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Appendix A: Detailed derivations of propositions I & II 

The Proposition I derivation begins with equation  (6) from the literature: 

𝐸𝐷𝐹 = 𝑇𝑟𝑎𝑐𝑒 (
𝜕�̂�

𝜕𝑌
).                                                                                                                                              (6) 

𝐏𝐫𝐨𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧 𝐈 𝐞𝐪𝐮𝐚𝐭𝐢𝐨𝐧     

𝐸𝐷𝐹 = ∑ 𝑞𝑚𝑖

𝑀

𝑖=1

𝐸𝐷𝐹𝑚𝑖
 + 𝑇𝑟𝑎𝑐𝑒 (𝑋(�̂�𝑇 ⊗ 𝐼𝑝)

𝜕𝑞

𝜕𝑌
).                                                                                    (7) 

 

Equation (4)is substituted  into equation  (6) resulting in equation (8).  

𝐸𝐷𝐹 = 𝑇𝑟𝑎𝑐𝑒 (
𝜕

𝜕𝑌
 𝑋𝑞�̂�)                                                                                                                                      (8) 

Equation (8) is differentiated using equation (10).  

𝐸𝐷𝐹 = 𝑇𝑟𝑎𝑐𝑒 (𝑋 ((�̂�𝑇 ⊗ 𝐼𝑝)
𝜕𝑞

𝜕𝑌
+ (𝐼1 ⊗ 𝑞)

𝜕�̂�

𝜕𝑌
) ) .                                                                                (11) 

𝐸𝐷𝐹 = 𝑇𝑟𝑎𝑐𝑒 (𝑋𝑞
𝜕�̂�

𝜕𝑌
)+ 𝑇𝑟𝑎𝑐𝑒 (𝑋(�̂�𝑇⊗ 𝐼𝑝)

𝜕𝑞

𝜕𝑌
).                                                                                 (12) 

𝐸𝐷𝐹 = 𝑇𝑟𝑎𝑐𝑒 (𝐴
𝜕�̂�

𝜕𝑌
) + 𝑇𝑟𝑎𝑐𝑒  (𝑋(�̂�𝑇 ⊗ 𝐼𝑝)

𝜕𝑞

𝜕𝑌
),                                                                                (12.1) 

where 𝐴 is an 𝑛 by 𝑝 block matrix  [𝑋𝑚1
𝑞𝑚1

, ⋯ 𝑋𝑚𝑀
𝑞𝑚𝑀] of 𝑀 blocks 𝑋𝑚𝑖

𝑞𝑚𝑖
 of dimension 𝑛 by 𝑝𝑚𝑖

 

and where 𝑞𝑚1
,… 𝑞𝑚𝑀

 are scalars . 

The matrix
𝜕�̂�

𝜕𝑌
 is a 𝑝 by 𝑛 block matrix 

[
 
 
 
 𝜕�̂�𝑚1

𝜕𝑌
⋮

𝜕�̂�𝑚𝑀

𝜕𝑌 ]
 
 
 
 

 of 𝑀 blocks 
𝜕�̂�𝑚𝑖

𝜕𝑌
 of dimension 𝑝𝑚𝑖

 by 𝑛. 

By the properties of block multiplication , 𝐴
𝜕�̂�

𝜕𝑌
= ∑ 𝑞𝑚𝑖

𝑋𝑚𝑖
𝑀
𝑖=1  

𝜕�̂�𝑚𝑖

𝜕𝑌
 , 

where the scalar 𝑞𝑖  commutes  to the left side of𝑋𝑚𝑖
. 

𝐸𝐷𝐹 = 𝑇𝑟𝑎𝑐𝑒 (∑𝑞𝑚𝑖
𝑋𝑚𝑖

𝑀

𝑖=1

 
𝜕�̂�𝑚𝑖

𝜕𝑌
) + 𝑇𝑟𝑎𝑐𝑒 (𝑋(�̂�𝑇 ⊗ 𝐼𝑝)

𝜕𝑞

𝜕𝑌
).                                                         (12.2) 
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𝐸𝐷𝐹 = 𝑇𝑟𝑎𝑐𝑒 (∑𝑞𝑚𝑖

𝑀

𝑖=1

𝜕𝑋𝑚𝑖
�̂�𝑚𝑖

𝜕𝑌
) + 𝑇𝑟𝑎𝑐𝑒 (𝑋(�̂�𝑇 ⊗ 𝐼𝑝)

𝜕𝑞

𝜕𝑌
).                                                          (12.3) 

