FINL

Technical Whitepaper V0.9

Written by FINL team.

1. Philosophy ===========-mmmmmm oo -5-

2. Architecture -========= === oo oo oo o o e o oo -7 -
2.1 Overall Network Architecture -=-==========-=--=---oo-oomooo oo -7 -
2.2 FV M o m e oo oo o e e e - 10 -

2.2.1 FVM Structure--===============o= oo oo oo oo oo oo oo -10 -
2.2.2 FVM Roles ========mmmmmm oo oo oo oo oo oo oo - 10 -
2.2.3 FVM Usages-------=--=-=-=mmm oo oo o oo oo oo - 11 -
2.2.8.1 LUA SCrIpt-=n==mmmmmm oo - 11 -
2.2.3.2 node]S Addon--------=--=mmmmmmm oo oo -12 -
2.3 Block Explorer----=--=-==-=--=-m-ommmo oo -12 -
2.4 Full Block Node (FBN) ------=--=--m-mmmmmmmom oo oo -12 -
2.5 Index Server (IS) ==-======-==mmmmmmmmm oo -12 -
2.6 Inter-change Server Agency Global (ISAG)------------------mmmmmmommom oo -13 -
2.7 Network Node (NN)------mmmmmmmmmmm oo oo oo oo oo oo oo -13 -
2.7.1 Smart Contract Agency (SCA) -===========--=-mmommmoooom oo -13 -
2.7.2 Network Node Agency (NNA)-----------m-mmmmmmmomm oo oo -13 -

3. Consensus Algorithm --==-======------ommomm - 14 -
3.1 Consensus Group ============== === mm oo oo oooooooooo - 14 -
3.2 P2P Network Layer------=-==-=--=-=--o-ooomom oo - 15 -
3.3 Consensus Layer -------=-=-==-=--mmmmm oo - 15 -
3.4 Consensus Group Configuration Scenario ------===========-=-=---------ooooooooooo - 16 -

4. Wallet —=--=-mmmmmmmmm oo oo oo oo -17 -
4.1 Key Generation ==============-m oo oo oo oo oo oo oo oo - 17 -

4.1.1 ~ Concepts of Bitcoin Key Generation ------======-==--=ommommmomooo oo oo - 17 -
4.1.2 Concepts of FINL Key Generation —--=---=-=========-=--mmmmmmmmmmm o -19 -
4.2 DSA Algorithm ---=-==-===-==-=-ommmmm oo -22 -

421 EdDSA (ED25519) =--nnnmmmmmmmm oo - 22 -

4.2.2 ECDSA (Secp256kl and Secp256r]) ==---==m==mmmmmmmmmmmmmm oo - 23 -

4.3 Private Key encryption and decryption ==================mmmmmmommomooomoo o -23 -
4.4 Wallet Address -============-mmmmmmm oo -24 -
5. Token ==-====-=mmmmmmmm oo - 25 -
5.1 Flatform Token -==========-=---mmomo oo - 25 -
5.2 Utlity Token -=========-=-mmmmmmm oo - 26 -
6. Smart Contract=-============ === oo oooooooooooooo- - 27 -
6.1 Creation Rules of Account Number----=========--=mommmmmommmm oo - 27 -
6.1.1 User AcCOount===============mm= oo oo oo oo oo ooooooooooo o - 27 -
6.1.2 Token Account--===========--=mmom oo - 27 -

6.2 NFT -----mmmmmm oo oo oo oo o e - 28 -
6.3 Contract=--========= == oo oo oo oo oooooooooo - 28 -
6.3.1 Create TIme --=============-mm oo oo - 28 -
6.3.2 TFimntech -=-=---=====-=--mmmmmm oo -29 -
6.3.3 Privacy------=-=m-mmm o oo oo oo -29 -
6.34 Fee -m-----mmmmmmmm oo e -29 -
6.3.5 From Account -=============mmm oo oo oo oooooooooooo o -29 -
6.3.6 To Account =-=========mmmm oo oo ooooooooooo oo -29 -
6.3.7 ACHON == === === o m oo oo m oo ooooooooooooo oo -29 -
6.3.8 Contents (Blob)----==-====-=--=---ommmmmo o -29 -
6.3.9 Memo —m=-mmmmmmmmm oo oo oo oo - 30 -
6.3.10 Signature------=========--mm oo - 30 -
6.3.11 Signed Public Key -------=-====-=-----mmmommomo oo - 30 -

7. Block —=====mmmmmmm oo oo o - 31 -
7.1 Block Description ===============-=mm oo oo oo oo oo oo - 31 -

7.1.1 Block Number----=====-==--=--mommmmm oo - 31

7.1.2 P2P Address----========mmmmmmmmmm oo -31-
7.1.3 Block Generation Time ----====-====-=--=--ommomoomoo oo -31-
7.1.4 Previous Block Hash -------=--=-----cc-coommmmmmom oo -32 -
7.1.5 Transaction Count -=============-=-==-= oo oo -32 -
7.1.6 Block Hash----=--==-=--c-comoomoo oo -32 -
707 SIgnature = === == m oo oo o e e e e e oo -32 -
7.1.8 Public Key-----=-==-=--=-mmommmmmmm oo -32 -
7.1.9 Block Confirm Time -==========-====-=-omommo oo -32 -

7.2 Group XOR-Hash Cipher based on time arriving ----------===-===-==----------—- -33 -
8. istribute Database =--=-=======-=-----ommm oo -35-
8.1 Replication ============ === oo oo oo oo - 35 -
8.2 Shard ---------=-mm oo oo e -35-
e B O LG o ettt - 35 -
9. GOVeINan(e ======= === === oo oo o o oo oooooo e - 36 -
9.1 Currency and Issuance ---============-=----mmom oo - 36 -
9.2 Reward Policy==========mmmmm oo oo - 38 -
9.3 Fee Policy --==-=-=-=mmmmmmmmmmmm oo - 38 -
10. Inter-operability =================-m oo oo -40 -
11, Reference =-==========mmmmmmm oo -41 -

1. Philosophy

FINL is designed to enable digital trust-guaranteed transactions using high-frequency transactions and
smart contracts based on Delegated Proof of Reputation (DPoR).

These digital trust processors are largely classified into relationship trust, information trust, process tr
ust, and transaction trust. First, the trust of the relationship is established through the globally conne
cted blockchain delegated reputation proof network. Second, it establishes trust in contract informatio
n through oracle problem solving. Third, trust in the process is achieved through securing transparenc
y and regular and periodic confirmation of the transaction verification process. And Fourth, the trust o
f the transaction is achieved by securing the stability and reliability of the transaction.

