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A B S T R A C T

The paper is devoted to the chaotic attitude dynamics of magnetic satellites with stabilizing panels. The
pitch motion under the gravitational and restoring aerodynamic torques and small perturbations, namely,
the magnetic torque and the aerodynamic damping, is considered. On the example of a CubeSat having an
aerodynamic instability, it is demonstrated that the unperturbed phase space evolves with orbital altitude both
quantitatively and qualitatively, forming different sets of homoclinic and heteroclinic trajectories. The Melnikov
method is used to find the combinations of system parameters resulting in regular and chaotic motions. The
occurrence of chaos is verified by means of Poincaré sections.
1. Introduction

The field of the chaotic motion of satellites, in particular, chaos in
orbital parameters evolution [1–8], and chaotic attitude motion [9–
22] has received considerable attention in recent years. The features
of attitude motion depend largely on the type of satellite, and thus
there are many specific works in the literature addressing the chaotic
attitude motion of dumbbell satellites [16,19], gyrostats [15,17,18,20,
23], or CubeSats [21,22]. If a satellite is in LEO or very low Earth
orbit (VLEO, typically characterized by altitudes of 80–450 km), its
interaction with the atmosphere needs to be taken into account. The
restoring aerodynamic torque resulting from this interaction can be
used for angular stabilization. The passive aerodynamic stabilization
is the simplest, since it does not require any power supply. This
type of stabilization has been studied since the late 50s [24–27], but
previously it was mainly used for large satellites. Currently, with the
growing popularity of micro-, nano-, and picosatellites, which are more
sensitive to the interaction with the air, the number of missions using
partial or total aerodynamic stabilization has increased substantially.
For example, this type of stabilization is realized for the QARMAN
CubeSat [28], launched in 2020, and the SOAR nanosatellite [29],
launched in 2021, meant to investigate the atmospheric flow regime
in VLEO. Aerodynamic stabilization on CubeSats is commonly realized
by means of flat tail panels [21,22,28–34].

It is usually assumed that, during its mission, the satellite will
be in the vicinity of a stable equilibrium position, characterized by
a zero angle of attack. However, for certain aerodynamic layouts,
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intermediate trim positions, characterized by non-zero angle of attack,
may exist. The satellite may get to one of these positions because
of an accidental disturbance, which may happen, for example, when
the satellite separates from the launch vehicle, or if the tail panels
are deployed inaccurately. Complete elimination of these positions is
not always possible, therefore, in the authors’ opinion, more research
is needed in the field of attitude motion in the vicinity of these
positions, especially considering the possibility of chaos that can be
caused by disturbances of different nature, such as variable inertia
matrix [9], orbit eccentricity [9,13], elastic elements [11,12,21,22],
magnetic torque [13,14]. Another important aspect is the influence of
the damping aerodynamic torque [35]. It is often neglected, since its
magnitude is usually much lower than the magnitude of the aerody-
namic restoring torque. But in the presence of the unstable equilibrium
positions and the above-mentioned disturbances, the damping aero-
dynamic torque may substantially affect the character of the attitude
motion, especially in VLEO.

The goal of the paper is to investigate chaos in the attitude motion of
satellites in low orbits under the action of aerodynamic, gravitational,
and magnetic torques and to find combinations of system parameters
corresponding to chaotic and regular motions. In order to achieve the
goal, the unperturbed and perturbed motions of an aerodynamically
stabilized magnetic satellite are defined, the equilibrium positions are
studied, the altitude evolution of the unperturbed phase space is dis-
cussed. To detect chaos in the perturbed motion, the Melnikov method
is used. Verification of the discovered effects is performed by means of
960-0779/© 2022 Elsevier Ltd. All rights reserved.
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Fig. 1. Satellite with stabilizing side panels. For clarity, only two of four panels are
depicted.

the Poincaré sections. As a result, a procedure for obtaining the regions
in the system parameters space providing regular and chaotic attitude
motions was introduced, which constitutes the novelty of this study.

The paper is organized as follows. In Section 2, the problem is
formulated and the equations of the perturbed and unperturbed motion
are presented, the latter taking into account the restoring and damping
aerodynamic torques as well as the gravitational and magnetic torques.
Section 3 discusses the evolution of the unperturbed phase space for a
particular aerodynamically stabilized magnetic satellite. In Section 4,
the Melnikov method is used to find the conditions of existence of
chaos. Section 5 illustrates different cases of chaotic and regular motion
via Poincaré surfaces. Finally, conclusions are given in Section 6.

2. Problem statement. Equations of perturbed and unperturbed
motion

Consider a magnetic satellite with additional aerodynamic surfaces
(Fig. 1). Let us make several assumptions regarding the attitude motion
of the satellite.

1. The satellite is in the circular polar orbit.
2. The magnetic moment of the satellite is constant and aligned

with the principal axis 𝑧 of the satellite (Fig. 1).
3. The roll and yaw motions are initially quiescent.

