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HEURISTIC ONE-TIME PAD ENCRYPTION by James Burford Joyce, December 2019

ABSTRACT

Heuristic One-Time Pad (HOP) represents a methodology that is compliant with the
requirements as established by Claude Shannon for a globally scalable and permanent encryption
solution. The technique is not limited to encryption; rather, it also encompasses dynamic
hashing and authentication. The two key Shannon-identified problems of continuous random
number generation and secure distribution of encryption keys have been solved and are integral
to the method. At each step of the algorithms, entropy is ‘1’ and unicity is ‘infinite’. All
encryption key generation is independent of the value of the data being encrypted, and is
dependent upon a combination of quasi-random data values and their respective matrix index
values. The creation of functionally random numbers results from combining a plurality of
quasi-random sources and breaking up any potential linear, sequential, or harmonic anomalies.
This, in conjunction with a novel data shuffling and salting technique, ensures that the encryption
cannot be attacked via frequency analysis or even brute force. Contrary to all previous versions
of the One-Time Pad, HOP does not require large encryption keys to be themselves distributed
across any medium; rather, the keys are generated exactly when and where they are needed. The
footprint of HOP is small enough to support operation on systems as small as Internet of Things
(IoT) and wireless sensors, while also being robust enough to handle the encryption needs of the
largest supercomputers. Regarding speed, in direct head-to-head testing HOP is approximately
3.5 times faster than Advanced Encryption Standard (AES). With regards to key security, even

if the encryption keys are stolen, they cannot be used by an unauthorized person or system to



break the encryption. HOP represents a mathematically-proven uncrackable encryption system
which is faster than the competition, runs on all platforms, is globally scalable, and is, as is
intuitive from Shannon’s work, quantum as well as future proof. As such, it ends the historically
perpetual cycle, or race-condition, of encryption algorithm creation and encryption algorithm

breaking.
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INTRODUCTION

So, what is encryption anyway? Encryption is the art/science of encoding information
with the hope that only authorized people, devices, or processes will be able to access it. The
history of encryption goes back to numerous ancient cultures. Examples include the Greek
Skytale, the Caesar Cipher of Rome, and even the Kama Sutra has a chapter dedicated to “secret
writing”. Also, historically, the world of encryption has been in a race-condition; meaning, since
the proverbial dawn of time, someone invents a method to encrypt data, and someone thereafter
invents a way to break it. The most significant event in encryption cracking did not occur
recently. In fact, al Kindi (~800 A.D.) discovered “frequency analysis”, which has been the
backbone of encryption cracking ever since. Contemporary cryptographers have moved
encryption algorithms towards more and more complex mathematics in an effort to minimize the
risk posed by the ever more evolving world of encryption cracking. An excellent example of this
is Vigenere’s Autokey Cipher (once “believed” to be unbreakable), and the cracking work of
Charles Babbage. Every time a new encryption method has been released, it has eventually been
successfully attacked by new cracking techniques, thereby perpetuating the encryption race-

condition.

Encryption, in general, is not limited to the fields of information theory, mathematics,
and computer science; rather, it also finds itself rife with shades of politics, law enforcement,
sociology, industrial espionage. Its influence has been definitive in issues ranging from the
privacy of a love note, to the lives and deaths of people and empires. Such has been the import

of encryption throughout recorded history, and I posit that its impact on the world will increase



going forward, as its use is rapidly becoming an imperative as opposed to an option. That being
said, this work is not a treatise on the history of encryption: I recommend Singh, Simon, 7he
Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography (New York:
Random House, 1999). For One-Time Pad history specifically, append Singh’s work with,
Bellovin, Steven M., "Frank Miller: Inventor of the One-Time Pad". Cryptologia. 35,(2011), pg.
203-222. As well, this is not an argument for or against the need for stronger encryption, as the
National Institute of Standards and Technology (NIST) has already made that point in the
National Institute of Standards and Technology Interagency/Internal Report (NISTIR) 8105 —
Report on Post-Quantum Cryptography, 28 April 2016. It is not a list or exhibition of grievances
regarding the plurality of industrial espionage efforts directed towards this new one-time pad
technique over the past nine years. Furthermore, it is not a political statement or judgement
related to privacy rights versus the desires of law enforcement agencies to have backdoors or
trapdoors built into all commercial encryption, though I would be glad to answer any questions

in any of these areas in another forum. This work is strictly limited to the technology at hand.

