miocene USA Godfrey and Altman 
(2005)

Carcharodon 
megalodon

cetotheriid whale Pliocene USA
Deméré and Cerutti 
(1982); Jacobsen and 
Bromley (2009)

Carcharodon, 
Knethichnus 
parallelum

Balaenopteridae Fragilicetus velponi Pliocene Belgium Bisconti and 
Bosselaers (2016) shark
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Balaenopteridae “Megaptera” hubachi Pliocene Chile Bisconti (2010) shark
balaenopterid Miocene Argentina Noriega et al. (2007) Isurus xiphodon
balaenopterid Miocene Peru Takakuwa (2014) “Isurus” hastalis

balaenopterid Early Pliocene Spain Muñiz et al. (2009) Notorhynchus, 
Linichnus isp.

balaenopterid 
mysticete Pliocene Panama Cortés et al. (2019) Carcharodon 

carcharias

Escrichtiidae Eschrichtius cf. E. 
robustus Pleistocene USA Barnes (1976); Barnes 

and McLeod (1984) shark bites on snout

Mysticeti baleen whale Miocene USA Godrey (2021)
distal portion ulna, 
shark dentalites; 
Linichnus bromleyi 

mysticete Pliocene Italy Portis (1883); Bianucci 
et al. (2002)

Carcharodon 
carcharias

mysticete Pliocene Peru Ehret et al. (2009) tooth in dentalite
Carcharodon sp.

mysticete Pliocene Spain Esperante et al. (2009) shark
mysticete Pliocene Italy Dominici et al. (2009) shark

mysticete Pliocene Spain Muñiz et al., 2020
dentary and rib. 
Linichnus bromleyi. 
Shark

baleen whale Pliocene USA Cicimurri and Knight 
(2009) 

Galeocerdo cuvier, 
Carcharhinus 
falciformis, C. 
longimanus, C. 
obscurus, C. 
plumbeus

baleen whale Pleistocene/
Holocene USA Cicimurri and Knight 

(2009)

Galeocerdo cuvier, 
Carcharhinus 
falciformis, C. 
longimanus, C. 
obscurus, C. 
plumbeus

Odontoceti Albertocetus 
meffordorum

Early 
Oligocene USA Boessenecker et al. 

(2017)  

vertebrae and 
chevron; shark, 
ray, skate or fish; 
Linichnus isp.

Inticetus vertizi Miocene Peru Lambert et al. (2018) shark, no serrations

odontocete Miocene USA Godrey et al. (2018)

three caudal 
vertebrae. 
Carcharocles 
megalodon or 
Carcharocles 
chubutensis

Physeteroidea Miocene or 
Pliocene USA Godfrey et al. (2021)

tooth shows three 
gouges, one of which  
preserves raking 
bite traces of Otodus 
chubutensis or 
Otodus megalodon 
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Kogiidae Pliokogia apenninica Pliocene Italy Collareta et al. (2019a)
long, unserrated 
dentalites, 
Cosmopolitodus 
plicatilis

Squalodontidae squalodontid Miocene Argentina Frenguelli (1928) shark
Eurhinodelphinidae Eurhinodelphis sp. Miocene USA Godfrey (2003) shark

eurhinodelphinid-size Miocene USA Godfrey et al. (2018)
two peduncular 
caudal vertebrae 
with dentalites of  
Carcharocles spp.

Eurhinodelphinidae eurhinodelphinid-size Pliocene USA Godfrey et al. (2018)
peduncular 
caudal vertebra 
with dentalites of 
Carcharocles spp.

Monodontidae monodontid Pliocene Belgium Lambert and Gigase 
(2007) 

Cosmopolitodus 
hastalis

Delphinidae cetacean (dolphin) Pliocene Italy
Cigala-Fulgosi (1990); 
Jacobsen and Bromley 
(2009)

Carcharodon 
carcharias, 
Knethichnus 
parallelum

Hadrodelphis 
calvertense Miocene USA Dawson and Gottfried 

(2002); Godfrey (2003) 
shark, and tooth in 
dentalite

Halitherium schinzii Oligocene Austria Pervesler et al. (1995) shark

Astadelphis gastaldii Pliocene Italy Portis, (1883); 
Bianucci et al. (2002)

Cosmopolitodus 
hastalis

Hemisyntrachelus 
cortessi Pliocene Italy Bianucci et al. (2002) Carcharodon 

carcharias

Cetacea mysticetes Miocene Peru Bosio et al. (2021)

7 specimens, 4 
cetotheriids, 3 
indeterminate, 
Carcharhinus 
cf. C. leucas or 
Galeocerdo aduncus 
and Cosmopolitodus 
hastalis or C. 
plicatilis

ondontocetes Miocene Peru Bosio et al. (2021)

3 specimens, 1 
phocoenid, 2 
indetermintae 
delphinidans; 
Cosmopolitodus 
hastalis or C. 
plicatilis

cetaceans Miocene Peru Bosio et al. (2021) 3 indeterminate 
specimens

cetacean Miocene Venezuela
Aguilera and de 
Aguilera (2004); 
Aguilera et al. (2008)

ribs with shark 
dentalites

whale Miocene USA Godfrey (2003) shark

cetacean Miocene Peru Collareta et al. (2017b) Carcharocles 
megalodon
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Cetacea cetaceans Miocene Peru Bianucci et al. (2018); 
Basio et al. (2021)

sharks, from 
Chilcatay Formation 
and dentalites more 
common than in 
underlying Pisco 
Formation

cetacean ?Miocene USA Mierzwiak and 
Godfrey (2019)

partial rib with 
dentalites on 
both sides of 
Carcharocles 
megalodon

cetaceans Mio-Pliocene Peru Esperante et al. (2002, 
2015)

3 specimens, shark 
tooth in dentalite and 
dentalites

Cetacea indeterminate Pliocene South 
Africa Govender (2019)

white shark 
(Carcharodon 
carcharias) and 
Isurus oxyrinchus 
or Cosmopolitodus 
hastalis

cetacean Pliocene Italy Bianucci et al. (2010) shark

cetaceans Pliocene South 
Africa Govender (2015) Carcharodon 

carcharias

cetacean Pliocene South 
Africa

Govender and 
Chinsamy, (2013) 

maybe white 
(Carcharodon spp.), 
Zambezi (bull) 
(Carcharhinus 
leucas), tiger 
(Galeocerdo sp.) and 
mako (Isurus sp.) 
sharks

cetacean Pliocene USA Kallal et al. (2012) shark or physeterids

cetacean Pliocene Venezuela Aguilera et al. (2008)
lumbar vertebra with 
an embedded tooth 
of a Carcharocles 
megalodon

cetacean Pliocene USA Purdy (1996) Carcharodon 
carcharias

cetacean Plio-
Pleistocene USA

Deméré and Cerutti 
(1982); Jacobsen and 
Bromley (2009)

