RADIATION PROTECTION IN JAPAN

Naoki Matsuda, Professor Department of Radiation Biology and Protection Atomic Bomb Disease Institute, Nagasaki University

Taipei VGH 2017.4.15

Topics

About us

- System of Radiation Safety Regulation
- After the Fukushima
- Emergency responses / radiation education

ABOUT US

The Atomic Bomb Disease Institute

- Established in 1962
- 4 units and 1 center
 - Radiation Risk Control Unit

- Genomic Function Analysis Unit
- Atomic Bomb Disease and Hibakusha Medicine Unit
- Center for Promotion of Collaborative Research on Radiation and Environmental Health Effects

Aim

放射線生物・防護学分野

Department of Radiation Biology and Protection

研究目的

放射線生物学を核に

The goal of our research is to determine the radiation effect on human body, to develop methodology for radiation protection, and thereby, to establish effective radiation risk control.

その応用分野として**放射線防護学**を推進し

実践的領域として放射線リスク制御学の確立を目指す

Specialty

放射線生物・防護学分野

Department of Radiation Biology and Protection

専門性

- - 放射線生物学
 - Radiation Biology
 - 放射線防護学
 - Radiation Protection
 - 分子細胞生物学
 - Molecular Cell Biology
 - 核医学
 - Nuclear Medicine
 - 規制科学
 - Regulatory Science
 - リスクコミュニケーション 分子イメージング
 - Risk Communication

- サイエンス Science テクノロジー Technology
 - 放射線照射
 - Irradiation
 - 放射線測定
 - Measurement
 - 核種分析
 - Radionuclide analysis
 - 生物影響解析
 - Biological effect
 - トレーサー利用
 - Tracer use of radioisotopes
 - - Molecular imaging

Mission

放射線生物・防護学分野

Department of Radiation Biology and Protection

研究課題

- 放射線生物学 Radiation Biology
 - 放射線によって起こるDNA損傷に対する細胞・分子応答
 - Cellular and molecular responses to DNA damage
 - 放射線によって起こる染色体再構成の生成・生成抑制機構
 - Molecular mechanisms of chromosome rearrangement

■ 放射線防護学 Radiation Protection

- PET/SPECTによる内部被ばく影響解析
 - Analysis of internal exposure by PET/SPECT
- 外部、内部被ばく線量評価
 - Dose evaluation of external and internal exposure
- 放射線安全管理学 Radiation Safety Management
 - 緊急モニタリングプラットフォーム構築
 - Establishment of emergency monitoring platform
 - 放射線教育パッケージの開発
 - Radiation education package

Chinnavilai in Manavalakurichi Town Panchayath, Kanyakumari District, Tamilnadu, India

Chinnavilai in Manavalakurichi Town Panchayath, Kanyakumari District, Tamilnadu, India

Chinnavilai in Manavalakurichi Town Panchayath, Kanyakumari District, Tamilnadu, India

2011/3/15 17:34 福島医大→福島市街移動車中

12.48µSv/h (109.3mSv/y)

2011/3/15 17:59 福島医大→福島市街移動車中

16.38µSv/h (143.5mSv/y)

2011/3/15 18:13 福島自治会館4F 1.58µSv/h (13.8mSv/y)

2011/3/16 15:56 福島医大除染室前 **5,470cpm**

2011/3/16 15:56 福島医大除染室前 8.34µSv/h (73.1mSv/y)

2011/3/16 15:56 福島医大除染室前 19,790cpm

2011/3/16 15:56 福島医大除染室前

43,900cpm

Internal radioactivity of evacuees and first respondors

			N d	Number of detections		Deteo	Detection rate (%)			Internal radioactivity (Bq/body)				
Group Period in Fukushima	n	131	134 Co	137.00	131	13400	137 Co	¹³¹		¹³⁴ Cs		¹³⁷ Cs		
			'	Cs	Cs	· •	US	03	Mean	Max.	Mean	Max.	Mean	Max.
1	3/11- 3/18	45	21	24*	22*	46.7	53.3	48.9	574.7	3940.0	494.2	4978.0	666.5	4978.0
2	3/14 - 3/22	66	11	11	10	16.7	16.7	15.2	185.4	605.0	85.5	319.0	89.9	319.0
3	3/18 - 3/31	31	14	12	10	45.2	38.7	32.3	85.9	142.0	63.2	111.0	64.9	111.0
4	3/22 - 4/10	31	9	20	14	29.0	64.5	45.2	140.5	318.0	94.9	544.0	101.9	365.0
	Total	173	55	67	56	31.8	38.7	32.4	419.4		456.8		539.9	

