
MAT 6 Proofs Batu Yalçın November 14, 2023

1 Introduction

In this document, you will find the proofs to all lesson/worksheet problems.
The first section will be dedicated to Lecture Problems while the second will be on

Worksheet Problems.

2 Lecture Problems

2.1 Direct Proof

Problem 2.1.1. Prove that the product of two odd integers is odd.

Proof. Let u = 2u1 + 1, v = 2v1 + 1 be two odd integers. Then, uv = (2u1 + 1)(2v1 + 1) =
4u1v1 + 2u1 + 2v1 + 1 = 2(2u1v1 + u1 + v1) + 1 = 2m+ 1, which is odd. ■

2.2 Proof By Contrapositive

Problem 2.2.1. Prove that the product of two odd integers is odd.

Proof. Let 2m = uv be an even integer. Then, WLOG, u = 2k, v =
m

k
(or vice versa),

where k|m (k divides m) Hence, either u or v must be even. If the product being not odd
(¬q) implies u or v being even (¬p), then the two integers being odd (p) implies that the
product is odd (q).

2.3 Proof by Contradiction

Problem 2.3.1. Prove that the point on circle ω1 that is closest to the center of a different
circle ω2 lies on the line joining the centers of ω1 and ω2

Proof. Assume that the length of A′O2 for a point A not on the line O1O2 is less than AO2

for A ∈
←−→
O1O2

O1 O2

A′

A

Then, A′O2 < AO2. However, as A
′ is closer to O2’s x-coordinate than A, the triangle

△
O1AA

′

is an obscene triangle with ∠O1AA
′ > 90◦ Hence, A′O2 > AO2. Contradiction ⇒⇐.
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2.4 Proof By Bijection

Problem 2.4.1. A composition of an integer n is a set of positive integers a = (a1, ..., ak)
s.t.

k∑
i=1

ai = n

Prove that the number of compositions of n is 2n−1

Proof. We’ll use the stars & bars counting method. Assume that there is a ball for each 1
in n, equaling a total of n balls. For each composition, you start from in between the first
and the second ball either put a bar there or you don’t. The number of balls in between
the kth and k + 1th bars is equal to ak. Number of bars +1 determines the length of the
composition. For example, the diagram below shows a composition of 8, where the length
of the composition is 5 + 1 = 6 and the composition is a = (1, 2, 1, 1, 2, 1).

There are n−1 slots and two choices (no bar/bar); hence, the number of distinct compositions
is 2× 2× ...× 2 = 2n−1

2.5 Proof By Exhaustion

Problem 2.5.1. Find n ∈ Z+ s.t. m = n2 + n+ 3 is a perfect square.

Proof. See that n2 < m = n2 + n + 3 < (n + 1)2 = n2 + 2n + 1 for n ≥ 3. As no perfect
square exists in between two consecutive perfect squares, m can’t be a perfect square for
n > 2. Then, the only cases left are n = 1, 2. It is easy to see that n = 1 doesn’t yield a
perfect square for m while n = 2 gives m = 4 + 2 + 3 = 9 = 32. Thus, the only solution is
n = 2 ■.

2.6 Choosing Your Battles

The detailed proof outlines were given in the slides. Completing the steps are left as an
exercise to the reader.

2.7 Induction

Problem 2.7.1. Prove that:
n∑

k=0

2k = 2n+1 − 1

Proof. Let’s check the base case n = 0:

20 = 1 = 21 − 1
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Assume that the formula is true for n = N . Take n = N + 1.

N+1∑
k=0

2k = 2N+1 +
N∑
k=0

2k = 2N+1 + 2N+1 − 1 = 2N+2 − 1 ■

Problem 2.7.2. Prove that:

Fn =
(an − bn)√

5
, a = (1 +

√
5)/2, b = (1−

√
5)/2

where Fn is the nth Fibonacci number for n ≥ 1.

