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Abstract: With the growing popularity of small satellites, the interaction with the air in low and
especially in very low Earth orbits becomes a significant resource for passive angular stabilisation.
However, the possibility of spin motion remains a considerable challenge for missions involving
aerodynamically stabilised satellites. The goal of this paper was to investigate the attitude motion
of arbitrarily spinning satellites in LEO and VLEO under the action of aerodynamic, gravitational,
and magnetic torques, taking into account the aerodynamic damping. Using an umbrella-shaped
deployable satellite as an example, the study demonstrated that both regular and chaotic attitude
regimes are possible in the attitude motion. The occurrence of chaos was verified by means of
Poincaré sections. The results revealed that, to prevent chaotic motion, active attitude control and
reliable deployment techniques for aerodynamically stabilised satellites are needed.

Keywords: attitude motion; LEO; VLEO; aerodynamic stabilisation; magnetic torque; aerodynamic
damping

1. Introduction

If a satellite is in LEO or very low Earth orbit (VLEO) (typically characterised by alti-
tudes of 80–450 km), its interaction with the atmosphere needs to be taken into account [1–4].
Aerodynamic torque resulting from this interaction can be used for angular stabilisation.
Passive aerodynamic stabilisation is the simplest, since it does not require any power
supply. This type of stabilisation has been studied since the late 1950s [5–9]. Currently,
with the growing popularity of small satellites, which are more sensitive to the interaction
with the air, the number of missions using partial or total aerodynamic stabilisation has
increased substantially. Current research in this field is focused on atmosphere-breathing
electric propulsion systems [10,11]; satellite shape optimisation and drag reduction [12–14];
using aerodynamic forces for formation flying control [15,16]; and creating variable shapes
in order to change satellite equilibrium positions [17]. Another popular topic related to
aerodynamic stabilisation is the design of re-entry capsules [18–22] and their systems [23].

In the general case, aerodynamically stabilised satellites may spin relative to an orbit-
ing reference frame. A recent in-orbit test [19] of an inflatable satellite showed that this
spinning may be caused by distortion of the aeroshell after its deployment. Regardless
of the cause of spinning, the joint action of the environmental and gyroscopic torques
produces several equilibrium angular positions, which can be either stable or unstable. The
classical papers by Meirovitch, Wallace, and Frik [6], regarding spatial attitude motion,
dealt only with two environmental torques, namely gravitational and aerodynamic, both
depending only on the satellite’s orientation. More recent studies have considered other
possible perturbations, such as orbit eccentricity [24], resisting medium [25,26], inertial
torques due to elastic elements [27–30], and magnetic [31–33] and damping aerodynamic
torques [2,30,33], demonstrating that, in the presence of unstable equilibrium positions,
these perturbations may lead to chaos. Most of these papers, aimed at studying chaos in
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the attitude motion, were focused on the limiting case of planar pitch motion or did not
simultaneously take into account magnetic and aerodynamic torques.

The goal of this paper was thus to investigate the attitude motion of arbitrarily spinning
satellites in LEO and VLEO under the action of aerodynamic, gravitational, and magnetic
torques, taking into account the aerodynamic damping. In order to achieve this goal,
the unperturbed and perturbed motions are defined, the equations of motion were de-
rived, the equilibrium positions were found, and a case study dealing with a deployable
LEO/VLEO satellite was considered.

The paper has the following structure. In Section 2, the problem of satellite attitude
motion under several environmental torques is formulated and the expressions for the
torques and their potential functions are considered. Section 3 presents the definitions of
the unperturbed and perturbed motions and the derivation of the equations of motion.
In addition, the equilibrium positions for the unperturbed motion are found by analysing
the dynamic potential. Section 4 is devoted to the case study of the attitude motion of a
deployable satellite in LEO and VLEO. Finally, the conclusions are given in Section 5.

2. Problem Statement

The attitude motion of the satellite is considered under the following assumptions:

1. The orbit of the satellite remains circular.
2. The atmosphere is not rotating.
3. The density and temperature of the incident air stream are chosen using the Jacchia–

Bowman 2008 Atmosphere Model [34].
4. The satellite is shaped as a body of revolution.
5. The centre of mass of the satellite lies on its axis of symmetry.
6. The transverse moments of inertia of the satellite are equal to each other.

