4C WIGGLEBUTT TILLMAN

DNA Test Report

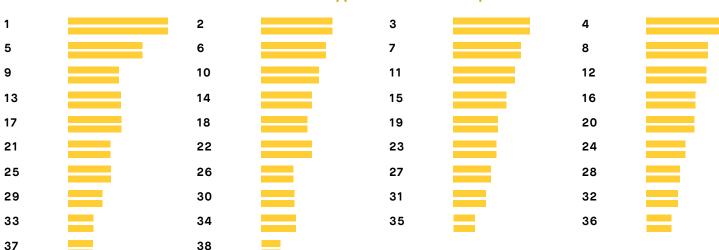
Test Date: December 26th, 2023

embk.me/huey4cbtm

BREED ANCESTRY

Miniature/MAS-type Australian Shepherd : 100.0%

GENETIC STATS


Predicted adult weight: **21 lbs** Life stage: **Puppy** Based on your dog's date of birth provided.

TEST DETAILS

Kit number: EM-58410386 Swab number: 31220612410679

BREED ANCESTRY BY CHROMOSOME

Our advanced test identifies from where Tillman inherited every part of the chromosome pairs in his genome.

Breed colors: Miniature/MAS-type Australian Shepherd

"TILLMAN" 4C wigglebutt tillman

DNA Test Report

Test Date: December 26th, 2023

embk.me/huey4cbtm

MINIATURE/MAS-TYPE AUSTRALIAN SHEPHERD

The Miniature American Shepherd descends directly from the Australian Shepherd, the 17th most popular dog in the United States. Despite their name, the Australian Shepherd originated from the ranches of the United States around the 1800s, with the Miniature American Shepherd bred from smaller individuals starting in the 1970s. Like Australian Shepherds, these dogs are known for their trainability, intelligence and energy. Miniature American Shepherds are outstanding agility dogs, striving for the approval of their owner. This group of shepherds contains some dogs that are their own AKC group ("Miniature American Shepherds") as well as other dogs whose breeders and owners have chosen not to join the MAS AKC club and still prefer to be called Miniature Australian Shepherds, or simply Australian Shepherds.

Alternative Names Miniature Australian Shepherd, Australian Shepherd

Fun Fact

Like their big brothers the Australian Shepherds, Miniature American Shepherds sport a range of coat colors and eye colors - sometimes one dog may even have multicolored eyes! They sometimes even have naturally short (bobbed) tails!

4C WIGGLEBUTT TILLMAN

DNA Test Report

Test Date: December 26th, 2023

embk.me/huey4cbtm

MATERNAL LINE

Through Tillman's mitochondrial DNA we can trace his mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

HAPLOGROUP: B1

B1 is the second most common maternal lineage in breeds of European or American origin. It is the female line of the majority of Golden Retrievers, Basset Hounds, and Shih Tzus, and about half of Beagles, Pekingese and Toy Poodles. This lineage is also somewhat common among village dogs that carry distinct ancestry from these breeds. We know this is a result of B1 dogs being common amongst the European dogs that their conquering owners brought around the world, because nowhere on earth is it a very common lineage in village dogs. It even enables us to trace the path of (human) colonization: Because most Bichons are B1 and Bichons are popular in Spanish culture, B1 is now fairly common among village dogs in Latin America.

HAPLOTYPE: B61

Part of the large B1 haplogroup, this haplotype occurs most commonly in Australian Cattle Dogs. It's a rare find!

4C WIGGLEBUTT TILLMAN

DNA Test Report

Test Date: December 26th, 2023

embk.me/huey4cbtm

PATERNAL LINE

Through Tillman's Y chromosome we can trace his father's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A1a

Some of the wolves that became the original dogs in Central Asia around 15,000 years ago came from this long and distinguished line of male dogs. After domestication, they followed their humans from Asia to Europe and then didn't stop there. They took root in Europe, eventually becoming the dogs that founded the Vizsla breed 1,000 years ago. The Vizsla is a Central European hunting dog, and all male Vizslas descend from this line. During the Age of Exploration, like their owners, these pooches went by the philosophy, "Have sail, will travel!" From the windy plains of Patagonia to the snug and homey towns of the American Midwest, the beaches of a Pacific paradise, and the broad expanse of the Australian outback, these dogs followed their masters to the outposts of empires. Whether through good fortune or superior genetics, dogs from the A1a lineage traveled the globe and took root across the world. Now you find village dogs from this line frolicking on Polynesian beaches, hanging out in villages across the

Registration: American Kennel Club

HAPLOTYPE: H1a.2

Part of the large A1a haplogroup, this haplotype occurs most commonly in Yorkshire Terriers, Norfolk Terriers, Silky Terriers, and Norwich Terriers.

DNA Test Report

Test Date: December 26th, 2023

embk.me/huey4cbtm

RESULT

TRAITS: COAT COLOR

TRAIT

E Locus (MC1R)

The E Locus determines if and where a dog can produce dark (black or brown) hair. Dogs with two copies of the recessive **e** allele do not produce dark hairs at all, and will be "red" over their entire body. The shade of red, which can range from a deep copper to yellow/gold to cream, is dependent on other genetic factors including the Intensity loci. In addition to determining if a dog can develop dark hairs at all, the E Locus can give a dog a black "mask" or "widow's peak," unless the dog has overriding coat color genetic factors. Dogs with one or two copies of the **Em** allele usually have a melanistic mask (dark facial hair as commonly seen in the German Shepherd and Pug). Dogs with no copies of **Em** but one or two copies of the **Eg** allele usually have a melanistic "widow's peak" (dark forehead hair as commonly seen in the Afghan Hound and Borzoi, where it is called either "grizzle" or "domino").

K Locus (CBD103)

The K Locus K^B allele "overrides" the A Locus, meaning that it prevents the A Locus genotype from affecting coat color. For this reason, the K^B allele is referred to as the "dominant black" allele. As a result, dogs with at least one K^B allele will usually have solid black or brown coats (or red/cream coats if they are ee at the E Locus) regardless of their genotype at the A Locus, although several other genes could impact the dog's coat and cause other patterns, such as white spotting. Dogs with the $k^{y}k^{y}$ genotype will show a coat color pattern based on the genotype they have at the A Locus. Dogs who test as $K^{B}k^{y}$ may be brindle rather than black or brown.

More likely to have a patterned haircoat (k^yk^y)

Can have a melanistic mask (E^mE)

4C WIGGLEBUTT TILLMAN

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Intensity Loci

pigment, or no pigment at all. Five locations across five chromosomes explain approximately 70% of red pigmentation "intensity" variation across all dogs. Dogs with a result of Intense Red Pigmentation will likely have deep red hair like an Irish Setter or "apricot" hair like some Poodles, dogs with a result of Intermediate Red Pigmentation will likely have tan or yellow hair like a Soft-Coated Wheaten Terrier, and dogs with Dilute Red Pigmentation will likely have cream or white hair like a Samoyed. Because the mutations we test may not directly cause differences in red pigmentation intensity, we consider this to be a linkage test.