Akin to patent work, it is assumed that the reader of this has “ordinary skill in the art”
(encryption), and has a general knowledge of the one-time pad. The argument of the need for
strong encryption to mitigate the threat of Quantum Computing (QC) has been made by the
National Institute of Standards and Technology (NIST) in their Interagency/Internal Report
(NISTIR) 8105 — Report on Post-Quantum Cryptography, 28 April 2016. I agree in general with
their assessment of the threat, and am proceeding into this work with that in mind: QC does
present a real threat to contemporary encryption, especially (though not exclusively) as it

pertains to asymmetric encryption and encryption handshake techniques. Many “expert”



recommendations are that we expand the sizes of our current keys, using existing algorithms, so
that “larger” quantum computers will be required to crack the encryption. The two obvious
downsides to this are that 1) it perpetuates the race condition and, 2) contemporary algorithms
are already too large to serve the needs of smaller devices (Internet of Things (IoT), wireless
sensor devices, etc.); ergo, increasing the system requirements to run an algorithm leaves smaller
devices unsecured. Furthermore, with respect to attempting to hold off the QC risk (and
perpetuating the race-condition), the future of QC, Non-deterministic Universal Turing Machines
(NUTM), should make it clear that contemporary complex-algorithmic encryption techniques
will eventually lose the race. To clarify, whereas a quantum computer will run an algorithm with
all possible data simultaneously, NUTMs are theorized to run a large plurality (possibly all)
algorithms with all possible data simultaneously. As such, I believe that, ultimately,
contemporary “difficult to break” encryption will lose the race. A different type of encryption

model will be necessary to ensure data privacy and security going forward.

Specifically, regarding the second point above (encryption for small devices), a paper by
Kenji Yoshigoe and Murat Al (“Adaptive Confidentiality Mechanism for Hierarchical Wireless
Sensor Networks,” 2008 IEEE Globecom Workshops, (2008)) is initially what gave me the spark
for this dissertation. The paper expressed the fact that wireless sensor devices do not have the
computing and/or power resources to handle contemporary encryption algorithms, and, as such,
there was a need for strong light-weight encryption techniques to serve that market. I thought “I
can do that”. Then I thought “if this will work for small systems, it should work for all systems”,

and here we are. To note: NIST is looking for both quantum resistant and light-weight



encryption solutions in two different programs. This work consolidates that, resolves the

encryption needs for all devices, and ends the encryption race-condition forever.

ONE-TIME PAD DISCUSSION

During World War I the United States experimented with a then new type of encryption,
the One-time Pad (OTP), which was believed to be impervious to cracking attempts. In 1947,
Claude Shannon (the father of Information Theory) proved that the OTP was mathematically
impossible to break. It is the only form of encryption ever conceived to hold this distinction;
however, while Shannon did prove uncrackability, he also identified two difficulties that would
need to be overcome for the technique to be used on a large scale: first, OTP relies on a perpetual
supply of random numbers, which is known to be exceedingly difficult to create; and second,
there must be a secure way to distribute encryption keys to all parties involved in the
communications. Perhaps in no small part to the elusive nature of the solutions to these two

issues, the OTP has been dubbed the Holy Grail of encryption.

