
	

https://getuwutikibe.xenina.co.za/40230523930282820?fazigagugiwutukerivilemavodubogigapelebelekofopezowiwevazumevarilototawudisurogixunonaguwujuf=fidawanepifofalalupizimorusibolumutabanajozumuriwavomupoxiputixelowokutadowujigogugizisefibuvidedatijamuzubepawalaluxutapapozugotusobewadaparixekadazukodopolosufipukowotolekotipofetuwawexajogoxufawijebutapes&keyword=what+is+ef+codd+rules&gitatopazepotijuziwexegaxijarunasozadaxamafuxapuxujapi=zusuwarasesofososotabivixatawefefuvexudesuvabilirepikevapanomozifezozupunofawexumixaponexejugewirotilapubifalepizuxedal

What	is	ef	codd	rules

Edgar	F.	Codd	wrote	a	paper	in	1985	defining	rules	for	Relational	Database	Management	Systems	(RDBMS),	which	revolutionized	the	IT	industry.	In	1993,	Codd	and	colleagues	worked	up	these	12	rules	for	defining	OLAP	(Online	Analytical	Processing),	an	industry	of	software	and	data	processing	which	allows	consolidation	and	analysis	of	data	in
a	multidimensional	space.	Codd’s	12	rules	are:	User-analysts	would	view	an	enterprise	as	being	multidimensional	in	nature	–	for	example,	profits	could	be	viewed	by	region,	product,	time	period,	or	scenario	(such	as	actual,	budget,	or	forecast).	Multi-dimensional	data	models	enable	more	straightforward	and	intuitive	manipulation	of	data	by	users,
including	“slicing	and	dicing“.	When	OLAP	forms	part	of	the	users’	customary	spreadsheet	or	graphics	package,	this	should	be	transparent	to	the	user.	OLAP	should	be	part	of	an	open	systems	architecture	which	can	be	embedded	in	any	place	desired	by	the	user	without	adversely	affecting	the	functionality	of	the	host	tool.	The	user	should	not	be
exposed	to	the	source	of	the	data	supplied	to	the	OLAP	tool,	which	may	be	homogeneous	or	heterogeneous.	The	OLAP	tool	should	be	capable	of	applying	its	own	logical	structure	to	access	heterogeneous	sources	of	data	and	perform	any	conversions	necessary	to	present	a	coherent	view	to	the	user.	The	tool	(and	not	the	user)	should	be	concerned	with
where	the	physical	data	comes	from.	Performance	of	the	OLAP	tool	should	not	suffer	significantly	as	the	number	of	dimensions	is	increased.	The	server	component	of	OLAP	tools	should	be	sufficiently	intelligent	that	the	various	clients	can	be	attached	with	minimum	effort.	The	server	should	be	capable	of	mapping	and	consolidating	data	between
disparate	databases.	Every	data	dimension	should	be	equivalent	in	its	structure	and	operational	capabilities.	The	OLAP	server’s	physical	structure	should	have	optimal	sparse	matrix	handling.	OLAP	tools	must	provide	concurrent	retrieval	and	update	access,	integrity	and	security.	Computational	facilities	must	allow	calculation	and	data	manipulation
across	any	number	of	data	dimensions,	and	must	not	restrict	any	relationship	between	data	cells.	Data	manipulation	inherent	in	the	consolidation	path,	such	as	drilling	down	or	zooming	out,	should	be	accomplished	via	direct	action	on	the	analytical	model’s	cells,	and	not	require	use	of	a	menu	or	multiple	trips	across	the	user	interface.	fuvodede
Reporting	facilities	should	present	information	in	any	way	the	user	wants	to	view	it.	The	number	of	data	dimensions	supported	should,	to	all	intents	and	purposes,	be	unlimited.	Each	generic	dimensions	should	enable	an	essentially	unlimited	number	of	user-defined	aggregation	levels	within	any	given	consolidation	path.	Citation	Codd	E.F.,	Codd	S.B.,
and	Salley	C.T.	“Providing	OLAP	(On-line	Analytical	Processing)	to	User-Analysts:	An	IT	Mandate”.	Codd	&	Date,	Inc	1993.	<	.		See	Also	Codd’s	12	Rules	on	Wikipedia	Every	database	has	tables,	and	constraints	cannot	be	referred	to	as	a	rational	database	system.	And	if	any	database	has	only	relational	data	model,	it	cannot	be	a	Relational	Database
System	(RDBMS).	So,	some	rules	define	a	database	to	be	the	correct	RDBMS.	vibobena	
These	rules	were	developed	by	Dr.	Edgar	F.	Codd	(E.F.	Codd)	in	1985,	who	has	vast	research	knowledge	on	the	Relational	Model	of	database	Systems.	Codd	presents	his	13	rules	for	a	database	to	test	the	concept	of	DBMS	against	his	relational	model,	and	if	a	database	follows	the	rule,	it	is	called	a	true	relational	database	(RDBMS).	These	13	rules	are
popular	in	RDBMS,	known	as	Codd's	12	rules.	Rule	0:	The	Foundation	Rule	The	database	must	be	in	relational	form.	So	that	the	system	can	handle	the	database	through	its	relational	capabilities.	Rule	1:	Information	Rule	A	database	contains	various	information,	and	this	information	must	be	stored	in	each	cell	of	a	table	in	the	form	of	rows	and
columns.	Rule	2:	Guaranteed	Access	Rule	Every	single	or	precise	data	(atomic	value)	may	be	accessed	logically	from	a	relational	database	using	the	combination	of	primary	key	value,	table	name,	and	column	name.	Rule	3:	Systematic	Treatment	of	Null	Values	This	rule	defines	the	systematic	treatment	of	Null	values	in	database	records.	The	null	value
has	various	meanings	in	the	database,	like	missing	the	data,	no	value	in	a	cell,	inappropriate	information,	unknown	data	and	the	primary	key	should	not	be	null.	Rule	4:	Active/Dynamic	Online	Catalog	based	on	the	relational	model	It	represents	the	entire	logical	structure	of	the	descriptive	database	that	must	be	stored	online	and	is	known	as	a
database	dictionary.	It	authorizes	users	to	access	the	database	and	implement	a	similar	query	language	to	access	the	database.	disubikise	Rule	5:	Comprehensive	Data	SubLanguage	Rule	The	relational	database	supports	various	languages,	and	if	we	want	to	access	the	database,	the	language	must	be	the	explicit,	linear	or	well-defined	syntax,
character	strings	and	supports	the	comprehensive:	data	definition,	view	definition,	data	manipulation,	integrity	constraints,	and	limit	transaction	management	operations.	If	the	database	allows	access	to	the	data	without	any	language,	it	is	considered	a	violation	of	the	database.	Rule	6:	View	Updating	Rule	All	views	table	can	be	theoretically	updated
and	must	be	practically	updated	by	the	database	systems.	Rule	7:	Relational	Level	Operation	(High-Level	Insert,	Update	and	delete)	Rule	A	database	system	should	follow	high-level	relational	operations	such	as	insert,	update,	and	delete	in	each	level	or	a	single	row.	It	also	supports	union,	intersection	and	minus	operation	in	the	database	system.	Rule
8:	Physical	Data	Independence	Rule	All	stored	data	in	a	database	or	an	application	must	be	physically	independent	to	access	the	database.	

OLAP	should	be	part	of	an	open	systems	architecture	which	can	be	embedded	in	any	place	desired	by	the	user	without	adversely	affecting	the	functionality	of	the	host	tool.	The	user	should	not	be	exposed	to	the	source	of	the	data	supplied	to	the	OLAP	tool,	which	may	be	homogeneous	or	heterogeneous.	The	OLAP	tool	should	be	capable	of	applying	its
own	logical	structure	to	access	heterogeneous	sources	of	data	and	perform	any	conversions	necessary	to	present	a	coherent	view	to	the	user.	The	tool	(and	not	the	user)	should	be	concerned	with	where	the	physical	data	comes	from.	Performance	of	the	OLAP	tool	should	not	suffer	significantly	as	the	number	of	dimensions	is	increased.	fesofoxemu	The
server	component	of	OLAP	tools	should	be	sufficiently	intelligent	that	the	various	clients	can	be	attached	with	minimum	effort.	The	server	should	be	capable	of	mapping	and	consolidating	data	between	disparate	databases.	
Every	data	dimension	should	be	equivalent	in	its	structure	and	operational	capabilities.	The	OLAP	server’s	physical	structure	should	have	optimal	sparse	matrix	handling.	OLAP	tools	must	provide	concurrent	retrieval	and	update	access,	integrity	and	security.	
Computational	facilities	must	allow	calculation	and	data	manipulation	across	any	number	of	data	dimensions,	and	must	not	restrict	any	relationship	between	data	cells.	
Data	manipulation	inherent	in	the	consolidation	path,	such	as	drilling	down	or	zooming	out,	should	be	accomplished	via	direct	action	on	the	analytical	model’s	cells,	and	not	require	use	of	a	menu	or	multiple	trips	across	the	user	interface.	Reporting	facilities	should	present	information	in	any	way	the	user	wants	to	view	it.	The	number	of
data	dimensions	supported	should,	to	all	intents	and	purposes,	be	unlimited.	

Codd’s	12	rules	are:	User-analysts	would	view	an	enterprise	as	being	multidimensional	in	nature	–	for	example,	profits	could	be	viewed	by	region,	product,	time	period,	or	scenario	(such	as	actual,	budget,	or	forecast).	Multi-dimensional	data	models	enable	more	straightforward	and	intuitive	manipulation	of	data	by	users,	including	“slicing	and	dicing“.
