Appendix A: Detailed derivations of propositions | & Il

The Proposition I derivation begins with equation (6) from the literature:
EDF =T ov 6
=Trace { = |. (6)

Proposition I equation
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Equation (4)is substituted into equation (6) resulting in equation (8).
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EDF = Trace (— Xqﬁ) ®)
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Equation (8) is differentiated using equation (10).
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where A is an n by p block matrix [Xm, @m;» *** XmyQmy,] of M blocks X, g, of dimension n by p,,,
and where @y, , ... 4m,, are scalars.
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The matrix v is a p by n block matrix : of M blocks oy of dimension p,,; by n.
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where the scalar g; commutes to the left side ofX,,..
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Using the properties of the Trace function and substituting X, ﬁ’mi with ?mi'
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EDF = Z qm,; Trace <W> + Trace (X (BT"® IP)W)' (13)
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Substituting Trace <6—le> with EDFE,,; by using equation (6) results in Proposition I.

Proposition II equation
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Proposition II is derived from Proposition I.

Starting with equation (7).
M
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EDF = z qm; EDFy, + Trace (D 6_Y>' (14.1)
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where D = X(fT ® I,) isan n by p? block matrix [Xf; - Xpp],of P blocks Xf;

of dimensions n by p with scalars £y , ..., B, -
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The matrix 6_3 is ap? by n matrix as a result of the diagonal p by p matrix g being vectorized

and differentiated using the convention articulated in equation (9).
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and Xj; is the 1j entry of matrix X.
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By grouping terms by underlying auxiliary models and using the fact that 245 is constant
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within the sum for each auxiliary model,
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where Y; is a fitted value of the ith auxiliary model.
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E can then be restated as E = X, a7
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where X, is an n by m matrix of auxiliary model fitted values | i ™ P,
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Utilizing the condition that ,[?q is estimated by a single equation linear in specification as a function
of X, results in the form [?q = F(X,)Y, which allows equation (17) to be rewritten as (17.1):

OF (X,)Y
EDF = qm; EDFy; + Trace (XA T) (17.1)
i=1
Equation (17.1) is differentiated using equation (10):
- 0F (X
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This simplifies to equation (18):
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EDF = z qm; EDFp, + Trace(X4F(X4)) + Trace | X4 | (YT ® Im)T . (18)
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The notation for (YT @ I,,,) o7 is rewritten as 4, which is an m by n matrix.
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As shown in (18.3), BAq is the change in F (X,)Y resulting from X, being a function of Y.

As a result, the final term in equation (18) can be written as Trace (X Wp Aq),resulting in Proposition II.

Computing the limit of Trace (XABAq) asY's-Y:

S

AsY's — Y, the matrix X, =

Y, - Y,

As X, — : ‘,the vector ,[?q = F(X4)Y — ¢,where ¢ is a vector of length m. (18.5)
Y, - Y,

As B, =F(X,)Y - ¢,the sum Zﬁ’qi - 1 (18.6)

As Z ﬁqi — 1, any changes in the elements of Bq are offsetting; therefore,
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— 0 for an arbitrary . (18.7)

Using the substitution Bq = F(X,)Y,equation (18.7) can be restated as (18.8):

Be, ~IFEDY); I, VFXD);
Z Z ot =Z =

P — 0 for an arbitrary . (18.8)
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Taking the derivative in equation (18.8) results in (18.9):

m
0 VIFX F(X,);0Y, Y, 0F(X,);
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For well behaved cases,z Z <%> * —1 z Z (%), which results
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in equations (18.10) and (18.11):
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Utilizing the (18.2) representation of f, = : “ :
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together with equation (18.11) implies that in the matrix 3 Aq,the sum of each column — 0.
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Therefore, as B — — 0 for an arbitrary 7, 54 > 4, where 4 is an m by n
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matrix with columns that sum to zero. (18.12)

Substituting X, and f,, with their respective limits from equations (18.4) and (18.12) results in
equation (18.13):
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lim Trace (Xafaq) = Trace || = i]|1]. (18.13)
Yis-Y Y, - Y,
Y, - Yy
Given that the rows of [ P ] are constant and that the columns of A sum
Y, - Y,

to zero, their product is an n by n zero matrix.
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lim Trace (XA,BAq) = Trace i i|A)= Trace| : =~ i |[=0. (18.14)
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lim T XaBaq) = 0. 18.15
Jlim Trace (X4faq) (18.15)
Therefore, the limit of Trace (X,f,4) as ?'s - Y is zero for well behaved cases.

Approximating Trace (X ABAq) with its limit of zero reduces equation (14) to equation (19):
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EDF =~ E Gm; EDFy, + EDF,, + lim Trace (XaBag) = g qm; EDFy,, + EDE,, + 0. (18.16)
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EDF =~ %I, qm, EDFyy, + EDE, . (19)

Appendix B: Simulation procedure for section 4
The simulation procedure for section 4 is itemized below.

Step 1: Randomly generate p correlated explanatory variables x;,wherei = 1, ... p, such that each x; has
100 observations drawn from a mean 0 variance 1 normal distribution, with a correlation of 0.8 across
x;'s.