Table 1. Detection rate and internal radioactivity

* Slight difference in the numbers of subjects with detected radioactivity is due to the poor resolution between the lowenergy ¹³⁴Cs and ¹³⁷Cs peaks.

Matsuda et al., Radiat Res, 2013.

Distribution of thyroid eqiuivalent dose by ¹³¹I

Morita et al., Radiat Res, 2013.

Detection of internal ¹³¹I, ¹³⁴Cs and ¹³⁷Cs in persons who were dispatched to Fukushima from April 2011 to March 2012 by WBC examination

	Manth of	Number	Average days	13	31	134	Cs	¹³⁷ Cs		
Year	dispatch of of of stay subjects (range)	of stay (range)	Number of detected	Detection rate (%)	Number of detected	Detection rate (%)	Number of detected	Detection rate (%)		
2011	Apr	71	12.4 (1-101)	4	5.6	28	39.4	17	23.9	
	May	71	13.0 (3-91)	0	0	5	7.0	5	7.0	
	Jun	64	9.8 (2-32)	0	0	4	6.3	0	0	
	Jul	42	11.4 (7-33)	0	0	0	0	0	0	
	Aug	41	25.2 (5-272)	0	0	8	19.5	3	7.3	
	Sep	20	18.7 (14-62)	0	0	1	5.0	0	0	
	Oct	6	45.5 (13-154)	0	0	0	0	0	0	
	Nov	14	39.9 (13-64)	0	0	1	7.1	1	7.1	
	Dec	4	13.0 (13-13)	0	0	0	0	0	0	
2012	Jan	21	37.8 (2-89)	0	0	0	0	0	0	
	Feb	11	25.7 (12-60)	0	0	0	0	0	0	
	Mar	7	15.7 (11-29)	0	0	0	0	0	0	
	Total	372	22.3 (1-272)	4	1.1	47	12.6	26	7.0	

Matsuda et al., Env Occup Sci, 2013

SYSTEM OF RADIATION SAFETY REGULATION

International framework of radiological protection

Atomic Energy Basic Law (1955)

Use atomic energy only for peaceful aim through democratic administration, autonomous accomplishment and results disclosure in the public.

Article 12

- Regulation concerning Nuclear Fuel Materials
- Act on the Regulation of Nuclear Source Material, Nuclear Fuel Material and Reactors (1957)
 - Enforces the necessary regulations on manufacture, processing, storage, reprocessing and disposal activities of nuclear source materials, fuel materials and nuclear reactors.

Article 20

- Protective Measures of Radiation Hazards
- Act on Prevention of Radiation hazards due to Radioisotopes, etc. (1957)
 - Regulates the use, sale, lease, disposal and other handling of radioisotopes, the use of radiation generating equipment, and the disposal and other handling of the articles contaminated by radioisotopes to prevent radiation hazards.

Radiation controlled area

- At any facility handling radiation or radioisotopes, any area where there is a possibility that the level of radiation or the concentration of radioisotopes might rise above a certain level is designated a controlled area, and access to that area is restricted.
- Standards for radiation levels and radioisotopes concentrations within controlled areas are also prescribed.
- When unsealed radioisotopes are used, they must be used in a "working room".