Carcharodon, 
Knethichnus 
parallelum 

Pinnipedia Otariidae Miocene and 
Pliocene USA Boessenecker and 

Perry (2011)

mammal, 2 
specimens; pilot 
whale or beluga-
like cetacean, a 
terrestrial carnivore, 
a dusignathine or 
odobenine walrus, or 
a case of infanticide 
by a conspecific 
otariid

pinniped Miocene USA Bigelow (1994) shark

pinniped Miocene Peru Collareta et al. (2017b) Carcharocles 
megalodon

Monachinae Pliocene Spain Muñiz et al. (2008)



158

Cenozoic marine dentalites on bony substrate
Higher level taxon 
of substrate Taxon of substrate Age Location References Notes/biter

Pinnipedia Homiphoca sp. Pliocene Spain Muñiz et al., 2020
pelvic bone; 
Linichnus bromleyi. 
shark

Homiphoca sp. Pliocene Spain Rahmat et al. (2018)
bony fish and/
or small sharks; 
Linichnus

Eumetopias jubatus Pleistocene Canada Harington et al. (2004) bull Eumetopias 
jubatus

Sirenia Halitherium schinzii Oligocene Germany Diedrich (2008) Isurus

Sirenia dugongids Miocene Venezuela
Aguilera and de 
Aguilera (2004); 
Cozzuol and Aguilera 
(2008)

shark

Sphenisciformes Palaeeudyptes 
klekowskii Eocene Antarctica Hospitaleche (2016) small fish

Tereingaomis moisleyi Pliocene New 
Zealand McKee (1987) dolphin

penguin Miocene Argentina Cione et al. (2010) carcharhiniform 
Galeocerdo aduncus

cf. Spheniscus sp. Miocene Argentina Walsh and Hume 
(2001)

similar to  
Carcharhinus 

Charadriiformes ?charadiiform Pliocene Spain Muñiz et al. (2008) shark
Vertebrata vertebrates Miocene USA Prothero et al. (2008) sharks

marine vertebrates Miocene Peru Bianucci et al. (2018) shark

TABLE A.4. Cenozoic nonmarine dentalites on bony substrate.
Cenozoic nonmarine dentalites on bony substrate

Higher taxon of 
substrate Taxon of substrate Age Location References Notes/biter

Squamata Varanus sp. Miocene Greece Georgalis et al. 
(2018) 

hyaenid 
Protictitherium

Testudines turtles Paleocene USA Erickson (1984) Leidyosuchus 
formidabilis

pelomedusoid turtle Paleocene Columbia Hastings et al. (2015) Anthracosuchus 
balrogus 

pelomedusoid turtles Paleocene Columbia Cadena et al. (2012) crocodile
Notochelys aff. N. 
salmanticensish Eocene Spain Fuentes (2003) Asiatosuchus sp.

Echmatemys uintensis Eocene USA Sandau (2005) crocodilians or large 
terrestrial carnivores

Baena arenosa Eocene USA Smith et al. (2017) carnivore
Apalone sp. Eocene USA Sandau (2005) rodent

turtle Eocene USA Hutchison and Frye 
(2001)

turtle Eocene USA Brand et al. (2000) rodent gnawing, 
other predator

turtle Oligocene Vietnam Böhme et al. (2011) crocodilian
tortoise Oligocene USA LaGarry (2004)
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Testudines cf. Acanthochelys; cf. 
Chelonoidis Miocene Bolivia Cadena et al. (2015) 

possible but 
doubted because no 
crocodilians in fauna

turtle Miocene USA Albright (1994) alligator

turtle Miocene Hungary Mikuláš et al. (2006)
Machichnus 
multilineatus, 
Machichnus 
regularis

Aldabrachelys 
gigantea Pleistocene Aldabra Scheyer et al. (2018) crocodilian

Chelonoidis sp. ?Pleistocene Bahamas Steadman et al. 
(2007)

Crocodylus 
rhombifer

Chelonoidis 
alburyorum ?Pleistocene Bahamas Morgan and Albury 

(2013)
Crocodylus 
rhombifer

Cheloniidae (marine) ?Pleistocene Bahamas Morgan and Albury  
(2013) 

Crocodylus 
rhombifer

Crocodyliformes Leidyosuchus 
formidabilis Paleocene USA Sawyer and Erickson 

(1998)
Leidyosuchus 
formidabilis,

Tilemsisuchus 
lavocati Eocene Mali Buffetaut (1983) Tilemsisuchus 

lavocati
crocodilian cf. 
Pallimnarchus sp. Pliocene Australia Mackness et al. 

(2010) crocodilian

cf. Asiatosuchus sp. Eocene Pakistan Angielczyk and 
Gingerich (1998) bite

Toyotamaphimeis 
machikanensis Pleistocene Japan Katsura (2004) Toyotamaphimeis 

machikanensis 
crocodile Pleistocene Tanzania Njau (2006) crocodile

Marsupialia Macropus giganteus
other marsupials Pleistocene Australia Camens and Carey 

(2013) 

cf. Thylacoleo,
rodent gnawing, 
dasyurid bite, 
cf. Sarcophilus

Diprotodon optatum Pleistocene Australia Runnegar (1983) Thylacoleo carnifex 

Macropus giganteus 
titan Pleistocene Australia

Horton and Wright 
(1981); Dortch et al. 
(2016)

Thylacoleo carnifex

“Metacheiromyidae” Mylanodon rosei Paleocene USA Secord et al. (2002)

Coryphondontidae Coryphodon sp. Eocene USA Lucas and Schoch 
(1987) Coryphodon

Apheliscidae Apheliscus chydaeus Eocene USA Gingerich (1994) 
Chalicotheriidae Litolophus gobiensis Eocene China Bai et al. (2011) 

Brontotheriidae Titanotherium Oligocene USA Scott and Jepsen 
(1936) rodent

Rhinocerotidae Chilotherium wimani Miocene China Deng and Tseng 
(2010)

female skull; 
giant percrocutid, 
Dinocrocuta 
gigantea

Iberotherium 
rexmanueli 
zbyszewskii

Miocene China Antunes et al. (2006a) bear-dog (Amphicyon 
giganteus)
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Higher taxon of 
substrate Taxon of substrate Age Location References Notes/biter

Rhinocerotidae Coelodonta 
antiquitatis Pleistocene Germany Diedrich (2006) Crocuta crocuta 

spelaea      
Coelodonta 
antiquitatis Pleistocene Germany Diedrich (2011) Crocuta crocuta 

spelaea      
Equidae Equus sp. Pleistocene Brazil Avilla et al. (2018) ursid

horse Miocene USA Diffendal (2003)