GOAL Four types 12 main areas
/ ® \ Consensus Node Tier
® ® P2P Network
— DPoR Consensus Algorithm
Trust of the Smart Contract
relationship
Endpoint Tier
Building Application
" Trust of th o
. rust o e
blockchain)) Block Explorer P
See contract information Decentralization
ase o . o agreement
trust Distributed Transaction Processing Tier
Zookeeper + Kafka
rocess
P Transaction Routing Tier
Trust of the Group Index & Tunneling
process
Data Tier
@ Replication
Sharding
Trust of the Distributied
transactions

Figure 1. Trust Process

In other words, the digital trust process must maintain a fair and transparent process flow for the value
and transaction of information. To this end, first, the governance structure of the decentralized network
is effectively established and transparently operated. Second, in order to secure the trust of the relatio
nship, a Consensus Node Tier consisting of a P2P main network and a P2P sub-network is operated. Thir
d, establish the Wuhan user interface group (Endpoint Tier) to secure the trust of information. Fourth, t
o secure the trust of the process, a distributed transaction routing group (Distributed Transaction Proce
ssing Tier and Transaction Routing Tier) is operated. Fifth, we operate a distributed data storage group (

Data Tier) where anyone can participate in order to secure trust in transactions.

Transaction Routing Tier Consensus Node Tier

Endpoint Tier Distributed Ti ion Pr ing Tier
finl di finl dtp (zookeeper + kafica) finl con finl core
Data Tier
- -==4 Node Group Lndex

transaction
mux

Sharding DB

contract
mux

Smart Contract

topicg*™" /el o d SmartContract ¢ -eooae--
Role Description
Endpoint Tier User application access section (application, command line interface, web application)
Distributed Transaction Processing Tier Distributed transactions for high-speed processing as a gateway for domain access and monitoring section in real time
Transaction Routing Tier High-speed identification network processing section of target crypto-address system for optimal exchange
with distributed routing service
Consensus Node Tier Block reliability process operation section through hash round robin and super-fast delegated proof of stake

Figure 2. Tiers

FINL consists of a P2P main network and a P2P sub-network structure based on the independently deve
loped delegated reputation proof consensus algorithm. Each P2P subnetwork is an independent consen
sus group that generates blocks in parallel, and the P2P main network serially connects blocks generate
d by each P2P subnetwork. This serialization is called Hash Round Robin (HRR). The maximum speed of
this blockchain platform increases according to the number of independent consensus groups, and the
minimum speed of the independent consensus group, P2P subnetwork, is aimed at 5000 TPS. In additio
n, a decentralized decision-making device (DGOS, Distributed Governance Organization Syndicate) exist
s. All policies are decided by votes of members through DGOS, and the process of policy proposals, initi

atives, and voting is transparently disclosed.

) Blazing Fast
HRR & DPOR Blockchain platform Controller
Based

A+

Hash Round Robin DPOR High Speed Transaction

Figure 3. Main features of Final Chain

2. Architecture

2.1 Overall Network Architecture

The FINL network is largely divided into Main Chain and Sub Chain. The Main Chain acts as a Public Net
work, and the Sub Chain can be used as a Private Network. It is used as Globalization, and Sub Chainis u
sed as Localization. Main Chain and Sub Chain actually function the same and are connected by Net Con

nector. This paper describes the Public Network.

Net . i
User Connector Public Cloud Main BP
® T o ¥ ./ Main /| Bkafka /b L
- 2 L T Contract/ e 7/ Hash / "=
R e
- e l’x PR, 2n +1
% ‘.ZaoKecper
""" Tx ; —
v y [oee]
“', ——
:'. [eee]
" H ! X
' i - = /D 7 o=
A Sub Chain | i »Maln Chaln‘ / Hash /
" : [eee]
= DB = =]
— Contractor
y MainHCoRtract y
4 as| / ‘ . y [ase)
£ ‘ / Block | ==
i DB ; 1 / Info. /- e
Blocker T Explorer L4 Gt
H . DB
e = B BB
i] L — I —
i Public DB

Figure 4. Overall flow of Main Chain

Net Connector or User uses Kafka/Zookeeper messaging cloud system to send transaction to chain.

The chain that receives the transaction through the messaging cloud system checks the validation of th
e transaction, turns it into a smart contract, gives a unique ID along with the hashed value of the contra

ct, and stores it in the DB through the DB contractor.

Block Producer (BP) is composed of odd numbers, and each BP composes its own Cluster, that is, a P2P
Sub Network. This BP records the contract's unique ID and hash value in its own block through the DB C
onnector, and stores the block information in the DB through the DB Blocker.

Block Explorer can search all information such as Transaction information, Contract information, and BI

-7 -

ock information stored in the Chain DB through DB Explorer.

User

=
(]
3

Blocker
Explorer

Private Cloud Sub BP
/ Sub] §€korka e
Contract 7/ Hash / ">
'x PR,2n+1
l + -Zooxecper i
—7 oxem i Public Cloud
[-] :
v/ I,/ —_—— kafka
/[_Hash / i §8 -
:g" [] " b4
;_.!,._ DB S l* ZooKeeper
' Contractor :: L1 J
/Sub Contract, / i
Hash ,/;" ' o " —
£ e Net i / Main
DB == Connector :: L, Contract/
Explorer . - i 4
-] -) - o / Block / _ Biock 7 Al ” e
X [_Info. /.- xxmem-------- / Block /.. | =
== 5 5 E o o [Info. / }[; i
i DB
Public DB Blocker :
’SubChain H ‘MainChain

Figure 5. Overall flow of Sub Chain

The core functions of Chain can be divided into Control Path and Data Path. Control Path consists of IS, |
SAG, and ISA. IS and ISAG act as independent nodes, and ISA operates as an application in Network Nod
e (NN). Data Path consists of SCA and NNA, and both operate as applications in NN.

In addition, for the purpose of providing information to users, a Node with Block Explorer or similar fun

ctions can be operated, and these Nodes can request information necessary for a Full Block Node (FBN).

The DGOS Foundation operates the Index Server (IS), collects information on nodes that want to partici

pate in the chain ecosystem, and can form a cluster based on this information. ISAG replicates and store

s IS information and plays a role in distributing the information. In addition, ISAG replicates all informati

on stored in NNs of each cluster. The ISA serves as a medium for various control information transmitte

d JT om the IS to the NN.

Chain is a set of Clusters with BPs as the main axis. Each BP operates NN for each cluster and plays a rol

e in collecting transactions, making smart contracts, and creating blocks. Blocks created in parallel in thi

s way are serially connected between clusters. At this time, replication occurs for all information stored i

n each cluster between NNs. In addition, the generated block is transmitted to the NN that will generate

the next block through a network frame.

The SCA in the NN subscribes to the transaction through the messaging cloud system, and there are mu
Itiple SCAs in each NN. Therefore, it can be seen that the number of transactions that can be processed
in one NN is proportional to the number of SCAs in the NN.

Users can receive their account information and various public information through Block Explorer or a
similar Node Application. In addition, a user can create a transaction, and the created transaction infor

mation is published in the messaging cloud system.