It can be shown [13] that, in the case defined by the above
ssumptions, the roll and yaw motions are not excited by the pitch
otion, and the direction of the principal axis 𝑦 of the satellite remains
ormal to its orbital plane. In this case, the orientation of the satellite
an be described by the pitch angle 𝜃 between the local horizontal
nd longitudinal axis 𝑥 of the satellite. As the goal of the paper is to
emonstrate chaos in the attitude motion under the combined action
f the gravitational, aerodynamic, and magnetic torques, it is enough
o take the simplest case of rotation in the orbital plane, since the
resence of chaos in this particular case means that it is actually present
n the general case. Moreover, it is in the planar case that the largest
mplitudes of the angle of attack are observed, since all the potential
nergy of attitude motion stored in the satellite is transformed into
he kinetic energy of rotation around only one axis. Thus, this type
f chaotic motion is the most concerning in practice and, therefore, it
eeds to be investigated in detail.

With all the above assumptions taken into account, let us write the
quation of the pitch motion of the satellite:

𝑦�̈� = 𝑀𝑔 +𝑀𝑚 +𝑀𝑎 (1)

here 𝐽𝑦 is the transverse moment of inertia about the principal axis 𝑦,
, 𝑀 , 𝑀 are the gravitational, magnetic, and aerodynamic torques,
2

𝑔 𝑚 𝑎 t
espectively. The well-known expression for the gravitational torque in
he orbital plane is

𝑔 = 3
2
𝑛2

(

𝐽𝑧 − 𝐽𝑥
)

sin 2𝜃 (2)

where 𝐽𝑧 and 𝐽𝑥 are the transverse and longitudinal moments of inertia,
espectively, 𝑛 is the mean motion,

=
√

𝜇
𝑅3
0

, (3)

𝜇 is the gravitational parameter of the Earth, 𝑅0 = 𝑅 + ℎ is the orbit
adius, 𝑅 is the mean radius of the Earth, ℎ is the orbital altitude. The
agnetic torque acting in the orbital plane can be expressed as [36,37]

𝑚 =
𝑀𝜇0𝜇𝑚
4𝜋𝑅3

0

(cos 𝜃 cos 𝜈 − 2 sin 𝜃 sin 𝜈) (4)

where 𝜇0 = 1.256 ⋅ 10−6 N A−2 is the magnetic permeability of free
space, 𝜇𝑚 ≈ 7.7 ⋅ 1022 A m2 is the geomagnetic dipole moment, 𝑀
is the magnitude of the vector of the own magnetic moment of the
satellite. The aerodynamic torque 𝑀𝑎 can be written as a sum of two
components:

𝑀𝑎(ℎ, 𝜃, �̇�) = 𝑀𝑟(ℎ, 𝜃) +𝑀𝑑 (ℎ, 𝜃, �̇�) (5)

where 𝑀𝑟 is the restoring torque,

𝑀𝑟(ℎ, 𝜃) = 𝐶𝑚(𝜃)
𝜌(ℎ)𝑉 (ℎ)2

2
𝑙𝐴, (6)

and 𝑀𝑑 is the damping torque proportional to the angular speed:

𝑀𝑑 (ℎ, 𝜃, �̇�) = 𝐶 �̇�
𝑚(𝜃)

𝜌(ℎ)𝑉 (ℎ)
2

𝑙2𝐴�̇�. (7)

In Eqs. (6) and (7), 𝐴 is the reference area taken equal to the satellite
body cross-section area, 𝑙 is the reference length taken equal to the
satellite body length, 𝑉 =

√

𝜇∕𝑅0 is the orbital velocity, 𝜌 is the
air density, 𝐶𝑚 and 𝐶 �̇�

𝑚 are the restoring and damping aerodynamic
torque coefficients, respectively. For the convenience of analysis, these
coefficients can be represented by Fourier series:

𝐶𝑚(𝜃) =
𝑘
∑

𝑗=1
𝑏𝜃𝑗 sin 𝑗𝜃, (8)

𝐶 �̇�
𝑚(𝜃) =

𝑎�̇�0
2

+
𝑘
∑

𝑗=1
𝑎�̇�𝑗 cos 𝑗𝜃 (9)

where 𝑘 is the number of harmonics. Taking into account Eqs. (5)–
(7) and using the true anomaly 𝜈 = 𝑛𝑡 as a dimensionless time, one
can rewrite Eq. (1) to obtain the equation of perturbed motion in
dimensionless form as follows:

𝜃′′ − 𝛼(ℎ)𝐶𝑚(𝜃) − 𝛽 sin 2𝜃 = 𝛾(cos 𝜃 cos 𝜈 − 2 sin 𝜃 sin 𝜈) + 𝛿(ℎ)𝐶 �̇�
𝑚(𝜃)𝜃

′ (10)

here ( )′ means differentiation with respect to the true anomaly,

=
𝐴𝑙(ℎ + 𝑅)2𝜌(ℎ)

2𝐽𝑦
, (11)

=
3
(

𝐽𝑧 − 𝐽𝑥
)

2𝐽𝑦
, (12)

=
𝑀𝜇0𝜇𝑚
4𝜋𝜇𝐽𝑦

, (13)

=
𝐴𝑙2 (ℎ + 𝑅) 𝜌(ℎ)

2𝐽𝑦
(14)

re dimensionless coefficients. Note that the right-hand side of Eq. (10)
ontains only small terms. The first of them is the periodic perturbation
ue to the magnetic torque. The second term is the damping caused by

he interaction with the air.
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Fig. 2. Non-dimensional coefficients of the equation of perturbed motion Eq. (10).