Using the properties  of the Trace function and substituting  𝑋𝑚𝑖
�̂�𝑚𝑖

 𝑤𝑖𝑡ℎ �̂�𝑚𝑖
,  

𝐸𝐷𝐹 = ∑𝑞𝑚𝑖

𝑀

𝑖=1

𝑇𝑟𝑎𝑐𝑒 (
𝜕�̂�𝑚𝑖

𝜕𝑌
)+ 𝑇𝑟𝑎𝑐𝑒 (𝑋(�̂�𝑇 ⊗ 𝐼𝑝)

𝜕𝑞

𝜕𝑌
).                                                                       (13) 

Substituting 𝑇𝑟𝑎𝑐𝑒 (
𝜕�̂�𝑚𝑖

𝜕𝑌
)  with 𝐸𝐷𝐹𝑚𝑖

 𝑏y using equation (6) results  in Proposition I.   

 

𝐏𝐫𝐨𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧 𝐈𝐈 𝐞𝐪𝐮𝐚𝐭𝐢𝐨𝐧 

𝐸𝐷𝐹 = ∑𝑞𝑚𝑖

𝑀

𝑖=1

𝐸𝐷𝐹𝑚𝑖
+ 𝐸𝐷𝐹𝑤 + 𝑇𝑟𝑎𝑐𝑒 (𝑋𝐴�̂�∆𝑞).                                                                                         (14) 

 

Proposition II is derived  from Proposition  I.  

Starting with equation (7). 

𝐸𝐷𝐹 = ∑𝑞𝑚𝑖

𝑀

𝑖=1

𝐸𝐷𝐹𝑚𝑖
 + 𝑇𝑟𝑎𝑐𝑒  (𝐷

𝜕𝑞

𝜕𝑌
),                                                                                                    (14.1) 

where 𝐷 = 𝑋(�̂�𝑇 ⊗ 𝐼𝑝) is an 𝑛 by 𝑝2 block matrix  [𝑋�̂�1 ⋯ 𝑋�̂�𝑃], of 𝑃 blocks  𝑋�̂�𝑖   

of dimensions  𝑛 by 𝑝 with scalars  �̂�1 ,… , �̂�𝑝 .  

The matrix 
𝜕𝑞

𝜕𝑌
 is a 𝑝2 by 𝑛 matrix  as a result of the diagonal 𝑝 by 𝑝 matrix  𝑞 being vectorized  

and differentiated using the convention articulated in equation (9). 

𝐸𝐷𝐹 = ∑𝑞𝑚𝑖

𝑀

𝑖=1

𝐸𝐷𝐹𝑚𝑖
 + 𝑇𝑟𝑎𝑐𝑒  (𝐸),                                                                                                           (14.2) 

where 𝐸 =  𝐷
𝜕𝑞

𝜕𝑌
 is an 𝑛 by 𝑛 matrix  

[
 
 
 
 
 
 
∑ 𝑋1𝑗�̂�𝑗

𝜕𝑞𝑗

𝜕𝑌1

𝑃

𝑗=1

⋯ ∑𝑋1𝑗 �̂�𝑗

𝜕𝑞𝑗

𝜕𝑌𝑛

𝑃

𝑖=1

⋮ ⋱ ⋮

∑𝑋𝑛𝑗�̂�𝑗

𝜕𝑞𝑗

𝜕𝑌1

𝑃

𝑗=1

⋯ ∑ 𝑋𝑛𝑗�̂�𝑗

𝜕𝑞𝑗

𝜕𝑌𝑛

𝑃

𝑖=1 ]
 
 
 
 
 
 

                                    (14.3) 



   
 

3 
 

 and 𝑋1𝑗  is the 1 𝑗 entry of matrix 𝑋. 

𝐸𝐷𝐹 = ∑𝑞𝑚𝑖

𝑀

𝑖=1

𝐸𝐷𝐹𝑚𝑖
+ 𝑇𝑟𝑎𝑐𝑒 

(

 
 
 
 

[
 
 
 
 
 
 
∑ 𝑋1𝑗�̂�𝑗

𝜕𝑞𝑗

𝜕𝑌1

𝑃

𝑗=1

⋯ ∑𝑋1𝑗 �̂�𝑗

𝜕𝑞𝑗

𝜕𝑌𝑛

𝑃

𝑖=1

⋮ ⋱ ⋮

∑𝑋𝑛𝑗�̂�𝑗

𝜕𝑞𝑗

𝜕𝑌1

𝑃

𝑗=1

⋯ ∑ 𝑋𝑛𝑗�̂�𝑗

𝜕𝑞𝑗

𝜕𝑌𝑛

𝑃

𝑖=1 ]
 
 
 
 
 
 

 

)

 
 
 
 

.                                           (15) 