*Globalization : Main Chain

“Localization : Sub Chain Multipie SCA
+ aliddating Transaction T =CE

*Pre Installed Network : Covering minimum 5000 TES % E Tmzs——————1
. : NNA or |Cluster B |
Roung Rabin : Generating Blocks . ~ |
P |
Block Generation Sequence (Round Robin) |
|
|
|

Al

Seq NET Seq R e
1 WM of Cluster & | 5 Agencies
|2 NN of Cluster B__| | Cluster A j

i / = y

|)

| :

I

P par N \
Transaction g & i i
\ # Replication |
Info Query e e :
Mult SCA NNA N IS "
II ‘\ II
D ; T ettt e L e S =i 15Ag Cloud A
User — \ 4
Info Query Repl;?_a_t_;_._:_._.j_____ b —-—) Ix
- . \ ISAg
Fieplica’tiol\"_ 2 ;
. & = i att==er
| o 2 i
]]ll cLl = =R |
BE | !
Info Query : bR |
: ClusterC Mult SCA !
Figure 6. Overall flow of Clusters
ISAg
Joee]
oo]
NNA
Replication
= Replication __
w . I Repl
— — —— [t
ISAg NNA NN ISAg S
Replication
- Joe.]
e = e
]]ll ata Query [~ Replication ——
BE FBN ISAg NNA Replication icati
Replication
Control
Query

Figure 7. Replication flow

-9.-

2.2 FVM

As a core element of FINL, it is used everywhere, including User, Block Explorer, and Block Chain Core.

2.2.1 FVM Structure

The core of FVM is implemented in C/C++.Core Function can be accessed through LUA Script, Node JS, o
r C/C++. Based on this structure, the same standard API can be applied anywhere.

LUA Node JS C/C++

Command Line

Wallet DB Connector Crypto SSL Interface (CLD)
Fee / Reward ———
Contract Web APl Palicy Validation

Figure 8. FVM Tt &

2.2.2 FVM Roles

[Wallet]
It provides its own wallet that supports the Secp256r1 and Secp256k1 algorithms and applies the ED25
519 algorithm with enhanced security. Key generation and recovery are possible using this wallet.

[Crypto SSL]

By providing OpenSSL-based Crypto SSL, various Cryptography functions can be used. In particular, it su
pports Signature Algorithms such as ECDSA and ED25519 and Encryption/Decryption Algorithms such a
s ECIES and X25519.

[Contract]
It provides its own smart contract using a script language with excellent readability and extensibility.

[Fee/Reward Policy]
Provides API to calculate Fee for Contract. In addition, it is possible to provide a reward policy of the no
de.

-10 -

[Command Line Interface]
Provides API to receive commands as Arguments and execute them. Through this API, LUA, Node JS, or
Functions that can be executed with the C/C++ API can be directly executed.

[Web API]
Provides a function that allows the client to communicate with the server using cURL (Client URL). In pa
rticular, HTTP GET and HTTP POST are mainly used.

[DB Connector]
Provides API to access database.

[Validation]
Provides API that can determine whether Contract and Transaction are valid.

2.2.3 FVM Usages

2.2.3.1 LUA Script

Currently, FVM is available for standalone operation using LUA Script on Linux and Windows systems.At
this time, the Makefile automatically determines whether it is Windows-based or Linux-based and com
piles, and the executable file can be linked with the LUA Script file.

[lua_addon.cpp]

It is a language based on C/C++ and includes a main function. The lua_addon function implemented in t
his file binds various C/C++ functions that can be used in LUA Script and registers them in LUA. Also, the
"luaConn" function of “main.lua” is executed, and if there is an argument value during execution, the ar
gument value is transferred to the “luaConn” function.

[main.lua]
It is called from the FVM executable file and there is a “luaConn” function that can execute LUA Script.

[init.lua]
Register the LUA Core Script files and Configuration files used in FVM.

Details related to interworking between LUA Script and FVM are provided in the manual.

-11 -

2.2.3.2 Node]S Addon

FVM can be used as an Addon of nodelJS on Linux basis.
[addon.cpp]
It is a C/C++ based language and includes Initialize function for nodeJS addon. The Initialize function im

plemented in this file is registered by binding various C/C++ functions that can be used in nodeJS.

Details related to interworking between nodelS and FVM are provided in the manual.

2.3 Block Explorer

Live TPS check function is provided. It provides various information related to Chain, such as General Inf
ormation, Account, Information, Token Information, Block List, and Transaction List.

Provides key generation and recovery functions on the web, and provides functions to create Encryptio
n/Decryption-based Contracts.

2.4 Full Block Node (FBN)

Replicate ISAG information. Replication information can be distributed to other nodes.

2.5 Index Server (IS)

IS manages information about the entire mainnet system and can control the system.

It provides the function of whether to participate in the consensus group and the selection of the node
role. It provides functions such as network initialization, save, update, and restart. Provides node startu
p and shutdown functions. Provides functions such as adding, fine-tuning, and deleting topics by cluster
to the Kafka/Zookeeper cloud network. Genesis contract creation function is provided. Provides functio
ns to start, stop, or restart block generation.

-12 -

2.6 Inter-change Server Agency Global (ISAG)

It has a duplicate of the information stored in the IS.

If an external node wants to check the information stored in the IS, it can acquire the necessary informa
tion through the ISAG instead of directly accessing the IS.

2.7 Network Node (NN)

2.7.1 Smart Contract Agency (SCA)

[Contract reception, verification, storage function]
User contract reception, verification, and storage functions entered through the distributed scheduler C
ontract reception, verification, and storage functions through ISA.

[Transaction creation and storage function]
The non-duplicate key value given to the contract and the hashed value of the contract are bundled tog
ether and called a transaction. Create and store these transactions.

[Block information reception function]
Receive block information generated by the local consensus node.

2.7.2 Network Node Agency (NNA)

[Consensus group network information update and configuration function]
P2P main network update function. P2P subnetwork update function P2P subnetwork and P2P main ne
twork configuration function according to node information.

[Node security update function]
Automatic firewall setting function according to node and network information.

[Block creation start, reception, verification, delivery function]
Function to create and verify blocks Function to deliver the created block to other consensus groups Fu

nction to deliver the created block to the local SCA.

[Transaction processing function]
Transaction reception function from Local SCA.

-13 -

3. Consensus Algorithm

3.1 Consensus Group

A consensus group refers to a set of NN As that participate in the process of creating, exchanging, storin
g, and confirming blocks between clusters, authenticating transactions and making them irreversible.

Each NNA belonging to the consensus group is logically composed of a P2P Network Layer and a Consen
sus Layer developed by itself on the TCP/IP Layer basis. The Security Layer supports the security functio
ns of the P2P Network Layer and Consensus Layer such as ECIES, X25519, ECDSA, and EDDSA

- Wui

’J' [] \‘

4 b
] LY
[1Y
[l { 5~ e ™ 3]
| s N
1 1
1 1
i Co d Security i
H 3 mman {11y R d 1
i 5 Handler Dt = Heeudllex ECDSA, EDDSA e]
1 o 1
533 :
i o3 .
I (U] © . Message =
= § = DPoR Block Timer Handler Handler :
- = \ / !
1 3 .::° 1
1 & o 1
R a D
i Y e i
i @ c d Eauarl i
I AmEn Data Handler BEHTY 1
I Handler ECIES, ED25519 |
i i
1 1
1 1
1 1
“ 'I
\‘ J.r

‘\ - A A >, I’

s‘.‘\‘ ___ ﬁ I ______________________________ -f”
5 s i i e S S o g i Y
! Distributed Blockchain Infrastructure Network !
l;._ __ __l

Figure 9. Logical layer of NNA

- 14 -

3.2 P2P Network Layer

8 Bytes

8 Bytes

8 Bytes

4 Bytes

2 Bytes

2 Bytes

Veriable

4 Bytes

Dest Addr

Src Addr

Timestamp

Info

Seqg. Num.