Step 2: Randomly generate the dependent variable as y = %xl + 4 %xp + &, where ¢ is randomly
generated noise from a mean 0 variance 1 normal distribution.
Step 3: Repeat steps 1 and 2 for the four cases p = 4,9, 25,100.

Step 4: Using observations 1 to 99, estimate a forecast combination model of y for each of the four cases
of p, where the auxiliary models are estimated with ordinary least squares of the forms provided below
and the weighting scheme is estimated with ordinary least squares under the constraint Zli\ilqmi =1

e forp = 4, two auxiliary models of two variables each y = f, + f1x1 + 2%

e forp =9, three auxiliary models of three variables each § = B, + fix1 + -+ + B3x3
o for p = 25, five auxiliary models of five variables each y = B, + fx; + - + Bsxs

e forp = 100, ten auxiliary models of ten variables each y = o+ Bix1 + -+ B1oX10

D

Step 5: Using Mallows’ C,, formula,! €, = err +2 nF 62 , where C,, is the C), statistic, er7 is the training

error, 62 is the noise variance. For each of the four cases, compute two estimates of the out-of-sample
mean squared forecast error using DF = equation 19 and DF = count of estimated parameters. For
both estimates, set 62 equal to its true value of 1.

Step 6: For each of the four cases, use the models from step 4 estimated on observations 1 to 99 and the
100th observationofthe x;'s, generate out of sample forecasts for the 100th observation of y, and calculate
the out-of-sample squared forecast error.

Step 7: Repeat steps 1 to 6 100,000 timesand compare the average performance of the two estimates from
step 5 with true out-of-sample squared forecast errors resulting from step 6.

1 Hastie, Tibshirani and Friedman (2001, chapter 7) discuss using this formula to estimate out-of-sample mean squared
forecast errors.



Appendix C: EDF computation from Section 5

This appendix computes and decomposed into parts, the EDF value for shrink (0.25) for the US case found
in the bottom right cell of Table 1. The three shrink models are specified by equation (20) where Y, -ink
is the model forecast, Y spe comp @Nd Yo 15 comp @re the forecast combination forecasts using simple average

weights and linear regression weights respectively, and w is the weight allocated to the forecast
combinations based on sample size and choice of shrink model parameter (1, 0.5, 0.25).

?shrink = (1 - (‘)) ?ave comp T @ ?OLScomb (20)

As the shrink models are forecast combinations of forecast combinations, the EDF is computed by
applying equation (19) in two steps. In step 1, equation (19) is applied to the forecast combination from
equation (20), resulting in equation (21). Where EDFy,, .. is the EDF of the weighting scheme w and

EDFy,, ... EDFy  EDFgy. ..., are the EDFs of Yurink, Yave comp and Yors comp respectively.
As w is not estimated but determined by sample size and a fixed parameter, EDFy,, . . is zero.

EDF?shrink ~ (1 - w) EDF?ave comb +w EDF?OLS comb + EDFWshrink (21)

In step 2, equation (19) is applied to EDFy . and EDFy, . resulting in equation (22). Where
Gave combyn, and QoL comby, AT the simple average and linear regression weights, and EDF,,,

EDFy,.. ...m, and EDFy, . are the EDFs of the auxiliary models, the simple average weighting
scheme and linear regression weighting scheme respectively.

EDF gy = (1= ®) (ZM Gave combym, EDFmy + EDFwg comy) + @ (EM1 Q015 comby, EDFim, +
EDFWOLS comb) (22)

All of the values in equation (22) are known and are either weights or parameter counts from underlying
auxiliary models. To compute the EDF for shrink (0.25) for the US case (EDF ¢, 0.5 (Us)), founded

to two decimal places, w is 0.634, ZﬁlqavecombmiEDFmi is 3.25, Z’ivilqOLSwmbmiEDFmi is 1.01,

EDFy .. ..., 1S 0 as the simple average weights have no parameters and EDFy,, . . is 63 from the
number of parameters in the linear regression weights.

EDFgg, . oqsus) = (1 —0.634)(3.25 + 0) +0.634(1.01 + 63) =41.76 (23)

Although this is a complicated forecast combination we can see from equation (23) thatin this case almost
all of the complexity cost is from the 63 parameters used to compute the linear regression weighting
scheme and very little is from the underlying auxiliary models.

Appendix D: Number of ways to group variables into forecast

combinations
To compute the number of ways v variables can be grouped into forecast combinations, (1;) provides the
number of possible groupings of v variables into auxiliary models of i variables, where (l;) is the



combination operator. Equation (24) computes the total number of possible auxiliary model variable
groupings g, where auxiliary models range in size from 1 to v variables.

9= Z () (24)

Then the number of waysthe auxiliary model groupings can be arranged into forecast combinations c is
arrived at by computing all possible subsets of g by putting this number to a base of 2, provided that
forecast combinations of forecast combinations are not included.

co = 29. (25)

To allow for a single generation of forecast combinations of forecast combinations, the initial set is
increased from g elements to g + c, elements, and the total of all possible subsets is c;.

¢ = 29+, (26)