By grouping terms by underlying auxiliary models and using the fact that 
𝜕𝑞𝑗

𝜕𝑌1
 is constant    

within the sum for each auxiliary model, 

∑𝑋1𝑗 �̂�𝑗

𝜕𝑞𝑗

𝜕𝑌1

𝑃

𝑗=1

= ∑ ∑ (𝑋1𝑘�̂�𝑘

𝜕𝑞𝑘

𝜕𝑌1

)

𝑝𝑚𝑖

𝑘=1  

𝑀

𝑖=1

= ∑ ∑(𝑋1𝑘�̂�𝑘)

𝑝𝑚𝑖

𝑘=1  

𝑀

𝑖=1

𝜕𝑞𝑚𝑖

𝜕𝑌1
= ∑ �̂�1𝑖

𝜕𝑞𝑚𝑖

𝜕𝑌1  

𝑀

𝑖=1

,                                (15.1) 

where �̂�1𝑖  𝑖s a fitted value of the ith auxiliary model. 

𝐸 can then be restated as  

[
 
 
 
 
 
 
∑�̂�1𝑖

𝜕𝑞𝑚𝑖

𝜕𝑌1

𝑀

𝑖=1

⋯ ∑�̂�1𝑖

𝜕𝑞𝑚𝑖

𝜕𝑌𝑛

𝑀

𝑖=1

⋮ ⋱ ⋮

∑�̂�𝑛𝑖

𝜕𝑞𝑚𝑖

𝜕𝑌1

𝑀

𝑖=1

⋯ ∑ �̂�𝑛𝑖

𝜕𝑞𝑚𝑖

𝜕𝑌𝑛

𝑀

𝑖=1 ]
 
 
 
 
 
 

 .                                                               (15.2) 

𝐸 can then be restated as 𝐸 = 𝑋𝐴

𝜕�̂�𝑞

𝜕𝑌
,                                                                                                         (15.3) 

where 𝑋𝐴 is an 𝑛 by 𝑚 matrix of auxiliary model fitted values [
�̂�11 ⋯ �̂�1𝑚

⋮ ⋱ ⋮
�̂�𝑛1 ⋯ �̂�𝑛𝑚

],                           (15.4) 

�̂�𝑞is an 𝑚 by 1 vector of 𝑞𝑚
′ 𝑠 [

𝑞𝑚1

⋮
𝑞𝑚𝑀

],                                                                                                            (15.5) 

𝐸𝐷𝐹 = ∑𝑞𝑚𝑖

𝑀

𝑖=1

𝐸𝐷𝐹𝑚𝑖
+ 𝑇𝑟𝑎𝑐𝑒 

(

 
 
 
 

[
 
 
 
 
 
 
∑ �̂�1𝑖

𝜕𝑞𝑚𝑖

𝜕𝑌1

𝑀

𝑖=1

⋯ ∑�̂�1𝑖

𝜕𝑞𝑚𝑖

𝜕𝑌𝑛

𝑀

𝑖=1

⋮ ⋱ ⋮

∑�̂�𝑛𝑖

𝜕𝑞𝑚𝑖

𝜕𝑌1

𝑀

𝑖=1

⋯ ∑ �̂�𝑛𝑖

𝜕𝑞𝑚𝑖

𝜕𝑌𝑛

𝑀

𝑖=1 ]
 
 
 
 
 
 

)

 
 
 
 

, and                                            (16) 
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𝐸𝐷𝐹 = ∑𝑞𝑚𝑖

𝑀

𝑖=1

𝐸𝐷𝐹𝑚𝑖
+ 𝑇𝑟𝑎𝑐𝑒 (𝑋𝐴

𝜕�̂�𝑞

𝜕𝑌
).                                                                                                     (17) 

Utilizing the condition that �̂�𝑞 is estimated by a single equation linear in specification as a function 

of 𝑋𝐴 results in the form �̂�𝑞 = 𝐹(𝑋𝐴)𝑌 , which allows equation (17) to be rewritten as (17.1): 

𝐸𝐷𝐹 = ∑ 𝑞𝑚𝑖

𝑀

𝑖=1

𝐸𝐷𝐹𝑚𝑖
+ 𝑇𝑟𝑎𝑐𝑒 (𝑋𝐴

𝜕𝐹(𝑋𝐴)𝑌 

𝜕𝑌
).                                                                                      (17.1) 

Equation (17.1) is differentiated using equation (10): 

𝐸𝐷𝐹 = ∑𝑞𝑚𝑖

𝑀

𝑖=1

𝐸𝐷𝐹𝑚𝑖
+ 𝑇𝑟𝑎𝑐𝑒 (𝑋𝐴 ((𝑌𝑇 ⊗ 𝐼𝑚)

