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Chaos in flexible CubeSat attitude motion due to aerodynamic instability 
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A B S T R A C T   

The paper deals with the attitude dynamics of CubeSats with flexible stabilizing panels in free molecular flow 
taking into account the aerodynamic damping. In addition to the operating position, characterized by zero angle 
of attack, aerodynamically stabilized satellites may have intermediate equilibrium positions. The presence of 
unstable equilibrium positions and small perturbations such as the oscillations of the flexible panels is the cause 
chaos in the attitude motion. An analysis of the chaotic motion is carried out using Poincare sections and Lya-
punov exponents. Numerical simulations show that the chaos intensity is sensitive to the geometric and envi-
ronmental parameters of the system.   

1. Introduction 

Initially envisioned as educational or technology demonstration 
platforms, CubeSats became the basis for real low-cost missions with 
potential high value in terms of science return and commercial revenue 
[1,2]. As of April 2021, almost 1500 satellites of this type have been 
launched [3]. CubeSats come in different sizes, which are based on the 
standard unit — a cube with side length 10 cm (1U). The most popular 
are the 3U CubeSats (30 cm × 10 cm x 10 cm), which make up about half 
of all CubeSats launched [2,3]. CubeSats can be used for several space 
applications [4], i.e. in astrophysics [5], heliophysics [6], deep space 
exploration [7,8], communications [9], weather monitoring [10], space 
debris removal [11,12]. However, one of the most promising and pop-
ular applications of CubeSats is Earth observation [13,14] from low and 
very low Earth orbits (LEO and VLEO). The latter are typically charac-
terized by altitudes of 80–450 km. In the last years, the interest in VLEO 
has increased because of certain advantages of these orbits: optical 
payloads can provide higher resolution imagery, the signal to noise ratio 
for the communications is also higher, VLEO orbits have less population 
of space debris [15,16]. 

For most applications, it is important to control angular orientation 
of LEO and VLEO satellites. Typically, the attitude control is performed 
using active devices such as magnetorquers and reaction wheels [17], or 
micropulsed plasma thrusters [18]. However, due to the limited power 
budgets of CubeSats, the use of such power-consuming devices is chal-
lenging. For low orbits, where the influence of the atmosphere is sig-
nificant, the simplest way is to use the passive aerodynamic 

stabilization, since it does not require any power supply. This type of 
stabilization has been studied since the late 50s [19–25], but previously 
it was mainly used for large satellites. Currently, with the growing 
popularity of micro-, nano-, and picosatellites, the number of missions 
using partial or total aero-stabilization has increased substantially. For 
example, this type of stabilization is realized for the QARMAN CubeSat 
[26] currently orbiting the Earth, and the SOAR nanosatellite [27], due 
to be launched in 2021, meant to investigate the atmospheric flow 
regime in VLEO. This interest in aerodynamic stabilization stems from 
the fact that the smaller the satellite, the greater the influence of the 
aerodynamic torques on its angular motion. It can be shown by the 
following scaling analysis. The aerodynamic torque is proportional to 
the cube of the characteristic length, while the moment of inertia of the 
satellite is proportional to the fifth power of the same quantity. Thus, as 
the satellite becomes smaller, the moment of inertia decreases faster 
than the aerodynamic torque, which leads to an increase in angular 
acceleration due to this torque. Aerodynamic stabilization on CubeSats 
is usually realized by means of flat tail panels [26,28–33], drag sail 
systems [12,34], or deployable aeroshells [35]. Hereafter in this paper, 
only the tail panels will be discussed. All these methods have a common 
feature: they increase the satellite’s drag. For a de-orbit device [32], this 
can be regarded as an advantage, but in many cases it may be necessary 
to increase the orbital lifetime. One way to achieve this is to give the 
satellite a fixed streamlined shape [36], or to use in-orbit deployment of 
the nose panels forming, e.g., a pyramidal surface [37], as shown in 
Fig. 1. 

Additional deployable aerodynamic surfaces are inevitably flexible 
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and, while the satellite oscillates under the action of the environmental 
torques, mainly aerodynamic and gravitational, the panels oscillate as 
well at frequencies different from that of the satellite. Dynamics of 
flexible structures and flexible spacecraft problems have received 
considerable attention in the literature [38–43]. When studying the 
attitude motion of a spacecraft with flexible appendages, it is convenient 
to define the unperturbed motion. Typically, it is the attitude motion of 
the spacecraft with appendages assumed to be rigid. Then the motion of 
the spacecraft with flexible appendages can be considered as the per-
turbed motion. It is known that if there are unstable equilibrium posi-
tions (saddle points) in the unperturbed motion, then even small 
disturbances can cause chaos in the perturbed motion [44]. In the case of 
the attitude motion of a satellite with flexible panels the source of these 
disturbances is the elastic oscillations of the panels [45–48]. Therefore, 
in some cases, instead of stabilizing the attitude motion of the satellite, 
the panels may, on the contrary, destabilize it due to chaos. 