Proof. Let’s check the base case n = 1:

F1 = 1, F1 =
(a− b)√

5
=

√
5√
5
= 1

Assume that the formula is true for n = N . Take n = N + 1. There is no easy way to
relate FN and FN+1 by themselves. However, if we just add another assumption valid within
the induction frame, we can reach our answer. Assume that the formula is also true for
n = N − 1. Notice that a and b are the solutions to the quadratic equation x2 − x− 1 = 0.
Hence, a+ 1 = a2 and b+ 1 = b2. Then;

FN+1 = FN + FN−1 =
1√
5
(an−1(a+ 1)− bn−1(b+ 1)) =

an−1a2 − bn−1b2√
5

=
an+1 − bn+1

√
5

■

2.8 The Pigeonhole Principle

Problem 2.8.1. In a party, there are 6 people who either know or don’t know each other.
Prove that there is a group of three in which either no one knows another, or all know each
other.

Proof. Visualize the problem as a graph: Assume that there is no trio satisfying the condi-

Figure 1: Nodes are people, blue lines connect friends, red lines connect non-friends

tions. Then, take a person. There must be 5 edges with the person as a node. As there are
two color options and 5 edges, at least 3 edges must have the same color. WLOG, choose
this color as blue (friends). If the other nodes of the three edges have at least one blue edge
in between them, a trio of friendship is found. If they have none, then there must be a red
triangle corresponding a trio in which nobody knows each other. Contradiction, there must
be at least one trio satsifying at least one condition. ⇒⇐
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2.9 Extremal Principle

Problem 2.9.1. Prove that
√
p is irrational for a prime p

Proof. Assume otherwise. Then,
√
p =

a

b
, where

a

b
is in its lowest terms (a, b are coprime).

Thus, p =
a2

b2
. Then, p|a. Hence, p2|a2. Let a = pa1. Then, 1 =

pa2

b2
⇒ b2

a21
= p. By the

same argument, p|b ⇒ b = pb1. Hence,
a

b
=

a1
b1
; a1 < a, b1 < b However, we assumed that

a

b
was in its lowest terms. Contradiciton,

√
p is irrational ⇒⇐.

2.10 Invariance Principle

Consider the following board:

Figure 2: Initial State of the Board

You’re only allowed to act on rows, columns, and major/minor diagonals. In each step,
you can multiply each number by −1 in the row/column/diagonal you’ve chosen. Can you
make the board have all 1s?

Proof. The key observation is that you can only act on an even number of boxes on the
outermost non-corner squares (there are 8 of them) in each move. Thus, the sign of their
product never changes. Their initial product is 18 · (−1) = −1; hence, their product will
always be equal to −1. Then, there must exist at least one −1 after each move. The board
can not have all ones.
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3 Worksheet Problems

3.1 Warm Up: Direct Proofs + Modular Arithmetic

Problem 3.1.1. Prove that the product of two integers that have a remainder of 1 when
divided by 3 also has a remainder of 1.

Proof. Let m = 3m′ + 1, n = 3n′ + 1. Then mn = 9m′n′ + 3m′ + 3n′ + 1 = 3(3m′n′ +m′ +
n′) + 1 ■

Problem 3.1.2. Prove that the product of two integers that have a remainder of 1 and n−1
when divided by n has a remainder of n− 1.

Proof. Let a = na′+1, b = nb′+n− 1. Then, ab = (na′+1)(n(b′+1)− 1) = n2a′b′+n(b′+
1)− na′ − 1 = n(na′b′ + b′ − a′ + 1)− 1 ■

Problem 3.1.3. Prove that the remainder of the product of two integers when divided by n
is the product of the remainders of the two integers divided by n. Alternatively, if m = ab,
a ≡ a1 (mod n), b ≡ b1 (mod n); m ≡ a1b1 (mod n)

Proof. Let a = na′ + a1, b = nb′ + b1. Then, ab = n2a′b′ + nb′a1 + na′b1 + a1b1 = n(na′b′ +
b′a1 + a′b1) + a1b1 ■

3.2 What are Complex Numbers Doing Here? (Tiling)

Problem 3.2.1. A m× n chess board can be covered with 1× k tiles (with rotation). Prove
that either m or n is divisible by k (k|n or k|m).

Proof. Let ω = e2iπ/k. Assign ωx+y to the square (x, y) (starting from (0, 0)).