𝜕𝐹(𝑋𝐴)

𝜕𝑌
+ (𝐼1 ⊗ 𝐹(𝑋𝐴))𝐼𝑛)).                             (17.2) 

This simplifies to equation  (18): 

𝐸𝐷𝐹 = ∑𝑞𝑚𝑖

𝑀

𝑖=1

𝐸𝐷𝐹𝑚𝑖
+ 𝑇𝑟𝑎𝑐𝑒(𝑋𝐴𝐹(𝑋𝐴)) + 𝑇𝑟𝑎𝑐𝑒 (𝑋𝐴 ((𝑌𝑇 ⊗ 𝐼𝑚)

𝜕𝐹(𝑋𝐴)

𝜕𝑌
)).                             (18) 

The notation for (𝑌𝑇 ⊗ 𝐼𝑚)
𝜕𝐹(𝑋𝐴)

𝜕𝑌
 is rewritten as �̂�∆𝑞,which is an 𝑚 by 𝑛 matrix.  

�̂�∆𝑞 = (𝑌𝑇 ⊗ 𝐼𝑚)
𝜕𝐹(𝑋𝐴)

𝜕𝑌
= [

𝑌1  0  0
 0 𝑌1  0
 0  0 𝑌1

⋯
⋯
⋯

𝑌𝑛  0 0 
 0 𝑌𝑛 0 
 0  0 𝑌𝑛

]

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝐹(𝑋𝐴)11

𝜕𝑌1
⋯

𝜕𝐹(𝑋𝐴)11

𝜕𝑌𝑛
𝜕𝐹(𝑋𝐴)21

𝜕𝑌1
 

𝜕𝐹(𝑋𝐴)21

𝜕𝑌𝑛

⋮
𝜕𝐹(𝑋𝐴)𝑚1

𝜕𝑌1
𝜕𝐹(𝑋𝐴)12

𝜕𝑌1
⋮

𝜕𝐹(𝑋𝐴)𝑚𝑛

𝜕𝑌1

…  
  
 
⋯

 

 
⋮

𝜕𝐹(𝑋𝐴)𝑚1

𝜕𝑌𝑛
𝜕𝐹(𝑋𝐴)12

𝜕𝑌𝑛  
 ⋮

𝜕𝐹(𝑋𝐴)𝑚𝑛

𝜕𝑌𝑛 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 .              (18.1) 

�̂�∆𝑞 =

[
 
 
 
 
 
 ∑

𝑌𝑙𝜕𝐹(𝑋𝐴)1𝑙

𝜕𝑌1

𝑛

𝑙=1

⋯ ∑
𝑌𝑙𝜕𝐹(𝑋𝐴)1𝑙

𝜕𝑌𝑛

𝑛

𝑙=1
⋮ ⋱ ⋮

∑
𝑌𝑙𝜕𝐹(𝑋𝐴)𝑚𝑙

𝜕𝑌1

𝑛

𝑙=1

⋯ ∑
𝑌𝑙𝜕𝐹(𝑋𝐴)𝑚𝑙

𝜕𝑌𝑛

𝑛

𝑙=1 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
𝜕𝐹(𝑋𝐴)11

𝜕𝑌1
⋯

𝜕𝐹(𝑋𝐴)1𝑛

𝜕𝑌𝑛
⋮ ⋱ ⋮

𝜕𝐹(𝑋𝐴)𝑚1

𝜕𝑌1
⋯

𝜕𝐹(𝑋𝐴)𝑚𝑛

𝜕𝑌𝑛 ]
 
 
 
 
 

𝑌.                                      (18.2) 
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�̂�∆𝑞 =

[
 
 
 
 
 
𝜕𝐹(𝑋𝐴)11

𝜕𝑌1
⋯

𝜕𝐹(𝑋𝐴)1𝑛

𝜕𝑌𝑛
⋮ ⋱ ⋮

𝜕𝐹(𝑋𝐴)𝑚1

𝜕𝑌1
⋯

𝜕𝐹(𝑋𝐴)𝑚𝑛

𝜕𝑌𝑛 ]
 
 
 
 
 

𝑌.                                                                                                                (18.3) 

As shown in (18.3), �̂�∆𝑞  is the change in 𝐹(𝑋𝐴)𝑌 resulting  from 𝑋𝐴  being a function of 𝑌.  

𝐴s a result, the final term in equation  (18) can be written as 𝑇𝑟𝑎𝑐𝑒 (𝑋𝐴�̂�∆𝑞),resulting in Proposition II.   