A Locus (ASIP)

The A Locus controls switching between black and red pigment in hair cells, but it will only be expressed in dogs that are not ee at the E Locus and are kyky at the K Locus. Sable (also called "Fawn") dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti (also called "Wolf Sable") dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.

D Locus (MLPH)

Registration:

The D locus result that we report is determined by three different genetic variants that can work together to cause diluted pigmentation. These are the common d allele, also known as "d1", and the less common alleles known as "d2" and "d3". Dogs with two d alleles, regardless of which variant, will have all black pigment lightened ("diluted") to gray, or brown pigment lightened to lighter brown in their hair, skin, and sometimes eyes. There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Note that in certain breeds, dilute dogs have a higher incidence of Color Dilution Alopecia. Dogs with one d allele will not be dilute, but can pass the d allele on to their puppies.

Areas of a dog's coat where dark (black or brown) pigment is not expressed either contain red/yellow Any light hair likely yellow or tan

> Black/Brown and tan coat color pattern (a^ta^t)

(Intermediate Red

Pigmentation)

Dark areas of hair and skin are not lightened (DD)

DNA Test Report

Test Date: December 26th, 2023

embk.me/huey4cbtm

RESULT

DNA Test Report

Test Date: December 26th, 2023

embk.me/huey4cbtm

TRAITS: COAT COLOR (CONTINUED)

TRAIT RESULT Cocoa (HPS3) Dogs with the coco genotype will produce dark brown pigment instead of black in both their hair and skin. No co alleles, not Dogs with the **Nco** genotype will produce black pigment, but can pass the **co** allele on to their puppies. expressed (NN) Dogs that have the coco genotype as well as the bb genotype at the B locus are generally a lighter brown than dogs that have the **Bb** or **BB** genotypes at the B locus. **B Locus (TYRP1)** Dogs with two copies of the **b** allele produce brown pigment instead of black in both their hair and skin. Black or gray hair and Dogs with one copy of the **b** allele will produce black pigment, but can pass the **b** allele on to their puppies. skin (BB) E Locus ee dogs that carry two b alleles will have red or cream coats, but have brown noses, eye rims, and footpads (sometimes referred to as "Dudley Nose" in Labrador Retrievers). "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red". Saddle Tan (RALY) The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Not saddle tan Beagle, and German Shepherd. Dogs that have the II genotype at this locus are more likely to be mostly patterned (II) black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus at allele, so dogs that do not express at are not influenced by this gene.

S Locus (MITF)

The S Locus determines white spotting and pigment distribution. MITF controls where pigment is produced, and an insertion in the MITF gene causes a loss of pigment in the coat and skin, resulting in white hair and/or pink skin. Dogs with two copies of this variant will likely have breed-dependent white patterning, with a nearly white, parti, or piebald coat. Dogs with one copy of this variant will have more limited white spotting and may be considered flash, parti or piebald. This MITF variant does not explain all white spotting patterns in dogs and other variants are currently being researched. Some dogs may have small amounts of white on the paws, chest, face, or tail regardless of their S Locus genotype.

Likely to have little to no white in coat (SS)

Registration:

4C WIGGLEBUTT TILLMAN

DNA Test Report

Test Date: December 26th, 2023

embk.me/huey4cbtm

No merle alleles (mm)

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

M Locus (PMEL)

Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog, among many others. Merle arises from an unstable SINE insertion (which we term the "M*" allele) that disrupts activity of the pigmentary gene PMEL, leading to mottled or patchy coat color. Dogs with an **M*m** result are likely to be phenotypically merle or could be "nonexpressing" merle, meaning that the merle pattern is very subtle or not at all evident in their coat. Dogs with an **M*M*** result are likely to be phenotypically merle. Dogs with an **mm** result have no merle alleles and are unlikely to have a merle coat pattern.

Note that Embark does not currently distinguish between the recently described cryptic, atypical, atypical+, classic, and harlequin merle alleles. Our merle test only detects the presence, but not the length of the SINE insertion. We do not recommend making breeding decisions on this result alone. Please pursue further testing for allelic distinction prior to breeding decisions.

R Locus (USH2A)

The R Locus regulates the presence or absence of the roan coat color pattern. Partial duplication of the USH2A gene is strongly associated with this coat pattern. Dogs with at least one **R** allele will likely have roaning on otherwise uniformly unpigmented white areas. Roan appears in white areas controlled by the S Locus but not in other white or cream areas created by other loci, such as the E Locus with **ee** along with Dilute Red Pigmentation by I Locus (for example, in Samoyeds). Mechanisms for controlling the extent of roaning are currently unknown, and roaning can appear in a uniform or non-uniform pattern. Further, non-uniform roaning may appear as ticked, and not obviously roan. The roan pattern can appear with or without ticking.

Likely no impact on coat pattern (rr)

H Locus (Harlequin)

This pattern is recognized in Great Danes and causes dogs to have a white coat with patches of darker pigment. A dog with an **Hh** result will be harlequin if they are also **M*m** or **M*M*** at the M Locus and are not **ee** at the E locus. Dogs with a result of **hh** will not be harlequin. This trait is thought to be homozygous lethal; a living dog with an **HH** genotype has never been found.

No harlequin alleles (hh)

DNA Test Report

Test Date: December 26th, 2023

embk.me/huey4cbtm

TRAITS: OTHER COAT TRAITS

TRAIT

Furnishings (RSP02)

Dogs with one or two copies of the **F** allele have "furnishings": the mustache, beard, and eyebrows characteristic of breeds like the Schnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with two **I** alleles will not have furnishings, which is sometimes called an "improper coat" in breeds where furnishings are part of the breed standard. The mutation is a genetic insertion which we measure indirectly using a linkage test highly correlated with the insertion.

Likely unfurnished (no mustache, beard, and/or eyebrows) (II)

RESULT

Fembark

DNA Test Report

Test Date: December 26th, 2023

embk.me/huey4cbtm

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Coat Length (FGF5)

The FGF5 gene affects hair length in many species, including cats, dogs, mice, and humans. In dogs, an **Lh** allele confers a long, silky hair coat across many breeds, including Yorkshire Terriers, Cocker Spaniels, and Golden Retrievers, while the **Sh** allele causes a shorter coat, as seen in the Boxer or the American Staffordshire Terrier. In certain breeds, such as the Pembroke Welsh Corgi and French Bulldog, the long haircoat is described as "fluffy". The coat length determined by FGF5, as reported by us, is influenced by four genetic variants that work together to promote long hair.