Perissodactyla perissodactyl Eocene USA Alexander and Burger 
(2001) 

within gut of 
Pristichampsus 
vorax

Entelodontidae Archaeotherium 
walassi; A. scotti Oligocene USA Sinclair (1922); 

Effinger (1998) Archaeotherium 

Bovidae Bison antiquus taylori Pleistocene USA West and Hasiotis 
(2007) rodents

Bos primigenius Pleistocene Czech 
Republic Diedrich (2012a) Crocuta crocuta 

spelaea

Bos cf. priscus Pleistocene UK Buckland (1824) Crocuta crocuta 
spelaea

Hippotragus sp. Pleistocene South Africa van Zyl et al. (2016) carnivore

Tragulidae Siamotragulus 
songhorensis Miocene Uganda Sánchez et al. (2015) carnivore

Merycoidodontoidae oreodonts Oligocene USA
Tanke et al. (1992); 
Tanke and Currie 
(1998)

carnivore

Climacoceratidae climacoceratid Miocene South Africa Pickford (1996) crocodilian

Cervidae Euprox furcatus Miocene Austria Havlik et al. (2014) medium-sized 
carnivore 

Megaloceros 
giganteus Pleistocene Czech 

Republic Diedrich (2012a) Crocuta crocuta 
spelaea

Rangifer tarandus Pleistocene Czech 
Republic Diedrich (2012a) Crocuta crocuta 

spelaea
deer and other 
mammals Pleistocene USA Glowiak (2007) Canis dirus

Camelidae Poebrotherium sp. Miocene USA Sundell (1999); 
Benton et al. (2015)

multiple skeletons 
and dentalites, 
Archeotherium meat 
cache

Michenia sp. Miocene USA Morgan and 
Williamson (2000)

carnivore, rodent 
gnawing

camel Miocene USA Winkler (1987) coyote-sized 
carnivore

Ungulata ruminant Miocene Austria Havlik et al. (2014) femur; undescribed 
carnivore 

ungulate Pliocene Italy Mazza et al. (2004); 
Mazza (2006) 

Pachycrocuta 
brevirostris

Chlamyphoridae cf. Eosclerocalyptus 
lineatus Pliocene Argentina de los Reyes et al. 

(2013)
procyonid 
Chapalmalania
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Cenozoic nonmarine dentalites on bony substrate
Higher taxon of 
substrate Taxon of substrate Age Location References Notes/biter

Mylodontidae Glyptotherium sp. Pleistocene-
Holocene Brazil de Araújo-Júnior et al. 

(2017)

Machichnus fatimae, 
Machichnus 
bohemicus 
- Protocyon 
troglodytes

Pseudoprepotherium 
sp. Miocene Peru Pujos and Salas-

Gismondi (2020) 
Purussaurus, young 
or subadult

Megatheriidae Eremotherium 
laurillardi 

Pleistocene-
Holocene Brazil de Araújo-Júnior et al. 

(2011, 2017)

Machichnus 
bohemicus; a 
juvenile individual 
of Protocyon 
troglodytes or an 
adult of Cerdocyon 
thous

Proboscidea Deinotherium 
leviusvel giganteum Miocene Austria Havlik et al. (2014) larger carnivore 

Mammuthus columbi Pleistocene USA Wiest et al. (2016)

Machichnus 
bohemicus – 
small carnivore 
Nihilichnus nihilicus 
– large carnivore 
Machichnus 
regularis – rodent, 
large cat

mammoth Pleistocene Germany Diedrich (2011) Crocuta crocuta 
spelaea

gomphothere Pleistocene Chile Labarca et al. (2014) large felid

Haplomastodon 
waringi Pleistocene Brazil

Dominato et al. 
(2011); de Araújo-
Júnior et al. (2017)

Machichnus 
bohemicus

mastodon Pliocene USA Harington (1996) beaver gnawed 
molars

proboscidean Pleistocene El Salvador Cisneros (2005) rib; Crocodylus 
acutus 

Viverravidae Viverrravus Eocene USA Gingerich (1987) mammal

Nimravidae Nimravus brachyops Oligocene USA Scott and Jepsen 
(1936)

left frontal; 
Nimvarus

Nimvarids Oligocene USA Boyd et al. (2013) five crania; mainly 
nimravids

Ursidae Ursus spelaeus Pleistocene Spain Pinto Llona and 
Andrews (2004) Ursus spelaeus

Ursus spelaeus Pleistocene Spain Rabal-Garcés et al. 
(2012) Ursus spelaeus

Ursus spelaeus Pleistocene Germany Diedrich (2013)
Panthera leo 
spelaea, Crocuta 
crocuta spelaea

Ursus spelaeus Pleistocene Spain Capasso (1998) Ursus spelaeus or 
Panthera leo spelaea

Amphicyonidae Daphoenodon 
superbus Miocene USA Hunt et al. (1983); 

Hunt (1984) carnivorous mammal

Canidae Canis lupus Pleistocene USA Courville (1953) intraspecific
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Cenozoic nonmarine dentalites on bony substrate
Higher taxon of 
substrate Taxon of substrate Age Location References Notes/biter

Felidae Smilodon fatalis Pleistocene USA
Miller (1980); 
Akersten (1985); 
Rothschild and 
Martin (1993)

intraspecific

Smilodon populator Pleistocene-
Holocene Brazil de Araújo-Júnior et al. 

(2017)

Machichnus 
bohemicus - a 
juvenile individual 
of Protocyon 
troglodytes or an 
adult of Cerdocyon 
thous

Panthera leo spelaea Pleistocene Germany Diedrich (2011) Crocuta crocuta 
spelaea

Hyaenidae Crocuta crocuta 
spelaea Pleistocene Czech 

Republic Diedrich (2012a) Crocuta crocuta 
spelaea

Carnivora Canis, Lynx Pleistocene Italy Sardella et al. (2018) Acinonyx 
pardinensis, crania

Rodentia Isoptychus sp., 
Thalerimys fordi  Eocene UK Vasileiadou et al. 