Taotal Length

TLV

CRC32

Figure 10. P2P Header Description
The P2P address system, which is the basis of the P2P network, consists of a total of 64 bits.

The upper 32 bits contain GPS information and consist of 16 bits of latitude and 16 bits of longitude, if |
atitude And if the longitude is "37.5207176, 127.0539982", use only “37.52, 127.05", which is the lower
two digits of the decimal point. In decimal, it is “37 52 127 05" and in hexadecimal it is “25 34 7F 05". T
herefore, it becomes possible to display as “0x25347F05". At this time, the GPS maximum error range is
2.88 km, which is two multiples of 1.44 km.

The lower 32 bits are the chain code, continent code, country code, national hub network code, hub ne
twork subnet code, subnet node address, etc. indicating whether this blockchain platform operates as a
public or private blockchain, is used as.

[T otal Lengih 64 bits 0x FFFF FFFF FFFF FFFF
GPS Information 32 bits 0x FEEF FFFF 0000 ([
Unigue Information 16 bits 0 0000 0000 FFFF 0000
Chain 1 bit Ox 8000
Cortinents 3 bits Ox 7000
Countries 4 bits 0x OF00
Hub 4 bits 0x 00FC
SUbNET 4 bits 0x 0003
SUbNET Address 16 bits 0x FEEE

Figure 11. P2P Address system

3.3 Consensus Layer

Each local consensus group can independently generate a block, and in each round, the entire consensu
s group generates a block individually.

One round period is called Block Generation Interval (BGl) or Round Trip Time (RTT). One round minimu
m round period (BGl) is the minimum time required for the entire local consensus group to generate blo
cks in parallel and connect them in series. At this time, the minimum round period (BGl) of one round is
affected according to the time taken for serial connection between the local consensus groups (t1) and t
he time between one round and the next round (t2).

The minimum delay time of t1 is 500 msecs. This is the minimum time to ensure that the block of one ¢
onsensus group and all transaction.Contract information accordingly are replicated to the other consens
-15 -

us group. Therefore, if a block is created in 4 clusters, a BGI of at least 2 sec must be guaranteed. In othe
r words, the block generation cycle of one cluster is 2 sec.

B11 B2 B3 B4 BS B6 B7 B8 B9 B10 (811 B12
|al{8Hcl{p A~ B-ClD {al{8HcHp] :
Th1 T2 T3

BGI/RTT 1sec,2sec,5sec...
BGI > ((t1* (Number of SUbNET - 1)) + t1)

t1 500 msecs

Figure 12. Block Generation Period Vs. Number of Blocks

3.4 Consensus Group Configuration Scenario

Each node in the system transmits hardware information, public key necessary for consensus, and vario
us node information through ISA.

Send to The IS checks whether the node is a valid node based on information registered through DGOS
and information collected during system startup.Based on this information, the IS creates a list for confi
guring the P2P main network and creates a list of P2P sub-networks within each P2P main network.

The IS transmits a P2P main network list and a P2P sub-network configuration list to each node accordin
g to the functions and roles of the nodes in the system. After receiving information for system operation
, each node starts the system for each role. After confirming that all nodes are operating, the IS sends a
block generation command to the P2P consensus group to generate a Genesis block. The P2P consensu
s group that has received the block generation command starts block generation.

= ' PN o a

FBN ISAg IS ISA SCA/NNA

| add ‘cluster info’ db
add 'hub info’ db
add 'kafka info’ db

Register

Register

| add 'node hw info’ db
add 'node cons info' db
add ‘repl info’ db

[check ‘repl info' db

Start |Start
Shard

Replication

Replication

Figure 13. Control Sequence for Consensus Group Configuration
-16 -

4. Wallet

4.1 Key Generation

4.1.1Concepts of Bitcoin Key Generation

[BIP 32]

BIP 32 is a Bitcoin standard that can construct Hierarchical Deterministic (HD) Wallets from Seed. HD W
allets can manage keys and wallet addresses in a hierarchical structure. The key standard uses secp25k1
. Create a Master Private Key and Public Key with Master Seed, and use the Child Key Derivation (CKD) f
unction with the Master Key to generate the key and address of the lower layer. In other words, if only t
he Master Seed value is kept, all the keys and addresses of the lower layer can be restored to their origi
nal state.

BIP 32 - Hierarchical Deterministic Wallets

Master Master Wallets | Wallet Addresses
Seed Node Accounts Chains
. 218 B - [RI8
External BE~< _— m/O/OIO m/O/O/1 =+ mfi/O/k
CKD(m/O 0 m/0/0 ii:f;:::i Y
A= L R0 ®g - BE
m/0 CKS‘(?,’SS) hmi m/on/o m/0/1/1 e mfiffk
CKD(m, 0) "’»»::.:;_—_:7—T
Entropy , c»fé‘(?r’\?{f'g>,, _ 2[¢]
128 bits CKD(m, 1)’@ Q—" m/:I/O
T m e WY
m/, m
ﬁHMAc -SHA512 ﬁ @ | .
—_CKD(m,i)
S m) External)
CKD(mfi,0) [2[&]
L ——0 LBE BB - BE
mi cﬁg?rrr:;fln E/\ﬂv m/l/‘IIO m{|/1/1 :"J'“_Jm/l/‘llk
Depth=0 Depth=1 Depth=2 Depth=3

Child Key Derivation Function ~ CKD(x, n) = HMAC-SHA512(x Chain , X PubKey || N)

Figure 14. HD Wallets

[BIP 39]

In order to effectively and intuitively manage this Master Seed, BIP39 has been proposed. BIP39 uses M
nemonic Code to replace Master Seed with natural language. Mnemonic Code consists of words in a tot
al of 2048 languages of each country and is used as a seed to derive a Master Seed.

-17 -

The number of words to be used as seeds for deriving Master Seed is determined according to Entropy.