The most common of these is the **Lh1** variant (G/T, CanFam3.1, chr32, g.4509367) and the less common ones are **Lh2** (C/T, CanFam3.1, chr32, g.4528639), **Lh3** (16bp deletion, CanFam3.1, chr32, g.4528616), and **Lh4** (GG insertion, CanFam3.1, chr32, g.4528621). The FGF5_Lh1 variant is found across many dog breeds. The less common alleles, FGF5_Lh2, have been found in the Akita, Samoyed, and Siberian Husky, FGF5_Lh3 have been found in the Eurasier, and FGF5_Lh4 have been found in the Afghan Hound, Eurasier, and French Bulldog.

The **Lh** alleles have a recessive mode of inheritance, meaning that two copies of the **Lh** alleles are required to have long hair. The presence of two Lh alleles at any of these FGF5 loci is expected to result in long hair. One copy each of **Lh1** and **Lh2** have been found in Samoyeds, one copy each of **Lh1** and **Lh3** have been found in Eurasiers, and one copy each of **Lh1** and **Lh4** have been found in the Afghan Hounds and Eurasiers.

Interestingly, the Lh3 variant, a 16 base pair deletion, encompasses the Lh4 variant (GG insertion). The presence of one or two copies of Lh3 influences the outcome at the Lh4 locus. When two copies of Lh3 are present, there will be no reportable result for the FGF5_Lh4 locus. With one copy of Lh3, Lh4 can have either one copy of the variant allele or the normal allele. The overall FGF5 result remains unaffected by this.

RESULT

Likely long coat (LhLh)

DNA Test Report Test Date: December 26th, 2023 embk.me/huey4cbtm TRAITS: OTHER COAT TRAITS (CONTINUED) RESULT TRAIT Shedding (MC5R) Dogs with at least one copy of the ancestral C allele, like many Labradors and German Shepherd Dogs, are Likely heavy/seasonal heavy or seasonal shedders, while those with two copies of the T allele, including many Boxers, Shih Tzus shedding (CC) and Chihuahuas, tend to be lighter shedders. Dogs with furnished/wire-haired coats caused by RSPO2 (the furnishings gene) tend to be low shedders regardless of their genotype at this gene. Coat Texture (KRT71) Dogs with a long coat and at least one copy of the T allele have a wavy or curly coat characteristic of Likely straight coat Poodles and Bichon Frises. Dogs with two copies of the ancestral C allele are likely to have a straight coat, (CC) but there are other factors that can cause a curly coat, for example if they at least one F allele for the Furnishings (RSPO2) gene then they are likely to have a curly coat. Dogs with short coats may carry one or two copies of the T allele but still have straight coats. Hairlessness (FOXI3) A duplication in the FOXI3 gene causes hairlessness over most of the body as well as changes in tooth shape and number. This mutation occurs in Peruvian Inca Orchid, Xoloitzcuintli (Mexican Hairless), and Very unlikely to be Chinese Crested (other hairless breeds have different mutations). Dogs with the NDup genotype are likely hairless (NN) to be hairless while dogs with the NN genotype are likely to have a normal coat. The DupDup genotype has never been observed, suggesting that dogs with that genotype cannot survive to birth. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Hairlessness (SGK3)

Hairlessness in the American Hairless Terrier arises from a mutation in the SGK3 gene. Dogs with the **DD** result are likely to be hairless. Dogs with the **ND** genotype will have a normal coat, but can pass the **D** variant on to their offspring.

Very unlikely to be hairless (NN)

DNA Test Report

Test Date: December 26th, 2023

embk.me/huey4cbtm

RESULT

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Oculocutaneous Albinism Type 2 (SLC45A2)

Dogs with two copies DD of this deletion in the SLC45A2 gene have oculocutaneous albinism (OCA), also known as Doberman Z Factor Albinism, a recessive condition characterized by severely reduced or absent pigment in the eyes, skin, and hair. Affected dogs sometimes suffer from vision problems due to lack of eye Likely not albino (NN) pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a single copy of the deletion ND will not be affected but can pass the mutation on to their offspring. This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

4C WIGGLEBUTT TILLMAN

DNA Test Report

Test Date: December 26th, 2023

embk.me/huey4cbtm

Likely medium or long

muzzle (CC)

TRAITS: OTHER BODY FEATURES

TRAIT

Muzzle Length (BMP3)

Dogs in medium-length muzzle (mesocephalic) breeds like Staffordshire Terriers and Labradors, and long muzzle (dolichocephalic) breeds like Whippet and Collie have one, or more commonly two, copies of the ancestral **C** allele. Dogs in many short-length muzzle (brachycephalic) breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived **A** allele. At least five different genes affect muzzle length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes. Thus, dogs may have short or long muzzles due to other genetic factors that are not yet known to science.

Tail Length (T)

Whereas most dogs have two **C** alleles and a long tail, dogs with one **G** allele are likely to have a bobtail, which is an unusually short or absent tail. This mutation causes natural bobtail in many breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with the **GG** genotype do not survive to birth. Please note that this mutation does not explain every natural bobtail! While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, these breeds do not have this mutation. This suggests that other unknown genetic mutations can also lead to a natural bobtail.

Hind Dewclaws (LMBR1)

Common in certain breeds such as the Saint Bernard, hind dewclaws are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with at least one copy of the **T** allele have about a 50% chance of having hind dewclaws. Note that other (currently unknown to science) mutations can also cause hind dewclaws, so some **CC** or **TC** dogs will have hind dewclaws.

Unlikely to have hind dew claws (CC)

Likely normal-length

tail (CC)

RESULT

4C WIGGLEBUTT TILLMAN

DNA Test Report

Blue Eye Color (ALX4)

Test Date: December 26th, 2023

embk.me/huey4cbtm

RESULT

TRAITS: OTHER BODY FEATURES (CONTINUED)

TRAIT

Chondrodysplasia (Chr. 18 FGF4 Retrogene)

Dogs with one or two copies of the I allele will exhibit a short-legged trait known as chondrodysplasia (CDPA). CDPA is a breed-defining characteristic of many breeds exhibiting the "short-legged, longbodied" appearance known as disproportionate dwarfism, including the corgi, dachshund and basset hound. The impact of the I allele on leg length is additive. Therefore, dogs with the II result display the largest reduction in leg length. Dogs with the **NI** genotype will have an intermediate leg length, while dogs with the **NN** result will not exhibit leg shortening due to this variant. Breeds that display disproportionate dwarfism also frequently inherit a genetic variant known as the chondrodystrophy (CDDY) variant. The CDDY variant also shortens legs (in a less significant amount than CDPA) but, secondarily, increases the risk of Type I Intervertebral Disc Disease (IVDD). Test results for CDDY are listed in this dog's health testing results under "Intervertebral Disc Disease (Type I)". In contrast, the CDPA variant has NOT been shown to increase the risk of IVDD.