The last two assumptions define the inertia matrix of the satellite:

J =

 A 0 0
0 C 0
0 0 C

 (1)

where A is the longitudinal moment of inertia, i.e., about the axis of symmetry of the satel-
lite, and C is the moment of inertia about the axes perpendicular to the axis of symmetry.

2.1. Coordinate Systems

The following coordinate systems or reference frames, denoted using a convenient
notation proposed in [35], are used:

1. The orbital frame O is defined through an orthonormal right-hand set of unit vectors
ôk, k = 1, 2, 3 with an origin at the satellite’s centre of mass (Figure 1). The ô1 vector is
tangential to the orbit in the flight direction, the ô3 vector is directed along the radius
vector from the centre of the Earth to the centre of mass of the satellite.

2. The body-fixed frame B is defined through a set b̂k. These vectors coincide with the
satellite’s principal axes of inertia, and the b̂1 vector lies along the axis of symmetry.
The orientation of b̂k relative to ôk is described by a symmetric (1, 3, 1) set of Euler
angles corresponding to three successive positive rotations: first about Axis 1 by
the precession angle ψ, then about Axis 3 by the nutation angle θ (angle of attack),
0 ≤ θ ≤ π, and finally, about Axis 1 by the spin angle ϕ, as is shown in Figure 1.
The transformation matrix Θ between O and B is defined by

vB = ΘvO (2)
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where

Θ =

 cθ cψsθ sθsθ
−cϕsθ cθcϕcψ− sϕsψ cψsϕ + cθcϕsψ
sθsϕ −cθcψsϕ− cϕsψ cϕcψ− cθsϕsψ

, (3)

cθ = cos θ, sθ = sin θ, etc.
3. The intermediate coordinate frames I and I′ are defined through unit vector sets

îk, î′k, respectively. The orientations of these frames relative to the orbital frame are
determined by the above-mentioned rotations: a single rotation by the angle ψ for the
îk frame and two successive rotations by the angles ψ and θ for the î′k frame.

ô3

ô2

î2

b2
b3 î 2́

î1,ô1

С

To Earth’s center

Vψ

φ

φφ

ψ

ψ

θ θ

θ

î 3́î3 ,

b1î 1́ ,

Figure 1. Coordinate frames and Euler angles.

Note that the satellite’s attitude can be described not only by Euler angles, but also
quaternions, Cayley–Klein parameters, etc. [35,36]. In this paper, Euler angles were used,
since, in the authors’ opinion, they give the clearest physical picture of the considered problem.

2.2. Environmental Torques

The following environmental torques were considered: gravitational, magnetic, and aero-
dynamic, the last one consisting of restoring and damping torques. For the convenience
of the analysis, it is useful to separate the conservative torques from non-conservative
ones. Any torque M acting on the body is conservative, if it depends only on the body’s
orientation and its curl is equal to zero [8]:

∂Mϕ

∂θ
− ∂Mθ

∂ϕ
= 0,

∂Mψ

∂ϕ
−

∂Mϕ

∂ψ
= 0,

∂Mθ

∂ψ
−

∂Mψ

∂θ
= 0

(4)

where
Mψ = M · ô1|θ=0,ϕ=0, Mθ = M · î3

∣∣
ϕ=0, Mϕ = M · î′1. (5)

If a torque satisfies Condition (4), it has a potential function, which can be found as

V = −
ψ∫

0

Mψdψ−
θ∫

0

Mθdθ −
ϕ∫

0

Mϕdϕ. (6)

Further in this subsection, we will derive, if possible, the potential functions for each
of the environmental torques considered.
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2.2.1. Gravitational Torque

The torque due to the gravity gradient is defined as [7]

MG = 3Ω2(ô3 × Jô3) (7)

where Ω =
√

µG/R3
0 is the mean motion, R0 = Re + h is the orbit radius, Re is the mean

radius of the Earth, h is the orbital altitude, and µG is the gravitational parameter of the
Earth. According to Equation (5), the projections of the vector MG on the (1,3,1) axes
ô1, î3, î′1 (Figure 1) are, respectively,

MGψ
= 0,

MGθ
=

3
2
(C− A)Ω2sin2ψ sin 2θ,

MGϕ
= 0.