The equation of unperturbed motion can be obtained by omitting
the above-mentioned small terms in the right-hand side of Eq. (10)
and contains only restoring aerodynamic and gravitational torques:

𝜃′′ − 𝛼(ℎ)𝐶𝑚(𝜃) − 𝛽 sin 2𝜃 = 0. (15)

Taking into account Eq. (8), Eq. (15) can be rewritten in order to obtain
the equation of the unperturbed motion in its final form:

𝜃′′ = 𝛼(ℎ)
𝑘
∑

𝑗=1
𝑏𝜃𝑗 sin 𝑗𝜃 + 𝛽 sin 2𝜃. (16)

Note that due to the presence of many harmonics in the Fourier series
needed to express the restoring aerodynamic torque coefficient, the
unperturbed phase space is significantly more complex than in the case
of action of the gravitational torque alone. The Eq. (16) has an energy
integral

𝐸 = 1
2
𝜃′2 + 𝑈 (𝜃, ℎ) = 𝑐𝑜𝑛𝑠𝑡 (17)

where 𝑈 is the potential function,

𝑈 (𝜃, ℎ) = 𝛼(ℎ)
𝑘
∑

𝑗=1

𝑏𝜃𝑗
𝑗

cos 𝑗𝜃 + 1
2
𝛽 cos 2𝜃. (18)

The shape of the potential function and hence the structure of the
unperturbed phase space significantly depend on the orbital altitude
ℎ. This dependence will be discussed in detail in the next section.

3. Evolution of heteroclinic and homoclinic orbits with orbital
altitude

In this section, the evolution of the unperturbed phase space for
a particular satellite is discussed. In order to obtain its equilibrium
positions and the separatrices of the phase space for different orbital
altitudes, the coefficients of the equation of the perturbed motion, the
dimensionless torques acting on the satellite, and the corresponding
potential energy are analyzed.

The structure of the phase space corresponding to the equation of
unperturbed motion Eq. (16) is determined by the coefficients 𝛼, 𝛽, and
𝑏𝜃𝑗 . The ratio of the first two coefficients, in its turn, largely depends
on the orbital altitude ℎ, as it can be seen from Fig. 2. Indeed, the
coefficient 𝛼 (Eq. (11)) changes by several orders of magnitude in the
altitude interval from 150 to 700 km, mostly due to the change in
air density. On the contrary, the second coefficient determining the
unperturbed motion, 𝛽, is associated with the gravitational torque and,
by virtue of Eq. (12), does not depend on altitude. Fig. 2 also shows the
evolution of the coefficient 𝛿 (Eq. (14)), which determines the degree
of aerodynamic damping. It can be seen that this coefficient remains
several orders of magnitude smaller than 𝛼 and 𝛽, so the choice of
undisturbed motion is justified.

The coefficients 𝑏𝜃𝑗 determine the shape of the restoring aerody-
namic torque curve and change very slightly with altitude, so given
the significant change in 𝛼, they can be considered constant. These
3

Fig. 3. Coefficients of restoring and damping aerodynamic torques for the example
satellite.

coefficients are determined by the geometric parameters of the satellite,
so it is difficult to analyze the unperturbed motion without choosing a
particular shape of the satellite. In this paper, we consider a CubeSat
with pyramidal nose and tail panels [22,33] (Fig. 1) to which we will
refer as the example satellite. Its configuration is typical for LEO and
VLEO satellites [28–32,34] and it is characterized by several parame-
ters collected in Table 1. The most important of them are the satellite
body length 𝑙, panels deployment angle 𝜑, the dimensionless nose and
tail panels lengths 𝜆𝑛 and 𝜆𝑡, respectively, dimensionless longitudinal
shift 𝛥 of the center of mass of the satellite 𝐶 from the geometric center
𝐶1 of its body. The parameter 𝛥 is considered positive if the center
of mass is shifted closer to the nose of the satellite. The aerodynamic
characteristics of the example satellite are shown in Fig. 3. They were
calculated using the Schaaf and Chambre’s approach [38], taking into
account that at the CubeSats operational altitudes (above 120 km) the
Knudsen number 𝐾𝑛 is larger then 10, which means that the flow is
free molecular [39]. The assumptions related to the calculation of the
aerodynamic characteristics of the satellite were the following:

1. The reflected air molecules speed distribution is Maxwellian.
2. The center of mass of the satellite lies on its longitudinal axis.
3. Additional aerodynamic surfaces are modeled as rigid thin flat

plates.
4. The density and temperature of the incident stream at different

altitudes are chosen using Jacchia–Bowman 2008 Atmosphere
Model [40] assuming mean solar activity.