New promising trend in the field is the tail panels of variable length 
[49]. This solution allows to change the moment of inertia of the satellite 
and, consequently, affect its attitude dynamics. Such new engineering 
ideas require solving new scientific problems. In particular, the variable 
length of the panels significantly complicate the aerodynamics of the 
satellite. The length and deployment angle of the panels, as well as the 
position of the satellite’s center of mass (CoM), affect the aerodynamic 
torques and, consequently, the attitude motion. In certain configura-
tions, undesirable intermediate trim positions may exist. The satellite 
may get to one of these positions because of an accidental disturbance, 
which may happen, for example, when the satellite separates from the 
launch vehicle, or if the tail panels are deployed inaccurately. These 
undesirable intermediate trim positions were discussed earlier [50,51], 
but the main focus was to ensure the monostability. However, complete 
elimination of these positions is not always possible, therefore, in the 
authors’ opinion, more research is needed in the field of attitude motion 
in the vicinity of these positions, especially considering the possibility of 
chaos that can be caused by the oscillations of the flexible elements. The 
other important aspect is the influence of the damping aerodynamic 
torque. It is often neglected [52,53] since its magnitude is usually much 
lower than the magnitude of the aerodynamic restoring torque. But in 
the presence of the intermediate trim positions, especially in VLEO, the 
damping torque may perturb the attitude motion of the satellite and 
cause the satellite to get into an undesirable position, characterized by a 
high angle of attack, and remain in it. So, paradoxically, the damping of 
attitude motion, which has a positive effect on the angular oscillations 
near the operating position, may lead to negative consequences if the 
satellite has intermediate trim positions. 

The goal of the paper is to investigate the features of the nonlinear 
attitude motion of flexible CubeSats under aerodynamic torques at large 
angles of attack in the vicinity of the intermediate equilibrium positions 
and to demonstrate the possibility of chaos. In order to achieve this goal, 
the unperturbed and perturbed motions are defined, the equilibrium 
positions are studied, the aerodynamic characteristics of CubeSats with 
nose and tail panels are calculated, the mathematical model of the 
nonlinear attitude motion of the system is developed, and numerical 

simulations are performed. 
The paper is organized as follows. In Section 2 the problem is 

formulated and the unperturbed motion is analyzed. The dependencies 
of equilibrium positions on the orbit altitude and the length of the tail 
panels are studied. Section 3 presents the equations of perturbed motion 
of the satellite with flexible panels, which take into account the action of 
restoring and damping aerodynamic torques as well as the gravitational 
torque. Section 4 contains numerical simulations. Chaos is investigated 
using Poincaré sections and Lyapunov exponents. Finally, conclusions 
are given in Section 5. 

2. Problem statement. Aerodynamic instability 

Consider the attitude motion of a CubeSat with additional aero-
dynamic surfaces under the following assumptions.  

1. The attitude motion of the satellite depends on two environmental 
torques: one due to the gravity gradient and one due to the influence 
of atmosphere.  

2. The satellite has two equal principal moments of inertia (Jy = Jz,

Jz > Jx).

3. The center of mass of the satellite lies on its longitudinal axis.  
4. Additional aerodynamic surfaces are modeled as homogeneous thin 

flat plates.  
5. The aerodynamic characteristics of the satellite do not depend on the 

oscillations of the panels.  
6. The orbit of the satellite remains circular.  
7. All motions take place in the orbital plane. 

The last assumption is reasonable because to demonstrate chaos in 
the attitude motion, it is enough to take the simplest case of rotation in 
the orbital plane, since the presence of chaos in a particular case means 
that it is actually present in the general case. In addition, the planar 
rotation is the limiting case of the spatial attitude motion. It is in the 
planar case that the largest amplitudes of the angle of attack are 
observed, since all the potential energy of attitude motion stored in the 
satellite is transformed into the kinetic energy of rotation around only 
one axis. 

Let us determine the environmental torques acting on the satellite. 
The gravity gradient torque is defined as 

Mg(h, θ)= 3(Jz − Jx)ν2cosθsinθ (1)  

where θ is the angle of attack, Jz and Jx are transverse and longitudinal 

moments of inertia of the satellite, respectively, ν =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

μ/(R + h)3
√

is the 
mean motion, h is the altitude, R and μ are the mean radius and gravi-
tational parameter of the Earth, respectively. Note that the gravitational 
torque is conservative (potential), since it depends only on the co-
ordinates θ and h.