(8)

The potential energy corresponding to the gravitational torque can be obtained by the
substitution of Equation (8) into Equation (6). Using a well-known double-angle formula
after the integration and omitting constant terms, we can write the potential energy in
the form:

VG = −
θ∫

0

Mθdθ = −3
2
(C− A)Ω2sin2θsin2ψ. (9)

which, for the chosen Euler angles, is symmetric with respect to the angles θ and ψ.

2.2.2. Magnetic Torque

The magnetic torque acting on a satellite is [37]

MM = µ× B (10)

where µ is the vector of the satellite’s own magnetic moment:

µ =

 M1
M2
M3

B

= µ

 M̄1
M̄2
M̄3

B

, (11)

M̄k = Mk/µ are dimensionless components of the satellite’s own magnetic moment, B is
the Earth’s magnetic field, which is modelled as a field of a dipole placed in the centre of
the Earth [7]:

B =
µ0µm

4πR3
0
[3ô3(ke · ô3)− ke] (12)

where ke is the dipole direction assumed to be aligned with the Earth’s rotation axis,
µ0 is the magnetic permeability of free space, and µm is the geomagnetic dipole moment.
The magnetic field takes its simplest form if it is expressed in the orbital frame:

B =
µ0µm

4πR3
0

 − cos ν sin i
− cos i

2 sin i sin ν

O

(13)

In Equation (13), i is the orbital inclination and ν is the true anomaly:

ν = Ωt. (14)

Note, since the magnetic torque is time-dependent for non-equatorial orbits, it is not
conservative in general and, thus, has no potential function.
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2.2.3. Restoring Aerodynamic Torque

In this paper, the restoring aerodynamic torque is understood as a torque that depends
only on the orientation of the body-fixed frame with respect to the flow vector. This
orientation is described by two angles, namely the angle of attack θ and the spin angle ϕ.
Thus, the restoring aerodynamic torque is independent of the precession angle ψ. In this
case, the conditions (4) for the torque to be conservative are as follows [8]:

Mψ = const, (15)

∂Mϕ

∂θ
=

∂Mθ

∂ϕ
. (16)

For all bodies of revolution with the centre of mass lying on the axis of geometric
symmetry, the aerodynamic restoring torque about the longitudinal symmetry axis is equal
to zero, so Conditions (15) and (16) become

Mψ = Mϕ = 0, (17)

∂Mθ

∂ϕ
= 0. (18)

Thus, for a body of revolution with the centre of mass on the axis of geometric
symmetry, the restoring aerodynamic torque is fully described by the function Mθ = f (θ).
This function can be written in the following form:

Mθ = cr M̄θ (19)

where

cr =
ρV2

2
ArLr, (20)

V = ΩR0 is the orbital speed, Ar is the reference area, Lr is the reference length, and ρ is the
density of the atmosphere. The restoring aerodynamic torque coefficient M̄θ is a periodic
odd function, so it can be approximated by a finite number of terms of a Fourier sine series:

M̄θ =
n

∑
i=1

bi sin iθ (21)

where n is the number of harmonics. Substituting Equations (17), (19), and (21) into Equation (6),
we obtain the potential energy corresponding to the restoring aerodynamic torque:

VA = −
θ∫

0

Mθdθ = cr

n

∑
i=1

1
i

bi cos iθ. (22)

2.2.4. Damping Aerodynamic Torque

The second component of the aerodynamic torque, which depends not only on the
orientation of the body, but also on its angular velocity, is often called the damping torque.
In the body-fixed frame B, it can be expressed as [38]

Md = cd

 M̄ω1
1 ω1

M̄ω2
2 ω2

M̄ω3
3 ω3


B

(23)

where
cd =

ρV
2

ArL2
r , (24)
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where M̄ωk
k = M̄ωk

k (θ, ψ), k = 1, 2, 3 are the damping torque coefficients associated with the
projections ωk of the angular velocity vector ω,

ω =

 ω1
ω2
ω3

 =

 ϕ̇ + ψ̇cθ + Ωcψsθ
θ̇sϕ− ψ̇cϕsθ + Ω(cθcϕcψ− sϕsψ)
θ̇cϕ + ψ̇sθsϕ−Ω(cθcψsϕ + sψcϕ)