1 ω ... ωn−1

ω ω2 ... ωn

... ... ... ...

ωm−1 ωm ... ωm+n−1

k = 3

1 ω ω2 1

ω ω2 1 ω

ω2 1 ω ω2

1 ω ω2 1

See that each tile covers exactly one times each root of unity. Thus, summing up the numbers
each tile covers, we get

S = ωa + ...+ ωa+k−1 = 1 + ω + ...+ ωk−1 =
1− ωk

1− ω
= 0

Thus, if we are able to cover the board with tiles, the total sum of the board should also be
0. Then,

1+ω+ ...+ωn−1+ω(1+ ...+ωn−1)+ ...+ωm−1(1+ ...+ωn−1) = (1+ ...+ωm−1)(1+ ...+ωn−1)
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=
1− ωm

1− ω

1− ωn

1− ω
= 0

Thus, either ωn = 1 or ωm = 1. WLOG, let ωn = 1. Then, e2iπn/k = 1⇔ k|n. Thus, either
k|m or k|n. ■

Problem 3.2.2. A given chessboard can be tiled using 1 × m horizontal tiles and n × 1
vertical strips. prove that it can be tiled using only one of these strips.

Proof. Let ζ = e2iπ/m, ξ = e2iπ/n. Assign ζxξy to square (x, y). Then, a horizontal tile

starting from (x, y) would cover the numbers whose sum is ξy(ζx+...ζx+m−1) = ζxξy
1− ζm

1− ζ
=

0. Similarly, the sum of the numbers that the vertical strips cover is also 0. Then, the sum
of the numbers on the board must be equal to 0.

1 ζ ζ2 ζ3

ξ ζξ ζ2ξ ζ3ξ

1 ζ ζ2 ζ3

ξ ζξ ζ2ξ ζ3ξ

The sum of the numbers on the board are (if the dimensions of the board is n1 ×m1:

1+ ζ+ ...+ ζm−1+ ξ(1+ ...+ ζm−1)+ ...+ ξn−1(1+ ...+ ζm−1) = (1+ ...+ ξn−1)(1+ ...+ ζn−1)

=
1− ζm1

1− ζ

1− ξn1

1− ξ
= 0

Then, either m|m1, n|n1. Hence, you can tile the board with either one of the tiles.
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3.3 Inductive Proofs: Lines + A Helpful Inequality

Problem 3.3.1. If n lines are drawn in a plane, no two lines are parallel and no three
coincide, how many regions do they separate the plane into?

Proof. We’ll use induction. First, we must gain some intuition on the answer. See that
the first line divides the plane into 2 regions. The second divides the first region once and
the second region once, resulting in 4 regions. Intuitively, originate the lines from a random
point without a line. For example, in the figure below, originate the horizontal line from
point P .

P

See that the region where the line originates is seperated into two, and with each intersection,
the line divides another region into two. Thus, if the line intersects with k other lines, k+1
regions are added. Then, the nth line intersects with n− 1 other lines and thus adds n more
regions. Denote the region count for n lines with S(n). S(1) = 2 and

S(n) = S(n−1)+n = ... = S(1)+2+3+...+n = 1+1+2+3+...+n =
(n)(n+ 1)

2
+1 =

n2 + n+ 2

2

Now, let’s prove this intuitive formula formally with induction.

Base Case (n = 1): S(1) = 2 =
1 + 1 + 2

2

Inductive Step: Assume that S(n) =
n2 + n+ 2

2
. To find S(n + 1), place the n + 1th

line. Take a point P such that no intersection point exists to one side of the point. The
line divides the region in which P lies by 2. Then, with each intersection with a line, the
line enters another region which it again divides into two. Because no three lines coincide
and no two lines are parallel, there are exactly n intersection points. Hence, S(n + 1) =

S(n) + n+ 1 =
n2 + n+ 2

2
+ n+ 1 =

n2 + 3n+ 4

2
=

(n+ 1)(n+ 2) + 2

2
■

Induction may seem redundant here, because we dived deep in the intuition portion.
Regularly, you wouldn’t write the intuition; rather, you would write just the conjecture and
the induction.
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Problem 3.3.2. 2n dots are placed around the outside of the circle. n of them are colored
red and the remaining n are colored blue. Going around the circle clockwise, you keep a count
of how many red and blue dots you have passed. If at all times the number of red dots you
have passed is at least the number of blue dots, you consider it a successful trip around the
circle. Prove that no matter how the dots are colored red and blue, it is possible to have a
successful trip around the circle if you start at the correct point.