The calculated curves 𝐶𝑚(𝜃) and 𝐶 �̇�
𝑚(𝜃) for the example satellite (Fig. 3)

are kinked due to the existence of the angular positions where the
shielding of some elements of the satellite begins or ends. In order
to accurately describe the complex shape of these curves, it is neces-
sary to use a significant number of harmonics 𝑘 in the Fourier series
represented by Eqs. (8) and (9). In this paper, we take 𝑘 = 50. The
amplitudes for all harmonics are given in Appendix.

It should be noted that the curve of the restoring torque coefficient
𝐶𝑚(𝜃) has zeros in the vicinity of points 𝜃 = ±𝜋∕2, which indicates that
the satellite has intermediate equilibrium positions. This aerodynamic
instability significantly complicates the structure of the unperturbed
phase portrait, which will be discussed below.

The unperturbed motion evolution with orbital altitude is shown
in Fig. 4. In order to illustrate qualitative changes in phase space
for the example satellite, it is sufficient to take three different orbital
altitudes. Here we choose the altitudes of 500, 575, and 650 km. Fig. 4
depicts the dimensionless torque −𝜕𝑈∕𝜕𝜃 proportional to the sum of
the gravitational torque 𝑀𝑔 (Eq. (2)) and restoring aerodynamic torque
𝑀𝑟 (Eq. (6)), the potential function 𝑈 (Eq. (18)), and the separatrices of
the phase space corresponding to this function. Let us first consider the
dimensionless torque curves (Fig. 4, top). The presence of distinctive
kinks in the graphs a and b indicates that the aerodynamic torque
dominates at an altitude of 500 km and maintains its effect on the
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Table 1
Parameters of the example satellite.

Parameter Value

Number of standard CubeSat units 𝑢 3
Satellite body length 𝑙 0.3 m
Satellite body width 𝑎 0.1 m
Reference area 𝐴 0.01 m2

Longitudinal moment of inertia 𝐽𝑥 0.0088 kg m2

Transverse moment of inertia 𝐽𝑦 = 𝐽𝑧 0.043 kg m2

Relative longitudinal shift of satellite CoM 𝛥 −0.262
Nose relative length 𝜆𝑛 1/3
Tail panels relative length 𝜆𝑡 2/3
Tail panels deployment angle 𝜑 30◦

pitch motion at an altitude of 575 km as well. However, with a further
increase in altitude, according to Fig. 2, the coefficient 𝛼 decreases so
much that the gravitational torque begins to dominate, which can be
clearly seen in the −𝜕𝑈∕𝜕𝜃 curve for 650 km, which is free of kinks.
The points of intersection of the −𝜕𝑈∕𝜕𝜃 curves with the abscissa axis
correspond to the equilibrium positions of the satellite. Fig. 5 represents
the evolution of these positions in the orbital altitude range from 150 to
700 km. These positions are of different types, as it can be clearly seen
in the curves of the potential function 𝑈 (Fig. 4, middle). The stable
equilibrium positions (centers) 𝜃𝑐0 = 0, 𝜃𝑐1, 𝜃𝑐2 correspond to the local
minima of the potential function, and unstable equilibrium positions
(saddle points) 𝜃𝑠0 = 0, 𝜃𝑠1 = −𝜋, 𝜃𝑠2, 𝜃𝑠3 = −𝜃𝑠2, 𝜃𝑠4 = 𝜋 correspond
o the local maxima. The positions 𝜃𝑠3 = −𝜃𝑠2, whose existence is
ainly caused by the above-mentioned aerodynamic instability, are of
articular interest, because they are forming an additional separatrix
f the phase space, to which we will refer as the inner separatrix.
nother well-known separatrix corresponding to the positions 𝜃𝑠1 = −𝜋

and 𝜃𝑠4 = 𝜋 is always present when the planar unperturbed motion is
influenced by the aerodynamic torque, and it can be called the outer
separatrix. Fig. 4, bottom depicts the phase portrait of the unperturbed
system and the two above-mentioned separatrices. The unstable equi-
libria 𝜃𝑠1 = −𝜋 and 𝜃𝑠4 = 𝜋 corresponding to the outer separatrix are
onnected by four heteroclinic orbits. The unstable equilibria 𝜃𝑠2 and
𝑠3 = −𝜃𝑠2 corresponding to the inner separatrix are also connected by
he other four heteroclinic orbits. Note that, on the inner separatrix,
here also exist four homoclinic trajectories with the same energy as
he heteroclinic ones. Two of them correspond to the saddle point 𝜃𝑠2
nd the other two to the saddle 𝜃𝑠3.