B

(25)

on the body axes b̂k [35]. The “longitudinal” damping torque coefficient M̄ω1
1 of a body of

revolution is an even periodic function of the angle of attack alone, so it can be represented
as a Fourier cosine series of a single variable. The “transverse” damping torque coefficients
M̄ω2

2 , M̄ω3
3 are even periodic functions of both the angle of attack θ and the spin angle ϕ,

so they need to be represented as 2D Fourier cosine series. Moreover, due to the axial
symmetry of the body, M̄ω3

3 is equal to M̄ω2
2 , calculated for ϕ increased or decreased by

π/2. Bearing all these facts in mind, one can write the damping torque coefficients as

M̄ω1
1 (θ) =

m
∑

i=0
a1,i cos iθ,

M̄ω2
2 (θ, ϕ) =

p
∑

i=0

r
∑

j=0
a2,i,j cos iθ cos jϕ,

M̄ω3
3 (θ, ϕ) =

p
∑

i=0

r
∑

j=0
a2,i,j cos iθ cos j(ϕ + π/2) = M̄ω2

2 (θ, ϕ + π/2)

(26)

where m, p, and r are the numbers of harmonics. Note that, since, by virtue of Equation (23),
the damping aerodynamic torque depends on the angular velocity of the satellite, it has no
potential function.

3. Equations of Motion

The attitude motion of aerodynamically stabilised satellites may be treated using the
general principles of the analytical mechanics of a rigid body rotating about its centre
of mass [36,39,40]. The equations of motion of the satellite are first derived in standard
dimensional form using the Euler angles ψ, θ, and ϕ as generalised coordinates:

q =
(

θ ψ ϕ
)T (27)

considering qk as functions of time. Then, the equations are transformed into dimensionless
form, using the true anomaly ν as the independent variable. This allows simplifying the
expressions and investigating the behaviour of the system in an arbitrary space of parame-
ters.

If some torques acting on the satellite are conservative, it is extremely useful for an
intuitive analysis of possible satellite motions to define the perturbed and the unperturbed
motions. The perturbed motion is defined as the attitude motion of the satellite under
the action of all the environmental torques considered in the previous section. Then, the
unperturbed motion is the motion of the satellite under the aerodynamic restoring torque
and gravitational torque. Both of them are conservative, which justifies the choice of the
Lagrangian approach for the derivation of the equations.

3.1. Unperturbed Motion

The kinetic energy of the satellite is

T =
1
2

(
Aω1

2 + C(ω2
2 + ω3

2)
)

. (28)
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After the substitution of the components of the vector ω, defined by Equation (25),
Equation (28) takes the form:

T =
1
2

A(ϕ̇ + ψ̇cθ + Ωcψsθ)
2
+

1
2

C
(

θ̇2 + (Ωcθcψ− ψ̇sθ)
2 − 2Ωθ̇sψ + Ω2s2ψ

)
. (29)

The potential energy is the sum of the gravitational and aerodynamic potential energies:

V = VG + VA (30)

where VG and VA are defined by Equations (9) and (22), respectively. The Lagrangian of
the system is

L = T −V =
1
2

A(ϕ̇ + ψ̇cθ + Ωcψsθ)
2
+

1
2

C
(

θ̇2 + (Ωcθcψ− ψ̇sθ)
2 − 2Ωθ̇sψ + Ω2s2ψ

)
−V(θ, ψ).

(31)

Since the generalised coordinate ϕ does not appear in the Lagrangian, the unperturbed
motion has an integral in the form:

pϕ = const (32)

where
pϕ =

∂L
∂ϕ̇

= A(ϕ̇ + ψ̇cθ + Ωcψsθ). (33)

Since the Lagrangian (31) is not an explicit function of time, the Hamiltonian of the
system is also an integral of motion. It can be found as

H =
2
∑

k=1

∂R
∂qk

q̇k − R =

1
2

C
(
θ̇2 + ψ̇2s2θ

)
− 1

2
CΩ2(c2θc2ψ + s2ψ

)
+

p2
ϕ

2A
− pϕΩcψsθ + V(θ, ψ) = const

(34)

where R is the Routhian of the system:

R = L− pϕ ϕ̇. (35)