The aerodynamic torque Ma can be written as a sum of two 
components: 

Fig. 1. Concept of CubeSat with deployable tail and nose panels [37].  
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Ma

(
h, θ, θ̇

)
=Mr(h, θ) + Md

(
h, θ, θ̇

)
(2)  

where Mr is the restoring torque, which is conservative, 

Mr(h, θ) =Cm(θ)
ρV(h)2

2
lA, (3)  

and Md is the damping torque, which is non-conservative since it de-
pends not only on the coordinates, but also on the angular speed: 

Md

(
h, θ, θ̇

)
=Cm

θ̇(θ)
ρV(h)

2
l2Aθ̇. (4) 

In Eqs. (3) and (4) A is the reference area taken equal to the satellite 
body cross-section area, l is the reference length taken equal to the 
satellite body length, ρ is the air density, V =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
μ/(R + h)

√
is the orbital 

velocity, Cm and Cm
θ̇ are the restoring and damping aerodynamic torque 

coefficients, respectively. 
The aerodynamic torque coefficients are calculated as follows. Tak-

ing into account that at the CubeSats operational altitudes (above 120 
km) the Knudsen number Kn is larger then 10, which means that the flow 
is free molecular [54], one can assume that the reflected air molecules 
speed distribution is Maxwellian and calculate the pressure and shear 
stress coefficients using the Schaaf and Chambre’s approach [55]. 
Dividing the surface of the satellite into a number of small flat elements 
we find pressure and shear stress coefficients for each element, cpi and 
cτi , respectively, as 

cpi =

[
2 − σN

s
̅̅̅
π

√ sin θi +
σN

2s2

̅̅̅̅̅̅
Tw

T∞

√ ]

exp
(
− s2 sin θi

)
+

[
(2 − σN)

s2

(
1
2
+ s2sin 2θi

)

+
σN

2s

̅̅̅̅̅̅
Tw

T∞

√
̅̅̅
π

√
sin θi

]

[1 + erf(s sin θi)],

(5)  

cτi =
σT cosθi

s
̅̅̅
π

√
(
exp
(
− s2sinθi

)
+ [1+ erf(ssinθi)]s

̅̅̅
π

√
sinθi

)
(6)  

where i is the element number, s is the freestream molecular speed ratio, 

s=
V
̅̅̅̅̅̅̅̅̅̅̅̅
2RT∞

√ , (7) 

R = 287 J/(kg⋅K) is the ideal gas constant for air, Tw is the wall 
temperature, T∞ is the temperature of incident stream, σN and σT are the 
normal and tangential momentum accommodation coefficients, 
respectively. For interaction of air with most engineering surfaces, 
experimental data indicate that σN ≈ σT ≈ 1 [56]. In this paper, these 
coefficients are taken both equal to 0.9 which corresponds to 
aluminum-air interaction [57]. In Eqs. (5) and (6), θi is the inclination 
angle of the i-th flat element, 

θi = arccos
(

τ̂ i ⋅ V̂
)

(8)  

where V̂ is the unit vector of the incident stream, ̂τi is the unit tangential 
vector of the i-th element, 

τ̂ i =

V̂ −

(

n̂i⋅V̂
)

n̂i

⃦
⃦
⃦
⃦V̂ −

(

n̂i⋅V̂
)

n̂i

⃦
⃦
⃦
⃦

, (9)  

n̂i is the unit normal vector of the i-th element directed such a way that 
n̂i⋅V̂ ≥ 0. Restoring torque coefficient is calculated as 

Cm =
1
Al
∑N

i=1
Ai

[

ri ×

(

cpi n̂ i + cτi τ̂i

)]

⋅ẑ (10)  

where ri is the radius-vector from the satellite center of mass to the 
geometric center of the i-th element, ẑ is the unit vector along the 

satellite transverse axis z, N is the number of elements. Note that it is 
necessary to exclude from consideration the elements that are shielded 
by the upstream components of the body. An example of surface 
meshing with shielding taken into account is shown in Fig. 2. Taking 
into account that, as the satellite rotates with angular velocity ω, the 
speed of the incident stream on the i-th element changes by a small 
amount (ω×ri), one can calculate the damping torque coefficients (see, 
e.g., Ref. [58]). 

In the case of planar rotation, we have only one damping torque 
coefficient corresponding to the rotation about z axis with angular speed 
θ̇: 

Cm
θ̇ =

∂Cm

∂ωz
(11)  

where ωz is the dimensionless angular speed, 

ωz =
l
V

θ̇. (12) 

For the convenience of analysis, the aerodynamic torque coefficients 
can be represented by Fourier series: 

Cm(θ)=
∑k

j=1
bθjsinjθ, (13)  

Cm
θ̇(θ)=

aθ̇0

2
+
∑k

j=1
aθ̇jcosjθ (14)  

where k is the number of harmonics. 
We define the perturbed attitude motion as the motion of the satellite 

with flexible panels under the restoring and damping aerodynamic 
torques and gravitational torque. Then the unperturbed motion is the 
motion of the rigid body under the aerodynamic restoring torque and 
gravitational torque only. Taking into account Eqs. (1), (3) and (13) one 
can write the equation of the unperturbed motion as 

Jzθ̈=Mr + Mg = ca

∑k

j=1
sinjθ + cgsin2θ (15)  

where 

ca =
1
2

ρV2lA, (16)  

cg =
3
2
(Jz − Jx)ν2. (17) 

Note that all the torques acting in the unperturbed motion are po-
tential, so Eq. (15) has an energy integral, which can be written as 

Fig. 2. Example of satellite surface meshing and shielding.  
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E =
1
2

Jzθ̇
2
+ Us(θ) = const (18)  

where Us is the potential energy of the satellite in its unperturbed 
motion, 

Us(θ)= −

∫
(
Mr +Mg

)
dθ= ca

∑k

j=1

bθj

j
cosjθ + cgcos2θ. (19) 

Minima and maxima of the 2π-periodic potential energy function 
defined by Eq. (19) correspond to the equilibrium positions θe of the 
satellite which are the roots of the equation Mr + Mg = − ∂Us

∂θ = 0. When 

∂2Us
∂θ2

⃒
⃒
⃒
⃒

θ=θe

> 0, the potential energy is in its minimum and the equilibrium 

is stable; on the contrary, when ∂
2Us
∂θ2

⃒
⃒
⃒
⃒

θ=θe

< 0, the potential energy is at its 

maximum so the equilibrium is unstable. 
Potential energy curves may have different shapes depending on the 

altitude and satellite parameters, primarily on the coefficients bθj of the 
Fourier series representation of the restoring aerodynamic torque coef-
ficient. These coefficients, in their turn, are determined by the geometric 
parameters of the satellite, so it is difficult to analyze the unperturbed 
motion without choosing a particular shape of the satellite. In this paper, 
we consider a CubeSat with pyramidal nose and tail panels (Fig. 3). The 
most important of its geometric parameters are the satellite body length 
l, panels deployment angle δ, the dimensionless nose and tail panels 
lengths λn and λt , respectively, dimensionless longitudinal shifts of the 
CoM of the satellite body and of the CoM of the entire satellite from the 
geometric center C1, Δb and Δ, respectively. Parameters Δ and Δb are 
considered positive if the centers of mass are shifted closer to the nose of 
the satellite. The longitudinal shift of the CoM of the satellite can be 
calculated using the definition of CoM as 

Δ=

Δb + 2
(

1 + 2
3λn

)

μn − 2μt(1 + λtcosδ)

1 + 4(μn + μt)
(20)  

where μt is the relative mass of a single tail panel, 

μt =
mt

M
=

σtλtl2

Mu
, (21)  

μn is the relative mass of a single nose panel, 

μn =
mn

M
=

σnλnl2

2Mucosα, (22)  

α is the angle between the nose panel and the longitudinal axis of the 
satellite, 

α = arctan
(

a
2λnl

)

= arctan
(

1
2λnu

)

, (23)  

mt is the mass of the tail panel, mn is the mass of the nose panel, σt is the 
tail panel mass per unit area, σn is the nose panel mass per unit area, M is 
the mass of the satellite body, u is the number of standard 1U units in the 
satellite, which are supposed to be arranged in a single row, a = l/u is 
the standard unit side length. 

Let us analyze typical equilibrium positions and potential energy 
curves for the unperturbed motion on the example of three 3U CubeSats 
with pyramidal nose and tail panels of different lengths (Fig. 4). Their 
parameters are given in Table 1. Fig. 5 represents the dependencies of 
the positions of stable and unstable equilibria, θs and θu, respectively, on 
the orbit altitude for the three CubeSats considered. Below a certain 
critical altitude, which for the discussed satellites is about 600 km, the 
aerodynamic torque prevails. As it tends to align the satellite along the 
orbital velocity vector, the position θ = θ0 = 0 is stable. After passing 
the critical altitude, the aerodynamic stabilization is no longer effective, 
and the gravity gradient torque, which tends to align the satellite along 
the local vertical, becomes more significant. For this reason, the satel-
lites with relative panel lengths of 5/6 and 1 have two stable positions in 
the vicinity of − π/2 and π/2. Similar case has been considered in 
Ref. [48]. Note that in the case of short panels (λt = 2 /3)the interme-
diate stable equilibrium positions θs are determined primarily by the 
aerodynamics of the satellite and exist even in low orbits (blue solid 
curves in Fig. 5). Unlike the satellites with long panels, the satellites with 
short panels have not only stable, but also unstable equilibrium positions 
θu (blue dashed curves in Fig. 5). In order to better illustrate the nature 
of these intermediate equilibrium positions, let us examine the torques 
acting on the satellite in the unperturbed motion and the corresponding 
potential energy Us (Fig. 6). Since both the aerodynamic and gravita-
tional torques depend on the orbit altitude, in order to better illustrate 
the nature of these intermediate equilibrium positions, one needs to 
choose a particular altitude below the critical one. Hereinafter, we take 
the altitude equal to 250 km. Fig. 6,top represents the sum of aero-
dynamic restoring torque about the CoM of the satellite Mr and gravi-
tational torque Mg.Environmental parameters necessary to calculate the 
aerodynamic moment are taken from Table 2 for the case of high solar 
activity. It can be seen that the greater the length of the panels, the 
greater the magnitude of the sum of torques. At the same time, the tail 
panels length does not change the character of the given dependencies. 
The kinks in the graphs correspond to the angular positions where the 
shielding of some elements of the satellite begins or ends. Note that the 
shape of the restoring torque curves is consistent with the data of other 
researchers [35,50,51]. Fig. 6,top shows that in the case of short panels 
the sum of torques is positive when θ = π/2 and negative when θ = − π/2 
(blue curve in Fig. 6,top), and consequently, there are intermediate 
equilibrium positions. Fig. 6,bottom shows that for all considered panel 

Fig. 3. CubeSat with deployable side panels. For clarity, only two panels are depicted.  
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lengths, the stable operational position θ0 corresponds to a potential 
well, as it can be expected. At the same time, in the case of short panels, 
there exist additional local potential wells corresponding to the inter-
mediate stable equilibrium positions. This case is of particular interest, 
so we will refer to the CubeSat with λt = 2/3shown in Fig. 4,a as the 
example CubeSat. Its other parameters are given in Table 1. In Fig. 7, the 
above-mentioned potential energy curve for the example CubeSat is 
shown along with the phase portrait of the unperturbed system, which 
has two separatrices. The outer separatrix correspond to the unstable 
equilibrium positions θ =  ± π and the total energy E = Umax. The inner 
separatrix correspond to the unstable equilibrium positions θ =  ± θu 
and the total energy E = Uu. The determination of these unperturbed 
separatrices is important for further study of chaos in the perturbed 

motion. This is due to the fact that, although the thickness of the chaotic 
layer depends in a complex way on the system parameters, near the 
separatrices, chaos will occur even if the chaotic layer width is small. 

In order to investigate the perturbed motion in the vicinity of the 
separatrices, one needs to derive the equations of motion of the system 
taking into account flexibility of the tail panels and the damping aero-
dynamic torque, which is the goal of the next section. 

3. Equations of motion 

In this paper, we use four coordinate frames (Fig. 3): the orbital 
frame OXY, the satellite body-fixed frame Cxy and two panel-fixed 
frames O1ξ1η1 and O2ξ2η2. The angles δ between the axes Cx and O1ξ1 
and − δ between the axes Cx and O2ξ2 can also be regarded as the panel 
deployment angles. The coordinates of the pivot points of the panels O1 
and O2 in the Cxy frame are (lc, a /2) and (lc, − a /2), respectively, where. 
lc =  (Δ  +  1 /2)l.

The kinetic energy of the nanosatellite is composed of the kinetic 
energy of the satellite body Tb and the kinetic energy of the flexible side 
panels Tp, which are modeled as cantilever beams:  

T = Tb + Tp. (24) 

The kinetic energy of the attitude motion of the nanosatellite is 
defined as 

Tb =
1
2
Jzθ̇

2
. (25) 

The kinetic energy of the flexible side panels is 

Fig. 4. 3U CubeSats with nose and tail panels.  

Table 1 
CubeSat parameters.  

Parameter Value 

Number of standard units u 3 
Satellite body length l 0.3 m 
Satellite body width a 0.1 m 
Reference area A 0.01 m2 

Satellite body mass M 4 kg 
Longitudinal moment of inertia of satellite body Jx0  0.0067 kg m2 

Transverse moment of inertia of satellite body Jz0  0.0333 kg m2 

Relative longitudinal shift of satellite body CoM Δb  − 0.25 
Nose relative length λn  1/3 
Tail panels relative length λt  2/3; 5/6; 1 
Tail panels deployment angle δ  30◦

Nose and tail panels material Aluminum 
Nose and tail panels density 2700 kg/m3  

Fig. 5. Equilibrium positions of 3U CubeSats with nose and tail panels. For visualization purposes, the overlapping lines corresponding to θ = 0 are shown separated.  
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Tp =
1
2