(2007, 2009)
Cynodictis cf. 
lacustris 

Xerus daamsi Pliocene Chad Denys et al. (2003) mammalian 
carnivore

Lemuriformes lemurs Pleistocene Madagascar Meador (2017)
crocodiles, raptors, 
mammalian 
carnivores

Notharctidae Notharctus sp. Eocene USA Alexander (1992) Vulpavus

Notharctus, Omomys Eocene USA Alexander and Burger 
(2001) raptor dentalites

Notharctus sp. Eocene USA Alexander and Burger 
(2001) ?Vulpavus

Adapidae Europolemur sp. Eocene Germany
Franzen and Frey 
(1993); Franzen 
(2001) 

small crocodilian

Propliopthecidae Aegyptopithecus and 
Propliopithecus Oligocene Egypt Gebo and Simons  

(1984) crocodile or creodont

Cercopithecidae Mesopithecus 
pentelicus Miocene Greece Zapfe (1981) felid

Theropithecus 
oswaldi leakeyi Pleistocene Tanzania Frost et al. (2017) felid

Homininae Orrorin tugenensis Miocene Kenya Gommery et al. 
(2007) proximal femur

Australopithecus 
anamensis
Australopithecus 
afarensis

Pliocene Ethiopia Sahle et al. (2017) crocodilian

Australopithecus 
africanus, 
Paranthropus 
robustus (and 
cercopithecoids)

Pleistocene South Africa Brain (1970, 1978, 
1981) leopard, felids

Australopithecus 
africanus (and 
cercopithecoids)

Pleistocene South Africa
Berger and Clarke 
(1995); Sanders et al. 
(2003)

raptor, Taung child
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Higher taxon of 
substrate Taxon of substrate Age Location References Notes/biter

Homininae Homo erectus Pleistocene China Boaz et al. (2004) Pachycrocuta 
brevirostris

Homo erectus Pleistocene Georgia Wong (2003) felid

Homo habilis Pleistocene Tanzania

Davidson and 
Soloman (1990); Njau 
(2006); Njau and 
Blumenschine (2006);  
Brochu et al. (2010 )

Crocodylus 
anthropophagus

Homo sp. Pleistocene Morocco Daujeard et al. (2016) Crocuta crocuta or 
Hyaena hyaena

Homo neanderthalis Pleistocene Spain Camarós et al. (2015) large felid

Homo neanderthalis Pleistocene

Croatia, 
Portugal, 
Germany, 
Spain, 
France, Italy

Diedrich (2014)
Crocuta crocuta 
spelaea and other 
carnivores

Mammalia mammal Paleocene USA Longrich and Ryan 
(2010)

multituberculate 
gnawing

multiple mammals, 
including Ignacius sp. Paleocene USA

Gingerich (1987); 
Bloch and Boyer 
(2001)

mammal

mammals Paleocene USA
Sinclair and Granger 
(1914); Simpson and 
Elftman (1928) 

Eucosmodon

early equids, and 
the tapir-like 
perissodactyl 
Lophiodon, and turtle 
shells

Eocene Germany Falk et al. (2019) crocodilians 

mammals Eocene France Laudet and Fosse 
(2001) 

rodents, possibly 
Archaeomys

mammals Oligocene USA Longrich and Ryan 
(2010) gnawing

mammals Oligocene USA LaGarry (2004)

Hesperocyon, 
Mesocyon, 
Daphoenus 
hartshornianus, 
Daphoenus vetus, 
and rodents

ungulates, small 
mammals and 
carnivores 

Miocene Hungary Mikuláš et al. (2006); 
Ekrt et al. (2016)

Nihilichnus nihilicus,  
Nihilichnus mortalis,  
Machichnus 
regularis, 
Machichnus 
multilineatus, 
Machichnus 
bohemicus, 
Brutalichnus 
brutalis, - squirrels, 
carnivore Amphicyon 
sp. and crocodilians 

mammals Miocene China Andersson  and 
Kaakinen (2004)

mammals Miocene USA Bartley (2005) carnivores
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Higher taxon of 
substrate Taxon of substrate Age Location References Notes/biter

Mammalia mammals Miocene Uganda Morales (2016) 

gnawing marks due 
to carnivore activity, 
parallel gnawing 
traces made by 
rodents.

alcelaphine bovid, 
ungulate, bovid, equid Pliocene Ethiopia Sahle et al. (2017) crocodilian

large mammals Pliocene Tanzania Su and Harrison 
(2008) carnivores

bovids, mammals Pleistocene South Africa
Brain (1970, 1978, 
1981); Pickering et al. 
(2004)

leopards, hyenas, 
other carnivores

mammals (bovid, 
suid, Parmularius, 
Tragelaphini, 
Alcelaphini, 
Antilopini, equid)  

Pleistocene Tanzania
Bunn et al. (1986); 
Njau (2006); Njau 
and Blumenschine 
(2006) 

carnivores, rodents

Bison, Mammuthus, 
Alces, Equus, Cervus, 
and Rangifer

Pleistocene USA Haynes (1980) canid, felid, ursid 
gnawing

Stephanorhinus 
etruscus, Equus 
altidens, Megaloceros 
(Megaceroides) 
solilhacus 

Pleistocene Spain
Palmquist et al. 
(1996); Palmqvist and 
Arribas (2001)

Pachycrocuta 
brevirostris and other 
carnivores 

mammals Pleistocene South Africa Kandel and Conrad 
(2012)

>200 bones with 
bites or rodent 
gnawing

mammals Pleistocene Australia Westaway et al. 
(2011) Pallimnarchus 

mammals Pleistocene Pakistan Dennell et al. (2008) Pachycrocuta 
brevirostris

mammals Pleistocene Brazil Araújo-Júnior et al. 
(2011, 2017)

Machichnus 
bohemicus

Aves penguin Miocene Argentina Cione et al. (2010)

didelphid or 
borhyaenid 
marsupials, didelphid 
or hathliacyniid 
sparassodont 
marsupials

Cayaoa bruneti Miocene Argentina De Mendoza and 
Haidr (2018) Hathliacynidae

Geronticus cf. calvus Pliocene South Africa Pavia et al. (2017)

Moa Holocene New 
Zealand

Farlow and Holtz 
(2002) Harpagornis
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Vertebrate dentalites on invertebrate substrate

Ecology Higher level taxon 
of substrate Taxon of substrate Age Location References Notes/biter

Sessile rugose coral Calceola sandalina Middle 
Devonian

Czech 
Republic

Galle and Mikulas 
(2003)

fish-like animals 
capable of 
durophagy 
(placoderms and 
chondrichthyans)

hermatypic coral Acropora 
cervicornis  

Late 
Pleistocene Jamaica Kaufman (1981)

three spot 
damselfish, 
Eupomacentrus 
planifrons - gall-
like growths 
called “chimneys,” 
in response to 
damage by the 
threespot

crinoid Middle 
Devonian Poland Gorzelak et al. 