The general form of the equations of the unperturbed motion is

d
dt

∂R
∂q̇k
− ∂R

∂qk
= 0, k = 1, 2,

ṗϕ = 0.
(36)

According to Equation (27), the first two of Equation (36) correspond to the non-cyclic
coordinates ψ and θ, respectively, while the third of Equation (36) corresponds to the cyclic
coordinate ϕ. The equations of unperturbed motion in dimensionless form can be obtained
by solving Equation (36) for q̈k and dividing both sides of each equation by AΩ2:

γψ′′ = (4γ− 3)sψcψ + β(θ′ − sψ) csc θ − 2γθ′(cψ + ψ′ cot θ),

γθ′′ = α
n
∑

i=1
bisiniθ + 3(γ− 1)sθcθs2ψ + (β− βγ + γϕ′)(cψcθ − ψ′sθ) + γψ′cψ,

γϕ′′ = (γ− 1)cθ(θ′cψ− 2s2ψ) + γψ′sθ(θ′ + sψ) + cot θ(ϕ′(sψ− θ′) + ψ′cθ((2γ− 1)θ′ + sψ))

(37)

where ( )′ means differentiation with respect to the true anomaly, and α, β, and γ:

α =
ArLρR2

0
2A

, (38)
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β =
pϕ

AΩ
= ϕ′ + ψ′ cos θ + sin θ cos ψ, (39)

γ = C/A (40)

are dimensionless quantities.
In order to analyse possible satellite motions, it is convenient to introduce the dynamic

potential. Let us represent the Hamiltonian (34) in the following form, ignoring the constant
term p2

ϕ/2A:
H = T∗ + U = const. (41)

In Equation (41), T∗ = 1
2 C
(
θ̇2 + ψ̇2sin2θ

)
and U is the dynamic potential:

U = V(θ, ψ)− pϕΩcψsθ − 1
2

CΩ2(c2θc2ψ + s2ψ
)
. (42)

For the sake of simplicity, one can rewrite the dynamic potential in the dimension-
less form:

Ū =
U

AΩ2 =

3
2
(1− γ)s2θs2ψ + α

n
∑

i=1

1
i

bi cos iθ − βsθcψ− 1
2

γ
(
c2θc2ψ + s2ψ

)
.

(43)

The dynamic equilibrium positions E of the satellite in its unperturbed motion charac-
terised by q̇k = 0, k = 1, 2 are the roots of the equations:

∂

∂qk
Ū
∣∣∣∣
at E

= 0, k = 1, 2. (44)

Equation (44) describes the following three groups of equilibrium positions.
Group E1: ψ = 0 and θ is the root of the equation:

αM̄θ − β cos θ + γ sin θ cos θ = 0. (45)

Group E2: ψ = ±π and θ is the root of the equation:

αM̄θ + β cos θ + γ sin θ cos θ = 0. (46)

Group E3: ψ and θ are the roots of the system:

β + (3− 4γ) sin θ cos ψ = 0,

αM̄θ + 3(γ− 1) sin θ cos θ = 0.
(47)

The equilibrium is stable if Ū has a minimum at E and unstable if it has a maximum.

3.2. Perturbed Motion

The equations of motion for the perturbed system are

d
dt

∂L
∂q̇k
− ∂L

∂qk
= Qk, k = 1, 2, 3. (48)

The generalised forces due to aerodynamic damping and magnetic torques can be
found as

Qk =
∂

∂q̇k
[(MM + Md) ·ω] (49)

where MM, Md, and ω are defined by Equations (10), (23), and (25), respectively. The gen-
eralised forces (49) are given in their full form in Appendix A. The equations of perturbed
motion in dimensionless form are
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γψ′′ = (4γ− 3)sψcψ + β(θ′ − sψ) csc θ − 2γθ′(cψ + ψ′ cot θ)

+δ f2(ψ, ψ′, θ, θ′, ϕ) + εg2(ψ, θ, ϕ, ν),

γθ′′ = α
n
∑

i=1
bisiniθ + 3(γ− 1)sθcθs2ψ + (β− βγ + γϕ′)(cψcθ − ψ′sθ) + γψ′cψ

+δ f1(ψ, ψ′, θ, θ′, ϕ) + εg1(ψ, θ, ϕ, ν),

γϕ′′ = (γ− 1)cθ(θ′cψ− 2s2ψ) + γψ′sθ(θ′ + sψ) + cot θ(ϕ′(sψ− θ′) + ψ′cθ((2γ− 1)θ′ + sψ))