Specific to random number generation, numerous techniques have been tried, from trivial
(trying to type randomly on a keyboard: this technique has been proven to not work) to complex
(measuring radioactive particle decay, photon observations, or measuring thermal sensor
changes: none of these techniques are fast enough to support wire-speed data rates). The fastest
contemporary random number generation systems (Quantis from ID Quantique, and Entropy
Engine from Whitewood Encryption Systems) can only generate keys at rates ranging from 128 -
350 megabits per second respectively. These keys, which still need to be distributed to relevant
systems, must then be used by external encryption algorithms. This is nowhere near fast enough

for current needs, and is a non-sequitur to a practical scalable encryption solution. For example,



a couple of years ago I was consulted regarding the encryption for India’s new national tax
system. During the course of our discussions, it was related to me that they had tried both
Quantis and Entropy Engine, but found that, at best, it would take 18 hours each day just to
distribute encryption keys to the computers in the nationwide network; whereas, they needed the
keys to be available in real time to service 24x7 operations, this “solution” would have limited

their production day to six hours.

The way that contemporary cryptographers have looked at OTP is, in my mind, the
biggest reason that no one else has yet figured out this problem. Prevailing belief is that, for
example, to encrypt 10 petabytes of data, one needs to pre-generate and distribute a 10-petabyte
encryption key to needed locations. As such, the prevailing belief amongst cryptographers is that
trying to implement a scalable OTP would be a key management nightmare. An example of this
is found in a Bruce Schneier essay on the OTP: “Cryptography after the Aliens Land”, I[EEE
Security & Privacy, September/October 2018. In fact, Schneier goes so far as to say: “Today,
only crackpots try to build general-use systems based on one-time pads—and cryptographers
laugh at them, because they replace algorithm design problems (easy) with key management and
physical security problems (much, much harder).” Another example of cryptographers believing
that OTP keys must be generated and distributed is a theme I have seen in cryptography blogs: to
paraphrase - ‘The increasing availability of bandwidth and the decreasing costs of bandwidth are

making OTP key distribution more feasible.’

It should be intuitively obvious that the above bandwidth reasoning is a non sequitur and

perpetuates the race-condition. It should also be intuitive that if you try to tackle the OTP



problem from a position of traditional thinking, any attempts to scale the OTP will be fruitless;
ergo, Schneier’s key management point is valid... from a traditional perspective. Regarding
Schneier’s conjecture that there is some increase in physical security problems, I would offer that
the point would be valid IF you actually did have to continuously transmit encryption keys to
everyone all the time. Heuristic One-Time Pad resolves these issues and provides a fast,
lightweight, and globally scalable encryption solution that ends the encryption race-condition

once and for all.

No one has yet to consider the possibility of generating synchronous, functionally
random, encryption keys on a plurality of devices at the exact time they are needed (e.g. while
the data to be encrypted or decrypted is being read into memory, and on the system that is doing
the encrypting/decrypting). This work solves the problems first identified by Shannon, complies
with Shannon’s fundamental requirements that keys are destroyed upon use and may not be
reused, and represents the world’s first and only uncrackable and globally scalable encryption.
Not only is this the strongest available encryption, but it is also approximately five times faster
than Advanced Encryption Standard (AES), our current de facto encryption standard, making
this the only proven unbreakable algorithm and the fastest encryption on (or off) the planet. It is
impervious to the threats of today and tomorrow, including ever more evolving cracking
techniques, QC, NUTM, or anything that comes after (Schneier: “aliens”). To go out on a limb, |
would (tongue in cheek) tend to agree with Bruce in that it is certainly alien-proof. Regarding
Schneier’s specific issues of key management and physical security, due to new and unique key

distribution and key-negotiation mechanisms, even if someone steals your keys during initial



installation, they still cannot crack your encryption. As such, the Heuristic One-Time Pad does

end the encryption race-condition.