(2011)
Coccosteidae 
(Arthrodira), 
placoderm 

Holocrinus 
longicirrifer 

Early 
Mississippian USA Gahn (2004)

Late Jurassic Poland Lach et al. (2015) fish on ossicles

Clypeaster spp. Late Miocene Spain Santos et al. 
(2003) fish

Cupressocrinitidae Middle 
Devonian Germany Bohatý (2008, 

2009) 
cephalopods, 
placoderms or 
arthropods

Middle 
Triassic Poland Salamon and 

Gorzelak (2008)
fishes, arthropods, 
asteroids and 
echinoids

Late 
Cretaceous Poland Salamon and 

Gorzelak (2010)
high percentage 
of bite-marks and 
aberrant growths

Bougueticrinus 
hagenowii 

Late 
Cretaceous Poland Jagt and Salamon  

(2007) ?bite marks

Semiometra saskiae Late 
Cretaceous Jagt et al. (2018) fish or decapod

echinoid Middle 
Jurassic Israel Wilson et al. 

(2014)

fish bites 
on spines, 
Machichnus 
bohemicus, 
Nihilichnus 
nihilicus

Echinocorys ovata Late 
Cretaceous Germany Neumann and 

Hampe (2018) 

globidensine 
mosasaur, 
probably 
Prognathodon

Echinocorys sp. Late 
Cretaceous Netherlands Jagt et al. (2018) teleost fish and/or 

neoselachian
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Ecology Higher level taxon 
of substrate Taxon of substrate Age Location References Notes/biter

echinoid Hemipneustes 
striatoradiatus 

Late 
Cretaceous Netherlands Donovan et al. 

(2008)

bony fish or small 
mosasaur, but see 
Neumann and 
Hampe (2018)

Ananchytes ovata Late 
Cretaceous Germany Gripp (1929) 

Echinocorys sovata Late 
Cretaceous Germany Thies (1985)

pock-marked test 
from teleost or 
shark

Recurvaster 
polyplacus 

Late 
Cretaceous Germany Neumann (2003) fishes 

Pycinaster 
magnificus

Late 
Cretaceous Germany Neumann (2003) galeoid shark 

Squalicorax

Late 
Cretaceous Germany Schormann (1987) fish

Echinocorys sp. Late 
Cretaceous Germany Frerichs (2012) fish

Late 
Cretaceous Germany Girod and Rösner 

(2013) fish

Late 
Cretaceous Netherlands Dortangs (1998) fish

Parascutella 
höbarthi early Miocene Austria

Nebelsick (1999); 
Kowalewski and 
Nebelsick (2003)

hollowed-out 
central area and 
paired grooves 
leading to the 
wound, similar to 
Recent triggerfish

Monophoraster 
darwini late Miocene Argentina Zinsmeister 

(1980) 
test margin 
damage produced 
by small fish

conulariid Paraconularia 
magna

Late 
Pennsylvanian USA Mapes et al. 

(1989) cladodont shark

bivalve Ptychopteria sp. Middle 
Devonian USA Nagel-Myers et al. 

(2009)
fish, arthropod or 
cephalopod

middle 
Permian USA Boyd and Newell 

(1972)

high percentage 
have divots 
probably produced 
by sharks

Gryphaea lituola Middle 
Jurassic UK Phipps (2008) Steneosaurus 

durobrivensis 

Inoceramus Late 
Cretaceous USA Kauffman (1972) Ptychodus
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bivalve nonmarine bivalve Late Triassic Poland Gorzelak et al. 
(2010) 

Ceratodus, 
Hybodus

unionid Early 
Cretaceous Australia Kear and 

Godthelp (2008)

large osteichthyan 
or chondrichthyan 
fish, crocodiles, 
and pliosauroid 
plesiosaurs

Protopleurobema 
numantina 

Early 
Cretaceous Spain Bermúdez-Rochas 

et al. (2013) crocodiles

rudist Durania maixima Late 
Cretaceous USA Hattin (1988) ?sea turtle

brachiopod productid Early 
Carboniferous England Brunton (1966) sharks

brachiopods Late 
Mississippian USA Alexander (1981) sharks, some 

tetrahedron shaped

Pygope adnethenses Early Jurassic Hungary Tasnadi-Kubacska 
(1962) fish

Pyope, Menzelia Mesozoic Europe Tasch (1973) fish or reptiles

epibionts Miocene Argentina Cione et al. (2010) epibionts on 
penguin bones

Vagrant asteroid Sea stars Middle 
Jurassic Poland Zatoń et al. (2007)

ossicles in 
regurgitalites, 
durophagous 
sharks or 
pycnodontiform 
fishes

Pycinaster 
magnificus, 

Late 
Cretaceous Germany Neumann (2000) galeoid shark 

Squalicorax

crab Raninella sp. Late 
Cretaceous USA Bishop (1975) fish

Nektonic foraminiferan Assilina exponens Eocene India Syed and 
Sengupta (2019) scarid parrotfish

nautiloid multiple taxa Early 
Devonian Morocco Klug (2007)

mainly dentalites 
of nautiloids 
but cannot 
be excluded 
that some are 
vertebrate in origin

nautiloid Early 
Pennsylvanian USA

Mapes and 
Hansen (1983); 
Hansen and 
Mapes (1990)

Symmorium 
reniforme

nautiloid Early 
Pennsylvanian USA Hansen and 

Mapes (1990) 
Petalodus 
ohioensis
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Ecology Higher level taxon 
of substrate Taxon of substrate Age Location References Notes/biter

nautiloid Pseudorthoceratidae Middle 
Pennsylvanian USA Seuss et al. (2012) shark or other fish

Tainoceras, 
Neobistrialites Pennsylvanian USA Mapes and 

Chaffin (2003) 
Symmorium 
reniforme

Eutrephoceras 
dekayi

Late 
Cretaceous USA Kauffman and 

Sawdo (2013) 
Platycarpus, 
Prognathodon or 
Mosasaurus

Argonautilus 
catarinae

Late 
Cretaceous USA Kauffman (2004) mosasaur

nautiloid Late 
Cretaceous Canada Ludvigsen and 

Beard (1997) mosasaur

ammonoid

Platyclymenia 
annulata, P. 
subnautilina, 
Pleuroclymenia 
costata, and 
Prionoceras divisum

Late Devonian Germany Slotta et al. (2011) 
possibly 
jawed, fish-like 
chondrichthyans

various 
Late 
Devonian-
Recent

Various Keupp (2006)

some large-scale, 
sub-lethal injuries 
occurring since 
the Late Devonian 
were due to attacks 
by durophagous 
vertebrates

Anthracoceras 
discus, Fayettevillea 
bransoni, 
Fayettevillea 
friscoense, 
Rhadinites miseri, 
Richardsonites 
mapesi 

Late 
Mississippian USA Bond and 

Saunders (1989) 
sharks, other 
fishes, or 
cephalopods

Gonioloboceras 
goniolobum Pennsylvanian USA Mapes et al. 