Effective dose limit at each site

Site Boundary : 0.25 mSy / 3 months	
controlled Area Boundary : 1.3 mSv / 3 months	
Region of Regular Entry : 1 mSv / week	
Working Area	

Radiation workers

Legal definition

- workers who enter the controlled area for use of radioisotopes and radiation generator
- Obligations
 - education and training
 - medical examination
 - personal monitoring

Radiation dose limits for occupational exposure

Effective		men	100 mSv/5years not exceed 50 mSv in any single year		
	radiation worker	women	5 mSv/3month		
dose		women in pregnancy	1mSv for internal exposure until delivery		
	emergenc	y worker	250 mSv		
	temporal visitor		100 μSv		
	lens of the	eye	150 mSv/year		
Equivalent	skin		500 mSv/year		
dose	abdomens of pregnant women		2 mSv until delivery		

Annual effective dose of radiation workers in radiation facilities

under the Low concerning Prevention of Radiation hazards due to Radioisotopes, etc.

(external exposure. April, 2015 - March, 2016)

Occupation	Collective dose (man mSv)	Average dose (mSv)	ND	0.10- 1.00	1.01- 5.00	5.01- 10.00	10.01- 20.00	20.01- 50.00	over 50.00	Total
Medical	130.596.65	0.38	246,524 (71.75)	64,786 (18.86)	27,246 (7.93)	3,635 (1.06)	1,157 (0.34)	233 (0.07)	14 (0.00)	343,595 (100.00)
Education	1,691.08	0.03	64,666 (96.58)	1,857 (2.77)	389 (0.58)	34 (0.05)	6 (0.01)	2 (0.00)	0 (0.00)	66,953 (100.00)
Non- destructive exam	1,379.86	0.46	2,486 (66.15)	837 (22.27)	362 (9.63)	60 (1.60)	9 (0.24)	4 (0.11)	0 (0.00)	3,758 (100.00)
Industry	4,094.67	0.06	63,653 (94.04)	2,956 (4.37)	953 (1.41)	101 (0.15)	19 (0.01)	7 (0.01)	0 (0.00)	67,689 (100.00)
Total (incl. others)	139,169.55	0.27	413,231 (79.55)	71,712 (13.81)	29,218 (5.62)	3,844 (0.74)	1,196 (0.23)	259 (0.05)	14 (0.00)	519,460 (100.00)

Disclosed by the Council on Personal Dosimetry Services in Japan, 2017

Annual effective dose of radiation workers in nuclear power plants

under the Low for the Regulation of Nuclear Source Material, Nuclear Fuel Material and Reactors

(total exposure. April, 2014 - March, 2015)

age range	Collective dose (man mSv)	Average dose (mSv)	1.00 and under	1.01 - 5.00	5.01 - 10.00	10.01 - 20.00	20.01 - 30.00	30.01 - 40.00	over 40.00	Total
under 30	14,370.4	1.08	11,271 (85.03)	1,131 (8.53)	385 (2.90)	375 (2.83)	58 (0.44)	35 (0.26)	0 (0.00)	13,255 (100.00)
30 - 39	22,144.4	1.33	13,606 (81.97)	1,643 (9.90)	664 (4.00)	525 (3.16)	101 (0.61)	60 (0.36)	0 (0.00)	16,599 (100.00)
40 - 49	32,856.7	1.63	16,012 (79.26)	2,191 (10.85)	906 (4.48)	793 (3.93)	210 (1.04)	89 (0.44)	0 (0.00)	20,201 (100.00)
50 - 59	29,776.7	1.74	13,440 (78.46)	1,899 (11.09)	789 (4.61)	712 (4.16)	187 (1.09)	102 (0.60)	0 (0.00)	17,129 (100.00)
60 and over	13,375.9	1.79	5,852 (78.45)	860 (11.53)	308 (4.13)	282 (3.78)	84 (1.13)	74 (0.99)	0 (0.00)	7,460 (100.00)
total	112,494.0	1.64	60,181 (80.62)	7,724 (10.35)	3,052 (4.09)	2,687 (3.60)	640 (0.86)	360 (0.48)	0	74,644