PROBLEM ACKNOWLEDGEMENT

Prior to being “well” into this research, initial versions of this document were
significantly longer, and, in my opinion, the argument that I was making, for the need for post-
quantum encryption, was less strong due to reliance upon speculation/extrapolation on
technology evolution, trends, etc. The specific events that made me decide to modify my
dissertation are as follows. First: In 2016, popular websites Yahoo and Dropbox made public
announcements that their userbases had been compromised as a result of the cracking of their
encryption. These represent the first two major public announcements by large organizations
that they were hacked as a result of encryption cracking; Second: while I know of encryption
compromises in the real world, I cannot be more specific due to legal/contractual obligations. To
be clear, in my 30 plus year cyber-security career, I have cracked encryption while performing
penetration testing for clients, and as a cyber security curriculum author and instructor for the
United States defense/intelligence community, I have been privy to extensive information on
encryption cracking; Third: The NISTIR 8105 Report on Post-Quantum Cryptography was
released. Prior to the advent of the information from Yahoo, Dropbox, and the NIST Report, my
paper essentially boiled down to my personal opinion regarding the need for stronger encryption.
Having NIST validation, and public examples of current technology-based encryption cracking,

significantly strengthens the argument that stronger encryption is necessary.



HOP METHOD NOTES

The actual technique for this encryption is extensively covered in the dissertation defense
presentation. As this is a pattern-based heuristic, it seemed that the best way to express this
technique was to graphically demonstrate it. As the details are covered in the presentation, I will
touch on the key transition points here. At the core of this method is the ability to generate
random numbers when and where needed. I have toyed with the one-time pad since I was a child
and have had the concept of a one-way function in my brain for about as long. It occurred to me
that multiple quasi-random generators could be used to generate streams of “functionally”
random numbers. The idea of “matrix hopscotch” was also something that I have thought about
for decades. When I first started writing them out (“them” being matrices with random
distributions of the numbers 0 through 255), I tried to manipulate them with controlled sequences
of modifiers (by “manipulate”, I am referring to the “Go” concept shown in the presentation).
For example, I tried to take a matrix and do a “Go 07, then a “Go 17, and repeat to modify the
matrices. I found that this would always lead to the matrix converging back to its original state
rather quickly. As such, this would never qualify for perpetual random number generation.

After much empiricism, I found that modifying a quasi-random distribution based upon another
quasi-random distribution would result in a sequence of patterns that did not repeat throughout

its cycle.

I did, however, find possible classes of sequences that would break the encryption
requirement of non-repeating keysets. An example of these sequences is, albeit randomly
occurring, when the matrix falls into a straightforward (or backward) sequence of numbers from

0 to 255 in order (no matter where it starts). The “Flip and Swap” technique breaks this



condition. As well, as is intuitive from the graphics, the combination of “numerical order” and
“matrix index” processes breaks any possible repetition short of absolute numerical exhaustion,
which in this case is 16 matrices of 256 elements that can be arranged in any order [16 x 256! x
16!]. That’s 16 times 8.578177753 E+506 times 2.092278988 E+13. Online resources refer to
256! times 2 as being functionally infinite. While we know that it’s not actually infinite, we do
know that we, and perhaps this planet, will be long gone before those permutations have been

exhausted.

Specifically, regarding the Flip & Swap technique, I initially used a single offset, but Dr.
Yoshigoe suggested that it would be preferable to use a double offset. I also tried a triple offset,
but it did not give the algorithm any greater advantage, and would have just used more processor
cycles. The key rotation method, in conjunction with Flip & Swap and the Epoch Roll processes
described in the presentation, appears to satisfy a true one-way function. As such, it also appears
to yield the solution to the “P vs NP”” Millennial Math problem (spoiler: P != NP), though that
formal indirect proof work, while implicitly alluded to, is not included in this dissertation. That
being said, the proof should show that the matrix size (currently 256) approaches infinity, and

should extend the principles for vector-space.