(1995) 

chondrichthyans 
and other fish, 
particularly the 
symmoriid shark 
Symmorium 
reniforme

Gonioloboceras sp. Pennsylvanian USA Mapes and 
Chaffin (2003) 

Symmorium 
reniforme

Gonioloboceras sp. Pennsylvanian USA Sims et al. (1987) 
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of substrate Taxon of substrate Age Location References Notes/biter

ammonoid

Dactylioceratidae 
(Dactylioceras) 
and Hildoceratidae 
(Cleviceras, 
Fuciniceras, 
Fontanelliceras, 
Harpoceras, 
Paltarpites, and 
Protogrammoceras

Early Jurassic Japan Takeda and 
Tanabe (2014) 

mainly by 
ammonites, but 
some possibly by 
jawed fishes and 
marine reptiles

Dactylioceras sp. Early Jurassic Germany Lehmann (1975) 

Oxycerites sp. Middle 
Jurassic Germany Hoffmann and 

Keup (2015)
pycnodontid bite 
mark on both sides

Gymnites sp. Early Triassic Greece Hoffmann and 
Keup (2015) fish

ammonoids
Early Jurassic-
terminal 
Cretaceous

various Klompmaker et al. 
(2009)

ventral bite marks 
are situated at the 
end of the body 
chamber, close to 
the phragmocone, 
predatory attacks 
on the back or 
blind side of 
ammonoids, 
produced by 
probably coleoid 
cephalopods 
(especially 
teuthoids) and also 
predatory fish

various 
Late 
Devonian-
Cretaceous

Various Keupp (2006)

some large-scale, 
sub-lethal injuries 
occurring since 
the Late Devonian 
were due to attacks 
by durophagous 
vertebrates

Pinacoceras parma Late Triassic Austria Tichy and 
Urbanek (2004) nothosaur

Ataxioceras 
hypselocyclum Late Jurassic Germany Keupp (2006) crustacean or 

vertebrate

Promicroceras, 
Xipheroceras, 
Cymbites, 
Arnioceras, 
Asteroceras, 
Caenisites, 
Eoderoceras and 
Paltechioceras?

Early Jurassic UK Andrew et al. 
(2015)
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Ecology Higher level taxon 
of substrate Taxon of substrate Age Location References Notes/biter

ammonoid Kosmoceras cf. K. 
obductum

Middle 
Jurassic UK Martill (1990) semionotid or 

pycnodontid

Kosmoceras 
gulielmi

Middle 
Jurassic UK

Ward and 
Hollingworth 
(1990) 

unknown marine 
reptile

Oxycerites sp. Middle 
Jurassic Germany Richter (2009) Pycnodontidae

Orthaspidoceras sp. Late Jurassic France Vullo (2011)

hybodont shark 
Planohybodus; 
tooth in dentalite 
and possible 
dentalites 

Kachpurites, 
Craspedites Late Jurassic Russia Mironenko (2020)

small apertural 
injuries, likely 
traces of fish bites

Desmoceras 
latidorsatum 

Early 
Cretaceous Madagascar Hoffmann and 

Keupp (2015) semionotid fish

Placenticeras, 
Sphenodiscus and 
much less common 
Baculites

Late 
Cretaceous USA Kauffman, 

(1990b) more than 100

Placenticeras sp. cf. 
P. whitfieldi

Late 
Cretaceous USA

Kauffman and 
Kesling (1960); 
Kauffman (1990b)

Platecarpinae

Placenticeras meeki Late 
Cretaceous Canada

Hewittand 
Westermann 
(1990) 

mosasaur

Placenticeras meeki Late 
Cretaceous Canada Wahl, (2008) mosasaur

Placenticeras sp. Late 
Cretaceous USA Hoffmann and 

Keupp (2015) mosasaur

Placenticeras sp. Late 
Cretaceous Canada Kauffman (1990b) Mosasaurus

Placenticeras sp. Late 
Cretaceous Canada

Tsujita and 
Westermann 
(1998) 

Prognathodon

Metoicoceras sp. Late 
Cretaceous USA Kauffman (1990b) Globidens

Sphenodiscus sp. Late 
Cretaceous USA Bukowski and 

Bond (1989) mosasaur

Pseudaspidoceras 
madagascariensis

Late 
Cretaceous Morocco Gale et al. (2017) mosasauroid, 

Tethysaurus

Pseudaspidoceras 
flexuosum. 

Late 
Cretaceous Mexico Ifrim (2013) Ptychodus
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Ecology Higher level taxon 
of substrate Taxon of substrate Age Location References Notes/biter

ammonoid Anapachydiscus 
peninsularis 

Late 
Cretaceous Mexico Saul (1979) mosasaur

ammonite Late 
Cretaceous Canada Ludvigsen and 

Beard (1997) mosasaur

coleoid Plesioteuthis 
subovata Late Jurassic Germany Hoffmann et al. 

(2020)

tooth of 
Rhamphorhynchus 
muensteri 
embedded in 
dentalite

“squid” Tusoteuthis longa Late 
Cretaceous USA Stewart and 

Carpenter (1990)
Tylosaurus 
proriger

thylacocephalan Late Devonian Poland Broda et al. 
(2015)

fish damaged 
and fragmented 
carapaces

conchostracan Yanjiestheria sp. Early 
Cretaceous China Bi (1986)

growth line 
abnormalities 
supposedly caused 
by fish biting

Volant odonatan insect Cymatophlebia 
longialata Late Jurassic Germany Tischlinger (2001)

removal of the 
posterior right 
wingtip; also, 
minor damage 
to the posterior 
margin of the 
right anterior 
wing caused by 
pterosaur bite

neuropteran insect Archegetes 
neuropterum Late Jurassic Germany Tischlinger (2001)

removal of 
anterior left 
wingtip by 
pterosaur bite 
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TABLE A.10. Cenozoic marine consumulites.