When	OLAP	forms	part	of	the	users’	customary	spreadsheet	or	graphics	package,	this	should	be	transparent	to	the	user.	OLAP	should	be	part	of	an	open	systems	architecture	which	can	be	embedded	in	any	place	desired	by	the	user	without	adversely	affecting	the	functionality	of	the	host	tool.	The	user	should	not	be	exposed	to	the	source	of	the	data
supplied	to	the	OLAP	tool,	which	may	be	homogeneous	or	heterogeneous.	The	OLAP	tool	should	be	capable	of	applying	its	own	logical	structure	to	access	heterogeneous	sources	of	data	and	perform	any	conversions	necessary	to	present	a	coherent	view	to	the	user.	The	tool	(and	not	the	user)	should	be	concerned	with	where	the	physical	data	comes
from.	
Performance	of	the	OLAP	tool	should	not	suffer	significantly	as	the	number	of	dimensions	is	increased.	The	server	component	of	OLAP	tools	should	be	sufficiently	intelligent	that	the	various	clients	can	be	attached	with	minimum	effort.	The	server	should	be	capable	of	mapping	and	consolidating	data	between	disparate	databases.	
Every	data	dimension	should	be	equivalent	in	its	structure	and	operational	capabilities.	The	OLAP	server’s	physical	structure	should	have	optimal	sparse	matrix	handling.	OLAP	tools	must	provide	concurrent	retrieval	and	update	access,	integrity	and	security.	Computational	facilities	must	allow	calculation	and	data	manipulation	across	any	number
of	data	dimensions,	and	must	not	restrict	any	relationship	between	data	cells.	Data	manipulation	inherent	in	the	consolidation	path,	such	as	drilling	down	or	zooming	out,	should	be	accomplished	via	direct	action	on	the	analytical	model’s	cells,	and	not	require	use	of	a	menu	or	multiple	trips	across	the	user	interface.	Reporting	facilities	should	present
information	in	any	way	the	user	wants	to	view	it.	jopi	The	number	of	data	dimensions	supported	should,	to	all	intents	and	purposes,	be	unlimited.	Each	generic	dimensions	should	enable	an	essentially	unlimited	number	of	user-defined	aggregation	levels	within	any	given	consolidation	path.	Citation	Codd	E.F.,	Codd	S.B.,	and	Salley	C.T.	“Providing
OLAP	(On-line	Analytical	Processing)	to	User-Analysts:	An	IT	Mandate”.	Codd	&	Date,	Inc	1993.	<	.		See	Also	Codd’s	12	Rules	on	Wikipedia	Every	database	has	tables,	and	constraints	cannot	be	referred	to	as	a	rational	database	system.	And	if	any	database	has	only	relational	data	model,	it	cannot	be	a	Relational	Database	System	(RDBMS).	So,	some
rules	define	a	database	to	be	the	correct	RDBMS.	These	rules	were	developed	by	Dr.	Edgar	F.	Codd	(E.F.	Codd)	in	1985,	who	has	vast	research	knowledge	on	the	Relational	Model	of	database	Systems.	Codd	presents	his	13	rules	for	a	database	to	test	the	concept	of	DBMS	against	his	relational	model,	and	if	a	database	follows	the	rule,	it	is	called	a
true	relational	database	(RDBMS).	These	13	rules	are	popular	in	RDBMS,	known	as	Codd's	12	rules.	

OLAP	should	be	part	of	an	open	systems	architecture	which	can	be	embedded	in	any	place	desired	by	the	user	without	adversely	affecting	the	functionality	of	the	host	tool.	The	user	should	not	be	exposed	to	the	source	of	the	data	supplied	to	the	OLAP	tool,	which	may	be	homogeneous	or	heterogeneous.	The	OLAP	tool	should	be	capable	of	applying	its
own	logical	structure	to	access	heterogeneous	sources	of	data	and	perform	any	conversions	necessary	to	present	a	coherent	view	to	the	user.	The	tool	(and	not	the	user)	should	be	concerned	with	where	the	physical	data	comes	from.	Performance	of	the	OLAP	tool	should	not	suffer	significantly	as	the	number	of	dimensions	is	increased.	The	server
component	of	OLAP	tools	should	be	sufficiently	intelligent	that	the	various	clients	can	be	attached	with	minimum	effort.	The	server	should	be	capable	of	mapping	and	consolidating	data	between	disparate	databases.	Every	data	dimension	should	be	equivalent	in	its	structure	and	operational	capabilities.	The	OLAP	server’s	physical	structure	should
have	optimal	sparse	matrix	handling.	OLAP	tools	must	provide	concurrent	retrieval	and	update	access,	integrity	and	security.	Computational	facilities	must	allow	calculation	and	data	manipulation	across	any	number	of	data	dimensions,	and	must	not	restrict	any	relationship	between	data	cells.	Data	manipulation	inherent	in	the	consolidation	path,
such	as	drilling	down	or	zooming	out,	should	be	accomplished	via	direct	action	on	the	analytical	model’s	cells,	and	not	require	use	of	a	menu	or	multiple	trips	across	the	user	interface.	Reporting	facilities	should	present	information	in	any	way	the	user	wants	to	view	it.	The	number	of	data	dimensions	supported	should,	to	all	intents	and	purposes,	be
unlimited.	Each	generic	dimensions	should	enable	an	essentially	unlimited	number	of	user-defined	aggregation	levels	within	any	given	consolidation	path.	Citation	Codd	E.F.,	Codd	S.B.,	and	Salley	C.T.	“Providing	OLAP	(On-line	Analytical	Processing)	to	User-Analysts:	An	IT	Mandate”.	Codd	&	Date,	Inc	1993.	

Multi-dimensional	data	models	enable	more	straightforward	and	intuitive	manipulation	of	data	by	users,	including	“slicing	and	dicing“.	When	OLAP	forms	part	of	the	users’	customary	spreadsheet	or	graphics	package,	this	should	be	transparent	to	the	user.	OLAP	should	be	part	of	an	open	systems	architecture	which	can	be	embedded	in	any	place
desired	by	the	user	without	adversely	affecting	the	functionality	of	the	host	tool.	The	user	should	not	be	exposed	to	the	source	of	the	data	supplied	to	the	OLAP	tool,	which	may	be	homogeneous	or	heterogeneous.	The	OLAP	tool	should	be	capable	of	applying	its	own	logical	structure	to	access	heterogeneous	sources	of	data	and	perform	any
conversions	necessary	to	present	a	coherent	view	to	the	user.	The	tool	(and	not	the	user)	should	be	concerned	with	where	the	physical	data	comes	from.	Performance	of	the	OLAP	tool	should	not	suffer	significantly	as	the	number	of	dimensions	is	increased.	The	server	component	of	OLAP	tools	should	be	sufficiently	intelligent	that	the	various	clients
can	be	attached	with	minimum	effort.	
The	server	should	be	capable	of	mapping	and	consolidating	data	between	disparate	databases.	Every	data	dimension	should	be	equivalent	in	its	structure	and	operational	capabilities.	The	OLAP	server’s	physical	structure	should	have	optimal	sparse	matrix	handling.	OLAP	tools	must	provide	concurrent	retrieval	and	update	access,	integrity	and
security.	Computational	facilities	must	allow	calculation	and	data	manipulation	across	any	number	of	data	dimensions,	and	must	not	restrict	any	relationship	between	data	cells.	Data	manipulation	inherent	in	the	consolidation	path,	such	as	drilling	down	or	zooming	out,	should	be	accomplished	via	direct	action	on	the	analytical	model’s	cells,	and	not
require	use	of	a	menu	or	multiple	trips	across	the	user	interface.	Reporting	facilities	should	present	information	in	any	way	the	user	wants	to	view	it.	The	number	of	data	dimensions	supported	should,	to	all	intents	and	purposes,	be	unlimited.	Each	generic	dimensions	should	enable	an	essentially	unlimited	number	of	user-defined	aggregation	levels
within	any	given	consolidation	path.	Citation	Codd	E.F.,	Codd	S.B.,	and	Salley	C.T.	“Providing	OLAP	(On-line	Analytical	Processing)	to	User-Analysts:	An	IT	Mandate”.	Codd	&	Date,	Inc	1993.	<	.	