Embark researchers discovered this large duplication associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with at least one copy of the

duplication (Dup) are more likely to have at least one blue eye. Some dogs with the duplication may have

only one blue eye (complete heterochromia) or may not have blue eyes at all; nevertheless, they can still pass the duplication and the trait to their offspring. **NN** dogs do not carry this duplication, but may have blue eyes due to other factors, such as merle. Please note that this is a linkage test, so it may not be as

Not indicative of chondrodysplasia (normal leg length) (NN)

Less likely to have blue eyes (NN)

Back Muscling & Bulk, Large Breed (ACSL4)

predictive as direct tests of the mutation in some lines.

The **T** allele is associated with heavy muscling along the back and trunk in characteristically "bulky" largebreed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. The "bulky" **T** allele is absent from leaner shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound, which are fixed for the ancestral **C** allele. Note that this mutation does not seem to affect muscling in small or even mid-sized dog breeds with notable back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog.

Likely normal muscling (CC)

DNA Test Report	Test Date: December 26th, 2023	embk.me/huey4cbtm
TRAITS: BODY SIZE		
TRAIT		RESULT
Body Size (IGF1) The I allele is associated with smaller body size.		Smaller (II)
Body Size (IGFR1)		
The A allele is associated with smaller body size	e.	Intermediate (GA)
Body Size (STC2)		Smaller (AA)
The A allele is associated with smaller body size	<u>.</u>	
Body Size (GHR - E191K)		Intermediate (GA)
The A allele is associated with smaller body size	9.	
Body Size (GHR - P177L)		Larger (CC)
The T allele is associated with smaller body size		

DNA Test Report	Test Date: December 26th, 2023	embk.me/huey4cbtm
TRAITS: PERFORMANC	CE	
TRAIT		RESULT
Altitude Adaptation (EPAS1)		
found at high elevations. Dogs with	specially tolerant of low oxygen environments (hypoxia), such as those n at least one A allele are less susceptible to "altitude sickness." This n breeds from high altitude areas such as the Tibetan Mastiff.	Normal altitude tolerance (GG)
Appetite (POMC)		
dogs with no copies of the mutatio	found primarily in Labrador and Flat Coated Retrievers. Compared to on (NN), dogs with one (ND) or two (DD) copies of the mutation are more	Normal food
percentage, and be more prone to	, which can cause them to eat excessively, have higher body fat obesity. Read more about the genetics of POMC, and learn how you can post (https://embarkvet.com/resources/blog/pomc-dogs/). We e test.	motivation (NN)

DNA Test Report

Test Date: December 26th, 2023

embk.me/huey4cbtm

HEALTH REPORT

How to interpret Tillman's genetic health results:

If Tillman inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Tillman for that we did not detect the risk variant for.

A genetic test is not a diagnosis

This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease.

Summary

Of the 256 genetic health risks we analyzed, we found 1 result that you should learn about.

Notable results (1)

ALT Activity

Clear results

Breed-relevant (10)

Other (244)

DNA Test Report	Test Date: December 26th, 2023	embk.me/huey4cbtm

BREED-RELEVANT RESULTS

Research studies indicate that these results are more relevant to dogs like Tillman, and may influence his chances of developing certain health conditions.

Canine Multifocal Retinopathy, cmr1 (BEST1 Exon 2)	Clear
Collie Eye Anomaly (NHEJ1)	Clear
Craniomandibular Osteopathy, CMO (SLC37A2)	Clear
O Day Blindness (CNGB3 Deletion, Alaskan Malamute Variant)	Clear
Hereditary Cataracts (HSF4 Exon 9, Australian Shepherd Variant)	Clear
Multiple Drug Sensitivity (ABCB1)	Clear
Neuronal Ceroid Lipofuscinosis 6, NCL 6 (CLN6 Exon 7, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8, Australian Shepherd Variant)	Clear
Progressive Retinal Atrophy, prcd (PRCD Exon 1)	Clear
Urate Kidney & Bladder Stones (SLC2A9)	Clear

Registration: American Kennel Club (AKC)

DNA Test Report

Test Date: December 26th, 2023

embk.me/huey4cbtm

OTHER RESULTS

Research has not yet linked these conditions to dogs with similar breeds to Tillman. Review any increased risk or notable results to understand his potential risk and recommendations.

ALT Activity (GPT)	Notable
2-DHA Kidney & Bladder Stones (APRT)	Clear
Acral Mutilation Syndrome (GDNF-AS, Spaniel and Pointer Variant)	Clear
Alaskan Husky Encephalopathy (SLC19A3)	Clear
Alaskan Malamute Polyneuropathy, AMPN (NDRG1 SNP)	Clear
Alexander Disease (GFAP)	Clear
Anhidrotic Ectodermal Dysplasia (EDA Intron 8)	Clear
Autosomal Dominant Progressive Retinal Atrophy (RHO)	Clear
Bald Thigh Syndrome (IGFBP5)	Clear
Bernard-Soulier Syndrome, BSS (GP9, Cocker Spaniel Variant)	Clear
Bully Whippet Syndrome (MSTN)	Clear
Canine Elliptocytosis (SPTB Exon 30)	Clear
Canine Fucosidosis (FUCA1)	Clear
Canine Leukocyte Adhesion Deficiency Type I, CLAD I (ITGB2, Setter Variant)	Clear
Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant)	Clear
Canine Multifocal Retinopathy, cmr2 (BEST1 Exon 5, Coton de Tulear Variant)	Clear
 Canine Multifocal Retinopathy, cmr3 (BEST1 Exon 10 Deletion, Finnish and Swedish Lapphund, Lapponian Herder Variant) 	Clear
Canine Multiple System Degeneration (SERAC1 Exon 4, Chinese Crested Variant)	Clear