It is worth noting that the inner heteroclinic orbits exist only up to
he critical altitude ℎ∗, which is the root of the equation

𝜕2𝑈 (𝜃, ℎ)
𝜕𝜃2

|

|

|

|

|𝜃=0
= 0. (19)

For the example satellite, ℎ∗ = 600021 m. It can be seen that at an
altitude of 650 km (Fig. 4, c, bottom), which is larger than the critical
one, the inner heteroclinic orbits no longer exist. Thus, changing in
altitude alters the unperturbed phase portrait not only quantitatively,
but also qualitatively. Equations for all above-mentioned separatrices
can be obtained by solving the differential equation

𝜃′± (ℎ, 𝜈) = 𝜔± (ℎ, 𝜈) = ±
√

2
√

𝑈 (ℎ, 𝜃𝑠𝑖 ) − 𝑈 (ℎ, 𝜃 (𝜈)); 𝑖 = 0, 1, 2. (20)

For the outer separatrix 𝑖 = 1, for the inner separatrix 𝑖 = 2, ℎ ≤
ℎ∗; 𝑖 = 0, ℎ > ℎ∗. Due to the complexity of the potential function
𝑈 (Eq. (18)), which, for the example satellite, is represented by a
sum of more than 50 terms, Eq. (20) can be solved only numerically.
The resulting equations for homoclinic and heteroclinic orbits 𝒛± =
(

𝜃± (ℎ, 𝜈) , 𝜔± (ℎ, 𝜈)
)

will be used in the following section for detection
of chaos.

4. Melnikov method

This section is devoted to the investigation of the perturbed system.
4

In this case, the pitch motion of the satellite near the unperturbed 𝑂
separatrices becomes extremely complicated, a stochastic layer appears
near these separatrices, and the stable and unstable manifolds may
intersect. Here we will use the Melnikov method [41–43], on the one
hand, to demonstrate the possibility of homoclinic and heteroclinic
intersections, and, on the other hand, to find the conditions of existence
of chaos determined by the coefficient of the magnetic perturbation 𝛾,
which depends on the own magnetic moment of the satellite and can
be chosen arbitrarily, and the orbital altitude ℎ.

4.1. Melnikov functions

In order to apply the Melnikov method [41–43], the nonautonomous
equation of the second order Eq. (16) can be expressed as the following
system of two autonomous equations of the first order:

𝜃′ = 𝜔 = 𝑓1 + 𝑔1,
𝜔′ = 𝛼(ℎ)𝐶𝑚(𝜃) + 𝛽 sin 2𝜃

+𝛾(cos 𝜃 cos 𝜈 − 2 sin 𝜃 sin 𝜈) + 𝛿(ℎ)𝐶 �̇�
𝑚(𝜃)𝜔 = 𝑓2 + 𝑔2

(21)

where 𝑓1 = 𝜔, 𝑔1 = 0, 𝑓2 = 𝛼(ℎ)𝐶𝑚(𝜃) + 𝛽 sin 2𝜃, and 𝑔2 = 𝛾(cos 𝜃 cos 𝜈 −
2 sin 𝜃 sin 𝜈) + 𝛿(ℎ)𝐶 �̇�

𝑚(𝜃)𝜔. The Melnikov function 𝑀±(ℎ, 𝜈0) for the
ystem Eq. (21) is given by

𝑀± (

ℎ, 𝛾, 𝜈0
)

=∫ ∞

−∞
𝑓1

[

𝒛± (𝜈)
]

𝑔2
[

𝒛± (𝜈) , 𝜈 + 𝜈0
]

𝑑𝜈

=∫ ∞

−∞
𝜔± (𝜈){𝛾(cos 𝜃± (ℎ, 𝜈) cos

(

𝜈 + 𝜈0
)

− 2 sin 𝜃± (ℎ, 𝜈)

× sin
(

𝜈 + 𝜈0
)

) + 𝛿(ℎ)𝐶 �̇�
𝑚(𝜃

± (ℎ, 𝜈))𝜔± (ℎ, 𝜈)}𝑑𝜈

= 𝛾 ∫ ∞
−∞ 𝜔± (ℎ, 𝜈)

(

cos 𝜃± (ℎ, 𝜈) cos
(

𝜈 + 𝜈0
)

−2 sin 𝜃± (ℎ, 𝜈) sin
(

𝜈 + 𝜈0
))

𝑑𝜈

+𝛿(ℎ) ∫ ∞
−∞

(

𝜔± (ℎ, 𝜈)
)2𝐶 �̇�

𝑚(𝜃
± (ℎ, 𝜈))𝑑𝜈 = 𝑀𝛾 (𝜈0) +𝑀𝛿

(22)

here 𝒛± =
(

𝜃± (𝜈) , 𝜔± (𝜈)
)

are the solutions of Eq. (20) giving the
nperturbed orbits, 𝑀𝛾 (𝜈0) is a periodic term representing the degree
f disturbance, 𝑀𝛿 is a constant term giving the degree of damping.
t is worth noting that, in the problem under consideration, due to
he complexity of the integrals in Eq. (22), the Melnikov functions are
alculated numerically, separately for all three different sets of unper-
urbed homoclinic and heteroclinic orbits described in the previous
ection. If the Melnikov function has simple zeros, then there exist
ransverse intersections between the stable and unstable manifolds of
yperbolic trajectories [44]. In our problem, it means chaos in the pitch
otion.