 

𝐂𝐨𝐦𝐩𝐮𝐭𝐢𝐧𝐠 𝐭𝐡𝐞 𝐥𝐢𝐦𝐢𝐭 𝐨𝐟 𝑻𝒓𝒂𝒄𝒆 (𝑿𝑨�̂�∆𝒒) 𝒂𝒔 �̂�′𝒔 → 𝒀:   

As �̂�′𝑠 → 𝑌, the matrix 𝑋𝐴 = [
�̂�11 ⋯ �̂�1𝑚

⋮ ⋱ ⋮

�̂�𝑛1 ⋯ �̂�𝑛𝑚

] → [

𝑌1 ⋯ 𝑌1

⋮ ⋱ ⋮
𝑌𝑛 ⋯ 𝑌𝑛

] .                                                           (18.4) 

As 𝑋𝐴 → [

𝑌1 ⋯ 𝑌1

⋮ ⋱ ⋮
𝑌𝑛 ⋯ 𝑌𝑛

] , the vector �̂�𝑞 = 𝐹(𝑋𝐴)𝑌 → 𝜙,where 𝜙 is a vector of length 𝑚.              (18.5) 

As �̂�𝑞 = 𝐹(𝑋𝐴)𝑌 → 𝜙, the sum ∑�̂�𝑞𝑖

𝑚

𝑖=1

→ 1.                                                                                               (18.6) 

As ∑�̂�𝑞𝑖

𝑚

𝑖=1

→ 1, any changes in the elements  of �̂�𝑞  are offsetting;  therefore,  

∑
𝜕�̂�𝑞𝑖

𝜕𝜏

𝑚

𝑖=1

→ 0 for an arbitrary 𝜏.                                                                                                                      (18.7) 

Using the substitution �̂�𝑞 = 𝐹(𝑋𝐴)𝑌, equation (18.7) can be restated  as (18.8):   

∑
𝜕�̂�𝑞𝑖

𝜕𝜏

𝑚

𝑖=1

= ∑
𝜕(𝐹(𝑋𝐴)𝑌)𝑖

𝜕𝜏

𝑚

𝑖=1

= ∑
𝜕(∑ 𝑌𝑙𝐹(𝑋𝐴)𝑖𝑙

𝑛
𝑙=1 )𝑖

𝜕𝜏

𝑚

𝑖=1

→ 0 for an arbitrary 𝜏.                                    (18.8) 

Taking the derivative in equation (18.8) results in (18.9):  

∑
𝜕(∑ 𝑌𝑙𝐹(𝑋𝐴)𝑖𝑙

𝑛
𝑙=1 )𝑖

𝜕𝜏

𝑚

𝑖=1

= ∑∑ (
𝐹(𝑋𝐴)𝑖𝑙𝜕𝑌𝑙

𝜕𝜏
+

𝑌𝑙𝜕𝐹(𝑋𝐴)𝑖𝑙
𝜕𝜏

)

𝑛

𝑙=1

𝑚

𝑖=1

→ 0 for an arbitrary 𝜏.                      (18.9) 

For well behaved cases,∑ ∑(
𝐹(𝑋𝐴)𝑖𝑙𝜕𝑌𝑙

𝜕𝜏
)

𝑛

𝑙=1

𝑚

𝑖=1

≠ −1 ∑∑ (
𝑌𝑙𝜕𝐹(𝑋𝐴)𝑖𝑙

𝜕𝜏
)

𝑛

𝑙=1

𝑚

𝑖=1

, which results   

in equations (18.10) and (18.11): 
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 ∑ ∑(
𝐹(𝑋𝐴)𝑖𝑙𝜕𝑌𝑙

𝜕𝜏
)

𝑛

𝑙=1

𝑚

𝑖=1

→ 0 for an arbitrary 𝜏.                                                                                           (18.10) 

 ∑ ∑(
𝑌𝑙𝜕𝐹(𝑋𝐴)𝑖𝑙

𝜕𝜏
)

𝑛

𝑙=1

𝑚

𝑖=1

→ 0 for an arbitrary 𝜏.                                                                                           (18.11) 

Utilizing the (18.2) representation of �̂�∆𝑞 =

[
 
 
 
 
 
 ∑

𝑌𝑙𝜕𝐹(𝑋𝐴)1𝑙

𝜕𝑌1

𝑛

𝑙=1

⋯ ∑
𝑌𝑙𝜕𝐹(𝑋𝐴)1𝑙

𝜕𝑌𝑛

𝑛

𝑙=1

⋮ ⋱ ⋮

∑
𝑌𝑙𝜕𝐹(𝑋𝐴)𝑚𝑙

𝜕𝑌1

𝑛

𝑙=1

⋯ ∑
𝑌𝑙𝜕𝐹(𝑋𝐴)𝑚𝑙

𝜕𝑌𝑛

𝑛

𝑙=1 ]
 
 
 
 
 
 

  

together  with equation (18.11) implies that in the matrix �̂�
∆𝑞

, the sum of each column → 0.  