+δ f3(ψ, ψ′, θ, θ′, ϕ, ϕ′) + εg3(ψ, θ, ϕ, ν)

(50)

where δ and ε are dimensionless parameters:

δ =
ArL2ρR0

2A
, 0 < δ� 1, (51)

ε =
µ0µmµ

4πAµG
. (52)

In Equation (50), the terms δ fk and εgk represent perturbations due to the aerodynamic
damping torque and magnetic torque, respectively. If δ = ε ≡ 0, Equation (50) transforms
into the equations of unperturbed motion (37). It can be seen from Equation (52) that the
dimensionless parameter ε depends on the satellite’s longitudinal moment of inertia and,
by virtue of Equation (11), on the satellite’s own magnetic moment. In this paper, we
assumed that the principal component of the magnetic dipole can be estimated in flight
and cancelled using magnetopairs. The remaining magnetic torques, expressed by µ and
M̄k, can thus be of the order of the other perturbations.

4. Case Study: Deployable Satellite

Consider a satellite similar to the one proposed in [21]. It consists of a cylindrical body,
a hemispherical nose, and a deployable conic aerobrake. Further in this paper, we will refer
to this satellite as the example satellite. Some of its parameters are summarised in Table 1.
This paper deals only with the satellite’s final aerodynamic shape, i.e., after the deployment
of the aerobrake (Figure 2).

Figure 2. Example satellite.

Suppose that, during uneven deployment of the aerobrake, the satellite, for a certain
amount of time, takes a skew shape for which Mϕ 6= 0. In this case, the interaction with
the atmosphere will cause initial spin motion, which will remain after the deployment
is completed, resulting in Mϕ = 0. This scenario is quite possible, as confirmed by a
similar situation with the re-Entry satellite with Gossamer aeroshell and GPS/Iridium
(EGG) [19]. In order to numerically study the case, one needs first to determine the
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aerodynamic characteristics of the satellite, then find its equilibrium positions defined by
Equations (45)–(47). The following subsections are devoted to these issues.

Table 1. Parameters of the example satellite.

Parameter Value

Body length = Reference length Lr 0.3 m
Body radius r 0.15 m
Nose radius 0.2 m
Reference area Ar = πr2 0.0707 m2

Aerobrake half-cone angle 45°
Aerobrake diameter 1.1 m
Longitudinal moment of inertia A 0.005 kg·m2

Transverse moment of inertia C 0.05 kg·m2

Longitudinal shift of the centre of mass from the body’s geometric centre −0.125 m

4.1. Aerodynamic Characteristics

The aerodynamic torque coefficients for the example satellite are calculated as follows [30].
Taking into account that, for a body with a reference length of about 1 m, the Knudsen number
at altitudes above 130 km is larger than 10, which means that the flow is free molecular,
then one can assume that the reflected air molecules’ speed distribution is Maxwellian and
calculate the pressure and shear stress coefficients using the Schaaf and Chambre’s approach [41].
The numerical results were approximated by Fourier series according to Equations (21) and (26).

Figure 3 shows the calculated restoring aerodynamic torque coefficient and its Fourier
series approximation (Equation (21)). It is worth noting that, in the vicinity of θ = π/2,
there exists a region where M̄θ is positive. In some cases, this could provoke instability.
One of these cases will be studied below. Figures 4 and 5 depict the coefficients M̄ω1

1 and
M̄ω2

2 of the damping torque, respectively, as well as their 2D Fourier series approximation
(Equation (26)). The plot for coefficient M̄ω3

3 is not shown, since it can easily be obtained by
shifting the M̄ω2

2 surface by π/2 along the ϕ axis by virtue of the last of Equation (26). It can
be seen in Figure 5 that, unlike the spin damping coefficient M̄ω1

1 , the other two damping
torque coefficients slightly vary with ϕ. It is also interesting that the magnitudes of all
damping torque coefficients for the considered shape are substantially higher when the
angle of attack is small than when the symmetry axis of the satellite is nearly perpendicular
to the flow. One may thus expect more intensive attitude motion damping when the satellite
is close to its operational orientation.