4C WIGGLEBUTT TILLMAN

DNA Test Report	Test Date: December 26th, 2023	embk.me/huey4cbtm
OTHER RESULTS		
Oranine Multiple System Degeneration (S	ERAC1 Exon 15, Kerry Blue Terrier Variant)	Clear
Cardiomyopathy and Juvenile Mortality (YARS2)	Clear
Centronuclear Myopathy, CNM (PTPLA)		Clear
🔗 Cerebellar Hypoplasia (VLDLR, Eurasier V	/ariant)	Clear
Chondrodystrophy (ITGA10, Norwegian E	Ikhound and Karelian Bear Dog Variant)	Clear
Cleft Lip and/or Cleft Palate (ADAMTS20,	, Nova Scotia Duck Tolling Retriever Variant)	Clear
Cleft Palate, CP1 (DLX6 intron 2, Nova Sc	otia Duck Tolling Retriever Variant)	Clear
Ocbalamin Malabsorption (CUBN Exon 8,	Beagle Variant)	Clear
Ocbalamin Malabsorption (CUBN Exon 5	3, Border Collie Variant)	Clear
Omplement 3 Deficiency, C3 Deficiency	(C3)	Clear
Ongenital Cornification Disorder (NSDH	L, Chihuahua Variant)	Clear
Ongenital Hypothyroidism (TPO, Rat, To	y, Hairless Terrier Variant)	Clear
Ongenital Hypothyroidism (TPO, Tenterf	äeld Terrier Variant)	Clear
Ongenital Hypothyroidism with Goiter (TPO Intron 13, French Bulldog Variant)	Clear
Ongenital Hypothyroidism with Goiter (SLC5A5, Shih Tzu Variant)	Clear
Ongenital Macrothrombocytopenia (TU	BB1 Exon 1, Cairn and Norfolk Terrier Variant)	Clear
Ongenital Myasthenic Syndrome, CMS ((COLQ, Labrador Retriever Variant)	Clear
Ongenital Myasthenic Syndrome, CMS ((COLQ, Golden Retriever Variant)	Clear

Registration: American Kennel Club (AKC)

4C WIGGLEBUTT TILLMAN

DNA Test Report	Test Date: December 26th, 2023	embk.me/huey4cbtm
OTHER RESULTS		
Congenital Myasthenic Syndrome, CMS (CHAT, Old Danish Pointing Dog Variant)	Clear
Congenital Myasthenic Syndrome, CMS (CHRNE, Jack Russell Terrier Variant)	Clear
Ongenital Stationary Night Blindness (LF	RIT3, Beagle Variant)	Clear
Ongenital Stationary Night Blindness (R	PE65, Briard Variant)	Clear
Craniomandibular Osteopathy, CMO (SLC	37A2 Intron 16, Basset Hound Variant)	Clear
🚫 Cystinuria Type I-A (SLC3A1, Newfoundlar	nd Variant)	Clear
🔗 Cystinuria Type II-A (SLC3A1, Australian C	attle Dog Variant)	Clear
🔗 Cystinuria Type II-B (SLC7A9, Miniature P	inscher Variant)	Clear
Oay Blindness (CNGA3 Exon 7, German Sh	epherd Variant)	Clear
Oay Blindness (CNGA3 Exon 7, Labrador R	etriever Variant)	Clear
Day Blindness (CNGB3 Exon 6, German Sł	northaired Pointer Variant)	Clear
Deafness and Vestibular Syndrome of Dol	permans, DVDob, DINGS (MYO7A)	Clear
O Degenerative Myelopathy, DM (SOD1A)		Clear
Oemyelinating Polyneuropathy (SBF2/MT	RM13)	Clear
Oental-Skeletal-Retinal Anomaly (MIA3, C	Cane Corso Variant)	Clear
O Diffuse Cystic Renal Dysplasia and Hepat	ic Fibrosis (INPP5E Intron 9, Norwich Terrier Variant)	Clear
Dilated Cardiomyopathy, DCM (RBM20, So	chnauzer Variant)	Clear
Dilated Cardiomyopathy, DCM1 (PDK4, Do	berman Pinscher Variant 1)	Clear

Registration: American Kennel Club (AKC)

4C WIGGLEBUTT TILLMAN

DNA Test Report	Test Date: December 26th, 2023	embk.me/huey4cbtm
OTHER RESULTS		
Dilated Cardiomyopathy, DCM2 (TTN, Dob	erman Pinscher Variant 2)	Clear
Disproportionate Dwarfism (PRKG2, Dogo	Argentino Variant)	Clear
Ory Eye Curly Coat Syndrome (FAM83H Ex	kon 5)	Clear
Oystrophic Epidermolysis Bullosa (COL7A	1, Central Asian Shepherd Dog Variant)	Clear
Oystrophic Epidermolysis Bullosa (COL7A	1, Golden Retriever Variant)	Clear
Early Bilateral Deafness (LOXHD1 Exon 38	, Rottweiler Variant)	Clear
Early Onset Adult Deafness, EOAD (EPS8L	2 Deletion, Rhodesian Ridgeback Variant)	Clear
Early Onset Cerebellar Ataxia (SEL1L, Finr	nish Hound Variant)	Clear
Ehlers Danlos (ADAMTS2, Doberman Pins	cher Variant)	Clear
S Enamel Hypoplasia (ENAM Deletion, Italia	n Greyhound Variant)	Clear
Enamel Hypoplasia (ENAM SNP, Parson Re	ussell Terrier Variant)	Clear
Episodic Falling Syndrome (BCAN)		Clear
Exercise-Induced Collapse, EIC (DNM1)		Clear
Sactor VII Deficiency (F7 Exon 5)		Clear
Sactor XI Deficiency (F11 Exon 7, Kerry Blu	e Terrier Variant)	Clear
Samilial Nephropathy (COL4A4 Exon 3, Co	ocker Spaniel Variant)	Clear
Samilial Nephropathy (COL4A4 Exon 30, E	inglish Springer Spaniel Variant)	Clear
🔗 Fanconi Syndrome (FAN1, Basenji Variant)	Clear

Registration: American Kennel Club (AKC)

4C WIGGLEBUTT TILLMAN

DNA Test Report	Test Date: December 26th, 2023	embk.me/huey4cbtm
OTHER RESULTS		
Setal-Onset Neonatal Neuroaxonal Dystro	ophy (MFN2, Giant Schnauzer Variant)	Clear
🧭 Glanzmann's Thrombasthenia Type I (ITG	A2B Exon 13, Great Pyrenees Variant)	Clear
🧭 Glanzmann's Thrombasthenia Type I (ITG	A2B Exon 12, Otterhound Variant)	Clear
Globoid Cell Leukodystrophy, Krabbe dise	ease (GALC Exon 5, Terrier Variant)	Clear
Glycogen Storage Disease Type IA, Von G	ierke Disease, GSD IA (G6PC, Maltese Variant)	Clear
Glycogen Storage Disease Type IIIA, GSD	IIIA (AGL, Curly Coated Retriever Variant)	Clear
Glycogen storage disease Type VII, Phos and English Springer Spaniel Variant)	bhofructokinase Deficiency, PFK Deficiency (PFKM, Whippet	Clear
Glycogen storage disease Type VII, Phos Wachtelhund Variant)	bhofructokinase Deficiency, PFK Deficiency (PFKM,	Clear
🧭 GM1 Gangliosidosis (GLB1 Exon 2, Portug	uese Water Dog Variant)	Clear
🧭 GM1 Gangliosidosis (GLB1 Exon 15, Shiba	Inu Variant)	Clear
GM1 Gangliosidosis (GLB1 Exon 15, Alask	an Husky Variant)	Clear
🔗 GM2 Gangliosidosis (HEXA, Japanese Chi	n Variant)	Clear
GM2 Gangliosidosis (HEXB, Poodle Variar	nt)	Clear
Golden Retriever Progressive Retinal Atro	ophy 1, GR-PRA1 (SLC4A3)	Clear
Golden Retriever Progressive Retinal Atro	ophy 2, GR-PRA2 (TTC8)	Clear
Goniodysgenesis and Glaucoma, Pectina	te Ligament Dysplasia, PLD (OLFM3)	Clear
🔗 Hemophilia A (F8 Exon 11, German Sheph	erd Variant 1)	Clear
🔗 Hemophilia A (F8 Exon 1, German Shephe	rd Variant 2)	Clear

