Lesson 1: Prools

BATU YALCIN



Hastory of Proofs

* Ancient Greek
« Thales (640 — 546 B.C.E)
« Eudoxus (408 — 350 B.C.E\)
* Theaetetus (417 - 369 B.C.E.)

e Euclid of Alexandria:
e AXIOMS



Fuclhid's JAxioms

P1 Through any pair of distinct points passes a line

P2 For each segment AB and CD, there is a unique point Es.t. B is between A and E,
and BE is congruent to CD

P3 For each point C and each point A distinct from C there exists a circle with center C
and radius CA

P4 All right angles are congruent

P5 For each line I and point P, there exists a line I’ through P that is parallel to L.
(Krantz)



Statement
Directly
Provable
Jrom
Fuclhid's
Axtoms

From two points A and B in the plane,
there exists a unique circle with AB as its
diameter.



Wy Do We JVeed Proofs?

Fermat’'s Last Theorem:
There doesn’t exist a,b,c € Z,n > 2 s.t.
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Types of Proofs



Direct Proof

Logical Structure: p implies g: p = ¢

Example:
Prove that the product of two odd integers is odd.

Start: Take two odd integers u, v.



Proof by Contrapositive

Logical Structure: If not g implies p, 7qg = —p, then
o impliesg.p = q

Example:
Prove that the product of two odd integers is odd.

Start: Assume that the product of two integers is even.



Proof by Contradiction

Logical Structure: Prove that A leads to B. Assume that B
doesn’t hold and A holds. Find a contradictory statement
Example:
Prove that the point on circle w; that is closest
to the center of a different circle wo lies on the line
joining the centers of w; and ws

Start: Assume that the length of A’O5 for a point A not on the line
(0105 is less than AO5 for A € 010+



Proof by Byection (Biective Proof)

Logical Structure: There exists a bijection between sets A
and B. Thus, if property P holds for elements in set B, it will
hold for the elements of A mapped by the respective
elements in B.

Example:

A composition of an integer n is a set of positive integers a = (aq, ..., ax) s.t.

k
E a, = n
1=1

Prove that the number of compositions of n is 21



Proof by Exhaustion

Logical Structure: Check every logical case.

Example:

Find n € ZT s.t. m = n? +n + 3 is a perfect square.

Start: Find a way to reduce the number of cases.



Recognaeze this

Proof




Recognize this Proof

Proposition: Product of two perfect squares is a perfect square.

Proof: Let m be an integer that is not a perfect square. Assume that
_ 272

m = a“b”.

Then, m = (ab)? which is a perfect square. This is a contradiction.
Thus, m can’t be written as a product of two perfect squares.

Then, if m can be written as a product of two perfect squares, m is a perfect
square.



Important

JMastakes




Circularidy

Define by the power of a point P w.r.t. a circle w by Pow, (P) = |OP|* —r?,
O being the center of w and r being the radius. Prove that if a line ell from
point P is tangent to w at A, Pow,,(P) = PA?

W

A

Using the theorem on the power of a point, prove the Pythagorean theorem.



Assumptlions

Let’s say you were asked: Prove that triangle with conditions ... can be
determined uniquely.
After some work, you found |AB|,|BC|, C uniquely. Here, it may be convenient
to end the proof and say that as two sides and one angle is determined uniquely.
However, you must be careful, as these information may not allow a triangle to
be constructed.




Choosing Yowr-

Dattles




Foistence Proofs:

Prove that for all primes p and a € Z* where a and p are relatively prime,
there exists an integer k s.t. a® = pm + 1,m € Z*. In modular arithmetic
language, a® =1 (mod p)

Here, DO NOT try to find a specific k¥ for which this is true. Finding that £
easily follows through Fermat’s Little Theorem; however, if you aren’t familiar
with this and want to prove this from the beginning, it would be unnecessary
work.

Instead, see that there only exists only a finite amount of residues when a
number is divided by p: @,1,...,p — 1 (0 isn’t possible as a and p are relatively
prime). See that this would lead to two powers of a, a*, a™ should have the same

residue. If you do some algebra, you’ll find that a*~" should have a residue of
1 when divided by p.



Construction Proofs (Know When To
Try):

Prove that there exists 11 consecutive integers whose squares sum up to a
perfect square.

Do not attempt trying random consecutive integers. Write the sum:

5%
Y (n+k)?=11n"+2- (1+449+ 16+ 25) = 11n® + 110 = 11(n” + 10)
k=-—5

See that n should have residue 1 when divided by 11. Try 10,12,21,23. You'll
see that 23 works.



Providing Counterevamples:

Prove or disprove the statement m = n? +n+ 2 can always be written as 2"
for some k.
Even though n = —3,—-2,—-1,0, 1, 2 works, if you plug in some larger n, you’ll
see that this is false: n =4 = m = 22.

Counterexamples or examples can save you from a lot of work when finishing
a proof. For example, if you want to prove that a statement works if and only
if £ > 3, you may want to prove that it works for £ > 3 and provide counter
examples for k = 1,2. Computers are also used to search for counterexamples
of famous problems, such as Fermat’s Last Theorem and Riemann Hypothesis.



Lesson 2:
Advanced Prools

BATU YALCIN



Warming Up

Prove that there exists an infinite number of primes.
(Due to Euclid)



Induction

The induction principle consists of this basic idea: If a statement is true for
some value, and the truth of a statement for the value before implies its truth
for the current value, then the statement is true for all values larger than the
initial value.

In more formal terms, if statement A is true for a k € Z, and A being true
for a value n > k implies that A is true for n + 1, A is true for all n > k

Let’s give a basic example. Prove that:

i ok = gntl 1
k=0

Let’s continue with a more advanced problem. Prove that:
(a” — b)
V5

where F), is the nth Fibonacci number. Do you think that using only k£ to prove
k + 1 would work here? why not?

F, = a=(14++v5)/2,b=(1—-+5)/2




Pigeonhole Principle

The statement for the pigeonhole principle is as follows: If there are n holes
for pigeons to go in, and n + 1 pigeons, then at least one hole should have two
pigeons in it.

This seemingly trivial principle allows for a lot of statements to be proven
with ease. Let’s see an example:
In a party, there are 6 people who either know or don’t know each other. Prove
that there is a group of three in which either no one knows another, or all know
each other.

-




Lxtremal Principle

The extremal principle is the technique we’ve used to prove the infinitude of
primes. As an outline, we assume that an element s € S is an extreme element:
the largest, smallest, etc. Let’s see an example:

a) Prove that /2 is irrational

b) Prove that ,/p is irrational for a prime p



Invariance Principle

This principle is based on finding an invariant within algorithms. For ex-
ample, if we are acting on a board with several numbers on it, erasing and
writing new ones, we may find that the total sum’s parity never changes. As an
example, consider the board:

1 i

1|1
——i
-1

- Y
- Y

You're only allowed to act on rows, columns, and major/minor diagonals.
In each step, you can multiply each number by —1 in the row/column/diagonal
you’ve chosen. Can you make the board have all 1s?