Cenozoic marine consumulites
Higher level 
taxon

Taxon Contents Age Location References Notes

Lamniformes Cosmopolitodus 
hastalis 

Sardinops sp. cf. S. 
sagax

Miocene Peru Collareta et 
al. (2017c)

between the 
25th and the 
33rd vertebra

Cosmopolitodus 
hastalis 

fish remains as 
fossilized stomach 
contents including 
several scales and an 
opercle of Sardinops 
cf. S. sagax

Late 
Miocene

Peru Collareta et 
al. (2017c); 
Bosio et al. 
(2021)

Carcharhiniformes Galeorhinus 
cuvieri  

skeleton of 
barracuda, Sphyraena 
bolcensis 

Early 
Eocene

Italy Friedman 
and 
Carnevale 
(2018)

Galeorhinus 
cuvieri

stomach contents of 
6 articulated distal 
caudal vertebrae and 
dismembered caudal 
fin rays of Sphyraena 
bolcensis 

Early 
Eocene

Italy Fanti et al. 
(2016)

evidence that a 
predator–prey 
relationship 
between 
Galeorhinus and 
Sphyraena in 
the modern coral 
reefs has roots in 
the Eocene

Anguilliformes Paranguilla 
tigra

Cyclopoma gigas Early 
Eocene

Italy Viohl 
(1990)

prey ingested 
head first

indeterminate fragments of 4 fish Early 
Eocene

Italy Viohl 
(1990)

1 ingested head 
first, 3 ingested 
tail first

Paranguilla 
tigrina 

indeterminate Early 
Eocene

Italy Sorbini 
(1972)

prey ingested 
head first

Perciformes Carangodes 
cephalus

fish Early 
Eocene

Italy Viohl 
(1990)

prey ingested 
head first

Ductor vestenae fish Early 
Eocene

Italy Viohl, 
(1990)

prey ingested 
head first

Callipteryx 
speciosus

indeterminate Early 
Eocene

Italy Agassiz 
(1833-
1845b)

1 prey ingested 
head first and 1 
ingested tail first 

Serranus 
budensis

Serranus budensis Oligocene Romania Paucă 
(1933)

prey ingested 
head first

Acanthomorpha Blochius 
longirostris

indeterminate Early 
Eocene

Italy Agassiz 
(1833-
1845a)

prey ingested 
head first

Osmeriformes smelt argentinoid Early 
Eocene

Denmark Bonde 
(1987)

prey ingested 
head first

Scombriformes Scomberomorus 
(Cybium) sp.

12 clupeids Early 
Oligocene

Germany Weiler 
(1931)

prey ingested 
head first
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Cenozoic marine consumulites
Higher level 
taxon

Taxon Contents Age Location References Notes

Stomiiformes Scopeloides 
glarisianus 

crustaceans such 
as ostracods and 
copepods, and small 
fish, principally 
Scopeloides 
glarisianus 

Oligocene Poland, 
Ukraine, 
Czech 
Republic, 
northern 
Caucasus in 
Russia and 
Abkhazia

Přikryl et al. 
(2012)

crustaceans 
in smaller 
specimens and 
fish in larger 
specimens 

Lophiiformes Antennarius 
monodi

a nearly complete 
percomorph fish, 
possibly belonging to 
the family Sparidae

Miocene Algeria Carnevale 
and Pietsch 
(2006)

the prey is 
longer than 
the predator; 
frogfishes of 
Antennariidae 
are able to 
swallow very 
large prey 
because of 
rapid expansion 
of the oral 
and opercular 
cavities that 
produces suction 
pressure for prey 
capture

Aulopiformes Lestidiops 
(Lestioliops) 

Bregmoceras and 
unidentified fish

Pliocene Italy Viohl 
(1990)

prey ingested 
head first

Stomiiformes Chauliodus 
eximius

?bathypelagid Middle 
Miocene

USA Crane 
(1996)

prey ingested 
head first

Pycnodontiformes pycnodonts small pieces of coral unspecified unspecified Maisey 
(1996)

Basilosauridae Basilosaurus isis smaller whales 
(juvenile Dorudon 
atrox) and large 
fishes (Pycnodus 
mokattamensis)

Late 
Eocene

Egypt  Voss et al. 
(2019) 

Basilosaurus 
cetoides

fishes and sharks 
ranging up to 
approximately 50 cm 
in length

Late 
Eocene

Egypt Swift and 
Barnes 
(1996)

Durudon atrox fish Late 
Eocene

Egypt Uhen 
(2004)

Cynthiacetus 
peruvianus

head of a large 
scombrid 
teleost fish aff. 
Scombramphodon 
(c. 1.5 m long) in 
anterior of  thoracic 
region

Late 
Eocene

Peru Martínez-
Cáceres et 
al. (2017)

hypothesized 
that head 
remained caught 
in the throat of 
the predator in 
the process of 
swallowing, 
which may have 
caused its death 
by suffocation
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Cenozoic marine consumulites
Higher level 
taxon

Taxon Contents Age Location References Notes

Odontoceti Messapicetus 
gregarius

clupeiform Sardinops 
sp. cf. S. sagax 

Late 
Miocene

Peru Lambert et 
al. (2015); 
Bosio et al. 
(2021)

aggregate 
between the 
posterior
left ribs suggests 
it derives 
from cetacean 
forestomach

Mysticeti undescribed clupeiform Sardinops 
bones and scales, 
discrete small mass 
between ribs

Late 
Miocene

Peru Collareta et 
al. (2015)

first direct 
evidence of 
piscivory in 
an ancient 
edentulous 
mysticete 

Gaviiformes ?Colymboides 
metzleri

dense package of 
remains of small 
fishes (diameter of 
vertebrae from 0.4–
1.0 mm) represents 
the stomach contents

Early 
Oligocene

Germany Mayr 
(2004)
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APPENDIX B

GLOSSARY OF TERMS
Accretionary latrinite: Latrinite that results from accumulation 
due to physical, rather than biological, processes (Hunt and 
Lucas, 2012a). 
Accretionary purgolite: Purgolite that results from 
accumulation due to physical, rather than biological, processes 
(Hunt and Lucas, 2012a).
Amphipolar: Spiral coprolite that preserves coils that extend 
for the majority of the length of the coprolite (>75%) in lateral 
view (Neumayer, 1904; Hunt and Lucas, 2012b; Figs. B.1-2). 
Anisopolar: Non-spiral coprolite with terminations of different 
shapes (Thulborn, 1991) (Fig. B.3).
Aspirationalite: Consumulites that preserve prey in the oral 
cavity, with a significant portion extending exteriorly (this 
paper). 
Anterior coil: The anterior end of a spiral coprolite consisting 
of a single, antero-posteriorly elongate coil (Hunt and Lucas, 
2012b; Fig. B.1).
Bromalite: All trace fossils that represent food items that 
have entered the oral cavity and/or gastrointestinal tract of an 
animal and have been expelled (either anteriorly or posteriorly 
and either pre- or post-mortem) from, or retained within, them 
(Hunt, 1992).
Chiropteraguanolite: Guanolite produced by bats (Hunt and 
Lucas, 2012a). 
Coil: The external expression of the spiral, conular elements of 
a spiral coprolite (Hunt and Lucas, 2012b; Fig. B.1). 
Cololite: Consumulite preserved in the gastrointestinal tract 
posterior to the stomach (sensu Hunt and Lucas, 2012a). 
Consumulite: All fossilized digested food material preserved 
within the body cavity (Hunt and Lucas, 2012a). 
Coprolite: Fossil fecal material that has been ejected from the 
posterior end of the gastrointestinal tract (Buckland, 1829; Hunt 
and Lucas, 2012a). 
Cropalite: Consumulite preserved contents in the crop (this 
paper).
Cumulite: Accumulation of organic or inorganic material 
concentrated by an organism (Hunt and Lucas, 2012a). 
Demalite: Skeletal material preserved within the body cavity 