Effective dose in emergency work

(Total exposure. April, 2010 - March, 2015)

age range	Collective dose (man mSv)	Average dose (mSv)	1.00 and under	1.01 - 10.00	10.01 - 50.00	50.01 - 100.00	100.01 - 150.00	150.01 - 250.00	over 250	Total
under 30	20,676.3	18.7	170 (15.4)	429 (38.9)	375 (34.0)	116 (10.5)	8 (0.7)	3 (0.3)	2 (0.2)	1,103 (100.00)
30 - 39	46,770.0	14.8	621 (19.7)	1,241 (39.3)	1,068 (33.9)	193 (6.1)	26 (0.8)	4 (0.1)	1 (0.0)	3,154 (100.00)
40 - 49	70,653.9	12.5	1,321 (23.5)	2,354 (41.8)	1,671 (29.7)	236 (4.2)	39 (0.7)	8 (0.1)	2 (0.0)	5,631 (100.00)
50 - 59	71,912.7	13.1	1,440 (26.2)	2.094 (38.1)	1,658 (30.2)	238 (4.3)	52 (0.9)	14 (0.3)	1 (0.0)	5,497 (100.00)
60 and over	38,390.4	9.8	1,188 (30.5)	1,551 (39.8)	1,065 (27.3)	81 (2.1)	12 (0.3)	2 (0.1)	0 (0.0)	3,899 (100.00)
total	247,403.2	12.8	4,740 (24.6)	7,669 (39.8)	5,837 (30.3)	864 (4.5)	137 (0.7)	31 (0.2)	6 (0.0)	19,284

Effective dose in emergency work

age range	Apr 2010 – Mar 2011	Apr 2011 – Mar 2012	Apr 2012 – Mar 2013	Apr 2013 – Mar 2014	Apr 2014 – Mar 2015	Apr 2015 – Mar 2016
under 50	3,569	17,384	651	795	758	673
	(89.90)	(99.00)	(99.85)	(100.00)	(100.0)	(100.0)
50 - 100	294	166	1	0	0	0
	(7.41)	(0.95)	(0.15)	(0.00)	(0.00)	(0.00)
404 050	101	1	0	0	0	0
101 - 250	(2.50)	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)
Over 250	6	0	0	0	0	0
	(0.16)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
total	3,970	17,551	652	795	758	673
	(100.00)	(100.00)	(100.00)	(100.00)	(100.0)	(100.0)

AFTER THE FUKUSHIMA

Act on the Regulation of Nuclear Source Material, Nuclear Fuel Material and Reactors

Radioactivity

?

I-131 Cs-134 Cs-137....

Act on Prevention of Radiation hazards due to Radioisotopes, etc.

Nuclear Power Plant

General environment

Radiation Facility

Act on the Regulation of Nuclear Source Material, Nuclear Fuel Material and Reactors

Act on Special

Measures for the

Reconstruction and

Revitalization of Fukushima

Radioactivity I-131 Cs-134 Cs-137.... Act on Prevention of Radiation hazards due to Radioisotopes, etc.

Nuclear Power Plant

General environment

Radiation Facility

Effective dose of decontamination workers (Oct 2015 - Sep 2016)

Period Dose(mSv)	October- December 2015	January– March 2016	April−June 2016	July-September 2016
Dose ≤1	29,046	23,339	24,142	24,250
1 <dose td="" ≤2<=""><td>166</td><td>83</td><td>43</td><td>135</td></dose>	166	83	43	135
2 <dose td="" ≤3<=""><td>5</td><td>2</td><td>11</td><td>6</td></dose>	5	2	11	6
3 <dose td="" ≤4<=""><td>0</td><td>0</td><td>0</td><td>0</td></dose>	0	0	0	0
4 <dose td="" ≤5<=""><td>0</td><td>0</td><td>0</td><td>0</td></dose>	0	0	0	0
5 <dose td="" ≤7.5<=""><td>0</td><td>0</td><td>0</td><td>0</td></dose>	0	0	0	0
7.5 <dose td="" ≤10<=""><td>0</td><td>0</td><td>0</td><td>0</td></dose>	0	0	0	0
10 <dose td="" ≤15<=""><td>0</td><td>0</td><td>0</td><td>0</td></dose>	0	0	0	0
15 <dose td="" ≤20<=""><td>0</td><td>0</td><td>0</td><td>0</td></dose>	0	0	0	0
20 <dose< td=""><td>0</td><td>0</td><td>0</td><td>0</td></dose<>	0	0	0	0
Total number of workers	29,217	23,424	24,196	24,391
Mean dose (mSv)	0.2	0.2	0.2	0.2
Max dose (mSv)	2.9	2.1	2.5	2.5
Number of projects	104	95	79	89