Therefore, as  ∑ ∑(
𝑌𝑙𝜕𝐹(𝑋𝐴)𝑖𝑙

𝜕𝜏
)

𝑛

𝑙=1

𝑚

𝑖=1

→ 0 for an arbitrary 𝜏, �̂�∆𝑞 → 𝜆,where 𝜆 is an 𝑚 by 𝑛  

matrix  with columns that sum to zero.                                                                                                        (18.12) 

Substituting 𝑋𝐴 and �̂�∆𝑞  with their respective limits from equations  (18.4) and (18.12) results in 

equation  (18.13):  

  lim
�̂�′𝑠→𝑌

𝑇𝑟𝑎𝑐𝑒 (𝑋𝐴�̂�∆𝑞) =  𝑇𝑟𝑎𝑐𝑒 ([

𝑌1 ⋯ 𝑌1

⋮ ⋱ ⋮
𝑌𝑛 ⋯ 𝑌𝑛

]𝜆) .                                                                                (18.13) 

Given that the rows of [

𝑌1 ⋯ 𝑌1

⋮ ⋱ ⋮
𝑌𝑛 ⋯ 𝑌𝑛

]  are constant and that the columns of 𝜆 sum  

to zero, their product is an 𝑛 by 𝑛 zero matrix. 

 lim
�̂�′𝑠→𝑌

𝑇𝑟𝑎𝑐𝑒 (𝑋𝐴�̂�∆𝑞) = 𝑇𝑟𝑎𝑐𝑒  ([

𝑌1 ⋯ 𝑌1

⋮ ⋱ ⋮
𝑌𝑛 ⋯ 𝑌𝑛

]𝜆) =  𝑇𝑟𝑎𝑐𝑒 [

011 ⋯ 0𝑛1

⋮ ⋱ ⋮
0𝑛1 ⋯ 0𝑛𝑛

] = 0.                          (18.14) 

 lim
�̂�′𝑠→𝑌

𝑇𝑟𝑎𝑐𝑒 (𝑋𝐴�̂�∆𝑞) = 0.                                                                                                                               (18.15) 

Therefore, the limit of 𝑇𝑟𝑎𝑐𝑒 (𝑋𝐴�̂�∆𝑞) as �̂�′𝑠 → 𝑌 is zero for well behaved cases.  

Approximating 𝑇𝑟𝑎𝑐𝑒 (𝑋𝐴�̂�∆𝑞) with its limit of zero reduces equation (14) to equation (19):    

𝐸𝐷𝐹 ≈ ∑𝑞𝑚𝑖

𝑀

𝑖=1

𝐸𝐷𝐹𝑚𝑖
+ 𝐸𝐷𝐹𝑤 + lim

�̂�′𝑠→𝑌
𝑇𝑟𝑎𝑐𝑒 (𝑋𝐴�̂�∆𝑞) =   ∑ 𝑞𝑚𝑖

𝑀

𝑖=1

𝐸𝐷𝐹𝑚𝑖
+ 𝐸𝐷𝐹𝑤 + 0.             (18.16) 
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𝐸𝐷𝐹 ≈ ∑ 𝑞𝑚𝑖
𝑀
𝑖=1 𝐸𝐷𝐹𝑚𝑖

+ 𝐸𝐷𝐹𝑤  .                                                                                                                       (19)  

 

Appendix B: Simulation procedure for section 4 

The simulation procedure for section 4 is itemized below. 

Step 1: Randomly generate 𝑝 correlated explanatory variables 𝑥𝑖 , where 𝑖 = 1, … 𝑝, such that each 𝑥𝑖 has 

100 observations drawn from a mean 0 variance 1 normal distribution, with a correlation of 0.8 across 

𝑥𝑖′𝑠.  

Step 2: Randomly generate the dependent variable as 𝑦 =
1

𝑝
𝑥1 + ⋯+

1

𝑝
𝑥𝑝 + 𝜀,  where 𝜀 is randomly 

generated noise from a mean 0 variance 1 normal distribution.  

Step 3: Repeat steps 1 and 2 for the four cases 𝑝 = 4,9,25,100. 