All details of methods for random number generation, data shuffling, salting, encryption,
decryption, dynamic system identification, universal one-way hash functionality, and all

primitives are fully covered in the dissertation defense presentation.
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PERFORMANCE

As for performance, head-to-head testing was conducted against AES-128 to determine a
relative speed for encryption. All code was written in C, identical test data was used, and the
tests were run on the same processor core (Intel i7 6700K, 4GHz). AES key size — 128 bits,
HOP key size — 2048 bits. AES speed — 624Mbps, HOP speed — 2.162Gbps. It is also important
to note a significant difference between HOP and AES. AES, in and of itself, is not
authenticated encryption, and relies upon an additional hash algorithm to provide authenticated
encryption functionality. HOP is fully authenticated already, as a HOP-based hash function is
built into the encryption and decryption routines. As such, HOP’s speed advantage over AES is
even more significant in that it is generating the encryption keys, performing the encryption, and

generating the hash at the above stated speed, while AES is only performing the encryption.

Random key generation speed was tested against the manufacturers published key
generation rates for Quantis and Entropy Engine. Quantis generates keys at 128Mbps, Entropy

Engine at 350Mbps, and HOP at 2.162Gbps.
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HOP OVERVIEW

Symmetric One-Time Pad Encryption — Shannon compliant
No external RNG or floating-point instructions — stay in kernel space
Synchronized random keys generated on the fly on each platform

o No need to transfer large keys between relevant systems

o No need to store large keys
256-byte block authenticated encryption (not chained)
Authenticated via 2048-bit Universal One-Way Hash Function (chained)
Dynamic system/engine ID

Secure distribution, authentication, & non-repudiation via auto-negotiate
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ENCRYPTION AND DECRYPTION OVERVIEW

Encryption:

o Shuffle the un-encrypted data

o Salt the shuffled data — XOR Salt Key with shuffled data

o Shuffle the salted data

o Encrypt the shuffled salted data — XOR Pepper Key with shuffled salted data
Decryption:

o Decrypt the encrypted shuffled salted data — XOR with Pepper Key

o Un-shuffle the shuffled salted data

o Un-salt the salted data — XOR with Salt Key

o Un-shuffle the un-salted data



KEY GENERATION OVERVIEW - MATRIX HOPSCOTCH

Each 16x16 matrix is a randomly distributed permutation of the values 0 — 255*
The values in each matrix are rotated based upon a “value” vs “index” heuristic
The heuristic is akin to the childhood game of Hopscotch

... but the Hopscotch field is changing and is mapped to a Mdbius strip

Each key stack is comprised of four 16x16 matrices*

The matrices are called Epoch, Cycle, Go, and Key

Go controls Key, Cycle controls Go, & Epoch controls the rotation of Cycle values

Two stacks are required to create functionally random keys

13



HOP HOST REQUIREMENTS

Each host will maintain:

o

o

HOTPad executable code < 50kBytes

Salt & Pepper stacks for Send & Receive for all relevant systems
SID stacks for all relevant systems

Dynamic Hash table

Key Management Database

< 7kBytes/connection

14
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AUTO-NEGOTIATE PROCESS

The auto-negotiate process is a mechanism whereby two or more entangled encryption
engines modify their own keyset in a way such that only they can possibly know what the
updated keysets are, even if someone else had managed to obtain a copy of the original keysets.
The importance of this goes beyond protecting keys from malicious actors out in the world;
rather, this process also protects users against a rogue administrator that has access to the
systems that generated the initial keysets for users’ initial installations of the product. As such, a
manufacturer of this technology will only be able to decrypt traffic that it directed towards its
own systems, but they will not be able to track the encryption keysets of other user-to-user or
system- to-system communications. As such, without actually taking possession of, and having
the ability to authenticate on, a device, it will not be possible for any outside system to

compromise the encryption.



APPLICATIONS

It should be noted that the following list represents product rollout over a ten year period.