Effective dose of decontamination workers

(Total exposure. April, 2015 - March, 2016)

Dose range (mSv)	lidate Kawamata Minamisoma Namie	Katsurao Tamura Futaba Okuma	Kawauchi Tomioka Naraha	Others	Total
Under 1.0	27,743	5,094	9,275	439	42,551
1.1 - 2.0	3,918	567	2,097	0	6,582
2.1 - 3.0	153	159	255	0	567
3.1 - 4.0	3	49	4	0	56
4.1 - 5.0	0	17	0	0	17
5.0 - 7.5	0	20	0	0	20
7.6 - 10.0	0	1	0	0	1
Over 10.0	0	0	0	0	0
Total number	31,817	5,907	11,631	439	49,794
Average dose	0.5	0.4	0.6	0.1	0.5

Regulation Promotion Mixture of promotion and regulation of NPP of radiation Ministry of Ministry of Education, **Cabinet Office** Economy, Culture, Sports, Trade and Industry Science and **Technology Atomic Energy** Commission of Japan Agency for Natural Safety regulation for Resources research reactors, etc. Overall coordination and Energy of measures to protect Safeguards nuclear materials, etc. · Radiation monitoring and Nuclear and SPEEDI **Industrial Safety** (System for Prediction of **Nuclear Safety** Agency Environmental Emergency Commission of Japan Dose Information) Safety regulations, Double check, etc. of etc. of power Safety regulation for the safety examinations generating nuclear radioactive isotopes of nuclear reactors reactors Regulation by Double Check Regulation Research institutes, Electric utilities, etc. universities, etc.

The Fukushima Daiichi Accident

Report by the Director General

The regulation of nuclear safety in Japan at the time of the accident was performed by a number of organizations with different roles and responsibilities and complex inter-relationships.

It was not fully clear which organizations had the responsibility and authority to issue binding instructions on how to respond to safety issues without delay. (IAEA, 2015)

Separation of promotion and regulation

COMMENTS

There are no legal regulations for the consideration of beyond the design basis, as Japanese plants are considered to be adequately safe as ensured by preventive measures.

SUGGESTIONS

NISA (former Nuclear and Industrial Safety Agency) should continue to develop the systematic approach to investigate the consideration beyond design basis accidents, and the complementary use of probabilistic safety management (PSA) and severe accident management in the assessment process for risk reduction purposes.

The Fukushima Daiichi Accident

Report by the Director General

Prior to the accident, there was not sufficient consideration of low probability, high consequence external events which remained undetected.

This was in part because of the basic assumption in Japan, reinforced over many decades, that the robustness of the technical design of the nuclear plants would provide sufficient protection against postulated risks.

In some cases, regulations were not updated or complex emergency drills were not carried out because of a concern that the public might get the impression that NPPs were not safe, in contrast to the basic assumption.

The Fukushima Daiichi Accident

Report by the Director General

In order to ensure effective regulatory oversight of the safety of nuclear installations, it is essential that the regulatory body is independent and possesses legal authority, technical competence and a strong safety culture.

In order to promote and strengthen safety culture, individuals and organizations need to continuously challenge or reexamine the prevailing assumptions about nuclear safety and the implications of decisions and actions that could affect nuclear safety.

IRRS in 2016

IAEA-NS-IRRS-2016 ORIGINAL: English

INTEGRATED REGULATORY REVIEW SERVICE (IRRS) MISSION

TO JAPAN

Tokyo, Japan 10-22 January 2016

DEPARTMENT OF NUCLEAR SAFETY AND SECURITY

2 Good Practices

- 13 Suggestions
- 13 Recommendations

IAEA IRRS 2016

NRA and other authorities having jurisdiction for radiation sources should develop a single set of requirements and guidance for emergency preparedness response in relation to radiation sources including requirements related to emergency plans, arrangements for timely notification and response, and quality assurance program using graded approach.