4C WIGGLEBUTT TILLMAN

DNA Test Report	Test Date: December 26th, 2023	embk.me/huey4cbtm
OTHER RESULTS		
Hemophilia A (F8 Exon 10, Boxer Varian	t)	Clear
Hemophilia B (F9 Exon 7, Terrier Variant)	Clear
Hemophilia B (F9 Exon 7, Rhodesian Ric	lgeback Variant)	Clear
🔗 Hereditary Ataxia, Cerebellar Degenera	tion (RAB24, Old English Sheepdog and Gordon Setter Variant)	Clear
Hereditary Footpad Hyperkeratosis (FA	M83G, Terrier and Kromfohrlander Variant)	Clear
Hereditary Footpad Hyperkeratosis (DS	G1, Rottweiler Variant)	Clear
Hereditary Nasal Parakeratosis (SUV39	H2 Intron 4, Greyhound Variant)	Clear
Hereditary Nasal Parakeratosis, HNPK (SUV39H2)	Clear
Hereditary Vitamin D-Resistant Rickets	(VDR)	Clear
🔗 Hypocatalasia, Acatalasemia (CAT)		Clear
Hypomyelination and Tremors (FNIP2, V	Veimaraner Variant)	Clear
🔗 Hypophosphatasia (ALPL Exon 9, Kareli	an Bear Dog Variant)	Clear
🔗 Ichthyosis (NIPAL4, American Bulldog V	/ariant)	Clear
Ichthyosis (ASPRV1 Exon 2, German Sh	epherd Variant)	Clear
O Ichthyosis (SLC27A4, Great Dane Variar	nt)	Clear
O Ichthyosis, Epidermolytic Hyperkeratos	is (KRT10, Terrier Variant)	Clear
C Ichthyosis, ICH1 (PNPLA1, Golden Retrie	ever Variant)	Clear
SINFlammatory Myopathy (SLC25A12)		Clear

Registration: American Kennel Club (AKC)

4C WIGGLEBUTT TILLMAN

DNA Test Report	Test Date: December 26th, 2023	embk.me/huey4cbtm
OTHER RESULTS		
Inherited Myopathy of Great Danes (BIN	1)	Clear
Inherited Selected Cobalamin Malabsorp	otion with Proteinuria (CUBN, Komondor Variant)	Clear
Intervertebral Disc Disease (Type I) (FGF	4 retrogene - CFA12)	Clear
Intestinal Lipid Malabsorption (ACSL5, A	ustralian Kelpie)	Clear
Junctional Epidermolysis Bullosa (LAMA)	3 Exon 66, Australian Cattle Dog Variant)	Clear
Junctional Epidermolysis Bullosa (LAMB	3 Exon 11, Australian Shepherd Variant)	Clear
Juvenile Epilepsy (LGI2)		Clear
Juvenile Laryngeal Paralysis and Polyneu	uropathy (RAB3GAP1, Rottweiler Variant)	Clear
Juvenile Myoclonic Epilepsy (DIRAS1)		Clear
🔗 L-2-Hydroxyglutaricaciduria, L2HGA (L2H	IGDH, Staffordshire Bull Terrier Variant)	Clear
Lagotto Storage Disease (ATG4D)		Clear
Laryngeal Paralysis (RAPGEF6, Miniature	Bull Terrier Variant)	Clear
Late Onset Spinocerebellar Ataxia (CAPN)	۱۱)	Clear
Late-Onset Neuronal Ceroid Lipofuscino	sis, NCL 12 (ATP13A2, Australian Cattle Dog Variant)	Clear
Leonberger Polyneuropathy 1 (LPN1, ARH)	IGEF10)	Clear
Leonberger Polyneuropathy 2 (GJA9)		Clear
Lethal Acrodermatitis, LAD (MKLN1)		Clear
Leukodystrophy (TSEN54 Exon 5, Standa	rd Schnauzer Variant)	Clear

Registration: American Kennel Club (AKC)

4C WIGGLEBUTT TILLMAN

DNA Test Report	Test Date: December 26th, 2023	embk.me/huey4cbtm
OTHER RESULTS		
⊘ Ligneous Membranitis, LM (PLG)		Clear
S Limb Girdle Muscular Dystrophy (S	GCD, Boston Terrier Variant)	Clear
S Limb-Girdle Muscular Dystrophy 21	D (SGCA Exon 3, Miniature Dachshund Variant)	Clear
O Long QT Syndrome (KCNQ1)		Clear
Sundehund Syndrome (LEPREL1)		Clear
Macular Corneal Dystrophy, MCD (CHST6)	Clear
Malignant Hyperthermia (RYR1)		Clear
May-Hegglin Anomaly (MYH9)		Clear
Methemoglobinemia (CYB5R3, Pit	Bull Terrier Variant)	Clear
Methemoglobinemia (CYB5R3)		Clear
Microphthalmia (RBP4 Exon 2, Soft	t Coated Wheaten Terrier Variant)	Clear
Mucopolysaccharidosis IIIB, Sanfili	ippo Syndrome Type B, MPS IIIB (NAGLU, Schipperke Variant)	Clear
 Mucopolysaccharidosis Type IIIA, S Variant) 	Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, Dachshur	nd Clear
 Mucopolysaccharidosis Type IIIA, S Huntaway Variant) 	Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, New Zeala	and Clear
 Mucopolysaccharidosis Type VI, M Variant) 	laroteaux-Lamy Syndrome, MPS VI (ARSB Exon 5, Miniature Pir	nscher Clear
Mucopolysaccharidosis Type VII, S	Sly Syndrome, MPS VII (GUSB Exon 3, German Shepherd Varian	t) Clear
Mucopolysaccharidosis Type VII, S	Sly Syndrome, MPS VII (GUSB Exon 5, Terrier Brasileiro Variant)	Clear
Muscular Dystrophy (DMD, Cavalier	r King Charles Spaniel Variant 1)	Clear