Entropy (bits) Checksum (bits) Entropy + Checksum (bits) Mnemonic (Word)
128 4 132 12
160 5 165 15
192 6 198 18
224 7 231 21
256 8 264 24

Table 15. Entropy Vs. Number of Word

Mnemonic Words
128-bit entropy/12-word example

@

@ Generate Entropy (128bits) SHA256
First 4 bits
. Checksum |
Entropy (128bits) (4 bits) ‘©

@ Split 132-bits into 12 segments of 11-bits each
| | | | |
| | | |

BIP39 English Words List (2048 words)

00000000000 abandon
@ 00000000001 ability

00001100000 army

111111111111 Z00 CD

Twelve word mnemonic code:

army van defense carry jealous true
garbage claim echo media make crunch

Figure 16. Mnemonic Code Generation

-18 -

Mnemonic to Seed

Mnemonic Code Words Salt
“army van defense carry jealous true “mnemonic” + (optional) passphrase
garbage claim echo media make crunch”

Key Stretching Function
PBKDF2 using HMAC-SHA512

@ 2048

rounds

512-bit Seed

5b56c417303faa3fcba7e57400el120a0ca83ec5a4fc9ffba757fbe63fbd77a89
ala3bed4c67196f57c¢39a88b76373733891bfabal6ed27a813ceed498804c0570

Figure 17. Mnemonic Code to Seed

[BIP 44]
BIP44 is a logical hierarchy for deterministic wallets based on the purpose scheme of BIP43 and the algo
rithm of BIP32. BIP44 consists of five predefined tree levels.

m / purpose' / coin_type' / account' / change / address_index

level-1: the purpose is fixed at 44

level-2: uses SLIP0O044 ex. ETH: m/44’/60’, BIT: m/44’ /0’

level-3: account, The root of its own subtree

level-4: HD wallet has two subtrees(deposit address 0, change address 1)
level-5: usable address index, a child of level-4 derived from an HD wallet.

4.1.2 Concepts of FINL Key Generation

FIP39 provides two ways to create and restore wallets.

In both methods, you can create a wallet by preparing a single sentence and password.

For the first method, the password must be at least 10 bytes in length. Each sentence must have a mini
mum length of 20 bytes or more and a maximum length of 500 bytes or less. Each password and senten

ce are converted into Multi-bytes. At this time, in the case of a sentence, it is hashed.

The converted password and hash values are subjected to XOR processing using randomly generated 2b

-19 -

ytes unsigned integer values. The output value obtained through XOR processing is hashed in PBKDF2, a
nd the password is used as the password argument value, and the password is used as the salt argumen
t input value. PBKDF2 is password and Hash the salt 2048 times to generate a seed value of 512 bits.

Optionally, the sentence part may use a mnemonic word of BIP39. However, because Hash Processing a
nd XOR Processing are used internally, the value is different from the value of BIP39.

The second method provides the same method as BIP39. Mnemonic derived from entropy can be listed
in one sentence. In this case, Passphrase is optional. Each sentence and passphrase are converted into
Multi bytes.

FIP32 can be regarded as the same as actual BIP32. The Random Number and Master Node Keys values
generated during the wallet creation process are provided as outputs. At this time, the Hash Left 256 bit
s value of the Master Node Keys is used as the Master Private Key, and the Master Public Key is derived.
At this time, the key standard uses ed25519 instead of secp256k1 for signature. In addition, X25519 sta
ndard is used for encryption/decryption.

Password, Sentences 1, and Sentences 2 used as inputs when creating a wallet, and Random Number v
alues provided as outputs are used when recovering the wallet. When recovering a wallet, after underg
oing multi-bytes conversion and HASH concatenation as in the wallet creation step, the key value of the
wallet can be recovered by using the random number provided by the wallet user instead of creating a
new random number.

OUTPUT INPUT
Sentences (password

C.UTF8 Convert To Multi-bytes

» 2bytes Random Number | Hash256 [0-31] |

: XOR processing (PW) | > XOR processing (Salt - Passphrase) >

PBKDF2 using HMAC-SHA512 }

FIP 39
Seed (512 bits)
‘ HMAC-SHA512 \
FIP 32 —— :
! Master Node Keys ‘
| MasterPrivateKeym (256 bits) | | Master Chain Code c (256 bits) |

| MasterPublicKey M (256 bits) |

Figure 18. FIP 39 Method 1 & FIP 32

When creating a wallet, a random number is generated. This random number consists of 2 bytes and its

-20 -

range is Ox1 FF or more and OxFFFF or less. This Random Number and Password or Sentences 1 and XO
R the first 2 bytes of the hashed value of Sentences 2. XOR the value derived in this way with the next 2
bytes of Password or Hashed value. In this way, XOR is performed up to the length of the password or h
ashed value. At this time, if the length of the password or hashed value is odd, 1 byte with a value of Ox
00 is added to the end of the sentence to make it even.

| Random Number | B'1 l B2 B3 l B'4 l B'S | B'6 '_ B... | ¥
Input B1 B2 B3 B4 B5 B6 B... R Bn-1 Bn
[Dutput] B l B2 1 B'3 | B4 | B { B'6 l B'... { B... l B'n-1 | Bn |

Figure 19. XOR Processing of Password and Salt used by PBKDF2 for FIP 39 Method 1

OUTPUT H INPUT |
[Sentences Passphrase (Opional)
CUTF8/NFKD | Convert To Multi-bytes \
“Mnemonic” + Passphrase ‘
’ password Salt
| PBKDF2 using HMAC-SHA512 |
FIP 39
| Seed (512 bits) |
| HMAC-SHA512 |
FIP 32
’ Master Node Keys ‘
’ Master Private Key m (256 bits)] f Master Chain Code c (256 bits) ‘

] Master Public Key M (256 bits) \

Figure 20. FIP 39 Method 2 & FIP 32

-21 -

4.2 DSA Algorithm

This mainnet uses ED25519 by default. In addition, it supports secp256k1 used by most mainnets includ
ing Bitcoin, and supports secp256r1, which is officially recommended by NIST.

4.2.1 EdDSA (ED25519)

EdDSA generates signatures using variants of Schnorr signatures based on SHA-512 and Curve25519, a
Twisted Edward Curve. EdDSA is documented in the RFC 8032 standard and has better performance tha
n RSA or DSA.

The advantages of EdDSA are as follows.

Fast single-signature verification
Even faster batch verification
Fast key generation

High security level

Foolproof session keys
Collision resilience

No secret array indices

No secret branch conditions
Small signatures

Small keys

In addition, the advantages described in the RFC 8032 standard are as follows.

It provides high performance on various platforms.

The use of a uniqgue random number for each signature is not required.
Against side channel attacks, it can be better protected.
Small public key size and signature size (In case of Ed25519, public key size is 32 bytes (256-

bits), signature size is 64 bytes)
For all points on the curve, the formulas are valid and no exceptions occur.
Collision resilience (no has-function collision)

-22 -

Protocol Key length Create AttrCert Verify AttrCert
RSA 1024 bits 485s 1.91 ms
RSA 2018 bits | 2406 s 8.33 ms
RSA 4096 bits | 189.07 s | 30.91 ms
DSA 512 bits | 1.01s 7.86 ms
DSA 1024 bits 134 s 10.36 ms
ED25519 256 bits 25.79 ms 29.34 ms

Figure 21. RSA vs. DSA vs. ED25519

This mainnet uses ED25519 by default, and the length of both the private key and public key is 256 bits.
In the case of Public Key, 0x05 is defined and attached as a prefix by itself to confirm that it is ED25519.