Proof. Let’s draw a diagram:

Think of the arrow as a sweeper that sweeps the dots, and when the number of blues exceed
red, it restarts. We’ll prove the assertion via induction.

Base Case: For n = 1, if you start after the blue dot and before the red dot (cw), you’ll
get a successful trip.

↷

Inductive Step: Assume that you can have a successful trip for n = k. For n = k + 1, take
adjacent points (successively swept in a clockwise rotation) that are red and blue clockwise.
If you can’t take such points, then the reds and the blues are clustered and the solution is
trivial. After you disregard these points, it is always possible to have a successful trip as you
have 2k dots. Also see that because you either start before the red dot/after the blue dot,
during clockwise rotation, the red dot will be swept first. Thus, the condition of number
of red dots passed being at least the number of blue dots passed isn’t violated during the
sweeping of the two points. Hence, it is possible to have a successful trip for n = k + 1 ■

Problem 3.3.3. Prove the AM-GM Inequality:
x1 + ...+ xn

n
≥ n
√
x1...xn

Proof. This solution is due to Wikipedia Contributors. We’ll obtain the intuition backwards.

We want to prove
x1 + ...+ xn

n
≥ n
√
x1...xn. If we manipulate this equation:

x1 + ...+ xn

n
√
x1...xn

=
x1

n
√
x1...xn

+ ...+
xn

n
√
x1...xn

≥ n
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Define by ak =
xk

n
√
x1...xn

. Notice that a1a2...an = 1. Then, if we prove that for numbers

satisfying a1...an = 1, a1 + ...+ an ≥ n, our proof is completed.
Let’s prove by induction. For the base case, let’s prove a more general statement for

n = 2. For numbers a1 < 1, a2 > 1, a1 + a2 > a1a2 + 1. This is easy to see as if we multiply
both sides of a2 > 1 by 1− a1, we get a2− a1a2 > 1− a1 ⇒ a2 + a1 > a1a2 +1. See that the
greater sign becomes an equals sign when a1 = a2 = 1.

Inductive Step: Assume that the inequality holds for all n ≤ N . Take N + 1 numbers
satisfying a1...aNaN+1 = 1. It is easy to see that equality holds for all numbers being 1.
If at least one number isn’t one, then there must WLOG exist i such that ai > 1. Hence,
there must also exist j such that aj < 1. WLOG, let i = N, j = N + 1. Write the
condition as a1...aNaN+1 = (a1...aN−2)(aNaN+1) = 1. Then, from our induction hypothesis,
a1 + ... + aN−2 + aNaN+1 > n− 1 Now, using the base case, a1 + ... + aN−2 + aN−1 + aN >
a1 + ...+ aN−2 + aNaN+1 + 1 > n ■

3.4 Extremal Principle: Sylvester-Gallai + Some Diophantine Equa-
tions

Problem 3.4.1. (Sylvester-Gallai Theorem) Prove that if there are finite amount of points
in a plane, all connected by lines, that there is either a line that passes through only two of
them, or they are collinear.

Proof. Pair each line with the point closest to it. Label these pairs with the distance of the
point to the line. Take the pair with the least label. Let the line be ℓ, the points that ℓ
connect be A,B and the closest point P . Then,

ℓ

P

P ′
A Bd

d is the distance PP ′ which is less than any other line-point pair. Assume that ℓ passes
through three points, the thid being C. If this wasn’t true, the condition in the question
would be satisfied. Then, there must also exist a line ℓ′ passing through P and C. (If C is
in between A and B, you can switch the points used and arrive at the same proof.)

P

A

B

B′

P ′
C

ℓ′

Then, the distance |BB′| would be less than |PP ′|, which contradicts our initial hypothesis.
Thus, there must either exist a line that passes through only two of them, or all points are
collinear. ■

Problem 3.4.2. Prove that the equation x2 + y2 = 3z2 has no solution. For which numbers
instead of 3 can you use an analogous proof?

9
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Proof. First, see that the square of any number when divided by 3 (mod 3) gives either 0 or
1. Then, for x2+y2 to be divisible by 3, both remainders must be 0 (0+1 = 1, 1+0 = 0, 1+1 =
2, 0 + 0 = 0). Then, 3|x, 3|y. Assume that (x0, y0, z0) is the solution with smallest z = z0.
Let x0 = 3x1, y0 = 3y1. Then, the equation becomes 9x2

1 + 9y21 = 3z2. Dividing both sides
by 3, we get 3x2

1 + 3y21 = z20 . Then, 3|z20 ⇒ 3|z0. Let z0 = 3z1. Then, x
2
1 + y21 = 3z21 . Hence,

(x1, y1, z1) is also a solution and z1 < z0. Thus, our initial hypothesis was contradicted: The
equation has no solution. ■

For the second part, the answer is primes of the form p = 4k + 3. Proof is left as an
exercise to the reader. (Hint: Use Euler’s criterion for quadratic residues)

Problem 3.4.3. Prove that the equation x4 + y4 = w2 has no solution. For which case does
this account in Fermat’s Last Theorem?

Proof. Assume that (x, y, w) is the solution with minimal w. It is clear that (x2, y2, w) is
a Pythagorean triple which can not be simplified more (primitive). Then, Then, w is odd.
WLOG, assume x is odd and y is even. Because the numbers form a Pythagorean triple,
there exist relatively prime u, v (exactly one is odd) s.t. u > v and:

x2 = u2 − v2, y2 = 2uv, w = u2 + v2

See that a number squared gives either 1 or 0 as a remainder when divided by 4. If x is
odd, then u is odd and v is even. y2 = 2uv = (2v)u, and 2v, u must be perfect squares.
Then, u = a2, v = 2b2 and we get x2 = a4 − 4b4 ⇒ x2 + (2b2)2 = a2. Thus, we get another
Pythagorean triple. Then, we may write:

x = c2 − d2, 2b2 = 2cd, a2 = c2 + d2

b2 = cd; thus, c = m2, d = n2. Then, m4+n4 = a2, and a < w. Hence, our initial hypothesis
is contradicted: There is no solution ■

3.5 The Pigeonhole Principle: Erdös-Szekeres + A Tournament

Problem 3.5.1. (Erdös-Szekeres Theorem, Hard) Prove that there exists either an monotone
increasing or a monotone decreasing sequence of length n+1 in a sequence of distinct integers
of length n2 + 1

Proof. Let the sequence be a1, a2, ..., an2+1. Label each ai with an ordered pair consisting of
the sizes of the largest monotone increasing sequence (ci) and the largest monotone decreasing
(di) sequence ending with ai. Assume otherwise. Then, all 1 ≤ ci, di ≤ n. Then, there are
n · n = n2 different possible labels. There are n2 + 1 numbers; hence, two labels must be
the same. Let these be (ci, di), (cj, dj), the labels of ai, aj. Then, ci = cj = c, di = dj = d.
If ai > aj, di < dj because aj can be added to the end of the decreasing sequence ending
with ai. Similarly, if ai < aj, ci < cj. These yield contradictions. Thus, there exists either
an monotone increasing or a monotone decreasing sequence of length n+ 1 in a sequence of
distinct integers of length n2 + 1. ■
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Problem 3.5.2. There is a tournament in which 10 players participate. Each match-up
happens once; a draw is 0 points, a win is worth +1 point and a lose is -1 points. If more
than 70% of these games ended in a draw prove that there must be two players with the same
total of points.