4C WIGGLEBUTT TILLMAN

DNA Test Report	Test Date: December 26th, 2023	embk.me/huey4cbtm
OTHER RESULTS		
Muscular Dystrophy (DMD, Golden Retriev	ver Variant)	Clear
Musladin-Lueke Syndrome, MLS (ADAMTS	SL2)	Clear
🔗 Myasthenia Gravis-Like Syndrome (CHRN	E, Heideterrier Variant)	Clear
🔗 Myotonia Congenita (CLCN1 Exon 23, Aus	tralian Cattle Dog Variant)	Clear
🔗 Myotonia Congenita (CLCN1 Exon 7, Minia	ture Schnauzer Variant)	Clear
Narcolepsy (HCRTR2 Exon 1, Dachshund V	/ariant)	Clear
Narcolepsy (HCRTR2 Intron 4, Doberman	Pinscher Variant)	Clear
Narcolepsy (HCRTR2 Intron 6, Labrador Re	etriever Variant)	Clear
Nemaline Myopathy (NEB, American Bulld	og Variant)	Clear
Neonatal Cerebellar Cortical Degeneratio	n (SPTBN2, Beagle Variant)	Clear
Neonatal Encephalopathy with Seizures,	NEWS (ATF2)	Clear
Neonatal Interstitial Lung Disease (LAMPS	3)	Clear
Neuroaxonal Dystrophy, NAD (VPS11, Rotte	weiler Variant)	Clear
Neuroaxonal Dystrophy, NAD (TECPR2, Sp	anish Water Dog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 1, NCL 1 (F	PPT1 Exon 8, Dachshund Variant 1)	Clear
Neuronal Ceroid Lipofuscinosis 10, NCL 10) (CTSD Exon 5, American Bulldog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TPP1 Exon 4, Dachshund Variant 2)	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 SNP, Border Collie Variant)	Clear

Registration: American Kennel Club (AKC)

4C WIGGLEBUTT TILLMAN

DNA Test Report	Test Date: December 26th, 2023	embk.me/huey4cbtm
OTHER RESULTS		
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 Deletion, Golden Retriever Variant)	Clear
Neuronal Ceroid Lipofuscinosis 7, NCL 7 (N	IFSD8, Chihuahua and Chinese Crested Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8 Exon 2, English Setter Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8 Insertion, Saluki Variant)	Clear
 Neuronal Ceroid Lipofuscinosis, Cerebella Variant) 	r Ataxia, NCL4A (ARSG Exon 2, American Staffordshire Terrier	Clear
Oculocutaneous Albinism, OCA (SLC45A2	Exon 6, Bullmastiff Variant)	Clear
Oculocutaneous Albinism, OCA (SLC45A2	, Small Breed Variant)	Clear
🔗 Oculoskeletal Dysplasia 2 (COL9A2, Samo	yed Variant)	Clear
Osteochondrodysplasia (SLC13A1, Poodle	Variant)	Clear
Osteogenesis Imperfecta (COL1A2, Beagle	e Variant)	Clear
Osteogenesis Imperfecta (SERPINH1, Dac	hshund Variant)	Clear
Osteogenesis Imperfecta (COL1A1, Golder	n Retriever Variant)	Clear
P2Y12 Receptor Platelet Disorder (P2Y12)		Clear
Pachyonychia Congenita (KRT16, Dogue d	le Bordeaux Variant)	Clear
🧭 Paroxysmal Dyskinesia, PxD (PIGN)		Clear
Persistent Mullerian Duct Syndrome, PMD	S (AMHR2)	Clear
Pituitary Dwarfism (POU1F1 Intron 4, Karel	ian Bear Dog Variant)	Clear
Platelet Factor X Receptor Deficiency, Sco	tt Syndrome (TMEM16F)	Clear

Registration: American Kennel Club (AKC)

4C WIGGLEBUTT TILLMAN

DNA Test Report	Test Date: December 26th, 2023	embk.me/huey4cbtm
OTHER RESULTS		
Polycystic Kidney Disease, PKD (PKD1)		Clear
Pompe's Disease (GAA, Finnish and Swed	ish Lapphund, Lapponian Herder Variant)	Clear
Prekallikrein Deficiency (KLKB1 Exon 8)		Clear
Primary Ciliary Dyskinesia, PCD (NME5, Al	askan Malamute Variant)	Clear
Primary Ciliary Dyskinesia, PCD (CCDC39	Exon 3, Old English Sheepdog Variant)	Clear
Primary Hyperoxaluria (AGXT)		Clear
Primary Lens Luxation (ADAMTS17)		Clear
Primary Open Angle Glaucoma (ADAMTS1	7 Exon 11, Basset Fauve de Bretagne Variant)	Clear
Primary Open Angle Glaucoma (ADAMTS1	0 Exon 17, Beagle Variant)	Clear
Primary Open Angle Glaucoma (ADAMTS1	0 Exon 9, Norwegian Elkhound Variant)	Clear
 Primary Open Angle Glaucoma and Primar Variant) 	y Lens Luxation (ADAMTS17 Exon 2, Chinese Shar-Pei	Clear
Progressive Retinal Atrophy (SAG)		Clear
Progressive Retinal Atrophy (IFT122 Exon	26, Lapponian Herder Variant)	Clear
Progressive Retinal Atrophy, Bardet-Biedl	Syndrome (BBS2 Exon 11, Shetland Sheepdog Variant)	Clear
Progressive Retinal Atrophy, CNGA (CNGA	1 Exon 9)	Clear
Progressive Retinal Atrophy, crd1 (PDE6B	American Staffordshire Terrier Variant)	Clear
Progressive Retinal Atrophy, crd4/cord1 (RPGRIP1)	Clear
Progressive Retinal Atrophy, PRA1 (CNGB	1)	Clear

4C WIGGLEBUTT TILLMAN

DNA Test Report	Test Date: December 26th, 2023	embk.me/huey4cbtm
OTHER RESULTS		
Progressive Retinal Atrophy, PRA3 (FAM1)	61A)	Clear
Progressive Retinal Atrophy, rcd1 (PDE6B	Exon 21, Irish Setter Variant)	Clear
Progressive Retinal Atrophy, rcd3 (PDE6A)	Clear
Proportionate Dwarfism (GH1 Exon 5, Chil	nuahua Variant)	Clear
Protein Losing Nephropathy, PLN (NPHS1))	Clear
Pyruvate Dehydrogenase Deficiency (PDF	P1, Spaniel Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 5	, Basenji Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 7,	Beagle Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 10	D, Terrier Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 7,	Labrador Retriever Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 7,	Pug Variant)	Clear
Raine Syndrome (FAM20C)		Clear
Recurrent Inflammatory Pulmonary Diseas	se, RIPD (AKNA, Rough Collie Variant)	Clear
Renal Cystadenocarcinoma and Nodular I	Dermatofibrosis (FLCN Exon 7)	Clear
Retina Dysplasia and/or Optic Nerve Hype	oplasia (SIX6 Exon 1, Golden Retriever Variant)	Clear
Sensory Neuropathy (FAM134B, Border Co	ollie Variant)	Clear
Severe Combined Immunodeficiency, SCI	D (PRKDC, Terrier Variant)	Clear
Severe Combined Immunodeficiency, SCI	D (RAG1, Wetterhoun Variant)	Clear