∫lp

0

(
V2

p1 +V2
p2

)
dm (26)  

where lp = lλt is the length of the panel, Vpi is the velocity of a differ-
ential mass element of the flexible panel relative to the center of mass, i 
= 1, 2. According to Fig. 3, Vpi can be written as 

Vp1 =
d
dt

[(
cθ − sθ
sθ cθ

)

⋅
([

lc,
a
2

]T
+

(
cδ − sδ
sδ cδ

)

⋅[ξ1, η1]
T
)]

(27)  

Vp2 =
d
dt

[(
cθ − sθ
sθ cθ

)

⋅
([

lc, −
a
2

]T
+

(
cδ sδ
− sδ cδ

)

⋅[ξ2, η2]
T
)]

(28)  

where ξi, ηi are the longitudinal and transverse coordinates of the dif-
ferential mass element dm of the flexible panel, respectively. The 
deflection of the flexible panel is defined as 

ηi(ξi, t) =
∑N

j=1
Φj(ξi)qij(t), i = 1, 2 (29)  

where qij(t) are modal coordinates, N is the number of modes consid-
ered, and Φj(ξi) are the shape functions. The following shape function is 

Fig. 6. Sum of gravitational and restoring aerodynamic torque and potential energy for 3U CubeSats with nose and tail panels (h = 250 km).  

Table 2 
Environmental parameters corresponding to an altitude of 250 km.  

Parameter Value 

Low solar activity 
(SA) 

Mean SA High SA 

Air density ρ[10− 11 kg/m3]  2.1 7.8 16 
Incident stream temperature T∞ 

[K]  
690 890 1240 

Wall temperature Tw [K]  300   

Fig. 7. Potential energy, equilibrium positions, and phase portrait of the 
example CubeSat (h = 250 km). 
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an acceptable candidate for a clamped beam [59]: 

Φj(ξi)=Bj

[

cosh
ω1/2

j ξi

lp
− cos

ω1/2
j ξi

lp
− dj

(

sinh
ω1/2

j ξi

lp
− sin

ω1/2
j ξi

lp

)]

(30)  

where Bj is an unessential constant multiplier taken so that Φj(lp)  =  1,

dj =
cosω1/2

j + coshω1/2
j

sinω1/2
j + sinhω1/2

j

, (31)  

ωj is a nondimensional natural frequency. For a clamped beam, ωj is 
defined by the equation [59]. 

cosω1/2
j coshω1/2

j = − 1 (32)  

where ω1 = 3.51, ω2 = 22.03, ω3 = 61.70, … are the roots of equation 
(32). 

The potential energy of the satellite equals the sum of the potential 
energy of the satellite body and the flexible panels, and it can be written 
as 

U(h, θ, ηi)=Us(h, θ) + Up(ηi), (33)  

where 

Up(ηi)=

∫lp

0

[
∑2

i=1
EJ
(

∂2ηi

∂ξi
2

)2]

dξi, (34)  

EJ is the bending stiffness of the flexible panels, E is the Young’s 
modulus, J is the area moment of inertia of panel cross-section, 

J =
ab3

12
, (35)  

b is the panel thickness, and the functions Us and ηi are defined by 
equations (19) and (29), respectively. 

We use the Lagrangian formalism to write the motion equations of 
the system 

d
dt

∂L
∂ṡn

−
∂L
∂sn

= Qn, n = 1,…, 1 + 2N (36)  

where L = T − U is the Lagrange function, s =  (θ, q11, q21, ...q1N, q2N) is 
the vector of generalized coordinates, Q is the vector of non-potential 
generalized forces. Let us consider only the case when N = 1, and tak-
ing into account Eqs. (16), (17), (19) and (24)–(34) write the Lagrange 
function in the following simple form: 

L =
1
2
aθθ̇

2
+ aθq

(

q̇1 + q̇2

)

θ̇ +
1
2
aq

(

q̇2
1 + q̇2

2

)

− ca

∑k

j=1

bj

j
cos jθ − cgcos 2 θ −

1
2
cq
(
q2

1 + q2
2

)
(37)  

where 

aθ = Jz1 + 2μtllp

[
1
3
l2
p + lp

(a
2

sinδ+ lccosδ
)
+
(a

2

)2
+ l2

c

]

, (38)  

aθq = lμtl

[
I1

(a
2

sin δ+ lc cos δ
)
+I3

]
, (39)  

aq = l2μtlI2, (40)  

cq =EJl2
pI4, (41)  

Jz1 is the total moment of inertia of the rigid parts of the satellite, μtl is 
the linear mass of a single tail panel, 

μtl =
σtl
uλt

, (42)  

q1 = q11/lp, q2 = q21/lp are the dimensionless modal coordinates, 

I1 =

∫ lp

0
Φ1(ξ)dξ, (43)  

I2 =

∫ lp

0
Φ2

1(ξ)dξ, (44)  

I3 =

∫ lp

0
ξΦ1(ξ)dξ, (45)  

I4 =

∫ lp

0
Φ′′

1(ξ)
2dξ, (46)  

Φ1(ξ)=B
[

cosh
ω1/2ξ

lp
− cos

ω1/2ξ
lp

− d
(

sinh
ω1/2ξ

lp
− sin

ω1/2ξ
lp

)]

, (47)  

ω =  3.51, d =  0.734,B =  0.5006. The non-potential generalized 
forces are 

Q=(Md, 0, 0) (48)  

where the damping aerodynamic torque Md is defined by Eq. (4). 

