Solder Paste Properties and Test Methods | CATEGORY/ PASTE PROPERTY | IMPACT ON SMT PROCESS | HOW TO TEST | TEST CRITERIA | |--|--|---|---| | Print Characteristics | | | | | Transfer Efficiency &
Print Variation | Insufficients, opens, bridges,
solder balls, HIP, frequent
wiping | Print solder paste and measure deposits with automated SPI Analyze: Volumes of small deposits Areas Heights of rectangular deposits Positional offsets | Cpks using standard +/- 50% spec limits or CVs (Avg/StDev) Volumes: higher is usually better Areas: higher is usually better Heights: < stencil thickness: higher is usually better stencil thickness, lower is often better | | Wipe Frequency | Solder defects, excessive use
of consumables, line
downtime during wipes | Analyze print statistics on 10 print test Print 8 boards, wipe Compare Cpks between prints 8 and 9 | Cpk/CV pre-wipe vs. Cpk/CV
post-wipe in both print
directions | | Abandon time | Poor quality first print Requirement to knead paste
before returning to
production and clean/dry/
reuse PCB | Determine typical abandon time to test, usually 2-4 hours Measure deposits with SPI | Cpk/CV pre-abandon vs. Cpk/CV on first print post-abandon Number of prints needed to return to steady state process | | Print Definition | Solder Defects, frequent wiping | Compare to visual scale Often used when SPI is not available | Subjective observation: visual
scale grades deposit
appearance from 1-5 | | Stencil & Assembly Line Behavior | | | | |----------------------------------|--|--|--| | Cold Slump | Bridges, random solder balls | IPC or alternate slump patterns1) Print, place in ambient environment for 20 minutes2) Read pattern again visually or with SPI | Visual: Smallest gap to bridge Quantitative: Ratio of deposit
area SPI readings before and
after 20 minute wait | | Hot Slump | Bridges, HIP, Insufficents on
PTH, solder buildup in oven
from PTH drips | IPC or alternate slump patterns 1) Print, place in oven at 182°C for 20 minutes 2) Read pattern again visually or with SPI | Visual: Smallest gap to bridge Quantitative: Ratio of deposit
area SPI readings before and
after 20 minute wait | | Stencil Life | Solder defects, frequent
wiping Poor coalescence, solder
balling, bridges | Cold slump after extensive print or
knead strokes and/or environmental
conditioning Print quality before and after
extensive knead/environmental
conditioning | Visual: Smallest gap to bridge Quantitative: Ratio of deposit area SPI readings before and after 20 minute wait Cpk pre- and post-knead or exposure Reflow graping or balling | | Tack | Positional errors on
components, tombstones,
solder balls, missing or
transient components | Hold printed PCB for a period of time before placing and reflowing | Quantitative: AOI or End of Line
number and type of defects | | Reflow Properties | | | | |--|---|--|---| | Wetting | Insufficients, opens,
tombstones, solder balls,
skews, non-wets, HiP,
perceived voiding | Print test patterns with different coverage on substrate and examine wetting on 10x10 mm pad Assemble PCB with known difficult-towet components and inspect solder joints | Visual inspection: Wetting to
PCB pads, spatter, wetting to
components Rank order in performance | | Spread | Insufficients, opens, solder balls | Print solder paste on exposed traces with increasing gaps between the paste deposits and observe the distance of the gaps that bridge closed in reflow | Largest gap to flow closed on each trace | | Coalescence | Solder balls, graping, poor pull
back on over prints | Print deposits of varying sizes onto small round pads on FR-4 substrate and reflow | Visual: Inspect for coalescence
and rate as Preferred,
Acceptable or Unacceptable as
IPC standards apply to ceramic
substrate | | Random Solder Balls | May require manual removal | Print, populate and reflow PCB Inspect for random solder balls, or satellites, near overprinted pads, around the leads of fine pitch devices or in random locations on the PCB Check gold fingers, if applicable | Quantitative: the number of
balls larger than the smallest
gap between conductors on the
assembly, or, the assembler's or
customer's internal
specification | | Solder Beads or
Mid-Chip Solder Balls | May require manual removal | Print, place and reflow small chip components Inspect for solder beads visually or with X-ray | Quantitative: Number of balls
larger than the smallest gap
between conductors on the
assembly, or, the assembler's or
customer's internal
specification | | Voiding | Poor thermal heat sinking or
electrical gounding on BTC,