.2. Regions of explicit regular and chaotic motions

For the aerodynamically stabilized magnetic satellite, it is manda-
ory to predict the combinations of system parameters for which the
erodynamic damping is no longer able to compensate the pertur-
ations caused by the magnetic torque. For practical purposes, it is
articularly important to find the boundaries of the chaotic regions
s a set of combinations of parameters ℎ and 𝛾, such that there exist
econd-order zeros 𝜈∗0 for which

⎧

⎪

⎨

⎪

⎩

𝑀± (

ℎ, 𝛾, 𝜈∗0
)

= 0,
𝑑
𝑑𝜈

𝑀± (

ℎ, 𝛾, 𝜈0
)

|

|

|𝜈0=𝜈∗0
= 0. (23)

learly, these equations describe the case when the curve 𝑀± (

ℎ, 𝛾, 𝜈0
)

ouches the axis of abscissa. Fig. 6, a, b, c shows the boundaries of
he chaotic regions for the example satellite corresponding to the inner
eteroclinic orbits, to the inner homoclinic orbits, and to the outer
eteroclinic orbits, respectively, calculated using Eq. (23). To illustrate
he dependence of the Melnikov function on the coefficient 𝛾, several
oints are chosen in the vicinity of each boundary: 𝐼1, 𝐼2, 𝐼3 for the
nner heteroclinic orbits, 𝐼3, 𝐼4, 𝐼5 for the outer heteroclinic orbits,

1, 𝑂2, 𝑂3 for the outer heteroclinic orbits. Fig. 7 depicts the Melnikov
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Fig. 4. Torques, potential function, and separatrices corresponding to the unperturbed motion of the example satellite.
Fig. 5. Equilibrium positions of the example satellite.

functions for these points. It can be seen that the Melnikov functions
for the points 𝐼2, 𝐼5, and 𝑂2, lying on the calculated boundaries of the
chaotic regions, touch the abscissa axis and thus satisfy the condition
represented by Eq. (23).

Of particular importance for practice is Fig. 6, d, depicting the
resultant boundary of the chaotic region (bold black dashed line)
and the boundary of regular motion (bold black solid line), which
were obtained by combining the three above-mentioned boundaries
corresponding to three different sets of unperturbed orbits. From Fig. 6,
d, it can be clearly seen that, for a given altitude ℎ, any value of
the coefficient 𝛾 such that the point (ℎ, 𝛾) lies in the gray area below
the chaotic boundary ensures regular pitch motion. This region can
be characterized as ’’weak magnetic perturbation, strong aerodynamic
damping’’. Fig. 8 represents the Melnikov functions corresponding to
all three sets of unperturbed orbits for an arbitrarily chosen example
point A lying in this region. It can be seen that, as expected, none of
these functions has simple zeros. The region of chaotic motion (orange
area in Fig. 6, d) can be characterized as ’’strong magnetic perturbation,
weak aerodynamic damping’’. For all combinations of the coefficient 𝛾
5

Fig. 6. Regions of regular and chaotic pitch motions for the example satellite:
a—for inner heteroclinic orbits; b—for inner homoclinic orbits; c—for outer orbits;
d—combined plot for all three sets of unperturbed orbits.
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Fig. 7. Melnikov functions for the example satellite (ℎ = 500 km): a—for inner heteroclinic orbits; b—for inner homoclinic orbits; c—for outer orbits.
Fig. 8. Melnikov functions corresponding to point A (ℎ = 450 km, 𝛾 = 10−9) in Fig. 6, d.
and orbital altitude in this region, the pitch motion of the satellite will
be chaotic. The Melnikov functions for an example point B lying in this
region are shown in Fig. 9, and all of them have simple zeros.

4.3. Semi-chaotic regions

It is interesting that combining the boundaries of chaotic regions for
different sets of unperturbed orbits reveals the existence of regions in
6

space (ℎ, 𝛾) which can be called semi-chaotic. In these regions, colored
in yellow in Fig. 6, d, chaos is possible in the vicinity of only one or
two sets of unperturbed orbits, but not near all of them. For instance,
at point C (ℎ = 500 km, 𝛾 = 3 ⋅ 10−7), one should expect chaos
in the vicinity of the inner homoclinic orbits, but not near the inner
heteroclinic orbits nor near the outer unperturbed orbits. Indeed, of
the three Melnikov functions constructed for these separatrices shown
in Fig. 10, only the one corresponding to the inner homoclinic orbits
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Fig. 9. Melnikov functions corresponding to point B (ℎ = 550 km, 𝛾 = 10−2) in Fig. 6, d.
Fig. 10. Melnikov functions corresponding to point C (ℎ = 500 km, 𝛾 = 3 ⋅ 10−7) in Fig. 6, d.
Fig. 11. Melnikov functions corresponding to point D (ℎ = 596.5 km, 𝛾 = 4 ⋅ 10−8) in Fig. 6, d.
has simple zeros. At point D (ℎ = 596.5 km, 𝛾 = 4 ⋅ 10−8), we observe
the opposite situation: chaos is possible in the vicinity of the inner
heteroclinic orbits, but not near the inner homoclinic orbits and not
near the outer orbits. Fig. 11 demonstrates that only the Melnikov
function corresponding to the inner heteroclinic orbits has simple zeros.