*  HOP™ On-Cloud — Encryption proxy, TLS-HOP™, and storage services

«  HOP™ On-Premise — HOP™ On-Cloud within your firewall

«  HOP™ App - Secure voice/video/data mobile and desktop apps for peer-to-peer and
group communications

* Cyber-security consulting services

*  Secure Email — HOP™ plugins for email

« Secure Web Browsing — HOP™ plugins for major browsers

* Authentication

* Biometrics

* Blockchain

* Financial transactions

* IoT & wireless sensors

* Chipsets

* Inter Process Communications

* Virtual reality

* User interface — I/O

* Nanotechnology

16
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HOP PROXY

HOP Proxy Services represent the world’s first mathematically-proven uncrackable, and
globally scalable authenticated encryption solution. This is the first anticipated product that will

use this technology.

* Entangled random HOP keys
» Scale to data size on the fly
* Auto-negotiation
» Establishes encrypted link
* Authenticates
* Non-repudiates
* Modifies & synchronizes keys
» Simple enrolment and delivery
¢ On-Cloud or On-Premise
*  Small footprint
* No proprietary equipment
* No asymmetric component

* No random number generator
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HOP TLS SERVICES

About two years ago, I reached out to Jack Lloyd, the creator of Botan SSL, and
contracted him to build a port for HOP into TLS 1.2. As TLS has been upgraded to version 1.3,

the plan is to get in touch with Jack and have him update the port.

Transport Layer Security (TLS) & its predecessor, Secure Sockets Layer (SSL), both
frequently referred to as "SSL", are the cryptographic protocols that provide communications
security.

*  HOP™ — 1% option in the TLS algorithm stack

* Fall-through support for other TLS protocols

* Fastest & strongest TLS implementation available

* Platform ubiquity

* No proprietary equipment

* No asymmetric component

* No external random number generator required
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HOP VOIP AND MOBILE

HOP™ Desktop — Uncrackable voice, video, and data communications for laptops, desktops, or
even clusters — peer-to-peer and conference
HOP™ Mobile — Uncrackable voice, video, and data communications for smart phones and

tablets — peer-to-peer and conference
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PRODUCT DELIVERY

It is not sufficient to simply develop an algorithm to provide a full solution. The product
delivery architecture has been crafted to ensure that the user experience is intuitive and the
installation mechanics are transparent. A full and robust environment has been coded up, is
ready for deployment, and covers end-user needs as well as all requisite manufacturer back
office functionality. This architecture is shown on the first of the two flowcharts directly below,

and the data flow is shown on the second flowchart.
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HOP SUMMARY

Authenticated encryption

The HOP Random Number Generator has passed the NIST STS suite
Generate keys, encrypt, & hash at 2.16Gbps on a 4.0 GHz i7 (single core)
Coded in C — far from optimized

Suitable for all platforms from IoT to Clusters

TLS friendly

Mathematically proven uncrackable

Quantum proof

NUTM proof

% proof



24

RANDOM NUMBER GENERATION

Regarding the ability to create functionally random sequences, 6 megabytes of encryption
keys were generated and sent to Dr. Kenji Yoshigoe. He ran the keys through the appropriate
NIST testing (National Institute of Standards and Technology (NIST), Special Publication 800-
22: A Statistical Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications, April 2010). The keysets passed in all testing as shown below. As
such, this passes the random number generation requirement per Shannon. Regarding the ability
to securely distribute keys to respective locations, it should be intuitive to one with ordinary skill
that the technique described in the presentation delineate a reasonable mechanism for secure key
distribution, also as per Shannon. As such, this meets the requirements for a one-time pad. In
addition, this encryption also accounts for known-text attack attempts against the keysets by
shuffling and salting the data at two different points in the encryption process. As the
functionally random keysets are, at the core, created deterministically, this series of shuffling and
salting prevent an attacker from gaining any purchase upon any part of the encryption keys
themselves. Below are the results on the NIST randomness testing. The gist is that this technique

does generate functionally random numbers from deterministic quasi-random matrices.
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NIST STATISTICAL TEST SUITE

There are several batteries of tests available for testing random or pseudorandom number
generators; however, the NIST Statistical Test Suite (NIST STS) is the most widely accepted test
suite. It is often used in preparation of formal certifications or approvals and was used in the
process for establishing Advanced Encryption Standard (AES) as the current encryption gold
standard. The NIST STS package is a set of statistical testing procedures for assessing
randomness of binary sequences of interest and incorporates all recommended NIST tests. This
has used NIST STS to assess the randomness quality of binary sequences being generated by its
core technology. Below is a summarized description of the 15 tests of the NIST STS [1].