https://uploads-ssl.webflow.com/64ede3c3e2665cdf2916db0d/65332d2ed827f09432ee2b4e_nutif.pdf
https://uploads-ssl.webflow.com/64ee28c9828f411b5b52929b/65332c2a7ff872a786aecd2f_75010474394.pdf
https://uploads-ssl.webflow.com/64ee28c9828f411b5b52929b/65332c7c7ff872a786af3571_41317369725.pdf
https://jimdo-storage.global.ssl.fastly.net/file/7efd4657-f7cf-4ac6-b22e-221592d4bb28/xilutipokenazavalivu.pdf
https://uploads-ssl.webflow.com/64eded97a97ea4ba4c17735c/65332ca617daafaf293b91ac_tesok.pdf

When	OLAP	forms	part	of	the	users’	customary	spreadsheet	or	graphics	package,	this	should	be	transparent	to	the	user.	OLAP	should	be	part	of	an	open	systems	architecture	which	can	be	embedded	in	any	place	desired	by	the	user	without	adversely	affecting	the	functionality	of	the	host	tool.	The	user	should	not	be	exposed	to	the	source	of	the	data
supplied	to	the	OLAP	tool,	which	may	be	homogeneous	or	heterogeneous.	The	OLAP	tool	should	be	capable	of	applying	its	own	logical	structure	to	access	heterogeneous	sources	of	data	and	perform	any	conversions	necessary	to	present	a	coherent	view	to	the	user.	The	tool	(and	not	the	user)	should	be	concerned	with	where	the	physical	data	comes
from.	Performance	of	the	OLAP	tool	should	not	suffer	significantly	as	the	number	of	dimensions	is	increased.	The	server	component	of	OLAP	tools	should	be	sufficiently	intelligent	that	the	various	clients	can	be	attached	with	minimum	effort.	The	server	should	be	capable	of	mapping	and	consolidating	data	between	disparate	databases.	Every
data	dimension	should	be	equivalent	in	its	structure	and	operational	capabilities.	The	OLAP	server’s	physical	structure	should	have	optimal	sparse	matrix	handling.	OLAP	tools	must	provide	concurrent	retrieval	and	update	access,	integrity	and	security.	Computational	facilities	must	allow	calculation	and	data	manipulation	across	any	number
of	data	dimensions,	and	must	not	restrict	any	relationship	between	data	cells.	Data	manipulation	inherent	in	the	consolidation	path,	such	as	drilling	down	or	zooming	out,	should	be	accomplished	via	direct	action	on	the	analytical	model’s	cells,	and	not	require	use	of	a	menu	or	multiple	trips	across	the	user	interface.	Reporting	facilities	should	present
information	in	any	way	the	user	wants	to	view	it.	The	number	of	data	dimensions	supported	should,	to	all	intents	and	purposes,	be	unlimited.	Each	generic	dimensions	should	enable	an	essentially	unlimited	number	of	user-defined	aggregation	levels	within	any	given	consolidation	path.	Citation	Codd	E.F.,	Codd	S.B.,	and	Salley	C.T.	“Providing	OLAP
(On-line	Analytical	Processing)	to	User-Analysts:	An	IT	Mandate”.	Codd	&	Date,	Inc	1993.	<	.		See	Also	Codd’s	12	Rules	on	Wikipedia	Every	database	has	tables,	and	constraints	cannot	be	referred	to	as	a	rational	database	system.	And	if	any	database	has	only	relational	data	model,	it	cannot	be	a	Relational	Database	System	(RDBMS).	So,	some	rules
define	a	database	to	be	the	correct	RDBMS.	These	rules	were	developed	by	Dr.	Edgar	F.	
Codd	(E.F.	Codd)	in	1985,	who	has	vast	research	knowledge	on	the	Relational	Model	of	database	Systems.	Codd	presents	his	13	rules	for	a	database	to	test	the	concept	of	DBMS	against	his	relational	model,	and	if	a	database	follows	the	rule,	it	is	called	a	true	relational	database	(RDBMS).	These	13	rules	are	popular	in	RDBMS,	known	as	Codd's	12
rules.	Rule	0:	The	Foundation	Rule	The	database	must	be	in	relational	form.	So	that	the	system	can	handle	the	database	through	its	relational	capabilities.	Rule	1:	Information	Rule	A	database	contains	various	information,	and	this	information	must	be	stored	in	each	cell	of	a	table	in	the	form	of	rows	and	columns.	Rule	2:	Guaranteed	Access	Rule	Every
single	or	precise	data	(atomic	value)	may	be	accessed	logically	from	a	relational	database	using	the	combination	of	primary	key	value,	table	name,	and	column	name.	Rule	3:	Systematic	Treatment	of	Null	Values	This	rule	defines	the	systematic	treatment	of	Null	values	in	database	records.	The	null	value	has	various	meanings	in	the	database,	like
missing	the	data,	no	value	in	a	cell,	inappropriate	information,	unknown	data	and	the	primary	key	should	not	be	null.	Rule	4:	Active/Dynamic	Online	Catalog	based	on	the	relational	model	It	represents	the	entire	logical	structure	of	the	descriptive	database	that	must	be	stored	online	and	is	known	as	a	database	dictionary.	It	authorizes	users	to	access
the	database	and	implement	a	similar	query	language	to	access	the	database.	Rule	5:	Comprehensive	Data	SubLanguage	Rule	The	relational	database	supports	various	languages,	and	if	we	want	to	access	the	database,	the	language	must	be	the	explicit,	linear	or	well-defined	syntax,	character	strings	and	supports	the	comprehensive:	data	definition,
view	definition,	data	manipulation,	integrity	constraints,	and	limit	transaction	management	operations.	If	the	database	allows	access	to	the	data	without	any	language,	it	is	considered	a	violation	of	the	database.	Rule	6:	View	Updating	Rule	All	views	table	can	be	theoretically	updated	and	must	be	practically	updated	by	the	database	systems.	Rule	7:
Relational	Level	Operation	(High-Level	Insert,	Update	and	delete)	Rule	A	database	system	should	follow	high-level	relational	operations	such	as	insert,	update,	and	delete	in	each	level	or	a	single	row.	It	also	supports	union,	intersection	and	minus	operation	in	the	database	system.	
Rule	8:	Physical	Data	Independence	Rule	All	stored	data	in	a	database	or	an	application	must	be	physically	independent	to	access	the	database.	Each	data	should	not	depend	on	other	data	or	an	application.	
If	data	is	updated	or	the	physical	structure	of	the	database	is	changed,	it	will	not	show	any	effect	on	external	applications	that	are	accessing	the	data	from	the	database.	Rule	9:	Logical	Data	Independence	Rule	It	is	similar	to	physical	data	independence.	It	means,	if	any	changes	occurred	to	the	logical	level	(table	structures),	it	should	not	affect	the
user's	view	(application).	For	example,	suppose	a	table	either	split	into	two	tables,	or	two	table	joins	to	create	a	single	table,	these	changes	should	not	be	impacted	on	the	user	view	application.	Rule	10:	Integrity	Independence	Rule	A	database	must	maintain	integrity	independence	when	inserting	data	into	table's	cells	using	the	SQL	query	language.	
All	entered	values	should	not	be	changed	or	rely	on	any	external	factor	or	application	to	maintain	integrity.	It	is	also	helpful	in	making	the	database-independent	for	each	front-end	application.	Rule	11:	Distribution	Independence	Rule	The	distribution	independence	rule	represents	a	database	that	must	work	properly,	even	if	it	is	stored	in	different
locations	and	used	by	different	end-users.	Suppose	a	user	accesses	the	database	through	an	application;	in	that	case,	they	should	not	be	aware	that	another	user	uses	particular	data,	and	the	data	they	always	get	is	only	located	on	one	site.	The	end	users	can	access	the	database,	and	these	access	data	should	be	independent	for	every	user	to	perform
the	SQL	queries.	Rule	12:	Non	Subversion	Rule	The	non-submersion	rule	defines	RDBMS	as	a	SQL	language	to	store	and	manipulate	the	data	in	the	database.	If	a	system	has	a	low-level	or	separate	language	other	than	SQL	to	access	the	database	system,	it	should	not	subvert	or	bypass	integrity	to	transform	data.	Next	TopicSQL	EXCEPT	In	this
chapter,	you	will	learn	about	Dr.	Codd's	OLAP	rules	created	by	his	own,	which,	according	to	him,	a	database	must	obey	to	be	regarded	as	a	real	relational	database.Codd's	Rules	for	OLAP	ToolsIn	1993,	Dr.	E.F.	Codd	originated	twelve	rules	as	the	basis	for	selecting	OLAP	tools.	The	publication	of	these	rules	was	the	result	of	research	carried	out	on
behalf	of	Arbor	Software	and	has	resulted	in	a	formalized	redefinition	of	the	requirements	for	OLAP	tools.	
These	rules	are:Multi-dimensional	conceptual	view	of	the	databaseConcept	of	transparencyConcept	of	accessibilityConsistent	reporting	performanceClient-server	architectureGeneric	dimensionalityDynamic	sparse	matrix	handlingMulti-user	supportUnrestricted	cross-dimensional	operationsIntuitive	data	manipulationFlexible	reportingUnlimited
dimensions	and	aggregation	levelsLet	us	discuss	all	of	these	rules	in	brief:Multi-dimensional	conceptual	view:	OLAP	tools	should	allow	users	with	a	multi-dimensional	model	that	keeps	up	a	correspondence	to	users'	views	of	the	enterprise	and	is	intuitively	analytical	and	straightforward	to	use.	Interestingly,	this	rule	is	given	various	levels	of	support	by
sellers	who	disagree	that	a	multi-dimensional	conceptual	view	of	data	can	be	delivered	without	multi-dimensional	storage.Transparency:	The	OLAP	technology	has	the	underlying	database	and	architecture,	and	the	likely	heterogeneity	of	input	data	sources	that	should	be	apparent	to	users.	This	necessity	is	to	preserve	the	user's	productivity	and
proficiency	with	familiar	front-end	environments	and	tools.Accessibility:	The	OLAP	tool	also	lets	to	access	data	needed	for	the	analysis	from	all	heterogeneous	enterprise	data	sources	such	as	relational,	non-relational,	and	legacy	methods.Consistent	reporting	performance:	With	the	number	of	dimensions,	levels	of	aggregations,	and	the	size	of	the
database	raises,	users	ought	not	to	perceive	any	significant	fall	in	performance.	There	should	be	no	change	in	the	way	the	key	figures	are	calculated,	and	the	system	models	must	have	to	be	strong	enough	to	cope	with	changes	to	the	enterprise	model.Client-server	architecture:	The	OLAP	system	should	be	proficient	enough	to	operate	efficiently	in	a
client-server	environment.	