[Prefix (1 Byte : '0x05') + Public Key (32 Bytes)]

4.2.2 ECDSA (Secp256kl and Secp256r])

This mainnet ECDSA is provided as an option. The length of the private key is 256 bits, and the compres
sed public key is used for the public key.

In case of public key, there is a standard prefix, and the contents are as follows.

[Prefix 1 Byte ('Ox02' or '0x03') + Compressed (32 Bytes)] or Prefix 1 Byte ('0x04') + Uncompressed (64
Bytes)]

4.3 Private Key encryption and decryption

The extension name of the standard key file is 'pem'. Among them, the private key is an important file a
nd should not be exposed to anyone other than the creator. This private key file is encrypted with 'key s
eed' and the extension name is 'fin'. In this case, 'key seed' is the password created by the creator himse
If.

- 23 -

This encrypted private key file can be used by decrypting it with 'key seed'. Encrypted Private Key Files
must be safely isolated from external factors such as hacking and stored.

4.4 Wallet Address

After encoding the public key value with base58, prefix is added. Prefixes are “FINL” for mainnet, “FINT”
for testnet, and “FIND” for DEVnet.

24 -

b. Token

Tokens are largely divided into Platform Tokens and Utility Tokens. Platform Token is issued and used to
construct and develop the Mainnet ecosystem. Utility Token can be used by anyone using this Mainnet.
It can be freely published under the permission of DGOS.

Groups

Actions

Flatform Token

Utility Token Platinum

Utility Token Gold

Utility Token

Smart Contract Default
Smart Contract Reserved 01
Smart Contract General
Smart Contract

Smart Contract NFT

Smart Contract Reserved 02
Smart Contract Reserved 03
Notice

0x00000000
0x000000071 ~ 0x0000FFFF
0x00010000 ~ OX000FFFFF
0x00100000 ~ Ox7FFFFFFF
0x80000000 ~ 0x800000FF
0x80000100 ~ Ox800FFFFF
0x80100000 ~ 0x80100FFF
0x80101000 ~ OX9FFFFFFF
0xA0000000 ~ OXBFFFFFFF
0xCO000000 ~ OXEFFFFFFF
0xFO000000 ~ OXFOOOFFFF
0xF0010000 ~ OXFFFFFFFF

Figure 22. Token and Smart Contract

The unique number of Token and Smart Contract is designated as Action and is used when creating a to
ken contract and transmitting tokens.

5.1 Flattorm Token

The unique action number of the platform token is 0x00000000, and the platform token is issued on th
e blockchain mainnet and cannot be used on other blockchain mainnets. Platform tokens are used thro
ughout the blockchain ecosystem.

Block generation

reward, transaction fee,

network usage fee, storage usage
fee, CPU and RAM usage fee, etc.

In addition, platform tokens can be used in various ways such as swap and staking in connection with ut

- 25 -

ility tokens issued in the blockchain ecosystem.

5.2 Uttty Token

Utility tokens are divided into Platinum, Gold, and General tokens.Platinum tokens have values from Ox
00000001 to OXOOOOFFFF. Gold tokens range from 0x00010000 to OxOOOFFFFF. Normal tokens have v
alues from 0x00100000 to Ox7FFFFFFF.

Utility tokens are created in the form of smart contracts on various blockchain mainnets. The size and s

hape of utility tokens can be freely issued according to the type of product, but they can be used to pur
chase goods or services suitable for the purpose at the time the token is issued.

- 26 -

6. Smart Contract

6.1 Creattion Rules of Account Number

Account Number consists of a total of 64 bits and is largely divided into Token Account and User Accoun

[A]B‘B|B|CCDD|E‘E|E‘E||E|E‘E|E|

A (4 bits) : Token (0x1), User (0x2~0xT)

B (12 bits) : Token & User (IS0 3166-1 numeric)

E { 32 bits) : Token (Token Mumber), User (UTC second time)

Figure 23. Account Number

6.1.1 User Account

User Account settings are largely divided into MSB 32 bits and LSB 32 bits.

In the case of MSB 32 bits, it is divided into values that can determine Token Account and User Account,

country code, area code, and random number.

If the MSB 4 bits are between 0x2 and 0x7 for User Account, the next MSB 12 bits are set for each coun

try according to the ISO 3166-1 numeric code, a country code table. The next MSB 8 bits is set as the ar
ea code according to the country previously set according to the local numeric code table that maps the
ISO 3166-2 code, which is the area code table, to numbers. For the next MSB 8 bits, a random number i

s used. In this case, the range of the random number is 0x00 or more and OxFF or less.

In the case of LSB 32 bits, it is set to UTC second time.

6.1.2 Token Account

Token Account settings are largely divided into MSB 32 bits and LSB 32 bits.

- 27 -

In the case of MSB 32 bits, it is divided into values that can determine Token Account and User Account,
country code, area code, and random number.

If the MSB 4 bits are between 0x2 and 0x7 for User Account, the next MSB 12 bits are set for each coun
try according to the ISO 3166-1 numeric code, a country code table. The following MSB 8 bits are region
al codes according to the country set above according to the local numeric code table that maps the I1SO
3166-2 code, which is an area code table, to numbers.

set to draw In the case of the next MSB 8 bits, it is set to 0x0.

In case of LSB 32 bits, Token Number is set to that value.

6.2 NFT

This mainnet supports non-fungible tokens through smart contracts.

6.3 Contract

create_tm
fintech
privacy

fee
from_accont
to_account
action
contents (Blob)
memo

sig

signed_pk
Figure 24. Contract Contents

6.3.1 Create Time

Indicates the time when the Contract was created in the past or when it will be executed in the future.
UTC milliseconds are used.

- 28 -

6.3.2 Fintech

Indicates whether it is a financial transaction. The status value has true / false.

6.3.3 Privacy

Indicates whether the contract is public or private. The status value has true / false.

6.3.4 Fee

Network fee for contract transmission.

6.3.5 From Account

This is the account that sends the contract. Value is Default Account (0x00000000), Token Account, or U
ser. It can be an Account.

6.3.6 To Account

This is the account that receives the contract. Value is Default Account (0x00000000), Token Account, or
User. It can be an Account.

6.3.7 Action

It is a unique value for the actual operation. Token Action value, Action value according to contract type,
and It is divided into Smart Contract Action values

6.3.8 Contents (Blob)

These are the detailed items included in the contract. Each contract has different details.

- 29 -

6.3.9 Memo

A contract can optionally make a memo about the contract.

6.3.10 Signature

It is the signature of the contract sender.

6.3.11 Signed Public Key

It is a public key used as the wallet of the contract sender.

- 30 -

7. Block

7.1 Block Description

blk_num (8)
p2p_addr (3)
bat (8)

pbh (32)
t_cnt(4)
blk_hash (32)
sig (64)
pubkey (33)

Figure 25. Block Contents

Blocks are created in the consensus layer of the NNA. Block Fields are Block Number, NNA's P2P Addres
s that creates Block, Block Generation Time (BGT), Previous Block Hash (PBH), Transaction Count, Block

Hash, Signature, Public Key matching the Private Key used for Signature, and It consists of Block Confirm
Time (BCT).