Interested readers are encouraged to read [2].

1. Frequency (Monobits) Test
The focus of the test is the proportion of zeroes and ones for the entire sequence.
The purpose of this test is to determine whether that number of ones and zeros in a
sequence are approximately the same as would be expected for a truly random sequence.
The test assesses the closeness of the fraction of ones to Y4, that is, the number of ones

and zeroes in a sequence should be about the same.

2. Test For Frequency Within A Block
The focus of the test is the proportion of zeroes and ones within M-bit blocks. The
purpose of this test is to determine whether the frequency of ones in an M-bit block is
approximately M/2. The default value of M = 128, recommended by NIST, was used for

this test.
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3. Runs Test
The focus of this test is the total number of zero and one runs in the entire
sequence, where a run is an uninterrupted sequence of identical bits. A run of length k
means that a run consists of exactly k identical bits and is bounded before and after with a
bit of the opposite value. The purpose of the runs test is to determine whether the number
of runs of ones and zeros of various lengths is as expected for a random sequence. In
particular, this test determines whether the oscillation between such substrings is too fast

or too slow.

4. Test For The Longest Run Of Ones In A Block
The focus of the test is the longest run of ones within M-bit blocks. The purpose
of this test is to determine whether the length of the longest run of ones within the tested
sequence is consistent with the length of the longest run of ones that would be expected
in a random sequence. Note that an irregularity in the expected length of the longest run
of ones implies that there is also an irregularity in the expected length of the longest run
of zeroes. Long runs of zeroes were not evaluated separately due to a concern about

statistical independence among the tests.

5. Random Binary Matrix Rank Test
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The focus of the test is the rank of disjoint sub-matrices of the entire sequence.
The purpose of this test is to check for linear dependence among fixed length substrings

of the original sequence.

Discrete Fourier Transform (Spectral) Test

The focus of this test is the peak heights in the discrete Fast Fourier Transform.
The purpose of this test is to detect periodic features (i.e., repetitive patterns that are near
each other) in the tested sequence that would indicate a deviation from the assumption of

randomness.

Non-Overlapping (Aperiodic) Template Matching Test

The focus of this test is the number of occurrences of pre-defined target
substrings. The purpose of this test is to reject sequences that exhibit too many
occurrences of a given non-periodic (aperiodic) pattern. For this test and for the
Overlapping Template Matching test, an m-bit window is used to search for a specific m-
bit pattern. If the pattern is not found, the window slides one bit position. For this test,
when the pattern is found, the window is reset to the bit after the found pattern, and the
search resumes. The default value of m =9, recommended by NIST, was used for this

test.

Overlapping (Periodic) Template Matching Test
The focus of this test is the number of pre-defined target substrings. The purpose

of this test is to reject sequences that show deviations from the expected number of runs
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of ones of a given length. Note that when there is a deviation from the expected number
of ones of a given length, there is also a deviation in the runs of zeroes. Runs of zeroes
were not evaluated separately due to a concern about statistical independence among the
tests. For this test and for the Non-overlapping Template Matching test, an m-bit window
is used to search for a specific m-bit pattern. If the pattern is not found, the window slides
one bit position. For this test, when the pattern is found, the window again slides one bit,
and the search is resumed. The default value of m =9, recommended by NIST, was used

for this test.

Maurer's Universal Statistical Test

The focus of this test is the number of bits between matching patterns. The
purpose of the test is to detect whether or not the sequence can be significantly
compressed without loss of information. An overly compressible sequence is considered

to be non-random.