Step 4: Using observations 1 to 99, estimate a forecast combination model of 𝑦 for each of the four cases 

of 𝑝, where the auxiliary models are estimated with ordinary least squares of the forms provided below 

and the weighting scheme is estimated with ordinary least squares under the constraint ∑ 𝑞𝑚𝑖

𝑀
𝑖=1 = 1:   

• for 𝑝 = 4, two auxiliary models of two variables each �̂� = �̂�0 + �̂�1𝑥1 + �̂�2𝑥2 

• for 𝑝 = 9, three auxiliary models of three variables each �̂� = �̂�0 + �̂�1𝑥1 + ⋯ + �̂�3𝑥3 

• for 𝑝 = 25, five auxiliary models of five variables each �̂� = �̂�0 + �̂�1𝑥1 + ⋯ + �̂�5𝑥5 

• for 𝑝 = 100, ten auxiliary models of ten variables each �̂� = �̂�0 + �̂�1𝑥1 + ⋯+ �̂�10𝑥10 

Step 5: Using Mallows’ 𝐶𝑝 formula,1 𝐶𝑝 = 𝑒𝑟𝑟̅̅ ̅̅̅ + 2 
𝐷𝐹

𝑛
�̂�𝜀

2 , where 𝐶𝑝 is the 𝐶𝑝 statistic, 𝑒𝑟𝑟̅̅ ̅̅̅ is the training 

error, �̂�𝜀
2 is the noise variance. For each of the four cases, compute two estimates of the out-of-sample 

mean squared forecast error using DF = equation 19 and 𝐷𝐹 = 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 . For 

both estimates, set �̂�𝜀
2 equal to its true value of 1. 

Step 6: For each of the four cases, use the models from step 4 estimated on observations 1 to 99 and the 

100th observation of the 𝑥𝑖 ′𝑠, generate out of sample forecasts for the 100th observation of 𝑦, and calculate 

the out-of-sample squared forecast error. 

Step 7: Repeat steps 1 to 6 100,000 times and compare the average performance of the two estimates from 

step 5 with true out-of-sample squared forecast errors resulting from step 6. 

 

 

 

 
1 Hastie, Tibshirani and Friedman (2001, chapter 7) discuss using this formula to estimate out-of-sample mean squared 
forecast errors.  
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Appendix C: EDF computation from Section 5  

This appendix computes and decomposed into parts, the EDF value for shrink (0.25) for the US case found 

in the bottom right cell of Table 1. The three shrink models are specified by equation (20) where �̂�𝑠ℎ𝑟𝑖𝑛𝑘 

is the model forecast, �̂�𝑎𝑣𝑒 𝑐𝑜𝑚𝑏 and �̂�𝑂𝐿𝑆 𝑐𝑜𝑚𝑏 are the forecast combination forecasts using simple average 

weights and linear regression weights respectively, and 𝜔 is the weight allocated to the forecast 
combinations based on sample size and choice of shrink model parameter (1, 0.5, 0.25).        

�̂�𝑠ℎ𝑟𝑖𝑛𝑘 = (1 − 𝜔) �̂�𝑎𝑣𝑒 𝑐𝑜𝑚𝑏 + 𝜔 �̂�𝑂𝐿𝑆 𝑐𝑜𝑚𝑏                                                                                            (20) 

As the shrink models are forecast combinations of forecast combinations, the EDF is computed by 
applying equation (19) in two steps. In step 1, equation (19) is applied to the forecast combination from 

equation (20), resulting in equation (21). Where 𝐸𝐷𝐹𝑊𝑠ℎ𝑟𝑖𝑛𝑘
 is the EDF of the weighting scheme 𝜔 and 

𝐸𝐷𝐹�̂�𝑠ℎ𝑟𝑖𝑛𝑘
,  𝐸𝐷𝐹�̂�𝑎𝑣𝑒 𝑐𝑜𝑚𝑏

,  𝐸𝐷𝐹�̂�𝑂𝐿𝑆  𝑐𝑜𝑚𝑏
 are the EDFs of �̂�𝑠ℎ𝑟𝑖𝑛𝑘, �̂�𝑎𝑣𝑒 𝑐𝑜𝑚𝑏 and �̂�𝑂𝐿𝑆 𝑐𝑜𝑚𝑏 respectively. 

As 𝜔 is not estimated but determined by sample size and a fixed parameter, 𝐸𝐷𝐹𝑊𝑠ℎ𝑟𝑖𝑛𝑘
 is zero.               