7.1.1 Block Number

Block Number starts with 1 in Genesis Block and increases by 1 for each Block.

7.1.2 P2P Address

This is the P2P address of the NN that creates the block.

7.1.3 Block Generation Time

Block Generation Time is the time when a block is created and is expressed in UTC milliseconds time.

- 317 -

7.1.4 Previous Block Hash

Previous Block Hash is the Block Hash of the previous block, and in the case of Genesis Block, Previous B
lock Hash Field is set to 0x0.

7.1.5 Transaction Count

It is the total of new transactions entered into the cluster when the block is created.

7.1.6 Block Hash

Block Number, P2P Address, Block Generation Time, Previous Block Hash, Transaction Count, and the va
lue obtained by concatenating the XOR values of Transactions are input values to SHA256 and outputte
d.

7.1.7 Signature

Issue the signature for the previously derived Block Hash value. At this time, to generate the signature, t
he ed25519 private key of the NN that creates the block is used.

7.1.8 Public Key

It is NN's ed25519 public key to verify the signature for the previously issued Block Hash.

7.1.9 Block Confirm Time

Block Confirm Time is the time to confirm that the created block is irreversible.

- 32 -

7.2 Group XOR-Hash Cipher based on time arriving

The independently designed Group XOR-Hash Cipher based on time arriving algorithm is as follows, and
it is planned to be supported in the future.

Bitcoin manages the transaction details included in the block in the form of a Merkle tree, and finally st
ores the Merkle Root in the block.

Ethereum manages the state machine using the Modified Merkle Patricia tree, and stores the state in th
e form of a key-value pair. Taking this one step further, we proposed a new format called Verkle tree.

It focuses on how to minimize the vectors required for verification.

This mainnet is a grouping method rather than a tree type of Group XOR-Hash Cipher on time arriving.
use the expression

Assuming that the maximum number of transactions in a group is 256, check the number of all transact

ions that arrived at the time the block is created and group them by 256 in order of arrival time. It is oka
y even if the number of transactions in the last group does not reach 256.

Hash each transaction by group. C[m] is derived by XORing the hashed values for each group. After hash
ing the C[m] values derived for each group, XOR them all to derive the C value. Hashing this C value bec
omes the root hash value.

At this time, it is assumed that the value of C is the same as the value obtained by XORing the value obt
ained by hashing a specific transaction M[k] and H(C[m]) of the group and then XORing the unknown co
nstant value, alpha[k].Through this assumption, alpha[k] is the value obtained by XORing the values of
M[k], H(C[m]), and C.

In other words, to verify a specific transaction M[k], only the values of alpha[k], H(C[m]), and H(M[k]) n
eed to be known. This is because the Root Hash can be checked at all nodes.

If a specific transaction is changed from the original value, the hash value is changed, so it is easy to che
ck whether it is forged or tampered with.

- 33 -

Root: H{C) |
e |

Group 0 Group m

[an | | a | [a @ [H(Clop] @ | HG)] e;g| wmet || akmen | | akeen | @ [H (Clm)]
® @ ® @ @ ®

[H L) } = [H (M)] [H {M[K]) l - [cio]] [Hm{kwm } B [H (k)] [H (Mlkmek) } [ciml]

| \ L T T T S | Wil | mpmen || wEmed ‘

= -) -) T

[- \ N [— ‘ & [—] @[A } Construction O(n)

) i Proof size of Message o(2)

e]) [Sl] o [s] @ (A | Update Message o(1)

[women |- [Hem | o [Howew | o o |

Figure 26. Group XOR-Hash Cipher on time arriving

- 34 -

8. Distribute Database

8.1 Replication

Replication takes place between cluster NNs in the data path, between NNs and ISAGs within a cluster,
between NNs and FBNs within a cluster, and between FBNs and external FBNs. In addition, replication is
performed between IS and ISAG of each cluster in the control path.

Synchronization is made with each other through replication between major nodes that make up the m
ainnet ecosystem, and As the number of FBNs increases, the ecosystem expands and becomes richer.

8.2 Shard

ISAG can shard is as an option.

3.3 Query

You can request information from FBN to check the data of the mainnet's Data Path. Control Path infor
mation is requested from ISAG.

- 35 -

9. Governance

9.1 Currency and Issuance

[unit of currency]

The platform coin, Fin, consists of 9 decimal places. For each three decimal places, the name of each un
it is zoned, redo.

1 kitty = 0.001 Fin
1 goofy = 0.000001 Fin

1 micky = 0.000000001 Fin

[Currency Issuance]

The basic supply for each year is 60 million, and based on the inflation standard supply of 600 million fo
r each group by year. Inflation is generated by applying an inflation weight to The authority for issuance
by year and group is It is at the DGOS altar.

Weighted filter formula

Zk=Ayexp(yByi)+C

The basic inflation rate (IR) for each number of nodes is 8%, and the inflation weight (Zk) for each node
is applied to A 86.43% to 167.19% inflation weight (Nk) is given. Accordingly, from node 1 to node 70, It
has an initial inflation rate of 6.91% (8% * 86.43%) and 13.38% from the 911 node to the 980 node. It h
as an initial inflation rate of (8% * 167.19%).

Inflation rate by number of nodes (N,)

Basic Inflation Rate (IR) = 8%

Inflation weight per node (Z;) = A*exp(—B xi) + C
;where A = 138.06306475, B = 0.06764022, C = 29.12741104,
1<k<14,and13=i=>0

Nk = IR *Zk

- 36 -

n (number of nodes)

~.

SIS
NE B e NouswnR|x

= |
W

1<n<70
71 < n <140
141 < n <
211<n<
281< n<
351< n<
421< n<
491< n<
561 < n<
631< n<
701 < n <
771 < n <
841 < n<
911< n <

210
280
350
420
490
560
630
700
770
840
910
980

Table 1. n vs i (inflation weight by number of nodes)

NN
o RN W

O R INWNUTON |0

The annual inflation weight (Z,,) is 90%, and in the first year, the initial inflation rate by number of node

s (IRy=4) of 100% (Z,-1) is supplied as inflation. Thereafter, the inflation rate decreases by 90% each ye

ar.i.e. 1 year. Primary inflation rate (IR,,—;) is 100% of the initial inflation rate for each group, the secon
d year inflation rate (IR,—;) is the group 90% of initial inflation rate (100%*90%), third year inflation rat
e(IRy—3)istheinitial inflation by group. Decrease to 81% of the rate (100%*90%*90%) and the 12-

year inflation rate (IR,,—4,) is the initial inflation by group reduced to 28% of the rate.

Yearly Inflation Rate (IR,)

Zy=1 = 100% aTld Zyzz

IR, = Zy,_1 * Ny;wherey =1,

IR, = Z,, * Ny;wherey =2

= Zy—l * 90%

Accordingly, the total supply by Year 12 fluctuates from approximately 1 billion to 1.27 billion dependin

g on the number of nodes.