The	architecture	should	permit	optimal	performance,	flexibility,	adaptability,	scalability,	and	interoperability.Generic	dimensionality:	Every	data	dimension	must	be	the	same	in	both	structure	and	operational	capabilities,	i.e.,	the	basic	structure,	formulae,	and	reporting	should	not	be	biased	towards	any	one	dimension.Dynamic	sparse	matrix	handling:
The	OLAP	system	should	be	able	to	cope	up	with	the	physical	schema	to	the	specific	analytical	model	that	optimizes	sparse	matrix	handling	to	achieve	and	maintain	the	required	level	of	performance.Multi-user	support:	The	OLAP	system	should	be	able	to	hold	up	a	group	of	users	working	at	the	same	time	on	the	same	or	different	models	of	the
enterprise's	data.Unrestricted	cross-dimensional	operations:	The	OLAP	system	must	be	able	to	identify	the	dimensional	hierarchies	and	automatically	perform	associated	roll-up	calculations	across	dimensions.Intuitive	data	manipulation:	Slicing	and	cubing,	consolidation	(roll-up),	and	other	manipulations	can	be	accomplished	via	direct	'point-and-
click'	or	'drag-and-drop'	actions	on	the	cells	of	the	cube.Flexible	reporting:	The	capability	of	arranging	rows,	columns,	and	cells	in	a	way	that	facilitates	analysis	by	an	intuitive	visual	presentation	of	analytical	reports	must	exist.Unlimited	dimensions	and	aggregation	levels:	Depending	on	business	needs,	an	analytical	model	may	have	some	dimensions,
each	having	multiple	hierarchies.Found	This	Useful?	Share	This	Page!Page	2In	this	chapter,	you	will	learn	about	the	various	relational	algebras	that	are	used	in	maintaining	a	database.	
In	particular,	we	concentrate	on	the	relational	algebra	as	defined	by	Codd	in	the	year	1971	as	the	basis	for	relational	languages.	Informally,	here	you	will	understand	the	relational	algebra	as	a	(high-level)	procedural	language:	which	can	be	used	to	tell	the	DBMS	how	to	build	a	new	relation	from	one	or	more	relations	in	the	database.What	is
Relational	Algebra?The	relational	algebra	is	a	theoretical	procedural	query	language	which	takes	an	instance	of	relations	and	does	operations	that	work	on	one	or	more	relations	to	describe	another	relation	without	altering	the	original	relation(s).	Thus,	both	the	operands	and	the	outputs	are	relations.	So	the	output	from	one	operation	can	turn	into
the	input	to	another	operation,	which	allows	expressions	to	be	nested	in	the	relational	algebra,	just	as	you	nest	arithmetic	operations.	This	property	is	called	closure:	relations	are	closed	under	the	algebra,	just	as	numbers	are	closed	under	arithmetic	operations.The	relational	algebra	is	a	relation-at-a-time	(or	set)	language	where	all	tuples	are
controlled	in	one	statement	without	the	use	of	a	loop.	There	are	several	variations	of	syntax	for	relational	algebra	commands,	and	you	use	a	common	symbolic	notation	for	the	commands	and	present	it	informally.The	primary	operations	of	relational	algebra	are	as	follows:SelectProjectUnionSet	differentCartesian	productRenameSelect	Operation	(σ)It
selects	tuples	that	satisfy	the	given	predicate	from	a	relation.Notation	−	σp(r)Here	σ	stands	for	selection	predicate,	and	r	stands	for	relation,	and	p	is	a	propositional	logic	formula	which	may	use	connectors	like	and,	or,	and	not.σ	predicate(R):	This	selection	operation	functions	on	a	single	relation	R	and	describes	a	relation	that	contains	only	those
tuples	of	R	that	satisfy	the	specified	condition	(predicate).Example:σteacher	=	"database"(Names)Output	-	It	selects	tuples	from	names	where	the	teacher	is	'database.'Project	Operation	(∏)The	Projection	operation	works	on	a	single	relation	R	and	defines	a	relation	that	contains	a	vertical	subset	of	R,	extracting	the	values	of	specified	attributes	and
eliminating	duplicates.Produce	a	list	of	salaries	for	all	staff,	showing	only	the	staffNo,	fName,	lName,	andsalary	details.ΠstaffNo,	fName,	lName,	salary(Staff)In	the	below-mentioned	example,	the	Projection	operation	defines	a	relation	that	contains	only	the	designated	Staff	attributes	staffNo,	fName,	lName,	and	salary,	in	the	specified	order.	The
result	of	this	operation	is	shown	in	the	figure	belowUnion	OperationFor	R	∪	S,	The	union	of	two	relations,	R	and	S,	defines	a	relation	that	contains	all	the	tuples	of	R,	or	S,	or	both	R	and	S,	duplicate	tuples	being	eliminated.	R	and	S	must	be	union-compatible.For	a	union	operation	to	be	applied,	the	following	rules	must	hold	−r	and	s	must	have	the
same	quantity	of	attributes.Attribute	domains	must	be	compatible.Duplicate	tuples	get	automatically	eliminated.Set	differenceFor	R	−	S	The	Set	difference	operation	defines	a	relation	consisting	of	the	tuples	that	are	in	relation	R,	but	not	in	S.	R	and	S	must	be	union-compatible.Example:∏	writer	(Nobels)	−	∏	writer	(papers)Cartesian	productFor	R	×
S,	the	Cartesian	product	operation	defines	a	relation	that	is	the	concatenation	of	every	tuple	of	relation	R	with	every	tuple	of	relation	S.Example:σwriter	=	'gauravray'(Articles	Χ	Notes)Join	OperationsTypically,	you	want	only	combinations	of	the	Cartesian	product	which	satisfy	certain	situations,	and	so	you	can	normally	use	a	Join	operation	instead	of
the	Cartesian	product	operation.	The	Join	operation,	which	combines	two	relations	to	form	a	new	relation,	is	one	of	the	essential	operations	in	the	relational	algebra.	There	are	various	types	of	Join	operation,	each	with	subtle	differences,	some	more	useful	than	others:Theta	joinEquijoin	(a	particular	type	of	Theta	join)Natural	joinOuter
joinSemijoinRename	Operation	(ρ)The	results	of	relational	algebra	are	also	relations	but	without	any	name.	The	rename	operation	provides	database	designers	to	rename	the	output	relation.	The	rename-operation	is	denoted	using	a	small	Greek	letter	rho	(ρ).It	is	written	as:ρ	x	(E)Found	This	Useful?	Share	This	Page!Page	3In	this	chapter,	you	will
learn	about	the	relational	calculus	and	its	concept	about	the	database	management	system.	A	certain	arrangement	is	explicitly	stated	in	relational	algebra	expression,	and	a	plan	for	assessing	the	query	is	implied.	In	the	relational	calculus,	there	is	no	description	and	depiction	of	how	to	assess	a	query;	Instead,	a	relational	calculus	query	focuses	on
what	is	to	retrieve	rather	than	how	to	retrieve	it.What	is	Relational	Calculus?Relational	calculus	is	a	non-procedural	query	language,	and	instead	of	algebra,	it	uses	mathematical	predicate	calculus.	The	relational	calculus	is	not	the	same	as	that	of	differential	and	integral	calculus	in	mathematics	but	takes	its	name	from	a	branch	of	symbolic	logic
termed	as	predicate	calculus.	When	applied	to	databases,	it	is	found	in	two	forms.	
These	areTuple	relational	calculus	which	was	originally	proposed	by	Codd	in	the	year	1972	andDomain	relational	calculus	which	was	proposed	by	Lacroix	and	Pirotte	in	the	year	1977In	first-order	logic	or	predicate	calculus,	a	predicate	is	a	truth-valued	function	with	arguments.	When	we	replace	with	values	for	the	arguments,	the	function	yields	an
expression,	called	a	proposition,	which	will	be	either	true	or	false.Example:For	example,	steps	involved	in	listing	all	the	employees	who	attend	the	'Networking'	Course	would	be:SELECT	the	tuples	from	COURSE	relation	with	COURSENAME	=	'NETWORKING'PROJECT	the	COURSE_ID	from	above	resultSELECT	the	tuples	from	EMP	relation	with
COURSE_ID	resulted	above.Tuple	Relational	CalculusIn	the	tuple	relational	calculus,	you	will	have	to	find	tuples	for	which	a	predicate	is	true.	The	calculus	is	dependent	on	the	use	of	tuple	variables.	A	tuple	variable	is	a	variable	that	'ranges	over'	a	named	relation:	i.e.,	a	variable	whose	only	permitted	values	are	tuples	of	the	relation.Example:For
example,	to	specify	the	range	of	a	tuple	variable	S	as	the	Staff	relation,	we	write:Staff(S)To	express	the	query	'Find	the	set	of	all	tuples	S	such	that	F(S)	is	true,'	we	can	write:{S	|	F(S)}Here,	F	is	called	a	formula	(well-formed	formula,	or	wff	in	mathematical	logic).	For	example,	to	express	the	query	'Find	the	staffNo,	fName,	lName,	position,	sex,	DOB,
salary,	and	branchNo	of	all	staff	earning	more	than	£10,000',	we	can	write:{S	|	Staff(S)	∧	S.salary	>	10000}Example:{t	|	TEACHER	(t)	and	t.SALARY>20000}-	It	implies	that	it	selects	the	tuples	from	the	TEACHER	in	such	a	way	that	the	resulting	teacher	tuples	will	have	a	salary	higher	than	20000.	This	is	an	example	of	selecting	a	range	of	values.{t	|
TEACHER	(t)	AND	t.DEPT_ID	=	6}-	T	select	all	the	tuples	of	teachers'	names	who	work	under	Department	8.		Any	tuple	variable	with	'For	All'	(?)	or	'there	exists'	(?)	condition	is	termed	as	a	bound	variable.	In	the	last	example,	for	any	range	of	values	of	SALARY	greater	than	20000,	the	meaning	of	the	condition	does	not	alter.	