0 π

4
π

2
3 π
4

π

-4

-3

-2

-1

0

1

θ

M
θ
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Figure 3. Restoring aerodynamic torque coefficient.
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Figure 5. Coefficient M̄ω2
2 of the damping torque.

4.2. Dynamic Potential and Equilibrium Positions in Unperturbed Motion

The dimensionless dynamic potential Ū of the unperturbed motion (Equation (43)) is
determined by some parameters of the satellite, which were chosen above, namely its shape,
the moments of inertia, etc., as well as the initial value of the dimensionless conjugated
momentum β (Equation (39)) and the orbital altitude. Let us choose two orbital altitudes:
700 km (LEO) and 250 km (VLEO). At 700 km, the gravitational torque and aerodynamic
restoring torque have roughly the same order of magnitude. In VLEO, the satellite’s
interaction with the atmosphere is much stronger, so the aerodynamic restoring torque is
much larger than the gravitational one. The initial conjugated momentum β depends on
the initial conditions and was chosen arbitrarily, in order to represent the shapes of the
dynamic potential, which are typical for the problem under consideration.

Figures 6 and 7 represent the dimensionless dynamic potential for the chosen altitudes
as 3D surfaces and the corresponding contour plots. The latter can also be understood as
phase portraits of the unperturbed system. The stable and unstable equilibrium positions of
the satellite are marked with black and white dots, respectively. Figure 6 shows that, for h =
700 km and β = 20, the equilibrium positions from all three groups (Equations (45)–(47))
are present. The stable positions belong to Groups E1 and E3. In the case of h = 250 km,
β = 33, 000, illustrated by Figure 7, the situation is substantially different: only the positions
from Groups E1 and E2 are present, and the stable ones belong to Group E1.
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Figure 6. Dimensionless dynamic potential in LEO (h = 700 km, β = 20). Black dots: stable
equilibrium; white dots: unstable equilibrium.
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Figure 7. Dimensionless dynamic potential in VLEO (h = 250 km, β = 33, 000). Black dots: stable
equilibrium; white dots: unstable equilibrium.

4.3. Simulations of Perturbed Motion

In order to illustrate different possible cases of the attitude motion of the example
satellite, the Poincaré surfaces of the section were calculated via the numerical integration
of the perturbed equations (Equation (50)) for several phase-space trajectories at two orbital
altitudes chosen above. The components of the satellite’s own magnetic moment were
taken equal to each other and to unity:

M̄k = 1, (53)

k = 1, 2, 3. The initial conditions were chosen in such a way that all trajectories at the same
altitude had the same energy (Equation (41)). The simulations were performed for different
absolute values of magnetic perturbation, which were determined by the dimensionless
parameter ε (Equation (52)). For a better understanding of the influence of each torque
acting on the example satellite, the orders of magnitude of the torques are given in Table 2.
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Table 2. Orders of magnitude of the torques acting on the example satellite.

h (km)
Order of Magnitude (N·m)

Gravitational Aerodynamic
Restoring

Aerodynamic
Damping Magnetic

250 10−8 10−4 10−12 ε = 580:10−6 ε = 3900:10−5

700 10−8 10−7 10−15 ε = 0.58:10−9 ε = 1.35:10−8

Figures 8 and 9 represent the Poincaré surfaces of the section projected onto the
(θ, ψ) plane, as well as several typical phase trajectories coloured in red. If its own magnetic
moment is absent (ε = 0), the Poincaré sections are consistent with the phase portrait of the
unperturbed system, as shown in Figures 8a and 9a, and all the section points corresponding
to the chosen phase trajectories lie in the potential wells, i.e., the satellite oscillates in the
vicinity of its stable equilibrium positions. Figures 8b and 9b depict the Poincaré sections
for rather weak magnetic perturbations. It can be seen that the system starts to demonstrate
chaotic behaviour: the layers connecting different potential wells appear, and the phase
trajectories that start in one well may go into another, though the satellite still oscillates
near the same set of equilibrium positions, for which −π/2 ≤ ψ ≤ π/2. In the case of
stronger magnetic perturbations, the chaotic behaviour becomes more prominent, and full
rotations about the precession axis are possible, as is clearly indicated by Figures 8c and 9c,
showing the Poincaré sections with the precession angle ψ distributed in the interval from
−π to π.