Inflation-based supply 600000000 | inflation 6.91% 6.22% 5.60% 4.98% 4.43% 3.94% 3.53% 311% 2.77% 2.49 2.21% 1.94% | Nodes (70)
Base supply by year 60000000 8.00% 13.38% 12.04% 10.83% 9.63% 8.56% 7.62% 6.82% 6.02% 5.35% 4.82% 4.28% 3.75% | Nodes (980)
inflationary increase 90.00% 100.00% 90.00% 81.000% 72.000%| 64.000% 57.000% 51.000% 45.000%| 40.000% 36.000% | 32.000% 28.000%
1 2 3 4 5 6 7 8 9 10 1 12 Year
Nodes inflationary increase Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Total Supply
70 86.43% 6.91%| 101487553 97338798 93604918 89871038 86552034 | 83647905 81158652 78669399 | 76595021 74935519 73276017 71616515| 1008753369
140 90.44% 7.24%| 103412459| 99071213 | 95164091| 91256970 | 87783973| 84745101 | 82140354| 79535606 | 77364983 75628485 73891986 | 72155488 | 1022150709
210 94.73% 7.58% | 105472069 100924862 96832376 92839890 8919079 85919079 83190755| 80462431 | 78188827 76369945 74551062 72732179 1036485599
280 99.32% 7.95% | 107675812| 102908231 | 98617408| 94326585 | 90512520| 87175213 | 84314664| 81454115 | 79070325 77163292 75256260 | 73349227| 1051823652
350 104.24% 8.34%| 110033773| 105030396 [100527356 96024317 92021615 88519251 85517224 82515198 | 80013509 78012158] 76010807 | 74009456 [1068235060
420 109.49% 876%| 112556746 107301071 | 102570964| 97840857 | 93636317 89957345 | 86803940| 83650535 | 81022698 78920428 76818158 | 74715888 1085794947
490 115.12% 9.21% 115256276 | 109730648 | 104757583 99784519 95364016 | 91496077 88180701| 84865324 | 82102510 79892259 77682008 75471757 1104587250
560 121.13% 9.69% | 118144720(112330248 | 107097223| 101864199 | 97212621| 93142490 | 89653807| 86165124 | 83257888 80932099 78606310 76280521| 1124687250
630 127.57% 10.21%| 121235299 115111769 | 109600592 104089415 99190591 94904120 91230002 | 87555884 | 84494119 82044707 79595295 77145883| 1146197676
700 134.46% 10.76% | 124542157| 118087941 [112279147| 10647053 | 101306980| 96789029 | 92916500| 89043970 | 85816862 83235176] 80652490 | 78071804 1169213409
770 141.83% 11.35% | 128080430 121272387 115145148 | 109017909 103571475| 98805945 94721019 90636193 87232172 84508954f 81785737 79062520 1193839789
840 149.72% 1.98%| 131866312| 124679681 N83N713| 111743744 | 105994439| 100963798 | 96651819 92339840 | 88746524 85871872 82997219| 80122567 1220189528
910 158.16% 12.65% 135917131 128325418 121492876 114660334 [108586964 | 103272765 98717737 94162709 | 90366852 87330167| 84293482 81256796 | 1248383231
980 167.19% 13.38%| 140251428| 132226285 | 125003655| 117781028 111360914 | 105743314 | 100928228 96113142 | 92100571 88890514 85680457 | 82470399 1278549936

Figure 27. supply by group/year

- 37 -

9.2 Reward Policy

The currency supplied by year is diverse for the expansion of the Final Chain ecosystem, reserve, team,
marketing, sales, etc. used In addition, a certain amount may be incinerated at the discretion of the DG
OS Altar to maintain its value.

9.3 Fee Policy

Fees are used for deflationary purposes. In other words, all fees are incinerated. Ecosystem members m
ust submit a fee each time a contract is generated.

[Transaction model]

Transactions consume network resources. Costs are incurred to consume these network resources. In t
he case of network resources, since they are public goods, the minimum cost is reasonable in actual use
. In order to minimize these costs, 5,000 network points are paid per day at the time a transaction occur
s. After one day, the remaining network points cannot be used and a new 5,000 network points will be
paid. A day is from 00:00:00 to 24:00:00 UTC time. 1 network point equals 1 goofy. However, this netwo
rk point cannot be changed to a token.

By staking Fins, the cost of network resource consumption can also be reduced. If Fins are staked for 3 d
ays, 10 additional network points can be used per 1 fin per day after 3 days (72 hours) have elapsed. Thi
s network point cannot be changed with a token (Fin). After one day, the existing network points cannot
be used and are recharged at 10 network points per Fin.

In order to consume network resources, network points can also be purchased using Fin. At this time, 1
Fin = 1,000,000 network points are charged, and all used Fins are burned. Charged network points cann
ot be changed to tokens.

The transaction fee rate can be obtained according to the first byte unit amount. The unit of Fee is goof
y, and it is expressed as 1 Byte = 10 goofy. For example, if a transaction with a size of 100 bytes is genera
ted, the fee will be 1,000 goofy.

In addition, when a transaction between clusters occurs, the fee rate is weighted. Each cluster receives
user registrations according to local distances. Transactions that occur between clusters have strong lon
g-distance transactions.

- 38 -

When a transaction occurs, check whether there are enough network points to transmit the transaction
according to the following priorities.

1) Check 5,000 network points that are automatically recharged per day.
2) Check the network points generated by staking.
3) Check if there are network points purchased from the transaction originating wallet.

If all are not enough, the transaction transfer fails.

[Contract model]

The contract consumes CPU and Memory of mainnet participating nodes. In the case of CPU, resource ¢
onsumption occurs whenever a contract is executed, and in the case of memory, consumption occurs w
hen a contract is saved. CPU andIn the case of memory, since it is a consumer product, it must be handl

ed separately from transactions. The fee for such consumption is expressed as Power. 1 Power equals 1

0 goofy. CPU consumption is expressed as Execution Power, and Memory consumption is expressed as S
tack Power.

Power is not automatically recharged like network points and must be purchased using Fin. After purch
asing 100,000 Power with 1 Fin, you can use it immediately. Power can be converted into tokens (Fin) as
needed. However, the conversion from Power to Fin takes 3 days (72 hours).

[Memory consumption]
Since the contract once stored in the memory must be stored permanently, the corresponding fee must
also be quite large. This fee is incinerated in its entirety and is a fixed value as shown below.

1. Token Generation: 1000 Fin (100,000,000 Stack Power) 2. Account Creation: 1 Fin (Activation Fee, 10
0,000 Stack Power) - Minimum Maintenance Cost
[CPU consumption]

Each time the contract is executed, 100 Execution Power is used. At this time, all the power used is incin
erated.

-39 -

10.Inter-operability

Inter-operability will be supported in the future.

- 40 -

11.Reference

https://bitcoin.org

https://ethereum.org

https://eos.io
http://wiki.hash.kr/index.php/BIP39
https://ko.wikipedia.org/wiki/ISO_3166-1
https://en.wikipedia.org/wiki/ISO_3166-2

https://www.ip2location.com/free/is03166-2

41 -