Registration: American Kennel Club (AKC)

4C WIGGLEBUTT TILLMAN

DNA Test Report	Test Date: December 26th, 2023	embk.me/huey4cbtm
OTHER RESULTS		
Shaking Puppy Syndrome (PLP1, English	Springer Spaniel Variant)	Clear
Shar-Pei Autoinflammatory Disease, SPAI	D, Shar-Pei Fever (MTBP)	Clear
Skeletal Dysplasia 2, SD2 (COL11A2, Labra	ador Retriever Variant)	Clear
Skin Fragility Syndrome (PKP1, Chesapea	ke Bay Retriever Variant)	Clear
Spinocerebellar Ataxia (SCN8A, Alpine Da	achsbracke Variant)	Clear
Spinocerebellar Ataxia with Myokymia an	d/or Seizures (KCNJ10)	Clear
Spongy Degeneration with Cerebellar Ata	axia 1 (KCNJ10)	Clear
Spongy Degeneration with Cerebellar Ata	axia 2 (ATP1B2)	Clear
Stargardt Disease (ABCA4 Exon 28, Labra	dor Retriever Variant)	Clear
Succinic Semialdehyde Dehydrogenase I	Deficiency (ALDH5A1 Exon 7, Saluki Variant)	Clear
O Thrombopathia (RASGRP1 Exon 5, Americ	an Eskimo Dog Variant)	Clear
O Thrombopathia (RASGRP1 Exon 5, Basset	Hound Variant)	Clear
O Thrombopathia (RASGRP1 Exon 8, Landse	eer Variant)	Clear
Trapped Neutrophil Syndrome, TNS (VPS ²	3B)	Clear
O Ullrich-like Congenital Muscular Dystrop	ny (COL6A3 Exon 10, Labrador Retriever Variant)	Clear
Illrich-like Congenital Muscular Dystrop	ny (COL6A1 Exon 3, Landseer Variant)	Clear
O Unilateral Deafness and Vestibular Syndromy	ome (PTPRQ Exon 39, Doberman Pinscher)	Clear
⊘ Von Willebrand Disease Type I, Type I vW	D (VWF)	Clear

Registration: American Kennel Club (AKC)

4C WIGGLEBUTT TILLMAN

DNA Test Report	Test Date: December 26th, 2023	embk.me/huey4cbtm
OTHER RESULTS		
O Von Willebrand Disease Type II, Type II	vWD (VWF, Pointer Variant)	Clear
O Von Willebrand Disease Type III, Type I	III vWD (VWF Exon 4, Terrier Variant)	Clear
O Von Willebrand Disease Type III, Type I	III vWD (VWF Intron 16, Nederlandse Kooikerhondje Variant)	Clear
O Von Willebrand Disease Type III, Type I	III vWD (VWF Exon 7, Shetland Sheepdog Variant)	Clear
X-Linked Hereditary Nephropathy, XLH	N (COL4A5 Exon 35, Samoyed Variant 2)	Clear
X-Linked Myotubular Myopathy (MTM1	I, Labrador Retriever Variant)	Clear
X-Linked Progressive Retinal Atrophy	1, XL-PRA1 (RPGR)	Clear
X-linked Severe Combined Immunode	ficiency, X-SCID (IL2RG Exon 1, Basset Hound Variant)	Clear
X-linked Severe Combined Immunode	ficiency, X-SCID (IL2RG, Corgi Variant)	Clear
Xanthine Urolithiasis (XDH, Mixed Bree	ed Variant)	Clear
🧭 β-Mannosidosis (MANBA Exon 16, Mix	ed-Breed Variant)	Clear
Mast Cell Tumor		No result
Pagistration: American Konnel Club (AKC)	3 .	

Registration: American Kennel Club (AKC)

DNA Test Report

Test Date: December 26th, 2023

embk.me/huey4cbtm

HEALTH REPORT

Notable result

ALT Activity

4C Wigglebutt Tillman inherited one copy of the variant we tested for Alanine Aminotransferase Activity

Why is this important to your vet?

Tillman has one copy of a variant associated with reduced ALT activity as measured on veterinary blood chemistry panels. Please inform your veterinarian that Tillman has this genotype, as ALT is often used as an indicator of liver health and Tillman is likely to have a lower than average resting ALT activity. As such, an increase in Tillman's ALT activity could be evidence of liver damage, even if it is within normal limits by standard ALT reference ranges.

What is Alanine Aminotransferase Activity?

Alanine aminotransferase (ALT) is a clinical tool that can be used by veterinarians to better monitor liver health. This result is not associated with liver disease. ALT is one of several values veterinarians measure on routine blood work to evaluate the liver. It is a naturally occurring enzyme located in liver cells that helps break down protein. When the liver is damaged or inflamed, ALT is released into the bloodstream.

How vets diagnose this condition

Genetic testing is the only way to provide your veterinarian with this clinical tool.

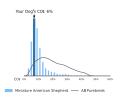
How this condition is treated

Veterinarians may recommend blood work to establish a baseline ALT value for healthy dogs with one or two copies of this variant.

DNA Test Report

Test Date: December 26th, 2023

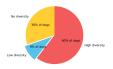
embk.me/huey4cbtm


INBREEDING AND DIVERSITY

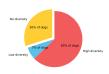
CATEGORY

Coefficient Of Inbreeding

Our genetic COI measures the proportion of your dog's genome where the genes on the mother's side are identical by descent to those on the father's side.


RESULT

Low Diversity


6%

How common is this amount of diversity in purebreds:

No Diversity

How common is this amount of diversity in purebreds:

MHC Class II - DLA DRB1

A Dog Leukocyte Antigen (DLA) gene, DRB1 encodes a major histocompatibility complex (MHC) protein involved in the immune response. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Addison's disease (hypoadrenocorticism) in certain dog breeds, but these findings have yet to be scientifically validated.

MHC Class II - DLA DQA1 and DQB1

DQA1 and DQB1 are two tightly linked DLA genes that code for MHC proteins involved in the immune response. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated.