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This paper discusses three phases of the space debris removalwith harpoon assistance: capture, tether deployment,

and towing. The harpoon impact momentum is used to detumble the target. Equations of motion for each phase are

given in dimensionless form, which significantly reduces the number of parameters describing the system. The aim of

the paper is to propose algorithms for choosing optimal parameters for the capture and tether deployment phases.

This optimization provides small amplitudes of the tether and debris oscillations during towing. The numerical

simulations of the removal of a spent Ariane 4 upper stageH10 confirm the correctness of the proposedmathematical

models and optimization algorithms.

Nomenclature

a = dimensionless tug thrust
cij = dimensionless elements of Jacobian matrix

D = diameter of the target, m
d = distance between the tug and center of mass of the

target, m
Eα = dimensionless total energy of the tether

oscillations
Eβ = dimensionless total energy of the target

oscillations
h = dimensionless arm of the impact impulse
Jx = longitudinal moment of inertia of the target,

kg ⋅m2

Jy, Jz = transverse moments of inertia of the target, kg ⋅m2

J = dimensionless Jacobian matrix
KE = kinetic energy, J
kα, kβ = dimensionless natural frequencies

k1, k2 = elliptic moduli
l = tether length, m
m, m1, m2 = mass, kg
n = mean motion of the center of mass of the target,

rad∕s
r0 = orbit radius, m
s = dimensionless impact impulse
T = dimensionless period of oscillations of the target
t = time, s
U = dimensionless potential energy of the tether

oscillations
u = vector of optimal tug thrust control law parameters
v = eigenbasis of the linearized equations of the teth-

ered towing
w = vector of perturbed variables describing the teth-

ered towing
x, y = coordinates of the relative motion of the tug, m
�x, �y = dimensionless coordinates of the relative motion

of the tug
α = angle between the tether and local horizontal, rad
β = angle between the longitudinal axis of the target

and local horizontal, rad

γ = harpoon obliquity angle, rad
Δ = dimensionless capture point shift parameter
ΔL = dimensionless longitudinal shift of the capture

point
ΔT = dimensionless transverse shift of the capture point
δ = dimensionless distance between the tug and center

of mass of the target
η = tug thrust direction angle, rad
θ = angle between the local horizontal and the line

through the tug and the center of mass, rad
λ = vector of eigenvalues of the linearized equations of

the tethered towing
μ = gravitational parameter of the Earth, m3 ⋅ s−2
ν = true anomaly of the target, rad
τ = dimensionless time
ω = dimensionless angular frequency of the attitude

motion of the free target

Subscripts

c = capture
h = harpoon
L = longitudinal
s = stable
T = transverse
u = unstable
1 = tug
2 = target
− = before capture
� = after capture

I. Introduction

T HE continuing increase of the space debris population is threat-
ening the future of space exploration [1]. For this reason, a

significant number of space debris removal methods have been
proposed and analyzed in recent years [2–4]. One of the most
promising methods is to use space tether systems [5,6] for deorbiting
space debris [7–13]. In the context of space debris removal, the
principal components of the space tether system are the passive debris
object (target), active spacecraft (tug), and capturing device, such as a
net [14,15] or a harpoon. To study the possibility of using harpoons to
capture space debris, both ground-based [16] and space experiments
have been conducted recently. In early 2019, on the International
Space Station, as part of the RemoveDebris project [17], a 10 cm by
10 cmaluminumhoneycombpanelwas captured by a harpoon from a
distance of 1.5m.Although the experimentwas successful, real space
debris objects may rotate, whichmay lead to thewinding of the tether
on the captured object during towing. To avoid this negative scenario,
it is necessary to detumble the target beforehand. Several detumbling
techniques have been recently proposed, including the use of tether
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tension [18], eddy currents [19], or laser ablation [20]. The angular
speed of the target can also be reduced due to the harpoon impact, but
the influence of the capture parameters on the subsequent phases of
the removal process is not fully investigated in this case. In addition,
to ensure accurate targeting of the harpoon firing device, the tugmust
be close to the space debris object being captured, whereas for safe
towing the tug must be placed at a significant distance. It is therefore
necessary to further investigate the motion of the tug during the
transition to the operating position after the capture. More generally,
there are no studies that cover all phases of the space debris removal
with harpoon assistance. Yet, it is important to consider this process
as awhole, because each preceding phase affects the subsequent one.
For instance, properly chosen capture parameters can provide a
smaller amplitude of oscillations of the target during tethered towing.
The primary goal of the paper is therefore to discuss a more

complete process of space debris removal with harpoon assistance
and to propose algorithms for choosing the optimal parameters of the
process. The secondary goal is to study the possibility of using the
harpoon not only for capturing, but also for detumbling rotating space
debris objects. To achieve these goals, the mathematical models of
multiple phases of the removal process are proposed, the optimiza-
tion of parameters of the process is performed, and numerical exam-
ples are considered.
The paper has the following structure. Section II deals with the

separate phases of the removal process. In addition, the major chal-
lenges to be overcome during the mission planning are formulated.
Section III presents mathematical models describing the motion of
the system in each phase. Section IV is devoted to the selection of
capture parameters and optimization of tug thrust control during
tether deployment. Section V contains numerical examples of a spent
upper stage removal. The final Sec. VI gives the conclusions.

II. Proposed Removal Technique and Related
Challenges

The following method of space debris removal is proposed. The
tug captures the target with a harpoon from a close distance, then
moves to the position required for the towing, deploying the slack
tether. The capture parameters are such that during the deployment
time the target also moves to the position required for towing.
Eventually, the tether is tensioned, and towing begins. The described
process can be divided into three phases (Fig. 1), which are discussed
in detail below.
The first phase includes the initial attitudemotion of the target under

the influence of the gravitational torque before the capture and the
capture itself. The initial attitude motion of the target is characterized
by some constant value of total mechanical energy, which changes
instantly as a result of the harpoon impact. During this phase, the tug
has to be close to the space debris object being captured at a distance
that ensures sufficient targeting accuracy and at the same time prevents
accidental collision with the object. Because the tug needs time to
estimate the characteristics of the attitude motion of the object, select

the capture point and perform the targeting, the best relative position
for the capture phase is when the tug is in the same orbit as the target.
Depending on the direction of the initial rotation of the target, namely,
in the direction of its mean orbital motion or the opposite direction, the
tug may be placed behind or in front of the target.
In the second phase, the tug generates a thrust and moves away

from the target, deploying the tether. It is assumed that during this
process the tether is slack. Thismakes the design of the tug simpler, as
no tether tension control device is required. Such a system is highly
reliable because it has a minimal number of elements and does not
require any tension control. At the same time, it will be necessary to
control the tug thrust so that when the tether reaches the required
length, the tug has the relative position and speed appropriate to start
the towing. Note that during the tether deployment, the target will
continue to rotate relative to its center of mass under the influence of
the gravitational torque.
The third phase begins immediately after the tether deployment is

complete. The tug changes the direction of the thrust, aligning it with
the local horizontal, and starts the tethered towing of the target. It will
be shown below that there exist equilibrium positions of the tether
and the target about which they will oscillate during towing. The
smaller are the amplitudes of these oscillations, the safer is the towing
process. Small amplitudes can be achieved if after completion of the
tether deployment both the tug and the target will be in strictly
defined positions and have the specified velocities. It is therefore
necessary to optimally choose not only the towing parameters, but
also those of the relative motion of the tug during the tether deploy-
ment phase, as well as the capture parameters (see Sec. IV).
It can be expected that several challenges will arise during the

planning of the describedmission. In particular, for the capture phase,
the following are necessary:
1)Assess the practical feasibility of using the harpoon impact for the

detumbling of the particular target.
2)Choose the position of the tug relative to the target at themoment

of capture.
3) Determine the required orientation of the target at themoment of

capture and the location of the capture point.
For the tether deployment phase, the following are essential:
1) Find the relative position of the tug after completion of the tether

deployment, providing the minimum amplitude of the tether oscil-
lation in the subsequent towing phase.
2)Design the tug thrust control law that ensures that the tug reaches

the above-mentioned position.
For the tethered towing phase, one must choose 1) the mass and

amount of thrust of the tug and 2) the length of the tether.
The following sections are meant to solve these and other chal-

lenges related to the discussed space debris removal technique.

III. Dimensionless Equations of Motion

The equations of motion are derived in dimensionless form, which
allows to investigate the behavior of the system in an arbitrary space

Fig. 1 Phases of space debris removal with harpoon assistance.
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of parameters and formulate general recommendations. The equa-

tions of tethered towing are considered first, followed by the equa-

tions of relativemotion of the tug, and finally the equations of attitude

motion of the free target, including its motion during capture. Such

order of presentation is because the parameters of the final phasemust

be taken into account while choosing the parameters of relative

motion of the tug during the tether deployment phase, which, in their

turn, have an influence on the capture parameters.

A. Main Assumptions

We impose the following assumptions.
1) The mass of the harpoon is small compared with the mass of the

target.
2) The initial orbit of the target is circular (r0 � const), and the har-

poon impact and tethered towing do not change its parameters. In this
case, the true anomaly of the target ν can be used as a dimensionless
time:

τ ≡ ν � nt (1)

where n is the mean motion:

n �
�����
μ

r30

r
� const (2)

μ is the gravitational parameter of the Earth.
3) The geometric, kinematic, and inertial parameters of the target

are known.
4) The target has two equal principal moments of inertia (Jy � Jz,

Jz > Jx).
5) All motions take place in the orbital plane of the target. This

assumption is reasonable because after a long time in orbit, due to
energy dissipation, space debris objects tend to rotate about the axis
with the largest moment of inertia [21].
6) The tug is a point mass.
7) The tug thrust is directed along the local horizontal and its mag-

nitude is constant.
8) The tether is massless and inextensible.
9) The tether properties are selected in away that eliminates the risk

of rupture during conventional towing, i.e., when the tether is not
wrapped around the target.
10) The harpoon impact is modeled as a completely inelastic colli-

sion.
11) The influence of the atmosphere is negligible.

B. Tethered Towing

Following [13], let us write down the equations of motion for the

tethered system in a circular orbit, which differ in that the capture

point is placed arbitrarily on the sidewall of the target:

α00 � �ΔL cos�α − β� � ΔT sin�α − β��β00
� �β02 � 2β0��ΔL sin�α − β� − ΔT cos�α − β��

� a sin α −
3

2
�sin 2α� 2 cos α�ΔT cos β� ΔL sin β�� � 0 (3)

�ΔL cos�α − β� � ΔT sin�α − β��α00 �
�

Jz
m0l

2
� Δ2

T � Δ2
L

�
β00

− �α02 � 2α0��ΔL sin�α − β� − ΔT cos�α − β��

� a�ΔT cos β� ΔL sin β� �
3

2

�
Δ2

T − Δ2
L � Jx − Jz

m0l
2

�
sin 2β

− 3�ΔTΔL cos 2β� sin α�ΔL cos β − ΔT sin β�� � 0 (4)

where ΔT and ΔL are, respectively, the transverse and longitudinal

shifts of the harpoon impact point from the center of the mass of the

object, divided by the length of the tether l (Fig. 2); � �0 means differ-

entiation with respect to the dimensionless time τ; α is the angle

between the local horizontal and the tether; β is the angle between the
local horizontal and the longitudinal axis of the target;m1 is the mass

of the tug; m2 is the mass of the target, m0 � m1m2∕�m1 �m2�; Jx
and Jz are the longitudinal and transverse principal moments of

inertia of the target, respectively; and a is a dimensionless parameter

[9], which can be interpreted as the dimensionless tug thrust:

a � P

lm1n
2

(5)

where P is the tug thrust magnitude.
With the additional assumptions that the tether and target oscil-

lations are small and the shift of the harpoon impact point from the

center of mass of the target is small compared with the tether length,

Eqs. (3) and (4) take the form

α00 � −a sin α� 3

2
sin 2α (6)

β00 � 1

Ĵ
ΔT�Δ sin�α − β� − cos�α − β���a cos α� 3sin2α�

� 1

2 ~J
sin 2β (7)

where Ĵ, ~J, and Δ are dimensionless parameters:

Ĵ � Jz
m0l

2
; ~J � Jz

3�Jz − Jx�
; Δ � ΔL

ΔT

(8)

It is supposed in Eq. (8) that ΔT ≠ 0, since the proposed removal

technique implies that the capture point is shifted from the longitudinal

axis of the object. Note that there exist two different capture cases. In

the first case, the coordinate y2 � ΔTl of the tether attachment point is

Fig. 2 Two cases of tethered towing of the target.
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positive in the coordinate frame C2x2y2 associated with the target

(Fig. 2, left). Accordingly, the parameters ΔT and Δ have the same

sign. In the second case (Fig. 2, right), the parameters ΔT and Δ are

negative. All equations in this and the following sections are suitable

for both capture cases provided that the sign of these parameters is

taken into account. Note that the discussed capture cases are funda-

mentallydifferent. Transition fromone to another is only possible if the

target rotates about its longitudinal axis x2, which is beyond the scope
of this paper.
Equations (6) and (7) give some physical insight into themotion of

the tethered system. The tether oscillations are mainly caused by two

torques: one due to the tug thrust and one due to the gravitational

forces acting on the tug and the target. These torques are represented

by the first and the second terms in the right-hand side of Eq. (6),

respectively. Similarly, the oscillations of the target are also mainly

caused by two torques: one due to the tether tension and one due to

the gravity gradient. These torques are represented by the first and the

second terms in the right-hand side of Eq. (7), respectively. The

tension force itself is the factor (a cos α� 3sin2α) in the first term.

Because the dimensionless tug thrust a is taken positive, for all values
of α in the interval from −π∕2 to π∕2 corresponding to the conven-

tional towing the tension force is positive; thus, the tether is always

tensioned.
Equation (6) can be regarded as the equation of the unperturbed

angular motion of the tensioned tether. Because both torques in its

right-hand side depend only on the orientation of the tether, the

dimensionless total mechanical energy of the unperturbed angular

motion of the tether is conserved:

Eα�α; α0� � 1

2
α02 �U�α� � U�αm� � const (9)

where U is the dimensionless potential energy of the unperturbed

motion of the tether,

U � −a cos α� 3

2
cos2α (10)

αm is the amplitude, which corresponds to the equality

Eα�α; α0� � Eα�αm; α0 � 0� (11)

The equilibrium positions of the tether αi are the roots of the equation

∂U
∂α

� 0 (12)

α1 � 0; α2;3 � ∓ arccos
a

3
(13)

When

∂2U
∂α2

����
α�αi

> 0 (14)

the potential energy is in its minimum and the equilibrium is stable.

On the contrary, when

∂2U
∂α2

����
α�αi

< 0 (15)

the potential energy is in its maximum so the equilibrium is unstable.

These cases are illustrated by the Fig. 3, which represents the

dependency of the potential energy on the dimensionless thrust a
and angle α. It can be seen that, when the parameter a is large, there

exists one stable position α � αs1 � 0 (Fig. 3, top right). When a is

small, there are two stable equilibrium positions, at the points αs2;3,
while the point α � αu � 0 becomes unstable (Fig. 3, bottom right).

Solving the equation

∂2U
∂α2

����
α�0

� 0 (16)

one can find that the bifurcation point is at a� � 3. The potential

energy curve for this particular case is given in Fig. 3, middle right.
The evolution of the equilibrium positions of the tether can be

represented more clearly by the bifurcation diagram (Fig. 4). When

a ≥ 3 the torque due to the tug thrust makes a greater contribution to

Fig. 3 Dimensionless potential energy of the unperturbed angular motion of the tether.

Fig. 4 Bifurcation diagram.
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the static stability of the tether. As this torque tends to align the tether

along the local horizontal, the point α � 0 is stable. After passing

the bifurcation point, the torque due to gravity, which tends to align

the tether along the local vertical, becomes more significant, and the

horizontal orientation of the tether is no longer stable. Equation (17)

summarizes the above considerations about the stable equilibrium

positions of the tether:

αs �
8<
:	 arccos

�
a

3

�
; a < 3;

0; a ≥ 3

(17)

This means that if a ≥ 3 the tugmust be on the local horizontal of the

target, whereas if a < 3 the tug must be above or below it. Note that

Eq. (6), as well as the positions of the stable equilibrium of the tether

(17), were introduced in [9].
For the givenvalue ofEα, the amplitude of tether oscillations in the

vicinity of the specified positions of stable equilibrium is

αm �

8><
>:
1

2
�f1�a; Eα� − f2�a; Eα��; Eα < U0;

2f1�a; Eα�; Eα > U0

(18)

where

U0 � U�0� (19)

f1;2 � arccos
∓a�

��������������������
a2 � 6Eα

p
3

(20)

The first of the expressions (18) corresponds to oscillations in the

vicinity of the positions αs2;3, whereas the second corresponds to

oscillations near αs1 � 0.
Let us find the equilibrium positions of the target that are charac-

terized by the equality β00 � β0 � 0. It is problematic to obtain the

exact analytical expressions for the equilibrium positions from

Eq. (7), but they can be found approximately as follows. As it was

mentioned above, the acceleration β00 is influenced by two torques:

one due to the tether tension, and the other one caused by the gravity

gradient. Neglecting the gravitational torque, as it is small compared

with the first one (Fig. 17), and equating Eq. (7) to zero, one can

approximately find the equilibrium positions of the target:

β0 � αs − arctan
ΔT

ΔL

� αs − arctan
1

Δ
(21)

Clearly, β0 corresponds to the position of the target at which its center
of mass is on the same straight line as the tensioned tether. In reality,

the gravitationalmomentwill deflect the target from this position by a

small angle, and a more accurate expression for the equilibrium

positions is

βs � β0 � β1 (22)

where the small angle β1 can be found by expanding the right-hand

side of Eq. (7) in the Taylor series in the vicinity of β � β0 and

equating the obtained expression to zero:

β1 �
~JΔT�cos�αs − β0� − Δ sin�αs − β0���a cos αs � 3sin2αs� − �Ĵ∕2� sin 2β0
Ĵ cos 2β0 − ~JΔT�Δ cos�αs − β0� � sin�αs − β0���a cos αs � 3sin2αs�

(23)

To find the natural frequencies of the tether and the target oscillations,
we linearize Eqs. (6) and (7) in the vicinity of the obtained equilib-
rium positions (17) and (22) using new variables:

δα � α − αs; δβ � β − βs (24)

Since αs and βs are constants,

_α � δ _α; �α � δ �α;

_β � δ_β; �β � δ�β (25)

and, taking into account Eq. (25), we can write Eqs. (6) and (7) in the
linearized form

_w � Jw (26)

where w is the vector of variables:

w � �w1 w2 w3 w4 �T � � δα δ _α δβ δ_β �T (27)

J is the Jacobian matrix:

J �

0
BB@

0 1 0 0

c21 0 0 0

0 0 0 1

c41 0 c43 0

1
CCA (28)

where

c21 � −a cos αs � 3 cos 2αs (29)

c41 �
1

Ĵ
ΔT�Δ cos�αs − βs� � sin�αs − βs���a cos αs � 3sin2αs�

� 1

Ĵ
ΔT�cos�αs − βs� − Δ sin�αs − βs���a − 6 cos αs� sinαs

(30)

c43 �
cos 2βs

~J
−
1

Ĵ
ΔT�Δ cos�αs − βs� � sin�αs − βs��

× �a cos αs � 3 sin2 αs� (31)

The solution of the Eq. (26) has the form

w�τ� �
X4
j�1

Cje
λjτvj (32)

where Cj are arbitrary constants, and vj are the elements of the

eigenbasis v of the system:

v � � v1 v2 v3 v4 �T (33)

with associated eigenvalues λ:

λ � � λ1 λ2 λ3 λ4 �T (34)

which are pairs of conjugated complex numbers with zero real parts.
The natural frequencies of the system are equal to the magnitudes of
the imaginary parts of each pair of eigenvalues λ. With Eqs. (28–31)
taken into account, the natural frequencies are
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kα �
�������������������������������������
a cos αs − 3 cos αs

p
(35)

kβ�
�������������������������������������������������������������������������������������������������������������������������
ΔT �Δcos�αs−βs��sin�αs−βs���acosαs�3sin2αs�

Ĵ
−
cos2βs

~J

s

(36)

The approximate expressions for these frequencieswithEqs. (17) and

(21) taken into account are

kα �
�
3−�1∕2�

��������������
9 − a2

p
; a < 3;�����������

a − 3
p

; a > 3
(37)

kβ �

8>>>>><
>>>>>:

���������������������������������������������������������������������������
3ΔL

����������������
1��1∕Δ2�

p
Ĵ

− �2a2−9��Δ2−1��4aΔ
��������
9−a2

p

9 ~J�Δ2�1�

r
; a < 3;

���������������������������������������
ΔTa

���������
Δ2�1

p
Ĵ

− Δ2−1
~J�Δ2�1�

r
; a > 3

(38)

C. Relative Motion of the Tug During Tether Deployment

Themotion of one point mass relative to another point mass placed

in a circular orbit is usually described by theHill–Clohessy–Wiltshire

equations given, e.g., in Ref. [22]:

�x � 3n2x� 2n _y� ax (39)

�y � −2n _x� ay (40)

For the problem under consideration, x and y are the coordinates of

the tug relative to the center of the mass of the target (Fig. 5), and ax
and ay are the radial and tangent components of the tug acceleration,

respectively,

ax � −
P

m1

cos η; ay � −
P

m1

sin η (41)

where η is the thrust direction angle measured between the thrust

vector and the local vertical.
Equations (39) and (40) can be presented in dimensionless form by

dividing both sides of each equation by n2l:

�x00 � 3�x� 2 �y0 − a cos η (42)

�y00 � −2�x0 − a sin η (43)

where

�x � x

l
; �y � y

l
(44)

Note that the relative motion of the tug also depends on the dimen-

sionless thrust a introduced in the tethered towing Eqs. (3) and (4)

and defined by Eq. (5).
If the thrust direction angle η is constant, Eqs. (42) and (43) have

the following analytical solution:

�x�τ� � �4 − 3 cos τ� �x0 � �x00 sin τ − 2�y00�cos τ − 1�
� a�2 sin η�sin τ − τ� � cos η�cos τ − 1�� (45)

�y�τ� � �y0 � 6 �x0�sin τ − τ� � �y00�4 sin τ − 3τ� � 2 �x00�cos τ − 1�

� a

�
2 cos η�τ − sin τ� � 1

2
�3τ2 � 8 cos τ − 8� sin η

�
(46)

where �x0, �y0, �x
0
0, and �y00 are the initial conditions. Note that if a � 0

Eqs. (45) and (46) give thewell-known solutions of the homogeneous

equations of relative motion (see, e.g., [22]). In our case, at the initial

moment the tug is in the same orbit as the target, so

�x0 � �x00 � �y00 � 0 (47)

and the solutions (45) and (46) take the form

�x�τ� � a�2 sin η�sin τ − τ� � cos η�cos τ − 1�� (48)

�y�τ� � �y0 � a

�
2 cos η�τ − sin τ� � 1

2
�3τ2 � 8 cos τ − 8� sin η

�
(49)

In the tether deployment phase, it is essential to track the distance

between the center of mass of the target and the tug. This distance can

be expressed in terms of �x and �y. To do this, we need to introduce the
polar coordinates, namely, the angle θ between the local horizontal

and the line connecting the tug and the center of mass of the target

(Fig. 5) and the dimensionless distance δ between the tug and the

center of mass of the target,

δ � d

l
(50)

where d is the distance between the tug and the center of mass of the

target. If this distance is small compared with the orbit radius, the

following equations apply:

�x � δ sin θ; �y � −δ cos θ (51)

Taking into account Eq. (51), we can find the analytical expres-

sions for the functions θ�τ� and δ�τ�:

θ�τ� � − arctan
�x�τ�
�y�τ� (52)

δ�τ� �
����������������������������
�x2�τ� � �y2�τ�

q
(53)

where �x�τ� and �y�τ� are defined by Eqs. (48) and (49). Because the

offset of the tether attachment point from the center of themass of the

target is small compared with the length of the tether, it can be stated

that the tether deployment phase ends when δ � 1. At this moment,

the tether becomes tensioned, so the initial values of the variables α
andα0 characterizing the tether oscillations during towing are equal to
the final values of the variables θ and θ0.

D. Attitude Motion of the Target

The consideredmethod of removal implies that, before the capture,

the target rotates in the orbital plane, and immediately after the

capture the target begins to oscillate. Both cases are described by a

well-known equation:
Fig. 5 Motion of the tug relative to the center of mass of the target C2

during tether deployment.
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Jz �β � 3

2
n2�Jz − Jx� sin 2β (54)

which can be written in dimensionless form taking Eq. (8) into

account:

β00 � 1

2 ~J
sin 2β (55)

Note that this equation can also be obtained from Eq. (7) by equating

to zero the first term in the right-hand side, which represents the

torque due to the tether tension. Equation (55) has an energy integral,

which can be written as

Eβ �
1

2
~Jβ02 � 1

2
cos2β � const (56)

The total energy corresponding to the separatrix is independent of
~J and is equal to 1∕2. IfEβ < 1∕2, the target oscillates; ifEβ > 1∕2, it
rotates.
Let us reduce Eq. (55) to the pendulum equation by introducing a

new variable

φ � 2β − π (57)

Substituting Eq. (57) into Eq. (55) we obtain the nonlinear pen-

dulum equation

φ00 � −ω2 sinφ (58)

where

ω � 1���
~J

p (59)

Note that in the discussed problem the target may significantly

deviate from the stable equilibrium positions, so the linearization

of Eq. (58) is impractical.
Equation (58) has well-known analytical solutions [23]. For the

rotation case with initial conditions φ�0� � 0 and φ0�0� � φ0
0 the

solution has the form

φ�τ� � 2am

�
φ0
0

2
τ; k1

�
(60)

where am is the Jacobi amplitude with the elliptic modulus k1,

k1 � 2
ω

φ0
0

(61)

For the rotation case with arbitrary initial conditions the solution can

be written as

φ�τ� � 2 arcsin�k2sn�ω�τ� τc�; k2�� (62)

where sn is the elliptic sine, and k2 and τc are parameters depending

on initial conditions. The elliptic modulus k2 in our case can be
defined as

k2 � sin

�
φmax

2

�
(63)

where, according to Eq. (57),

φmax � 2βs − π (64)

and βs is the required final position of the target, determined by

Eq. (22). The period of oscillations is

T � 4K�k2�
ω

(65)

whereK is the complete elliptic integral of the first kind. The time τc
required for the target to move from its equilibrium position at φ � 0
to a displacement ofφ � φc at themoment of capture can be found as

τc �
1

ω
F�ψc; k2� (66)

where F is the incomplete elliptic integral of the first kind:

ψc � arcsin

�
1

k2
sin

�
φc

2

��
(67)

After backsubstitution according to Eq. (57), Eqs. (60) and (62),

respectively, describe themotion of the free target before and after the

capture, up to the moment when the tether is tensioned.
The initial conditions for Eq. (62) must be chosen bearing in mind

that the harpoon impact instantly changes the angular speed of the
target. In dimensionless form, this change can be represented as

follows:

β0� � β0− − sgn�β0−�hs (68)

where β0− is the angular speed of the target just before the harpoon
impact, β0� is the angular speed just after the impact, s is a dimension-

less parameter, proportional to the initial momentum of the harpoon
mhvh,

s � mhvhl

Jzn
(69)

mh is the mass of the harpoon, vh is the initial speed of the harpoon

relative to the target, and h is the dimensionless arm of the impact

momentum. This parameter is visualized in Fig. 6 along with other
capture parameters for two capture cases discussed in Sec. III.B.

Fig. 6 Harpoon capture of space debris.
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Within the assumption that the tug and the target are in the same orbit
and the impact point shift from the center ofmass of the target is small
compared with the initial distance between the tug and the target, the
dimensionless arm of the impact momentum can be defined as

h � ΔT�Δ sin βc � cos βc� (70)

where βc characterizes the orientation of the target at the moment of
capture. Using the same assumption, one can determine the angle of
obliquity (Fig. 6) as

γ �

8>><
>>:
π

2
− βc; βc ≤

π

2
;

βc −
π

2
; βc >

π

2

(71)

IV. Optimization of the Removal Process

This section provides methods for choosing the parameters of the
systemminimizing the amplitudes of the tether and target oscillations
during tethered towing.Minimization of the tether oscillations ampli-
tude is performed by choosing the parameters of the tug thrust
direction control law used in the tether deployment phase. Minimi-
zation of the target oscillation amplitude is performed primarily by
choosing the position of the capture point, as well as by choosing the
dimensionless parameter a � P∕�lm1n

2�, characterizing the combi-
nation of the tug thrust magnitude, tug mass, and tether length.

A. Optimal Tug Thrust Direction Control During Tether Deployment

This subsection aims to choose the tug thrust direction control law
for the tether deployment phase, which provides small amplitude of
tether oscillations in the towing phase. To minimize the amplitude αm,
it is sufficient to minimize the total energy of the tether oscillations

Eα�α0;α0
0� � U�αm� → min (72)

where α0 ≡ θ�τ2� and α0
0 ≡ θ0�τ2� are, respectively, the position and

dimensionless angular speed of the tether at the moment τ2, when the
towing starts or, which is the same, when the tether deployment is
completed. In the ideal case, α0 � αs and α0

0 � 0; i.e., the tug

completes the deployment when the tether is in one of its equilibrium
positions (17).
There are some constraints to keep in mind when minimizing the

cost function (72). Firstly, at the moment τ2 the tether must be fully
deployed. Secondly, we consider unsafe, and therefore unacceptable,
the situationwhen the tug approaches the target closer than half of the
initial distance δ0. Thirdly, when the tether is fully deployed, the tug
must be moving away from the target at a speed that cannot cause the
tether rupture. The described constraints can be mathematically
formulated in the following way:

δ�τ2� � 1;

δ�τ� ≥ δ0
2
;

0 ≤ δ0�τ2� ≤ δ0max (73)

where δ0max is the maximum allowed value of the longitudinal com-
ponent of the tug relative speed at the moment when the tether
becomes tensioned.
We take one of the possible tug thrust direction control laws,which

has a simple form

η�τ� �
�
η1; τ ≤ τ1;
η2; τ1 < τ ≤ τ2

(74)

where τ1 is the moment of dimensionless time at which the thrust
direction angle (Fig. 5) changes from η1 to η2. If the thrust magnitude
remains constant, this change of direction is necessary because the
tug must first accelerate relative to the target and then come to a stop.

The solution to the optimization problem under consideration is the

vector

u � � η1 τ1 η2 τ2 �T (75)

minimizing the cost function Eq. (72) and satisfying the con-

straints Eq. (73).
According to Eq. (74), the relativemotion of the tug is divided into

two phases. During each phase, the thrust direction angle η remains

constant, so the time histories of the tug polar coordinates θ and δ are
described byEqs. (52) and (53), respectively, and the time histories of

the speeds θ0 and δ0 are simply the time derivatives of these analytical

expressions. The values of these variables at the end of the first phase

of the relative motion must be used as the initial conditions for the

second phase.
As it can be seen from Eqs. (42) and (43), the relative motion of

the tug largely depends on the dimensionless thrust a, so it is

necessary to find the function u�a�. Figure 7 depicts an example of

such a dependency, obtained as a result of the minimization of the

cost function Eq. (72) using simulated annealing method [24]. It is

worthmentioning that as the tug is initially at rest relative to the target

and δ0 ≪ δ�τ2�, the initial conditions θ0 and δ0 have little influence
on the optimal values of control parameters. Figure 7 also shows

approximate values of the amplitudes of tether oscillations calculated

using Eq. (18). It can be seen that for the chosen initial conditions and

the tug final speed limit the amplitude of tether oscillations will be

small if a > 1.95. Figure 8 shows the relative trajectories of the tug

corresponding to different values of the parameter a. It can be

observed that in all cases considered the tug moves up relative to

the target, although according to Eq. (17) there is also an equilibrium

position when the tug is placed below the target. This alternative is

not covered here, because numerical simulations show that, taking

into account the constraints (73), placing the tug below the target is

only feasible in a very narrow range of a.

Fig. 7 Optimal tug thrust direction control parameters for the tether
deployment phase and corresponding amplitudes of tether oscillations
(θ0 � 0, δ0 � 0.06, δ0max � 0.02).

Fig. 8 Examples of relative trajectories of the tug during tether deploy-
ment (θ0 � 0, δ0 � 0.06, δ0max � 0.02).
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Thus, it is shown that for the given initial conditions and the tug

final speed limit one can find the dependencies of optimal control

parameters on the dimensionless thrust a. These dependencies give
some idea of the values of the parameter that provide small amplitude

of tether oscillations during the towing phase. However, the final

choice of this parameter has to be made during the analysis of the

capture, which is considered in the next subsection.

B. Choice of Capture Parameters

The aim of this subsection is to choose the orientation of the target

at the moment of capture βc as well as the values of the capture point
longitudinal shiftΔ and dimensionless thrust a. The correct choice of
these quantities allows to solve the following challenges. Firstly, the

probability of full penetration of the target shell has to bemaximized.

Secondly, precisely at the moment τ2, when the tether deployment is

complete, the target must stop at the equilibrium position βs
[Eq. (22)], which will reduce the amplitude of its oscillations during

towing.
It is shown in [16] that if the angle of obliquity (71) is large, the

harpoon may slide along the surface without penetrating it. There-

fore, in order to maximize the probability of successful capture, the

velocity vector of the harpoon must be normal to the surface of the

target, i.e.,

γ ≡ 0 (76)

In this case, it follows from Eq. (71) that the longitudinal axis of the

target at the moment of capture must be directed along the local

vertical:

βc ≡
π

2
(77)

To find the optimal values of the parametersΔ and a, we introduce
two conditions. The first of them is based on the following consid-

erations. After the capture, the target still oscillates under the influ-

ence of the gravitational torque, and the angle β � βc � π∕2 is an

equilibrium position, whereas the angle βs is an extreme position.

Therefore, a quarter of the oscillation period of the target must be

equal to the duration of the tether deployment τ2 (orange curve in

Fig. 10), and the first condition can be expressed as

1

4
T�a;Δ� � τ2�a� (78)

where the function τ2�a� is obtained from the tug thrust direction

optimization (Sec. IV.A).
The second condition is based on the fact that if the material and

thickness of the target shell are known, one can determine the

momentum of the harpoon required for penetration by either experi-

ment or numerical simulation [16,25]. Therefore, the second con-

dition in dimensionless form can be written as

s�a;Δ� � sreq (79)

where sreq is the required dimensionless initial harpoon momentum,

determined from the known required dimensional momentum by

analogy with Eq. (69). To find s�a;Δ�, one has to consider Eqs. (68),
(70), and (77), which give

s �
���� β0� − β0−

ΔTΔ

���� (80)

where, with Eqs. (56), (59), and (77) taken into account,

β0� � −ω cos βs (81)

β0− � 	ω
�������������������������������������������
~Jβ02� − 2�Eβ� − Eβ−�

q
(82)

Here dimensionless quantities β0−, Eβ− and β0�, Eβ� are the angular

velocity and total energy of the target before and after capture,
respectively. The angular velocity β0− [Eq. (82)] must be taken
positive if the target initially rotates in the direction of its mean orbital
motion.
The desired parameters a andΔ can be found by solving Eqs. (78)

and (79) together with Eqs. (17), (21–23), (63–65), and (80–82) for
given geometric and inertial characteristics of the target, its initial
total energy Eβ−, and required dimensionless momentum of the

harpoon sreq.
It should be noted that the proposed algorithm for capture opti-

mization is also suitable for assessing the practical feasibility of using
the harpoon impact to detumble the particular target. If the value of
the parameter Δ obtained from the above equations turns out to be
such that the capture point lies outside the target, it means that the
initial energy of rotation of the target is too high and, thus, other
techniques for detumbling should be used. Mathematically, the con-
dition of applicability of the harpoon impact for the detumbling can
be formulated as

Δ ≤ Δmax (83)

where Δ is obtained from the optimization algorithm:

Δmax �
���� 2xmax

2

D

���� (84)

Here xmax
2 is the distance between the center of mass and the most

distant point on the sidewall surface of the target where capture is still
possible (Fig. 2), and D is the diameter of the target.

V. Numerical Simulations

The objectives of this section are to demonstrate the effectiveness
of the proposed algorithms for optimizing the removal process
parameters and to assess the influence that the deviations of these
parameters from their optimum values have on this process.
To achieve these objectives, three cases will be simulated:
1) In the optimal case, all the recommendations given in Sec. IVare

implemented; i.e., the harpoon hits the target at the desired point and,
at the end of the tether deployment phase, the tug reaches its optimal
position.
2) The harpoon hits the target at thewrong point, but the optimal tug

position is reached.
3) The harpoonhits the target at the desiredpoint, but the optimal tug

position is not reached.
It isworthmentioning that although theoptimizationof the removal

process is mainly carried out based on approximate equations, the
simulations are always performed using the full nonlinear equations.
This allows to validate the proposed optimization algorithms.

A. Parameters of the System

For numerical simulations,we choose anAriane 4H10 spent upper
stage as a target. Its parameters [19] are given in Table 1 along with
the tethered towing parameters. Using [25], we assume that to
penetrate the aluminum wall of the target, which is 3.5 mm thick,
we need the kinetic energy of the harpoon to be about 250 J.Given the
kinetic energy and setting the harpoonmass, one can find its required
initial speed and, using Eq. (69), the required dimensionless momen-
tum. The parameters of the harpoon are gathered in Table 2.

B. Optimal Case

Using Sec. IV, one can find the optimal parameters of the removal
process (Table 3), namely, the orientation of the target at the moment
of capture βc, dimensionless thrust a, capture point shift parameterΔ,
thrust direction control parameters [Eq. (75)], and approximate equi-
librium positions αs [Eq. (17)] and βs [Eq. (22)] of the tether and
target, respectively. From the obtained value of the parameter a
and the data from Table 1, the tug thrust can be calculated. In the
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considered case, the thrust is about 0.5N,which is consistent with the

assumption that the orbit of the target remains circular.
When the optimization is complete, the nonlinear equations of the

tethered towing can be solved. Figure 9 shows the time histories of

the target angular velocity obtained from the full nonlinear Eqs. (3)

and (4) as well as from the linearized Eq. (26). There are two clearly

visible harmonics in the target oscillations. Their frequencies can

be obtained from approximate expressions Eq. (37) and (38). The

dimensionless periods of oscillation corresponding to these frequen-

cies are approximately 11 and 0.79. Figure 9 proves that the above

approximations are quite suitable for the oscillations obtained by

solving the full nonlinear Eqs. (3) and (4).
To estimate the amplitudes of the tether and target oscillations in

the optimal case, it is necessary to plot phase diagrams. This is done in

the following subsections, where these optimal phase diagrams are

given in comparison with the diagrams for nonoptimal cases, in order

to more clearly demonstrate the benefits of optimization.

C. Optimal Capture Point Missed

If the optimal tugposition is reached, but theharpoonhits the target at

the wrong point, the capture point shiftΔ is not optimal. Equation (80)

shows that in this case the change in angular speed of the target

will not be optimal either, because it is proportional to Δ. Figure 10
represents four phase diagrams of the target’s attitude motion before,

during, and after the capture, corresponding to four values of Δ, one
of which is optimal. It can be seen that in any nonoptimal case the

target does not reach the desired position βs within the time τ2 and has
a residual angular speed when the towing starts, which leads to

significant oscillations during towing (Fig. 11). Figure 12 represents

phase diagrams of relative attitude motion of the tether and the target

during towing, which is characterized by the angle β − α between the
tether and the longitudinal axis of the target, during 30 orbital periods.

If the longitudinal shift of the capture point differs strongly from the

optimal value, theremay be caseswhen β − α < 0, and the end face of
the target may touch the tether, which will significantly increase the

Fig. 9 Time histories of the angular speed of the target [thin black line:
Eqs. (3) and (4); thick gray line: Eq. (26)].

Fig. 10 Phase diagrams of the target’s attitude motion before, during,
and after the capture.

Table 1 Parameters of the target and tethered towing

Parameter Value

Target

Mass m2 2154 kg

Principal moments of inertia:

Longitudinal Jx 3000kg ⋅m2

Transverse Jy � Jz 28;000 kg ⋅m2

Diameter D 2.6 m

Orbit radius r0 7071 km

Mean motion n 0.00106 rad∕s
Initial rotation direction Opposite to mean motion
Wall material 7020 alloy
Wall thickness 3.5 mm

Initial total dimensionless energy of rotation Eβ− 1.0

Dimensionless parameters:
~J � Jz∕�3�Jz − Jx�� 0.373

Ĵ � Jz∕�m0l
2� 0.0002

ΔT � −D∕�2l� −0.0013
Tethered towing

Tug mass m1 150 kg

Tether length l 1000 m

Table 2 Harpoon parameters

Parameter Value

Initial kinetic energy KEh 250 J

Mass mh 0.1 kg

Initial speed vh 70.7 m∕s
Dimensionless momentum sreq 237.8

Table 3 Optimal parameters of the removal process

Parameter Value

Target orientation at the moment of capture βc π∕2 rad

Dimensionless tug thrust a � P∕�lm1n
2� 2.857

Tug thrust P 0.48 N

Capture point shift parameter Δ � ΔL∕ΔT −3.212
Capture point longitudinal shift x2 � ΔLl 4.18 m

Initial tug thrust direction angle η1 2.47 rad

Final tug thrust direction angle η2 −1.51 rad

Dimensionless time until tug thrust direction changes τ1 0.615

Time until tug thrust direction changes t1 � τ1∕n 9 min 38 s

Dimensionless tether deployment duration τ2 1.23

Tether deployment duration t2 � τ2∕n 19 min 17 s

Approximate tether equilibrium position αs 0.301 rad

Approximate target equilibrium position βs 0.631 rad

Fig. 11 Phase diagrams of the target’s attitude motion during tethered
towing.
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risk of tether rupture and make the towing unsafe. Note that the
undesirable contact between the tether and debris is caused by
targeting errors rather than secular effects during towing. For this
reason, the accuracy of targeting is crucial.
At the same time, capture errors do not have a significant effect on

the tether oscillations during towing, as shown in Fig. 13. Even for the
highest of the examined capture errors, the amplitude of the tether
oscillations does not exceed 1.2°.

D. Optimal Tug Position Not Reached

Consider the opposite situation: the harpoon hits the target at the
desired point, but the optimal tug position is not reached, i.e.,
α0 ≠ αs. Let us examine two cases when the tether deviates from
the optimal position by 5 and 10°. In the first case, the tether oscillates
about the equilibrium position αs3 in one of the local potential wells
(Fig. 14), which are present if a < 3 (Fig. 3). In the second case, the
deviation of the initial position of the tether from the optimumvalue is
so large that the tether oscillates about the position αs1 � 0 despite
the presence of the local potential wells. For a better understanding of
these situations, a potential energy curve is shown in the upper part of
Fig. 14. The value U0 [Eq. (19)] on this curve corresponds to the
separatrix, shown in the lower part of the figure by a black solid line.
Finally, the orange curve depicts the phase diagram of the tether
oscillations in the optimum case. It can be seen that the amplitude in
this case is much smaller. The amplitude of the target’s oscillations in
the optimal case is also small (less than 0.7°), but the errors in the
initial position of the tether can significantly increase it, as shown in
Fig. 15. For instance, a 10° deviation of the initial position of the
tether from the optimal one increases the amplitude of the target’s
oscillations up to 40°. However, even in this case, there is no risk of
tether rupture, as follows from Fig. 16.
It is of some interest to investigate the contribution of each

of two torques acting on the target during towing to its resulting
attitude motion. As it was shown in Sec. III.B, with some simpli-
fications it can be assumed that the target oscillations are caused by
the torque due to the tether tension Mt � �1∕Ĵ�ΔT�Δ sin�α − β�−
cos�α − β���a cos α� 3sin2α�, which is the first term in the right-

hand side of Eq. (7), and the gravitational torqueMg � �1∕2 ~J� sin 2β,
which is the second term. Figure 17 represents time histories of these

dimensionless torques for the optimal case aswell as for the caseswhen

the optimal tug position is not reached. It is noticeable that in the

optimal case both torques are small and almost compensate each other,

whereas in the nonoptimal cases the contribution of the torque due to

tether tension to the resultingmotion ismuchmore significant than the

contribution of the gravitational torque.
The numerical simulations have thus shown that the optimization

algorithms given in Sec. IVand based on the simplified equations from

Sec. III provide that the amplitudes of oscillations of both the tether and

the target, calculated using the full nonlinear equations, do not exceed

1°, which will make the tethered towing much easier and safer.

Fig. 13 Phase diagrams of the tether oscillations during towing.

Fig. 14 Phase diagrams of the tether oscillations during towing.

Fig. 15 Phase diagrams of the target’s attitude motion during tethered
towing.

Fig. 16 Phase diagrams of relative attitude motion of the tether and the
target during towing.

Fig. 12 Phase diagrams of relative attitude motion of the tether and the
target during towing.
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VI. Conclusions

This paper is the first attempt to study as a whole three important
consecutive phases of space debris removal involving harpoons:
capture, tether deployment, and towing. In addition, it demonstrates
the fundamental possibility of detumbling of space debris objects
by harpoon impact during the capture phase. A proper selection of
the capture parameters and the tug thrust control law during the
tether deployment phase can provide small amplitudes of the tether
and debris oscillations during towing. The deviations from optimal
values of these parameters result in the significant oscillations in the
tethered system and increase the risk of tether rupture. The case
when the harpoon misses the desired capture point is of special
concern.
The future work will focus on certain related issues not covered in

this paper. In particular, the initial motion of debris objects can be
more general than the motion considered in the presented paper; e.g.,
the orbit can be elliptical. Further, the kinematic and inertial param-
eters of debris objects can be known only to a certain degree of
accuracy, and the mathematical models should include parameter
uncertainty.
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