𝐸𝐷𝐹�̂�𝑠ℎ𝑟𝑖𝑛𝑘
≈ (1 − 𝜔) 𝐸𝐷𝐹�̂�𝑎𝑣𝑒 𝑐𝑜𝑚𝑏

+ 𝜔 𝐸𝐷𝐹�̂�𝑂𝐿𝑆 𝑐𝑜𝑚𝑏
+ 𝐸𝐷𝐹𝑊𝑠ℎ𝑟𝑖𝑛𝑘

                                                 (21)        

In step 2, equation (19) is applied to  𝐸𝐷𝐹�̂�𝑎𝑣𝑒 𝑐𝑜𝑚𝑏
 and 𝐸𝐷𝐹�̂�𝑂𝐿𝑆  𝑐𝑜𝑚𝑏

 resulting in equation (22). Where 

𝑞𝑎𝑣𝑒 𝑐𝑜𝑚𝑏𝑚𝑖
 and 𝑞𝑂𝐿𝑆 𝑐𝑜𝑚𝑏𝑚𝑖

are the simple average and linear regression weights, and 𝐸𝐷𝐹𝑚𝑖
, 

𝐸𝐷𝐹𝑊𝑎𝑣𝑒 𝑐𝑜𝑚𝑏
 and 𝐸𝐷𝐹𝑊𝑂𝐿𝑆  𝑐𝑜𝑚𝑏

 are the EDFs of the auxiliary models, the simple average weighting 

scheme and linear regression weighting scheme respectively.  

𝐸𝐷𝐹�̂�𝑆ℎ𝑟𝑖𝑛𝑘
≈ (1 − 𝜔) (∑ 𝑞𝑎𝑣𝑒 𝑐𝑜𝑚𝑏𝑚𝑖

𝑀
𝑖=1 𝐸𝐷𝐹𝑚𝑖

+ 𝐸𝐷𝐹𝑊𝑎𝑣𝑒 𝑐𝑜𝑚𝑏
) + 𝜔 (∑ 𝑞𝑂𝐿𝑆 𝑐𝑜𝑚𝑏𝑚𝑖

𝑀
𝑖=1 𝐸𝐷𝐹𝑚𝑖

+

𝐸𝐷𝐹𝑊𝑂𝐿𝑆 𝑐𝑜𝑚𝑏
)                                                                                                                                          (22) 

All of the values in equation (22) are known and are either weights or parameter counts from underlying 
auxiliary models.  To compute the EDF for shrink (0.25) for the US case (𝐸𝐷𝐹�̂�𝑆ℎ𝑟𝑖𝑛𝑘 0.25 (𝑈𝑆)), rounded 

to two decimal places, 𝜔 is 0.634, ∑ 𝑞𝑎𝑣𝑒 𝑐𝑜𝑚𝑏𝑚𝑖

𝑀
𝑖=1 𝐸𝐷𝐹𝑚𝑖

 is 3.25, ∑ 𝑞𝑂𝐿𝑆 𝑐𝑜𝑚𝑏𝑚𝑖

𝑀
𝑖=1 𝐸𝐷𝐹𝑚𝑖

 is 1.01, 

𝐸𝐷𝐹𝑊𝑎𝑣𝑒 𝑐𝑜𝑚𝑏
 is 0 as the simple average weights have no parameters and 𝐸𝐷𝐹𝑊𝑂𝐿𝑆  𝑐𝑜𝑚𝑏

 is 63 from the 

number of parameters in the linear regression weights.        

𝐸𝐷𝐹�̂�𝑆ℎ𝑟𝑖𝑛𝑘 0.25 (𝑈𝑆) ≈  (1 − 0.634)(3.25 + 0) + 0.634(1.01 + 63) = 41.76                                          (23)               

Although this is a complicated forecast combination we can see from equation (23) that in this case almost 

all of the complexity cost is from the 63 parameters used to compute the linear regression weighting 
scheme and very little is from the underlying auxiliary models. 

 

Appendix D: Number of ways to group variables into forecast 

combinations 

To compute the number of ways 𝑣 variables can be grouped into forecast combinations, (
𝑣
𝑖
) provides the 

number of possible groupings of 𝑣 variables into auxiliary models of 𝑖 variables, where (
𝑣
𝑖
) is the 
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combination operator. Equation (24) computes the total number of possible auxiliary model variable 

groupings 𝑔, where auxiliary models range in size from 1 to 𝑣 variables.  

𝑔 = ∑(
𝑣
𝑖
)

𝑣

𝑖=1

.                                                                                                                                                            (24) 

Then the number of ways the auxiliary model groupings can be arranged into forecast combinations 𝑐0 is 

arrived at by computing all possible subsets of 𝑔 by putting this number to a base of 2, provided that 

forecast combinations of forecast combinations are not included . 

𝑐0 = 2𝑔.                                                                                                                                                                     (25) 

To allow for a single generation of forecast combinations of forecast combinations, the initial set is 

increased from 𝑔 elements to 𝑔 + 𝑐0 elements, and the total of all possible subsets is 𝑐1. 

𝑐1 = 2𝑔+𝑐0.                                                                                                                                                               (26) 

  

 