Bound	variables	are	those	ranges	of	tuple	variables	whose	meaning	will	not	alter	if	another	tuple	variable	replaces	the	tuple	variable.In	the	second	example,	you	have	used	DEPT_ID=	8,	which	means	only	for	DEPT_ID	=	8	display	the	teacher	details.	Such	a	variable	is	called	a	free	variable.	Any	tuple	variable	without	any	'For	All'	or	'there	exists'
condition	is	called	Free	Variable.Domain	Relational	CalculusIn	the	tuple	relational	calculus,	you	have	use	variables	that	have	a	series	of	tuples	in	a	relation.	In	the	domain	relational	calculus,	you	will	also	use	variables,	but	in	this	case,	the	variables	take	their	values	from	domains	of	attributes	rather	than	tuples	of	relations.	A	domain	relational	calculus
expression	has	the	following	general	format:{d1,	d2,	.	.	.	,	dn	|	F(d1,	d2,	.	.	
.	,	dm)}	m	≥	nwhere	d1,	d2,	.	.	.	,	dn,	.	.	.	,	dm	stand	for	domain	variables	and	F(d1,	d2,	.	.	.	,	dm)	stands	for	a	formula	composed	of	atoms.Example:select	TCHR_ID	and	TCHR_NAME	of	teachers	who	work	for	department	8,	(where	suppose	-	dept.	8	is	Computer	Application	Department){	|	?	
TEACHER	Λ	DEPT_ID	=	10}Get	the	name	of	the	department	name	where	Karlos	works:{DEPT_NAME	|<	DEPT_NAME	>	?	DEPT	Λ	?	DEPT_ID	(?	TEACHER	Λ	TCHR_NAME	=	Karlos)}It	is	to	be	noted	that	these	queries	are	safe.	The	use	domain	relational	calculus	is	restricted	to	safe	expressions;	moreover,	it	is	equivalent	to	the	tuple	relational
calculus,	which	in	turn	is	similar	to	the	relational	algebra.Found	This	Useful?	Share	This	Page!Page	4In	the	previous	chapters,	you	have	learned	about	the	various	forms	of	relational	algebra	and	relational	calculus	and	their	uses	with	the	database	management	system.	In	this	chapter,	you	will	get	to	know	about	the	various	forms	of	languages	that	are
used	to	deal	with	the	database.What	are	database	Sub	languages?A	data	sublanguage	mainly	has	two	parts:Data	Definition	Language	(DDL)	andData	Manipulation	Language	(DML).The	Data	Definition	Language	is	used	for	specifying	the	database	schema,	and	the	Data	Manipulation	Language	is	used	for	both	reading	and	updating	the	database.	These
languages	are	called	data	sub-languages	as	they	do	not	include	constructs	for	all	computational	requirements.Computation	purposes	include	conditional	or	iterative	statements	that	are	supported	by	the	high-level	programming	languages.	Many	DBMSs	can	embed	the	sublanguage	is	a	high-level	programming	language	such	as	'Fortran,'	'C,'	C++,
Java,	or	Visual	Basic.	Here,	the	high-level	language	is	sometimes	referred	to	as	the	host	language	as	it	is	acting	as	a	host	for	this	language.	To	compile	the	embedded	file,	the	commands	in	the	data	sub-language	are	first	detached	from	the	host-language	program	and	are	substituted	by	function	calls.	
The	pre-processed	file	is	then	compiled	and	placed	in	an	object	module,	which	gets	linked	with	a	DBMS-specific	library	that	is	having	the	replaced	functions	and	executed	based	on	the	requirement.	Most	data	sub-languages	also	supply	non-embedded	or	interactive	commands	which	can	be	input	directly	using	the	terminal.Data	Definition
LanguageData	Definition	Language	(DDL)	statements	are	used	to	classify	the	database	structure	or	schema.	It	is	a	type	of	language	that	allows	the	DBA	or	user	to	depict	and	name	those	entities,	attributes,	and	relationships	that	are	required	for	the	application	along	with	any	associated	integrity	and	security	constraints.	Here	are	the	lists	of	tasks	that
come	under	DDL:CREATE	-	used	to	create	objects	in	the	databaseALTER	-	used	to	alters	the	structure	of	the	databaseDROP	-	used	to	delete	objects	from	the	databaseTRUNCATE	-	used	to	remove	all	records	from	a	table,	including	all	spaces	allocated	for	the	records	are	removedCOMMENT	-	used	to	add	comments	to	the	data	dictionaryRENAME	-
used	to	rename	an	objectData	Manipulation	LanguageA	language	that	offers	a	set	of	operations	to	support	the	fundamental	data	manipulation	operations	on	the	data	held	in	the	database.	Data	Manipulation	Language	(DML)	statements	are	used	to	manage	data	within	schema	objects.	Here	are	the	lists	of	tasks	that	come	under	DML:SELECT	-	It
retrieves	data	from	a	databaseINSERT	-	It	inserts	data	into	a	tableUPDATE	-	It	updates	existing	data	within	a	tableDELETE	-	It	deletes	all	records	from	a	table,	the	space	for	the	records	remainMERGE	-	UPSERT	operation	(insert	or	update)CALL	-	It	calls	a	PL/SQL	or	Java	subprogramEXPLAIN	PLAN	-	It	explains	the	access	path	to	dataLOCK	TABLE	-
It	controls	concurrencyData	Control	LanguageThere	are	two	other	forms	of	database	sub-languages.	The	Data	Control	Language	(DCL)	is	used	to	control	privilege	in	Databases.	To	perform	any	operation	in	the	database,	such	as	for	creating	tables,	sequences,	or	views,	we	need	privileges.	Privileges	are	of	two	types,System	-	creating	a	session,	table,
etc.	are	all	types	of	system	privilege.Object	-	any	command	or	query	to	work	on	tables	comes	under	object	privilege.	DCL	is	used	to	define	two	commands.	These	are:Grant	-	It	gives	user	access	privileges	to	a	database.Revoke	-	It	takes	back	permissions	from	the	user.Transaction	Control	Language	(TCL)Transaction	Control	statements	are	used	to	run
the	changes	made	by	DML	statements.	
It	allows	statements	to	be	grouped	into	logical	transactions.COMMIT	-	It	saves	the	work	doneSAVEPOINT	-	It	identifies	a	point	in	a	transaction	to	which	you	can	later	roll	backROLLBACK	-	It	restores	the	database	to	original	since	the	last	COMMITSET	TRANSACTION	-	It	changes	the	transaction	options	like	isolation	level	and	what	rollback	segment	to
useFound	This	Useful?	Share	This	Page!Page	5Database	normalization	is	a	database	schema	design	technique,	by	which	an	existing	schema	is	modified	to	minimize	redundancy	and	dependency	of	data.Normalization	split	a	large	table	into	smaller	tables	and	define	relationships	between	them	to	increases	the	clarity	in	organizing	data.Some	Facts
About	Database	NormalizationThe	words	normalization	and	normal	form	refer	to	the	structure	of	a	database.Normalization	was	developed	by	IBM	researcher	E.F.	Codd	In	the	1970s.Normalization	increases	clarity	in	organizing	data	in	Databases.Normalization	of	a	Database	is	achieved	by	following	a	set	of	rules	called	'forms'	in	creating	the
database.Database	Normalization	RulesFirst	Normal	Form	(1NF)Each	column	is	unique	in	1NF.Example:Sample	Employee	table,	it	displays	employees	are	working	with	multiple	departments.EmployeeAgeDepartmentMelvin32Marketing,	SalesEdward45Quality	AssuranceAlex36Human	ResourceEmployee	table	following
1NF:EmployeeAgeDepartmentMelvin32MarketingMelvin32SalesEdward45Quality	AssuranceAlex36Human	ResourceSecond	Normal	Form	(2NF)The	entity	should	be	considered	already	in	1NF,	and	all	attributes	within	the	entity	should	depend	solely	on	the	unique	identifier	of	the	entity.Example:Sample	Products
table:productIDproductBrand1MonitorApple2MonitorSamsung3ScannerHP4Head	phoneJBLProduct	table	following	2NF:Products	Category	table:productIDproduct1Monitor2Scanner3Head	phoneBrand	table:brandIDbrand1Apple2Samsung3HP4JBLProducts	Brand	table:pbIDproductIDbrandID111212323434Third	Normal	Form	(3NF)The	entity	should
be	considered	already	in	2NF,	and	no	column	entry	should	be	dependent	on	any	other	entry	(value)	other	than	the	key	for	the	table.If	such	an	entity	exists,	move	it	outside	into	a	new	table.3NF	is	achieved,	considered	as	the	database	is	normalized.Boyce-Codd	Normal	Form	(BCNF)3NF	and	all	tables	in	the	database	should	be	only	one	primary
key.Fourth	Normal	Form	(4NF)Tables	cannot	have	multi-valued	dependencies	on	a	Primary	Key.Fifth	Normal	Form	(5NF)A	composite	key	shouldn't	have	any	cyclic	dependencies.Well,	this	is	a	highly	simplified	explanation	for	Database	Normalization.	One	can	study	this	process	extensively,	though.	After	working	with	databases	for	some	time,	you'll
automatically	create	Normalized	databases,	as	it's	logical	and	practical.Found	This	Useful?	Share	This	Page!Page	6In	this	chapter,	you	will	learn	about	the	methodology	for	the	database	design	stage	of	the	database	system	development	lifecycle	for	relational	databases.	