4. Numerical simulations 

In this section, the chaotic motion of a flexible CubeSat will be 
studied using Poincaré sections and Lyapunov exponents. Along with 
these tools, the Melnikov criterion is often used to determine the pres-
ence of chaos in a system. Melnikov’s theory allows to write the 
necessary condition for chaos [60,61]. However, the construction of the 
Melnikov criterion is difficult for the considered unperturbed system due 
to the lack of analytical expressions for its heteroclinic trajectories. 

All numerical simulations of the perturbed nonlinear attitude motion 
of the example CubeSat (Fig. 4,a) will be performed for a circular orbit 
with an altitude of 250 km, unless otherwise specified. The density and 
temperature of the incident stream at this altitude are chosen using 
Jacchia-Bowman 2008 Atmosphere Model [62] for different levels of 
solar activity. The temperature of the satellite’s surfaces is taken equal to 
Tw =  300  K based on the energy balance between an aluminum sat-
ellite surface and the solar flux [63], which is consistent with actual 
in-orbit measurements for CubeSats [64]. For convenience, all envi-
ronmental data used are gathered in Table 2. Fig. 8 shows typical de-
pendencies of the restoring and damping aerodynamic torque 
coefficients on the angle of attack for the example satellite, calculated 
numerically using Eqs. (10) and (11), respectively, as well as the data 
from Table 2. Other parameters of the example CubeSat are given in 
Table 1. 

Fig. 9 depicts three trajectories on a phase plane (θ, θ̇) starting at the 
same point (0,0.0367) near the inner separatrix (see Fig. 7,bottom) and 
calculated for three different sets of initial conditions of the panels 
oscillations: 

q10 = 0.007, q20 = 0.022; q10 = − 0.002, q20 = − 0.005; q10 = − 0.019, q20

= − 0.039.

For all three cases, we take q̇10 = q̇20 = 0. Each phase trajectory 
demonstrates that the damping torque dissipates the energy of the sys-
tem and pulls the satellite into one of the potential wells. Even though 
the phase trajectories start at the same point, the satellite eventually 
oscillates about different stable equilibrium positions. In the first case, it 
is an intermediate trim position θ = θs, in the second case, it is the 
operational position θ = θ0, and in the third case, it is another inter-
mediate trim position θ =  − θs. This qualitative difference between the 
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trajectories is clearly due to the difference in the initial disturbances of 
the panels. Thus, Fig. 9 demonstrates that the perturbed system is sen-
sitive to initial conditions, which is one of the attributes of chaos. Fig. 9 
also shows that the oscillations of the satellite body have a high- 
frequency harmonic of small amplitude caused by the flexible panels. 
Fig. 10 illustrates the oscillations of the panels themselves, and it can be 
clearly seen that they oscillate in antiphase. For convenience, we plot 
here the panels’ tips maximum deflections instead of non-dimensional 
coordinates q1 and. q2.

Perturbations in the satellite angular motion due to the panels os-
cillations lead to a complication of the phase space and occurrence of a 
chaotic layer near the unperturbed separatrices. The intersection of 
stable and unstable manifolds can be revealed in the Poincaré plane 
[61]. Fig. 11 depicts Poincaré sections for the perturbed motion. Note 
that the phase trajectories simulated to plot the cloud of points start 
from the points lying in one of the intermediate potential wells near the 
separatrix. The fact that some of cross-section points appear in the 

central area between the saddle points − θu and θu indicates that the 
phase trajectories cross the separatrix and pass from one potential well 
to another. Therefore, the occurrence of chaos in the perturbed system is 
verified. 