Figure 8. Poincaré sections (h = 250 km, β = 33, 000); (a): ε = 0, (b): ε = 580, (c): ε = 3900. Red lines:
typical phase trajectories.

Thus, the numerical simulations revealed the possibility of chaos in the attitude motion
of aerodynamically stabilised spinning deployable satellites in the presence of magnetic
perturbations. To cause the chaotic motion in VLEO, where the interaction with the air
is stronger and the aerodynamic damping is significant, the magnitude of perturbations
needs to be several orders higher than in LEO.
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Figure 9. Poincaré sections (h = 700 km, β = 20); (a): ε = 0, (b): ε = 0.58, (c): ε = 1.35. Red lines:
typical phase trajectories.

5. Conclusions

The attitude motion of arbitrarily spinning satellites in LEO and VLEO under the action
of aerodynamic, gravitational, and magnetic torques was investigated, taking into account
the aerodynamic damping. The separation of the equations of motion into the unperturbed
and perturbation parts, proposed in the paper, facilitated an intuitive understanding of
the satellite’s behaviour and allowed determining several regimes of angular oscillations
corresponding to the wells of the dynamic potential surface. The numerical simulations
showed that the magnetic perturbations may cause the chaotic attitude motion of the
satellite, manifested in the transition between the potential wells. These results revealed
the need for active attitude control to prevent chaotic motion in the case of unexpected
spin motion, though this is challenging for small satellites due to their power limits. In this
regard, another way of eliminating undesirable spin can be proposed, dealing with the
design of reliable satellite deployment techniques, reducing the risk of resulting skew
aerodynamic shapes.

The future work will focus on related problems not covered in this paper. In par-
ticular, it is interesting to control chaos using magnetorquers or movable aerodynamic
surfaces in order to transform irregular attitude motions into periodic ones. Another area
of research is to investigate the observed effects in a more general case, taking into ac-
count the perturbations caused by the evolution of orbital altitude or by the oscillations of
flexible elements.
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Appendix A. Generalised Forces

The generalised forces (49) in the equations of the perturbed motion (50) can be
written as

Qk = AΩ2Q̄k (A1)

where Q̄k are the dimensionless generalised forces:

Q̄1 = δ
[(

M̄ω2
2 s2 ϕ + M̄ω3

3 c2 ϕ
)
(θ′ − sψ) +

(
M̄ω3

3 − M̄ω2
2
)
(sθψ′ − cθcψ)sϕcϕ

]
−ε[(M̄1cθ + sθ(M̄3sϕ− M̄2cϕ))cψci + (M̄1sθ + (M̄2cϕ− M̄3sϕ)cθ)cνsi]

+2ε(M̄1cθ + (M̄3sϕ− M̄2cϕ)sθ)sνsψsi,

Q̄2 = δ
((

M̄ω2
2 − M̄ω3

3
)
(sψ− θ′)sϕcϕ + M̄ω3

3 ψ′s2 ϕsθ + M̄ω2
2 ψ′sθc2 ϕ

)
sθ

+δ
(

M̄ω1
1 ϕ′ + M̄ω1

1 ψ′cθ +
(

M̄ω1
1 − M̄ω2

2 c2 ϕ− M̄ω3
3 s2 ϕ

)
sθcψ

)
cθ

+ε((M̄1sθ + (M̄2cϕ− M̄3sϕ)cθ)sψ + (M̄2sϕ + M̄3cϕ)cψ)ci

+2ε(M̄1sθcψ + (M̄2cϕ− M̄3sϕ)cθcψ− (M̄2sϕ + M̄3cϕ)sψ)sνsi,

Q̄3 = δM̄ω1
1 β− 2ε((M̄2sϕ + M̄3cϕ)cθsψ + (M̄3sϕ− M̄2cϕ)cψ)sνsi

+ε[((M̄2sϕ + M̄3cϕ)cθcψ + (M̄2cϕ− M̄3sϕ)sψ)ci− (M̄2sϕ + M̄3cϕ)cνsθsi].

(A2)

In Equation (A2), dimensionless quantities β, δ, and ε are defined by Equations (39),
(51), and (52), respectively.
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