3D Fabrication of Bone Structures, Based on FibreTuff
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FibreTuff II polymer filaments were used for the fabrication of biocompatible bone structures
using material extrusion (fused filament fabrication) manufacturing technique, as illustrated in
Figure 1. A multitude of process parameters were optimized with the aim to obtain strong,
dimensionally accurate, and repeatable bone structures. It was experimentally observed that
nozzle size, bed temperature, oven temperature, cooling rate, and print speed would significantly
affect the quality as well as the performance of the fabricated bones.

Figure 1: A 3D-printed bone, composed of Polyamide, Polyolefin and Cellulose fiber (FibreTuff,
Perrysburg, OH), fabricated at Marshall University’s Lab for Advanced Manufacturing and
Engineering Systems (LAMES).
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Goal
' To fabricate patient-specific, biocompatible,  and
biodegradable bone scaffolds for the treatment of osseous
defects, fractures, and diseases.
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medical-grade polymer composite, composed of polyamide, g 332|
polyolefin, and cellulose fibers. A new test specimen was designed, :‘;
based on an X-ray micro-CT scan of a human femur bone as well as 28
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r (i) To investigate the influence of consequential parameters experimental designs: (i) fractional-factorial design, utilized for The influence of the main process parameters (i.e., flow, layer height, infill density, and shell thickness)

factor screening and identification of consequential process on: a) the ductility, and (b) the ductility SN ratio of the fabricated femur bones.

of FDM process on the functional properties of fabricated
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f (a) (®) * As the material flow increases, the tensile strength, modulus, and
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* An increase in the infill density (influencing cancellous bone.
| porosity), led to a uniform increase in both the tensile strength and
the modulus. The increase in the infill density, however, resulted in
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ductility of about 140 MPa, 6500 MPa, and 3.2 %, respectively.
* Unlike the modulus, both the tensile strength and the ductility
increased with an increase in the shell thickness (influencing the
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(PAPC-II, FibreTuff, Perrysburg, OH), was used for the fabrication of bone scaffolds.
area is most significantly prone to crack propagation and fracture.

) (b).

: The influence of the main process parameters (i.e., flow, layer height, infill density, and shell thickness)

on: (a) the modulus, and (b) the modulus SN ratio of the fabricated femur bones. An increase in shell thickness enhances the strength of the cortical
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