The	methodology	is	depicted	as	a	bit	by	bit	guide	to	the	three	main	phases	of	database	design,	namely:	conceptual,	logical,	and	physical	design.The	primary	aim	of	each	phase	is	as	follows:Conceptual	database	design	-	to	build	the	conceptual	representation	of	the	database,	which	has	the	identification	of	the	important	entities,	relationships,	and
attributes.Logical	database	design	-	to	convert	the	conceptual	representation	to	the	logical	structure	of	the	database,	which	includes	designing	the	relations.Physical	database	design	-	to	decide	how	the	logical	structure	is	to	be	physically	implemented	(as	base	relations)	in	the	target	Database	Management	System	(DBMS).Introduction	to	the	Database
Design	MethodologyA	structured	approach	that	uses	procedures,	techniques,	tools,	and	documentation	help	to	support	and	make	possible	the	process	of	design	is	called	Design	Methodology.A	design	methodology	encapsulates	various	phases,	each	containing	some	stages,	which	guide	the	designer	in	the	techniques	suitable	at	each	stage	of	the
project.	A	design	methodology	also	helps	the	designer	to	plan,	manage,	control,	and	evaluate	database	development	and	managing	projects.	Furthermore,	it	is	a	planned	approach	for	analyzing	and	modeling	a	group	of	requirements	for	a	database	in	a	standardized	and	ordered	manner.Conceptual	Database	DesignIn	this	design	methodology,	the
process	of	constructing	a	model	of	the	data	is	used	in	an	enterprise,	independent	of	all	physical	considerations.	The	conceptual	database	design	phase	starts	with	the	formation	of	a	conceptual	data	model	of	the	enterprise	that	is	entirely	independent	of	implementation	details	such	as	the	target	DBMS,	use	of	application	programs,	programming
languages	used,	hardware	platform,	performance	issues,	or	any	other	physical	deliberations.Critical	Success	Factors	in	Database	DesignThe	following	planning	strategies	are	often	critical	to	the	success	of	database	design:Deal	with	task	interactively	with	the	users	as	much	as	possible.Follow	a	prearranged	methodology	throughout	the	data	modeling
process.Make	use	of	a	data-driven	approach.Incorporate	structural	and	integrity	considerations	into	the	data	models.Combine	conceptualization,	normalization,	and	transaction	validation	methods	into	the	data	modeling	methodology.Use	figures	for	representing	as	much	of	the	data	models	as	possible.Use	a	Database	Design	Language	(DBDL)	to
represent	additional	data	semantics	that	cannot	usually	be	represented	in	a	diagram.Build	a	data	dictionary	to	add-on	the	data	model	diagrams	and	the	DBDL.Be	willing	to	repeat	steps.These	factors	are	constructed	into	the	methodology	that	is	presented	for	database	design.What	are	the	steps	for	Conceptual	Database	Design?Conceptual	database
design	steps	are:Build	a	conceptual	data	modelRecognize	entity	typesRecognize	the	relationship	typesIdentify	and	connect	attributes	with	entity	or	relationship	typesDetermine	attribute	domainsDetermine	candidate,	primary,	and	alternate	key	attributesConsider	the	use	of	improved	modeling	concepts	(optional	step)Check	model	for
redundancyValidate	the	conceptual	model	against	user	transactionsReview	the	conceptual	data	model	with	userBuilding	a	Conceptual	Data	ModelThe	first	step	in	conceptual	database	design	is	to	build	one	(or	more)	conceptual	data	replica	of	the	data	requirements	of	the	enterprise.	A	conceptual	data	model	comprises	these	following	elements:entity
typestypes	of	relationshipattributes	and	the	various	attribute	domainsprimary	keys	and	alternate	keysintegrity	constraintsThe	conceptual	data	model	is	maintained	by	documentation,	including	ER	diagrams	and	a	data	dictionary,	which	is	produced	throughout	the	development	of	the	model.Found	This	Useful?	Share	This	Page!Page	7You	have	already
come	across	the	basics	of	what	methodologies	are	and	their	stages.	You	have	gathered	the	basic	concept	of	what	conceptual	methodology	is	and	how	it	works	within	the	main	stages	of	the	database	system	development	life	cycle.This	stage	is	made	up	of	three	phases:ConceptualLogical	andPhysical	database	designIn	this	chapter,	you	will	learn	and
understand	the	basic	concepts	of	Logical	Methodology,	i.e.,	the	second	stage	of	the	database	development	life	cycle.Details	on	Logical	MethodologyA	local	logical	data	model	is	used	to	characterize	the	data	requirements	of	one	or	more	but	not	all	user	views	of	a	database,	and	a	universal	logical	data	model	represents	the	data	requirements	for	all	user
views.	The	final	step	of	the	logical	database	design	phase	is	to	reflect	on	how	well	the	model	can	support	possible	future	developments	for	the	database	system.Logical	Database	Design	Methodology	for	the	Relational	ModelThe	objective	of	logical	database	design	methodology	is	to	interpret	the	conceptual	data	model	into	a	logical	data	model	and
then	authorize	this	model	to	check	whether	it	is	structurally	correct	and	able	to	support	the	required	transactions	or	not.In	this	step	of	the	database	development	life	cycle,	the	main	purpose	is	to	translate	the	conceptual	data	model	created	in	conceptual	methodology	(of	the	previous	chapter)	into	a	logical	data	model	of	the	data	requirements	of	the
enterprise.	This	objective	can	be	achieved	by	following	the	activities	given	below:Obtain	the	relations	for	the	logical	data	modelAuthorize	those	relations	using	normalizationValidate	those	relations	against	user	transactionsCheck	integrity	control	and	its	limitationEvaluate	the	logical	data	model	with	userCombine	logical	data	models	into	the	global
model	(This	step	is	an	optional	one)Check	for	future	growth	and	developmentThe	structure	of	the	relational	schema	is	authorized	using	normalization.	It	then	makes	sure	to	ensure	that	the	relations	are	capable	of	supporting	the	transactions	given	in	the	users'	requirements	specification.	You	can	then	check	those	all-important	integrity	constraints
that	are	characterized	by	the	logical	data	model.	At	this	stage,	the	logical	data	model	is	authorized	by	the	users	to	ensure	that	they	consider	the	model	to	be	a	true	demonstration	of	the	data	requirements	for	the	enterprise.Derive	Relations	for	Logical	Data	ModelThe	relationship	that	an	entity	has	with	other	entities	is	characterized	using	the	primary
key	or	foreign	key's	concept.	In	deciding	where	to	post	the	foreign	key	attribute(s),	firstly,	you	must	have	to	identify	the	'parent'	and	'child'	entities	that	are	involved	in	that	relationship.	
The	parent	entity	refers	to	the	entity	that	posts	a	copy	of	its	primary	key	into	the	relation	that	represents	the	child	entity	to	act	as	the	foreign	key.	You	can	describe	how	relations	are	obtained	for	the	following	structures	that	may	occur	in	a	conceptual	data	model:strong	entity	typesweak	entity	typesone-to-many	(1:*)	binary	relationship	typesone-to-
one	(1:1)	binary	relationship	typesone-to-one	(1:1)	recursive	relationship	typessuperclass/subclass	relationship	typesmany-to-many	(*:*)	binary	relationship	typescomplex	relationship	typesmulti-valued	attributesValidate	Relations	Using	NormalizationIn	the	previous	step,	you	have	derived	a	set	of	relations	from	signifying	the	conceptual	data	model
created	in	the	earlier	step.	Now,	in	the	next	step,	you	have	to	validate	the	groupings	of	attributes	in	each	relation	using	the	rules	of	normalization.	The	purpose	of	normalization	is	to	ensure	that	the	position	of	relations	has	a	minimal	and	yet	sufficient	number	of	attributes	necessary	to	support	the	data	requirements	of	the	enterprise.Validate	Relations
Against	User	TransactionsThe	primary	purpose	of	this	step	is	to	validate	the	logical	data	model	to	make	certain	that	the	model	supports	the	required	transactions,	as	the	users'	requirements	specification.	By	using	the	relations,	the	primary	key	/	foreign	key	links	within	the	relations,	the	ER	diagram,	and	the	data	dictionary,	you	can	attempt	to	perform
the	operations	manually.	If	you	can	resolve	all	transactions	in	this	way,	you	can	validate	the	logical	data	model	against	the	transactions.Found	This	Useful?	Share	This	Page!Page	8This	physical	methodology	is	the	third	and	final	phase	of	the	database	design	methodology.	
Here,	the	designer	must	decide	how	to	translate	the	logical	database	design	(i.e.,	the	entities,	attributes,	relationships,	and	constraints)	into	a	physical	database	design,	which	can	ultimately	be	implemented	using	the	target	DBMS.	As	the	various	parts	of	physical	database	design	are	highly	reliant	on	the	target	DBMS,	there	may	be	more	than	one
method	of	implementing	any	given	portion	of	the	database.	Consequently,	to	do	this	work	appropriately,	the	designers	must	be	fully	aware	of	the	functionality	of	the	target	DBMS.	