5. Poincaré sections

In this section, in order to illustrate the cases of chaotic and reg-
ular motion found above using the Melnikov method, the Poincaré
surfaces [44] in the two-dimensional (𝜃, 𝜃′ = 𝜔) phase space of the
7

perturbed system are constructed. More specifically, four cases are
considered: explicit regular motion, explicit chaotic regime, and two
cases corresponding to the semi-chaotic regions in space (ℎ, 𝛾). All
the Poincaré surfaces are calculated via the numerical integration of
Eq. (10).

5.1. Explicit regular and chaotic regimes

The Poincaré sections for the regular pitch motions corresponding
to example point A (ℎ = 450 km, 𝛾 = 10−9) in Fig. 6, d are shown in
Fig. 12. All the phase trajectories shown in Fig. 12, a start in the points
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Fig. 12. Poincaré sections for the regular pitch motions corresponding to point A (ℎ = 450 km, 𝛾 = 10−9) in Fig. 6, d.
Fig. 13. Poincaré sections for the chaotic pitch motions corresponding to point B (ℎ = 550 km, 𝛾 = 10−2) in Fig. 6, d.
𝜃0 ∈ (𝜃𝑐1; 𝜃𝑐2); 𝜃′0 = 0. (24)

It can be clearly seen that there are no intersections between the stable
and unstable manifolds in the vicinity of saddle points 𝜃𝑠2, 𝜃𝑠3 lying on
the inner separatrix. The same is true for the trajectories close to the
outer separatrix starting in the points

𝜃0 ∈ (0.9𝜋;𝜋); 𝜃′0 = 0. (25)

and depicted in Fig. 12, b, since all the points of the corresponding
Poincaré section lie inside the outer separatrix.

The explicit chaotic regime corresponding to the example point B
(ℎ = 550 km, 𝛾 = 10−2) in Fig. 6, d is illustrated by Fig. 13, a, b.
As in the previous case, the initial points for these Poincaré sections
are defined by Eqs. (24) and (25). But due to the fact that with
this combination of parameters the aerodynamic damping makes a
much smaller contribution to the motion of the system compared to
the perturbation from the magnetic torque, the stable and unstable
manifolds intersect, and a clearly visible chaotic layer surrounds all
four saddle points 𝜃𝑠1...𝜃𝑠4. Note that these results are consistent with
the earlier results for the pitch motion of a magnetic satellite given in
Ref. [13].
8

5.2. Regular and chaotic regimes for semi-chaotic regions

Fig. 14 shows Poincaré surfaces corresponding to the point C (ℎ =
500 km, 𝛾 = 3 ⋅10−7) in Fig. 6, d. All the trajectories shown in Fig. 14, a
start in the points (𝜃 ∈ [𝜃𝑠3+0.0005, 1.8], 𝜃′). These points have the same
energy 𝐸 = 𝑈 (𝜃𝑠3 + 0.0005), calculated using Eq. (17), and are located
near the inner separatrix in the local potential well bounded by the
inner homoclinic orbits (Fig. 4, a, bottom). It can be clearly seen that
there is a chaotic intersection for the perturbed motion near the inner
homoclinic orbits, and the aerodynamic damping in this case does not
have a significant impact on the behavior of the system. Fig. 14, b, c
depicts the trajectories starting in the points (𝜃 ∈ [𝜃𝑠3 − 0.0005, 1.8], 𝜃′).
All these points have the same energy 𝐸 = 𝑈 (𝜃𝑠3 − 0.0005) and are
located near the inner separatrix in the local potential well bounded,
in this case, by the inner heteroclinic orbits. It can be seen that the
intersection of the stable and unstable manifolds in the vicinity of the
saddle 𝜃𝑠3 does not occur, so the aerodynamic damping is sufficient to
remove the chaos near the inner heteroclinic orbits.