NRA should consider expediting improvements in the arrangements to asses oversee and enforce nuclear safety and security in an integrated manner

Amendment of regulations

Act on Prevention of Radiation hazards due to Radioisotopes, etc.

- Based on recommendations from IAEA Integrated Regulatory Review Service, 2017
- NRA study team on regulation of radioisotopes (Jun 2016-Mar 2017)
- Cleared by the Diet on April 7, 2017
- Major points
 - Safety
 - IAEA GS-G-2.1
 - 1Gy/h
 - Security
 - IAEA D-value
 - Quality assurance and safety culture

EMERGENCY RESPONSES / RADIATION EDUCATION

Nuclear power plants in Japan

Nuclear emergency preparedness

- 16 NPP siting prefectures
- 2 adjacent prefectures (within 10km)
- 6 adjacent prefectures (UPZ, within 30km)

 \mathcal{A}

Research and Education Program for Organized Emergency Monitoring Platform by Radiation Facilities

SUPPORTED BY THE HUMAN RESOURCE DEVELOPMENT PROJECT FOR NUCLEAR REGULATION BY NRA

Educational radiation facilities

Safety management of Radiological environment Radiation sources Radiation workers

Radiation monitoring Communication and education

Exchange of information on emergency monitoring platform

Graded Development of Human Resources

Program-engaged Universities

Medical staffs' correct knowledge on radiation is an important aspect in radiation emergency 提言

医学教育における必修化をはじめとする 放射線の健康リスク科学教育の充実

CE COUNCIL OF THE REAL

Policy recommendation to the government

Improvement of radiation health risk education in curriculum for medicalrelated students

平成26年(2014年)9月4日

日本学術会議

臨床医学委員会

放射線防護・リスクマネジメント分科会

September 4, 2014

The Science Council of Japan Committee of Clinical Medicine Subcommittee of radiation protection and risk management

Educate effect, protection and risk of radiation to medical students

Be able to explain radiation risk to the residents as a medical doctor

Subject on radiation health effect and protection should be required to all students

Open to co-medical students

Arrange educational base through intercollege collaborations

RANGE OF RADIATION HEALTH RISK SCIENCE

Health effect

- Biological effect
- Radiation protection and management

Risk communications

- Mutual understanding and agreement between
 - doctor and patients
 - doctor and victims of nuclear disaster
 - government and victims of nuclear disaster

Nuclear disaster medicine

- Radiation emergency medicine covering mental health
- Examples of nuclear/radiation accidents

PROBLEM-SOLVING DEVELOPMENT PROGRAM FOR HIGH-LEVEL MEDICAL PROFESSIONALS (MEXT)

Development of Professionals on Radiation Health Risk Science

Collaboration of

- Nagasaki University
- Hiroshima University
- Fukushima Medical University

Development of Professionals on Radiation Disaster

Tsukuba University

Development of Professionals on Radiation Health Risk Science

By the collaboration of three Universities who have suffered from radiation disaster and possess the educational resources in radiation health risk science, this program provides stepwise, systematic and realistic education to develop medical professionals for promotion of global health.

Undergraduate	Subject on Radiation Health Risk in medical school - Regular course and Intensive course
Graduate	Nagasaki-Fukushima Joint Course on Disaster and Radiation Medical Sciences Hiroshima Leading Program for Renaissance from Radiation Disaster
Research Professionals	Hiroshima-Nagasaki-Fukushima Research Base for Radiation Accidents and Medical Science
Radiation Disaster Professionals	Centers for Advanced Radiation Emergency Medicine and Radiation Disaster Medicine

Contribution to international organizations Preparedness to global radiation risk due to increasing energy demand

Radiation Protection in Japan Naoki Matsuda

Nagasaki 2017