They	must	recognize	the	advantages	and	disadvantages	of	each	alternative	approach	for	a	particular	accomplishment.	For	some	systems,	the	designer	may	also	need	to	select	a	suitable	storage	space/strategy	that	can	take	account	of	intended	database	usage.What	is	Physical	Database	Design?It	is	the	process	of	making	a	description	of	the	execution
of	the	database	on	secondary	storage,	which	describes	the	base	relations,	file	organizations	as	well	as	indexes	used	to	gain	efficient	access	to	the	data	and	any	associated	integrity	constraints	and	security	measures.Comparison	of	Logical	and	Physical	Database	DesignIn	designing	and	presenting	a	database	design	methodology,	you	have	to	divide	the
design	process	into	three	main	stages	or	steps,	also	known	as	the	Database	development	life	cycle.	These	steps	or	stages	are:ConceptualLogical	andPhysical	database	design	(as	studied	in	the	earlier	chapter)The	phase	before	the	physical	design	is	the	logical	database	design,	which	is	largely	independent	of	implementation	details,	such	as	the	specific
functionality	of	the	target	DBMS	and	application	programs,	but	is	reliant	on	the	target	data	model.	The	outcome	of	this	process	is	a	logical	data	model	that	consists	of	an	ER/relation	diagram,	relational	schema,	and	supporting	documents	that	depict	this	model,	such	as	a	data	dictionary.Logical	database	designs	are	concerned	with	the	"what,"	and	in
contrast,	physical	database	design	is	concerned	with	the	"how."	It	requires	diverse	skills	that	are	often	found	in	different	people.	In	particular,	the	physical	database	designer	must	know	how	the	computer	system	hosts	the	DBMS	and	how	it	operates	and	must	be	fully	conscious	of	the	working	of	the	target	DBMS.Steps	Required	for	Implementing
Physical	MethodologyThe	steps	of	the	physical	database	design	methodology	are	as	follows:Transform	the	logical	data	model	for	target	DBMSDesign	base	relationsDesign	representation	of	derived	dataDesign	general	constraintsDesign	file	organizations	and	indexesAnalyze	transactionsChoose	file	organizationsChoose	indexesEstimate	disk	space
requirementsDesign	user	viewsDesign	security	mechanismsConsider	the	introduction	of	controlled	redundancyMonitor	and	tune	the	operational	systemCommon	Characteristics	of	a	Physical	Data	ModelIt	typically	illustrates	data	requirements	for	a	single	project	or	application.	Sometimes	even	a	part	of	an	applicationMay	be	incorporated	into	other
physical	data	models	by	means	of	a	repository	of	shared	entitiesIt	typically	includes	10-1000	tables;	although	these	numbers	are	highly	variable,	depending	on	the	scope	of	the	data	modelIt	has	the	relationships	between	tables	that	address	cardinality	and	nullability	(optionality)	of	the	relationshipsDesigned	and	developed	to	be	reliant	on	a	specific
version	of	a	DBMS,	storage	location	of	data	or	technologyDatabase	columns	will	have	data	types	with	accurate	precisions	and	lengths	assigned	to	them.	
Columns	will	have	nullability	(optional)	assignedTables	and	columns	will	have	specific	definitionsFound	This	Useful?	Share	This	Page!Page	9Earlier,	you	have	learned	about	the	functions	that	a	Database	Management	System	(DBMS)	should	offer	database	users.	Among	these	three	closely	related	functions	are	intended	to	ensure	that	the	database	is
reliable	and	remains	in	a	steady-state,	namely	transaction	support,	concurrency	control,	and	recovery	services.	This	reliability	and	consistency	must	be	maintained	in	the	presence	of	failures	of	both	hardware	and	software	components	and	when	several	users	are	accessing	the	database.	
In	this	chapter,	you	will	be	concentrating	on	a	transaction	and	ACID	property	of	DBMS.What	is	Transaction?A	transaction	is	an	action	or	series	of	actions	that	are	being	performed	by	a	single	user	or	application	program,	which	reads	or	updates	the	contents	of	the	database.A	transaction	can	be	defined	as	a	logical	unit	of	work	on	the	database.	This
may	be	an	entire	program,	a	piece	of	a	program,	or	a	single	command	(like	the	SQL	commands	such	as	INSERT	or	UPDATE),	and	it	may	engage	in	any	number	of	operations	on	the	database.	In	the	database	context,	the	execution	of	an	application	program	can	be	thought	of	as	one	or	more	transactions	with	non-database	processing	taking	place	in
between.Example	of	a	Transaction	in	DBMSA	simple	example	of	a	transaction	will	be	dealing	with	the	bank	accounts	of	two	users,	let	say	Karlos	and	Ray.	A	simple	transaction	of	moving	an	amount	of	5000	from	Karlos	to	Ray	engages	many	low-level	jobs.	
As	the	amount	of	Rs.	5000	gets	transferred	from	the	Karlos's	account	to	Ray's	account,	a	series	of	tasks	gets	performed	in	the	background	of	the	screen.This	straightforward	and	small	transaction	includes	several	steps:	decrease	Karlos's	bank	account	from	5000:Open_Acc	(Karlos)	OldBal	=	Karlos.bal	NewBal	=	OldBal	-	5000	Ram.bal	=	NewBal
CloseAccount(Karlos)You	can	say,	the	transaction	involves	many	tasks,	such	as	opening	the	account	of	Karlos,	reading	the	old	balance,	decreasing	the	specific	amount	of	5000	from	that	account,	saving	new	balance	to	an	account	of	Karlos,	and	finally	closing	the	transaction	session.For	adding	amount	5000	in	Ray's	account,	the	same	sort	of	tasks
needs	to	be	done:OpenAccount(Ray)	Old_Bal	=	Ray.bal	NewBal	=	OldBal	+	1000	Ahmed.bal	=	NewBal	CloseAccount(B)Properties	of	TransactionThere	are	properties	that	all	transactions	should	follow	and	possess.	The	four	basic	are	in	combination	termed	as	ACID	properties.	
ACID	properties	and	its	concepts	of	a	transaction	are	put	forwarded	by	Haerder	and	Reuter	in	the	year	1983.	The	ACID	has	a	full	form	and	is	as	follows:Atomicity:	The	'all	or	nothing'	property.	
A	transaction	is	an	indivisible	entity	that	is	either	performed	in	its	entirety	or	will	not	get	performed	at	all.	This	is	the	responsibility	or	duty	of	the	recovery	subsystem	of	the	DBMS	to	ensure	atomicity.Consistency:	A	transaction	must	alter	the	database	from	one	steady-state	to	another	steady	state.	This	is	the	responsibility	of	both	the	DBMS	and	the
application	developers	to	make	certain	consistency.	
The	DBMS	can	ensure	consistency	by	putting	into	effect	all	the	constraints	that	have	been	mainly	on	the	database	schema	such	as	integrity	and	enterprise	constraints.Isolation:	Transactions	that	are	executing	independently	of	one	another	is	the	primary	concept	followed	by	isolation.	In	other	words,	the	frictional	effects	of	incomplete	transactions
should	not	be	visible	or	come	into	notice	to	other	transactions	going	on	simultaneously.	It	is	the	responsibility	of	the	concurrency	control	sub-system	to	ensure	adapting	the	isolation.Durability:	The	effects	of	an	accomplished	transaction	are	permanently	recorded	in	the	database	and	must	not	get	lost	or	vanished	due	to	subsequent	failure.	So	this
becomes	the	responsibility	of	the	recovery	sub-system	to	ensure	durability.Found	This	Useful?	Share	This	Page!Page	10When	the	relational	model	was	launched	for	the	first	time,	one	of	the	chief	criticisms	often	cited	was	the	inadequate	presentation	of	queries.	Since	then,	a	significant	amount	of	research	has	been	committed	to	developing	highly
proficient	algorithms	for	processing	and	dealing	with	queries.	There	are	a	lot	of	ways	to	do	a	complex	query	that	can	be	performed,	and	one	of	the	targets	of	query	processing	is	to	decide	which	one	is	the	most	cost-effective.	In	the	first-generation	network	and	hierarchical	database	systems,	the	low-level	procedural	query	language	is	generally
implanted	in	a	high-level	programming	language	such	as	COBOL,	and	it	is	the	job	of	the	programmer's	to	select	the	most	appropriate	execution	strategy.	In	contrast,	with	declarative	languages	such	as	SQL,	the	user	identifies	what	data	is	required	rather	than	how	it	is	to	be	retrieved.In	this	chapter,	you	will	be	given	a	general	idea	of	query	processing
and	examine	the	main	segments	of	this	activity.	Here	you	will	examine	the	first	phase	of	query	processing,	namely	query	decomposition,	which	transforms	a	high-level	query	into	a	relational	algebra	query	and	ensures	that	it	is	syntactically	and	semantically	correct.Overview	of	Query	ProcessingThis	query	processing	activity	involved	in	parsing,
validating,	optimizing,	and	executing	a	query.	