Fig. 15 illustrates the opposite case, corresponding to the point D
(ℎ = 596.5 km, 𝛾 = 4 ⋅ 10−8) in Fig. 6, d. Fig. 15, a depicts the
trajectories starting in the points (𝜃 ∈ [𝜃𝑠3 + 0.0002, 2], 𝜃′). These
points have the same energy 𝐸 = 𝑈 (𝜃 + 0.0002) and are located
𝑠3
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Fig. 14. Poincaré sections for the chaotic (a) and regular (b, c) pitch motions corresponding to point C (ℎ = 500 km, 𝛾 = 3 ⋅ 10−7) in Fig. 6, d.
Fig. 15. Poincaré sections for the regular (a) and chaotic (b, c) pitch motions corresponding to point D (ℎ = 596.5 km, 𝛾 = 4 ⋅ 10−8) in Fig. 6, d.
near the inner separatrix in the local potential well bounded by the
inner homoclinic orbits. It can be seen that the intersection of the
stable and unstable manifolds in the vicinity of the separatrix does
not occur. On the contrary, for the trajectories starting in the points
(𝜃 ∈ [𝜃𝑠3 − 0.0002, 2], 𝜃′) lying in the central potential well and having
the same energy 𝐸 = 𝑈 (𝜃𝑠3 − 0.0002), the points forming the Poincaré
sections lie on either side of the inner separatrix (Fig. 15, b, c), which
indicates the sensitivity to initial conditions and the presence of chaos
near saddle points 𝜃𝑠2 and 𝜃𝑠3.

Thus, the behavior of the perturbed system predicted by the Mel-
nikov method is confirmed by the Poincaré sections for all three regions
in the parameters space (ℎ, 𝛾) found for the example satellite (Fig. 6, d):
regular, semi-chaotic, and chaotic.

6. Conclusion

In this paper, some features of the pitch motion of aerodynami-
cally stabilized magnetic satellites were studied. On the example of
a CubeSat with tail and nose aerodynamic surfaces, it was shown
that the unperturbed phase space evolves with orbital altitude both
quantitatively and qualitatively, forming different sets of homoclinic
and heteroclinic trajectories. With the help of the Melnikov method,
the possibility of chaotic attitude motion was demonstrated and the
combinations of system parameters corresponding to both regular and
chaotic motions were found.

Since the shapes of the aerodynamically stabilized magnetic satel-
lites can differ, it is impossible to give universal recommendations for
eliminating chaos in the attitude motion. For each particular satellite,
one needs to find the boundaries of chaotic regions, following the
proposed procedure, taking into account the orbital altitude and the
satellite’s own magnetic moment. If the satellite has an aerodynamic
instability, its unperturbed phase portrait contains two separatrices
that form both heteroclinic and homoclinic orbits, and one needs to
bear in mind that there can be situations where chaos is possible in
the vicinity of one set of orbits, but not near any other set. In any
case, combining the boundaries for each set of the unperturbed orbits
gives the resulting boundaries of the regular and chaotic regions. These
boundaries can be used for determining the parameters of aerodynami-
cally stabilized magnetic satellites according to the particular objectives
of their missions.
9

The future work will focus on related problems not covered in this
paper. In particular, it is interesting to control chaos using magnetor-
quers or movable aerodynamic surfaces in order to transform irregular
attitude motions into periodic ones. Another promising area of research
is to investigate the observed effects in a more general case of three-
dimensional attitude motion of an aerodynamically stabilized magnetic
satellite.
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Appendix. Coefficients of fourier expansions of aerodynamic
torque coefficients of the example satellite

𝑗 𝑏𝜃𝑗 𝑎�̇�𝑗 𝑗 𝑏𝜃𝑗 𝑎�̇�𝑗
0 – −13.31 26 0.0003274 0.006417
1 −1.505 –0.07774 27 −0.002994 0.01253
2 0.1051 1.123 28 −0.003383 0.03803
3 −1.586 –0.3846 29 0.006583 0.00544
4 −0.03218 0.2349 30 −0.001573 0.02435
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5 0.08895 0.2088 31 −0.0076 –0.001366
6 −0.01313 –0.2462 32 −0.002448 0.0331
7 −0.2027 –0.08099 33 −0.00007569 –0.006126
8 −0.006674 –0.02425 34 8.478e–6 0.005409
9 0.01224 −0.1004 35 −0.009323 –0.007783
10 0.00218 −0.1315 36 −0.001474 0.001224
11 −0.07225 –0.1344 37 −0.0009185 –0.008006
12 −0.001108 –0.02695 38 0.0001594 −0.02015
13 0.01492 −0.07203 39 −0.006959 –0.007289
14 0.002333 −0.09969 40 −0.001004 –0.01294
15 −0.02403 –0.03518 41 0.001048 −0.007801
16 −0.001074 –0.02544 42 0.0003886 −0.01795
17 0.02251 −0.0009436 43 −0.003244 –0.005452
18 0.002022 −0.05379 44 −0.0004595 –0.005608
19 −0.002607 0.01121 45 0.003032 −0.002579
20 −0.0005913 –0.001807 46 0.001229 −0.008233
21 0.02249 0.02323 47 −0.001435 0.001509
22 0.002466 −0.02514 48 −0.00007016 0.001061
23 0.0003728 0.02399 49 0.003464 0.0043
24 −0.0003311 0.01425 50 0.0004146 −0.002175
25 0.01418 0.02036 – – –
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