of a vertebrate or invertebrate animal that does not pertain to 
it (could be consumulite, gignolite, artifact or not discernable) 
(Hunt and Lucas, 2012a). 
Dentalite: Traces produced on a substrate by the teeth or oral 
cavity of a vertebrate or invertebrate (Hunt et al., 2018).
Digestichnia: Ethological class that comprises all trace fossils 
(and their recent counterparts) originating from the digestive 
process of animals, including coprolites, regurgitalites and 
gastroliths (Vallon, 2012).
Digestilite: Fossil specimens that preserve evidence of digestion 
(this paper).
Dislocational evisceralite: Evisceralite in which a portion of 
the gastrointestinal tract is physically removed from a carcass 
(this paper).
Esophogalite: Consumulite preserved in the gastrointestinal 
tract anterior to the stomach (Hunt and Lucas, 2012a). 
Emetolite: Regurgitalite from animal that habitually egests 
pellets (Myrhvold, 2011).
Enterospira: Cololite preserved in a spiral valve (sensu Hunt 
and Lucas, 2012a). 
Ethological latrinite: Latrinite that results from behavior of an 
organism (Hunt and Lucas, 2012a). 
Ethological purgolite: Purgolite that results from behavior of 
an organism (Hunt and Lucas, 2012a).
Evisceralite: Cololite that is a preserved segment of infilled 
fossilized intestines preserved independent of, or exterior to, a 
carcass (Hunt and Lucas, 2012a). 
Excorporeal pelletite: Pelletite preserved outside body cavity, 
coprolite (Hunt and Lucas, 2012a). 
Gastrolith: Sand and/or gravel swallowed by an animal and 
retained in the digestive tract (this paper).
Gastrolite: Fossilized wholly or partially digested food material 
preserved in the stomach (Northwood, 2005).
Gignolite: Trace and body fossils related to reproduction (Hunt 
and Lucas, 2012a). 
Guanolite: Fossil guano deposit (Hunt and Lucas, 2012a). 
Heteropolar: Spiral coprolite with the coils concentrated at one 
end in lateral view (Neumayer (1904; Figs. B.1-2).
Incorporeal pelletite: Pelletite preserved within the body cavity 
(Hunt and Lucas, 2012a). 
Intestinelite: Cololite preserved within the body cavity (Hunt 
and Lucas, 2012a). 

FIGURE B.1. Descriptive terminology of spiral coprolites. AC is 
anterior coil, C is coil, L is lip, PS is posterior spire (from Hunt 
and Lucas, 2012b, fig. 3).

FIGURE B.2. Principal morphotypes of spiral coprolites: 
Macrospiral heteropolar (A), microspiral heteropolar (B-D) and 
amphipolar coprolites (E). A, Liassocopros. B, Saurocopros. C, 
Malericopros. D, Heteropolacopros. E, Hyronocopros. Not to 
scale (adapted from Hunt et al., 2007, fig. 6).



216
Isopolar: Non-spiral coprolite with terminations of the same 
shape (Thulborn, 1991). 
Latrinite: An accumulation of coprolites (Hunt and Lucas, 
2012a). 
Lip: An exposed edge of a flap on the anterior coil of a 
heteropolar coprolite (Jain, 1983; Fig. B.1). 
Macrospiral: Heteropolar coprolite in which the posterior spire 
constitutes 50%-75% the length of the coprolite in lateral view 
(Hunt and Lucas, 2012b; Fig. B.2).
Microspiral: Heteropolar coprolite in which the posterior spire 
constitutes less than 50% of the length of the coprolite in lateral 
view (Hunt and Lucas, 2012b; Fig. B.2).
Micturalite: Trace fossil produced by interaction between 
liquid urine and substrate (Hunt and Lucas, 2012a). 
Mololite: From the Latin molo (to grind), for wear features on 
fossil teeth (this paper).
Mucro: Anterior end of an anisopolar coprolite that is tapered to 
a point (Thulborn, 1991; Fig. B.3). 
Neotomalite: Fossil packrat midden (Hunt and Lucas, 2012a). 
Nest: Structure made by, or the place chosen by, an animal for 
spawning, breeding and/or laying eggs and sheltering young 
(Lucas and Hunt, 2006).
Oralite: Consumulite preserved wholly or partially within the 
oral cavity (Hunt and Lucas, 2012a). 
Ornithoguanolite: Guanolite produced by birds (Hunt and 
Lucas, 2012a). 
Pabulite: Fossilized food that never entered the digestive tract 
(Klug et al., 2021a).
Paleomidden: Fossilized mammalian midden (Hunt and Lucas, 
2012a). 
Pelletite: Fossil fecal pellets preserved inside (incorporeal 
pelletite) or outside (excorporeal pelletite) the body cavity (Hunt 
and Lucas, 2012a). 
Pinnipedaguanolite: Guanolite produced by pinnipeds (Hunt 
and Lucas, 2012a).
Posterior spire: The posterior segment of heteropolar coprolites 
that consists of a number of closely spaced coils (Hunt and 
Lucas, 2012b: Fig. B.1).
Postilite: Fossil site used repeatedly by an organism for 
defecation or urination to mark territory (Hunt and Lucas, 
2012a). 
Preservational evisceralite: Evisceralite resulting from 
preferential fossilization of the gastrointestinal tract (this paper). 
Proventrilite: Consumulite preserved in proventriculus (this 
paper).
Regurgitalite: Trace fossil that includes all manipulated or 
digested/partially digested food material egested via the oral 
cavity (Hunt, 1992).
Saccatalite: Fossil accumulation of dried liquid urine (Hunt and 
Lucas, 2012a). 
Scroll: Spiral coprolite with the structure of a rolled sheet of 
paper that consists essentially of a single coil (Hunt and Lucas, 
2012b; Fig. B.1).
Segments: Discrete, longitudinal elements of a non-spiral 
coprolite (Hunt et al., 2012b; Fig. B.3).
Urolite: Fossil nonliquid urinary secretions (sensu Hunt and 
Lucas, 2012a). 

FIGURE B.3. Descriptive terminology of non-spiral coprolites 
(from Hunt and Lucas, 2012b, fig. 5).
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