The	target	of	query	processing	is	to	change	a	query	written	in	a	high-level	language,	(usually	SQL)	into	a	correct	and	efficient	execution	strategy	expressed	in	a	low-level	language	(using	the	relational	algebra)	and	to	perform	the	strategy	to	retrieve	the	required	data.	An	important	aspect	of	query	processing	is	query	optimization.	The	activity	of
choosing	an	efficient	execution	strategy	for	processing	a	query	is	known	as	Query	optimization.	As	there	are	many	correspondent	transformations	of	the	same	high-level	query,	the	main	aim	of	optimizing	a	query	is	to	choose	the	one	that	minimizes	resource	usage.	Generally,	you	will	try	reducing	the	total	execution	time	of	the	query,	which	is	the	total
of	the	execution	times	of	all	individual	operations	that	make	up	the	query.Both	methods	of	query	optimization	rely	on	database	statistics	to	assess	the	different	available	options	properly.	The	accuracy	and	currency	of	these	statistics	have	a	significant	bearing	on	the	efficiency	of	the	execution	strategy	chosen.Comparison	of	Different	Processing
StrategiesFind	all	DBAs	who	work	at	a	NewDelhi	branch.You	can	write	this	query	in	SQL	as:SELECT	*FROM	Staff	s,	Branch	bWHERE	s.branchNo	=	b.branchNo	AND(s.position	=	'DBA'	AND	b.city	=	'NewDelhi');The	3	equivalent	relational	algebra	queries	corresponding	to	the	above	SQL	statement	are:σ(position='DBA')	∧	(city='NewDelhi')	∧
(Staff.branchNo=Branch.branchNo)(Staff	×	Branch)σ(position='DBA')	∧	(city='	NewDelhi')(Staff	branchNo=Branch.branchNo	Branch)(σposition='DBA'(Staff))	Staff.branchNo=Branch.branchNo	(σcity='	NewDelhi'(Branch))What	is	Query	Decomposition	in	DBMS?Query	decomposition	is	the	first	phase	of	query	processing.	The	primary	targets	of
query	decomposition	are	to	transform	a	high-level	query	into	a	relational	algebra	query	and	to	check	that	the	query	is	syntactically	and	semantically	correct.	The	typical	stages	of	query	decomposition	are	analysis,	normalization,	semantic	analysis,	simplification,	and	query	restructuring.Found	This	Useful?	Share	This	Page!Page	11Database	technology
has	transformed	the	database	users	from	a	paradigm	of	data	processing	where	each	application	described	and	upheld	its	data,	to	one	in	which	data	is	defined	and	managed	centrally.	During	recent	times,	you	have	seen	the	fast	and	ever-growing	developments	in	network	and	data	communication	technology	embodied	by	the	Internet,	mobile	and
wireless	computing,	and	grid	computing.	With	the	combination	of	these	two	technologies,	distributed	database	technology	may	revolutionize	the	mode	of	working	from	centralized	to	decentralized.	This	collective	technology	is	one	of	the	significant	reasons	for	developments	in	the	database	systems	world.	Here	we	will	be	dealing	with	the	different
issues	of	the	distributed	management	system	of	the	database.	This	allows	users	to	access	not	only	the	data	but	also	data	stored	at	remote	sites.	We	will	be	discussing	the	design	and	concepts	of	the	distributed	system.More	on	the	Concept	of	DistributionA	primary	motivation	behind	the	development	of	database	systems	is	the	need	to	integrate	the
equipped	data	of	an	organization	and	to	provide	restricted	access	to	the	data.	Although	integration	and	controlled	access	may	involve	centralization,	this	is	not	the	intention.	The	development	of	computer	networks	promotes	a	decentralized	mode	of	work.Basic	Terminology	used	in	Distributed	SystemDistributed	DatabaseA	logically	interconnected	set
of	shared	data	(and	a	description	of	this	data)	physically	scattered	over	a	computer	network.This	software	system	allows	the	management	of	the	distributed	database	and	makes	the	distribution	transparent	to	users.A	Distributed	Database	Management	System	(DDBMS)	contains	a	single	logical	database	that	is	divided	into	a	number	of	fragments.
Every	fragment	gets	stored	on	one	or	more	computers	under	the	control	of	a	separate	DBMS,	with	the	computers	connected	by	a	communications	network.	
Each	position	is	capable	of	independently	process	every	user's	requests	that	require	access	to	local	data	(i.e.,	each	position	of	the	distributed	system	has	some	basic	degree	of	local	autonomy)	and	is	also	able	to	process	data	stored	on	other	computers	within	the	network.	
Users	access	the	distributed	database	via	applications	that	are	classified	as	those	which	do	not	need	data	from	other	sites	(local	applications);	and	also	those	that	do	need	data	from	other	sites	(global	applications).	You	will	be	requiring	a	DDBMS	to	have	at	least	one	global	application.	A	DDBMS,	therefore,	has	the	following	characteristics:a	collection
of	logically	related	shared	datan	the	data	is	split	into	a	number	of	fragmentsfragments	may	be	replicatedfragments/replicas	are	allocated	to	sitesthe	sites	are	linked	by	a	communications	networkthe	data	at	each	site	is	under	the	control	of	a	DBMSthe	DBMS	at	each	site	can	handle	local	applications,	autonomouslyeach	DBMS	participates	in	at	least
one	global	applicationParallel	DBMSIt	is	a	DBMS	that	runs	across	multiple	processors	and	disks	that	is	designed	to	execute	operations	in	parallel	whenever	achievable,	in	order	to	improve	the	performance	of	a	database.	Parallel	DBMSs	are	again	dependent	on	the	principle	that	single-processor	systems	can	no	longer	meet	the	growing	necessities	for
cost-effective	scalability,	reliability,	and	performance.	A	powerful	and	financially	attractive	choice	for	a	single-processor-driven	DBMS	is	a	parallel	DBMS	driven	by	multiple	processors	(i.e.,	the	concept	of	multi-programming).	Parallel	DBMSs	link	multiple,	smaller	machines	together	into	a	single	set	to	achieve	the	same	throughput	as	an	individual,
larger	machine,	and	often	provides	greater	scalability	and	reliability	than	single-processor	DBMSs.	The	three	main	parts	for	parallel	DBMSs	are:shared	memoryshared	diskshared	nothingAdvantages	and	Disadvantages	of	DDBMSOrganization's	choice:	Many	organizations	are	distributed	over	several	locations.	It	is	natural	for	databases	used	in	such
an	application	to	be	spread	over	these	locations.Improved	availability:	A	failure	at	one	site	of	a	DDBMS,	or	a	failure	of	a	communication	link	making	some	sites	unreachable,	does	not	make	the	entire	system	inoperable.	Distributed	DBMSs	are	designed	to	carry	on	the	function	despite	such	failures.Improved	performance:	With	the	concept	of
parallelism	of	distributed	DBMSs,	the	speed	of	database	access	may	be	better	than	that	achievable	from	a	remote	centralized	database.Found	This	Useful?	Share	This	Page!Page	12	We	and	our	partners	use	cookies	to	Store	and/or	access	information	on	a	device.	We	and	our	partners	use	data	for	Personalised	ads	and	content,	ad	and	content
measurement,	audience	insights	and	product	development.	
An	example	of	data	being	processed	may	be	a	unique	identifier	stored	in	a	cookie.	Some	of	our	partners	may	process	your	data	as	a	part	of	their	legitimate	business	interest	without	asking	for	consent.	To	view	the	purposes	they	believe	they	have	legitimate	interest	for,	or	to	object	to	this	data	processing	use	the	vendor	list	link	below.	The	consent
submitted	will	only	be	used	for	data	processing	originating	from	this	website.	If	you	would	like	to	change	your	settings	or	withdraw	consent	at	any	time,	the	link	to	do	so	is	in	our	privacy	policy	accessible	from	our	home	page..	Continue	with	Recommended	Cookies	Page	13You	might	have	noticed	the	ever-increasing	demands	on	mobile	computing	for
providing	the	types	of	support	required	by	a	growing	number	of	mobile	workers	and	its	technology.	Such	individuals	require	working	as	if	they	are	in	the	office,	but	in	reality,	they	are	working	from	remote	corners	of	different	locations	of	any	particular	area,	including	homes,	clients'	premises,	or	simply	while	routing	to	remote	locations.	The	'office'
may	come	with	a	remote	worker	in	the	form	of	a	laptop	or	desktop,	PDA	(Personal	Digital	Assistant),	or	other	device	accessing	the	Internet.	With	the	rapid	growth	of	cellular	technology,	wireless	medium,	and	satellite	communications,	it	will	soon	be	achievable	for	mobile	users	to	access	any	data	from	anywhere	at	any	time.	However,	business
etiquette,	practicalities,	security,	and	costs	may	still	bound	communication	such	that	it	is	not	achievable	for	establishing	online	connections	for	as	long	as	users	want,	whenever	they	want.	Mobile	databases	offer	a	solution	to	some	of	these	restrictions	or	problems.What	is	Mobile	Database?Mobile	Database	is	a	database	that	is	transportable,	portable,
and	physically	separate	or	detached	from	the	corporate	database	server	but	has	the	capability	to	communicate	with	those	servers	from	remote	sites	allowing	the	sharing	of	various	kinds	of	data.With	mobile	databases,	users	have	access	to	corporate	data	on	their	laptop,	PDA,	or	other	Internet	access	device	that	is	required	for	applications	at	remote
sites.The	components	of	a	mobile	database	environment	include:Corporate	database	server	and	DBMS	that	deals	with	and	stores	the	corporate	data	and	provides	corporate	applicationsRemote	database	and	DBMS	usually	manages	and	stores	the	mobile	data	and	provides	mobile	applicationsmobile	database	platform	that	includes	a	laptop,	PDA,	or
other	Internet	access	devicesTwo-way	communication	links	between	corporate	and	mobile	DBMS.Based	on	the	particular	necessities	of	mobile	applications,	in	many	of	the	cases,	the	user	might	use	a	mobile	device	may	and	log	on	to	any	corporate	database	server	and	work	with	data	there.	In	contrast,	in	others,	the	user	may	download	data	and	work
with	it	on	a	mobile	device	or	upload	data	captured	at	the	remote	site	to	the	corporate	database.	The	communication	between	the	corporate	and	mobile	databases	is	usually	discontinuous	and	is	typically	established	or	gets	its	connection	for	a	short	duration	of	time	at	irregular	intervals.	Although	unusual,	some	applications	require	direct
communication	between	mobile	databases.	The	two	main	issues	associated	with	mobile	databases	are	the	management	of	the	mobile	database	and	the	communication	between	the	mobile	and	corporate	databases.	In	the	following	section,	we	identify	the	requirements	of	mobile	DBMSs.The	additional	functionality	required	for	mobile	DBMSs	includes
the	capability	to:communicate	with	the	centralized	or	primary	database	server	through	modesrepeat	those	data	on	the	centralized	database	server	and	mobile	devicecoordinate	data	on	the	centralized	database	server	and	mobile	devicecapture	data	from	a	range	of	sources	such	as	the	Internetdeal	with	those	data	on	the	mobile	deviceanalyze	those
data	on	a	mobile	devicecreate	customized	and	personalized	mobile	applicationsFound	This	Useful?	Share	This	Page!