In addition to constructing Poincaré sections, the presence of chaos 
in the system can be confirmed by calculating the Lyapunov spectrum 
for individual trajectories. The Lyapunov exponents making up this 
spectrum characterize the evolution of trajectories in a certain volume 
near the trajectory under consideration in different directions of the 
phase volume. A numerical algorithm for calculating Lyapunov expo-
nents is given, for example, in Ref. [65]. Chaotic motion must produce at 
least one positive Lyapunov exponent, hence it is sufficient to calculate 
only the maximum Lyapunov exponent. Fig. 12 shows maximum Lya-
punov exponents for the phase trajectories starting at a saddle point (θu,

0) without initial panels disturbances for three different orbit altitudes 
assuming mean solar activity. All the exponents are positive, which in-
dicates chaos. Note that at the altitudes 200 and 300 km the magnitude 
of the Lyapunov exponent is lower, so the chaotic effects are weaker 
than at 250 km. At lower altitudes, this is due to the increasing role of 
the damping aerodynamic torque. At higher altitudes, this is caused by 
an increase in the ratio between the frequencies of oscillations of the 
panels and the satellite body and, accordingly, by a decrease in the in-
fluence of the elastic oscillations of the panels on the attitude motion of 
the satellite. 

Fig. 12 thus confirms that the previously chosen altitude of 250 km 
allows a better illustration of the chaos in attitude motion of the example 
satellite. Figs. 13 and 14 show maximum Lyapunov exponents for the 
phase trajectories starting at the same saddle points. Fig. 13 depicts the 
exponents calculated for three different levels of solar activity, and 
consequently, air density (see Table 2). It can be seen that, at a given 
altitude, the system is somewhat more prone to chaotic behavior when 
the incident stream density is low. This is due to the fact that, in this 
case, since the aerodynamic forces are weaker, the effect of the pertur-
bations caused by the oscillations of the panels increases. The exponents 

Fig. 8. Coefficients of restoring (top) and damping (bottom) aerodynamic 
torques for the example CubeSat (h = 250 km, high solar activity). 

Fig. 9. Phase trajectories for the example CubeSat.  

Fig. 10. Typical time histories of panel tips deflection for the example CubeSat.  
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shown in Fig. 14 are calculated for four different values of tail panels 
thickness. As in the previous case, all the exponents are positive, so the 
behavior of the system is chaotic. However, unlike the previous case, 
there is no monotonic dependence between the varying parameter and 
the maximum Lyapunov exponent. This can be explained by the high 
complexity of the system, in which the thickness of the panels affects a 

large number of system parameters, e.g., the frequency of the oscilla-
tions of the panels, moments of inertia, position of the CoM of the sat-
ellite. The latter, in its turn, strongly affects the aerodynamic 
coefficients. It has to be mentioned here that the problem of quantitative 
assessment of the propensity of the described system to chaotic behavior 
depending on various parameters is challenging, so the above numerical 
examples must be considered exemplary rather than exhaustive. 

Thus, numerical simulations confirm the possibility of chaos in 
attitude motion of a aerodynamically stabilized satellite with tail panels, 
even in low orbits. 

5. Conclusion 

This paper reveals some features of the nonlinear attitude dynamics 
of CubeSats with deployable stabilizing panels in low orbits. It was 
shown that, in the presence of the intermediate unstable equilibrium 
positions, instead of stabilizing the attitude motion of the satellite, the 
oscillating panels may paradoxically destabilize it due to chaos. The 
satellite may get to one of the intermediate positions because of an 
accidental disturbance, e.g., during the separation from the launch 
vehicle. Therefore, obviously, it is preferable to eliminate these positions 
at the design phase. In the cases where this is not possible, the risk of 
large disturbances causing angular oscillations of the satellite with large 
amplitudes should be minimized. Another way is to use additional de-
vices (reaction wheels, magnetorquers, etc.) to compensate the unde-
sirable aerodynamic features. The results of the paper can be used to 
select the parameters of these devices. It is also demonstrated that, for 
studying the attitude oscillations at high angles of attack, it is important 
not to neglect the damping aerodynamic torque, since, if the satellite has 
intermediate trim positions, damping may lead to qualitatively different 
motions. 

The future work will focus on certain related problems not covered in 
this paper. In particular, it is interesting to study a more general case of 
three-dimensional attitude motion of CubeSats with flexible side panels 
in free molecular flow. This case may contain new chaotic effects related 
to the decomposition of the satellite rotation about the center of mass 
into nutation, precession, and spin. Another important area of research 
is the determination of the boundaries of chaotic regions in the phase 
portrait for different combinations of system parameters. Furthermore, 
the dynamics of panels deployment needs to be investigated. 
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Fig. 11. Poincaré sections for the example CubeSat: blue – start from right 
potential well, orange – start from left potential well. Solid black line represents 
the inner unperturbed separatrix (see also Fig. 7). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 12. Maximum Lyapunov exponents for the example CubeSat at three 
different altitudes. 

Fig. 13. Maximum Lyapunov exponents for the example CubeSat at three 
different levels of solar activity. 

Fig. 14. Maximum Lyapunov exponents for the example CubeSat with panels 
of four different thicknesses. 
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