Proof. In a tournament with n participants, there are
n(n− 1)

2
. In our tournament, then,

there are 45 games. %70 of 45 is 31.5; hence, at least 32 games have ended in a draw. Then,
there are at most 13 games in which points were given out. Assume that all the points
are different. Then, at least 9 players have positive or negative scores. Hence, at least 5
people have a score of same sign. WLOG let this sign be positive. Then, these players have
collected at least 1 + 2 + 3 + 4 + 5 = 15 points. However, this means that at least 15 games
did not end in a draw, which yields a contradiction. ■

3.6 My Personal Favorite: The Invariance Principle

Problem 3.6.1. Consider all lattice squares (x, y) with x, y nonnegative integers. Assign to
each its lower left corner as a label. We shade the squares (0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2).
There is a chip on each of the six squares. Can the shaded area be emptied with finite repe-
tition of the following move:

If squares (x + 1, y) and (x, y + 1) are empty, you can take the chip from (x, y) and put
two chips on (x+ 1, y) and (x, y + 1).

Proof. Assign the number 2−x−y−1 to each lattice point (x, y) on the grid.

1

2

1

4

1

4
1

8

1

8
1

8

1

16
1

16

Recall that with each move, the chip on (x, y) disappears and two chips on (x + 1, y) and
(x, y+1) are placed. Denote the sum of values assigned to squares with chips by S. Initially
S = 1/2. With each move, S → S−2−x−y−1+2−x−y−2+2−x−y−2 = S−2−x−y−1+2·2−x−y−2 =
S − 2−x−y−1 +2−x−y−1 = S. Then, the sum is invariant under the allowed move. Hence, the
total sum is always 1/2.

Now, let’s look at the total value sum of the board. By the geometric series, 1/2k +
1/2k+1 + ... = 1/2k−1. Then:

11
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1

2

1

4

1

4
1

8

1

8
1

8

1

16
1

16

1 1/2 1/4 ...

Therefore, the total sum on the board is 1 + 1/2 + 1/4 + ... = 2. See that if the gray area
is empty, the maximum value the chip-filled squares can sum up to is 2 − 1/2 − (1/4 +
1/4) − (1/8 + 1/8 + 1/8) = 5/8. Now, notice that only one chip may exist at the leftmost
column and the bottommost row. Thus, we must the attainable value drops by at least
2 · (1/32+ 1/64+ ...) = 2/16 = 1/8. The attainable value is at most 5/8− 1/8 = 4/8 = 1/2.
However, we are performing finite amount of moves; hence, we must never be able to attain
an infinite sum, meaning that S < 1/2 when the gray area is emptied. However, we’ve found
that S = 1/2 is invariant. This yields a contradiction: the gray area can not be emptied.
■

Problem 3.6.2. The integers from 1 to 70 are written on a board. In each move, two
numbers a and b are erased from the board and the number |a− b| is written on it. Can we
be left only with the number 24 on the board after a finite amount of moves?

Proof. Let’s prove something stronger. Numbers from 1 to 4n + 2 are written on a board
(70 = 4 · 17 + 2). The same move applies. We’ll show that no even number 2m can be
yielded at the end of finite amount of moves (24 = 2 · 12). See that replacing a, b with |a− b|
doesn’t change the parity of the sum. To see this, set WLOG a ≥ b and denote the sum by
S. Then, S → S − a− b+ a− b = S − 2b. If S is even, S stays even, and vice versa. Now,

let’s compute S. S =
(4n+ 2)(4n+ 3)

2
= (2n+1)(4n+3) which is odd. If only one number

2m is left on the board, S = 2m. However, S was odd ⇒⇐.

Problem 3.6.3. The integers from 1 to 70 are written on a board. In each move, two
numbers a and b are erased from the board and the numbers 4a+ b and 3b are written on it.
Can we get the sum of the numbers on the board to 100032 after a finite amount of moves?

Proof. Similarly, denote the sum on the board with S. After a move S → S − a− b+ 4a+
b + 3b = S + 3a + 3b. Then, the remainder of S divided by 3 is invariant under this move.
S = 35 · 71 = 3 · 828 + 1 ≡ 1 (mod 3) and 100032 ≡ 0 (mod 3). Hence, we can not get to
100032 after a finite amount of moves ■.
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