potentially weaker solder
joints | Print, place, reflow, X-ray Analyze for: Overall Void % Number of voids | Quantitative< 30 % or customer specificationLower is better | | | Expensive and risky rework | | Note: For any overall void %, more,
smaller voids are generally
preferable to fewer, larger voids | |---|---|--|---| | Head-in-Pillow (HIP) | Expensive rework, scrap or
warranty returns | Print, place and reflow BGAs Inspect with X-ray | Quantitative: Defect count | | Tombstones or Skews | Defect that requires reworkRisk of defect increases as package size decreases | Print, place and reflow small chip
components Inspect visually or with AOI | Quantitative: Defect count | | Joint Appearance | Inspection time and accuracy | Inspector-dependent based on
wetting angle, flux residue, shine,
other Can be highly subjective | Visual grade among inspectors
or rank order Quantitative: False fails at AOI if
applicable | | Flux Residue Appearance | Inspection time and accuracyCustomer perception | Inspector-dependent based on color,
clarity and consistency Can be highly subjective | Visual grade among inspectors
or rank order Quantitative: False fails at AOI if
applicable | | Testability | | | | | Residue Probe-ability
Brittle or Ductile | False Fails & Retests (\$) | Visual and tactile assessment Probe-ability testing if available | Rank order the assessmentsQuantitative if probe-ability testing | | Post-reflow pin probe window | Easy-to-probe residues can
become difficult to probe after a
certain period of time
False Fails and Retests (\$) | 1) Number of days in test window | Minimum set by assemblerRank order or pass/fail | | Test Fixture Maintenance | False Fails & Downtime for maintenance | Evaluation by Test Engineering & Operations | Quantitative: Number of points
probed between required
maintenance Subjective: technician
assessment | | Reliability | | | | |---|---|--|--| | Surface Insulation Resistance (SIR) | Post-SMT dendritic growthField failures and warranty returns | 1) 3 rd party verification in SIR chamber | Quantitative: MUST pass with
resistance > 10⁸ Ohms per J-
STD-004B | | Complete Removal Under Low-
Standoff Components | Dendritic growth, field failures Very important but often
difficult to achieve | Ion chromatography (IC) – quantitative, focused, conclusive test on cleanliness of the assembly under low standoff components | Quantitative: IC under low
standoff components. Various ionic species have
different allowable maximums | | Post-Assembly Materials
Compatibility | Improper flow or cure of
underfill, potting or conformal
coating materials Field failures and warranty
returns | Various inspection methods: acoustic,
X-ray, UV fluorescence or others
depending on the material Accelerated Life Testing (ALT) for high
reliability products | Complete flow, encapsulation
and cure No longer term interactions
between the materials Pass ALT | | Supplier Rating and Value Propositi | ion | | | | Supply Chain | Local distribution usually preferred Direct has potential to shut lines down for paste shortages or quality issues | Interview or site visit to review ordering and handling procedures | Minimum 2 lots on hand at all times | | Technical Support | Local distributor knowledge Access to suppliers' engineers | Invite supplier to support paste
evaluation Engage support personnel and
evaluate | If supplier does not support
evaluation, they will not
support production Level of knowledge of products
or processes on your horizon | | Shelf Life/Storage Conditions | Improper handling of
temperature-sensitive pastes
can cause a multitude of
defects | Review handling and storage procedures in documentation Ask if its ok if the paste gets warm and goes back into refrigeration | Minimum 2 weeks without
refrigeration, longer is better | | Similar fluxes in tin-lead and lead-
free pastes | Only applicable if running both | Ask solder paste providers | Satisfactory reflow on coolest
tin-lead profile and hottest
lead-free profile | | Compatibility with understencil | Only applicable if running wet | 1) Ask solvent provider if specific | Cleanliness and drying time | | wipe chemistry | wipe If not compatible, new solvent must be identified and specified | 2) | solder pastes are compatible
Ask paste supplier about solvent
compatibility | | | |------------------|---|----|---|---|--| | Reclaim services | Primarily necessary if wave soldering Can save money by bundling materials and services | 1) | Ask and evaluate | • | Financial incentive for better reclaim pricing is a plus but should not drive paste selection |