Linear Complexity Test

The focus of this test is the length of a generating feedback register. The purpose
of this test is to determine whether or not the sequence is complex enough to be
considered random. Random sequences are characterized by a longer feedback register. A
short feedback register implies non-randomness. The default value of 500, recommended

by NIST, was used for this test.

Serial Test
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The focus of this test is the frequency of each and every overlapping m-bit pattern
across the entire sequence. The purpose of this test is to determine whether the number of
occurrences of the 2™ m-bit overlapping patterns is approximately the same as would be
expected for a random sequence. The pattern can overlap. The default value of m = 16,

recommended by NIST, was used for this test.

Approximate Entropy Test

The focus of this test is the frequency of each and every overlapping m-bit
pattern. The purpose of the test is to compare the frequency of overlapping blocks of two
consecutive/adjacent lengths (m and m+1) against the expected result for a random

sequence. The default value of m = 10, recommended by NIST, was used for this test.

Cumulative Sum (Cusum) Test

The focus of this test is the maximal excursion (from zero) of the random walk
defined by the cumulative sum of adjusted (-1, +1) digits in the sequence. The purpose of
the test is to determine whether the cumulative sum of the partial sequences occurring in
the tested sequence is too large or too small relative to the expected behavior of that
cumulative sum for random sequences. This cumulative sum may be considered as a
random walk. For a random sequence, the random walk should be near zero. For non-

random sequences, the excursions of this random walk away from zero will be too large.

14. Random Excursions Test
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The focus of this test is the number of cycles having exactly K visits in a
cumulative sum random walk. The cumulative sum random walk is found if partial sums
of the (0, 1) sequence are adjusted to (-1, +1). A random excursion of a random walk
consists of a sequence of n steps of unit length taken at random that begin at and return to
the origin. The purpose of this test is to determine if the number of visits to a state within

a random walk exceeds what one would expect for a random sequence.

15. Random Excursions Variant Test
The focus of this test is the number of times that a particular state occurs in a
cumulative sum random walk. The purpose of this test is to detect deviations from the

expected number of occurrences of various states in the random walk.

TESTING PARAMETERS AND ENVIRONMENT

Subject: Heuristic One-Time Pad Encryption Engine — The algorithm being used as the core of

our encryption technology to deterministically generate binary sequence.

Purpose: To assess the maturity of the subject to deterministically generate random number

sequence.

Sequences Being Tested:
1. Core-generated binary sequence - Binary sequence generated by the subject.
2. Core XOR Low Density Plaintexts” - Binary sequence was generated as a result of

bitwise XOR operation between the core-generated binary sequence and the artificially
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generated non-random sequence of highly frequent appearances of zeros as described
below.

3. Core XOR High Density Plaintexts™ - Binary sequence generated as a result of bitwise
XOR operation between the core-generated binary sequence and the artificially generated

non-random sequence of highly frequent appearances of ones as described below.

* Low Density Plaintexts consisted of 8,257 blocks as described in [3]. These blocks were
formed from one all zero plaintext block, 128 plaintext blocks of a single one and 127 zeroes (the
one appearing in each of the possible 128 bit positions), and 8,128 plaintext blocks of two ones
and 126 zeroes (the two ones appearing in each combination of two bit positions within the 128-

bit positions).

*High Density Plaintexts consisted of 8,257 blocks as described in [3]. These blocks were
formed from one all ones plaintext block, 128 plaintext blocks of a single zero and 127 ones (the
zero appearing in each of the possible 128 bit positions), and 8,128 plaintext blocks of two
zeroes and 126 ones (the two zeroes appearing in each combination of two bit positions within

the 128-bit positions).

Testing Strategy

Randomness testing was performed using the following strategy:

a) Input parameters such as the sequence length, sample size, and significance level were
fixed for each sample. These parameters were 1,000,000 bits, 1000 binary sequences, and

0.01; respectively, as recommended by NIST [1]. For each binary sequence and each
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statistical test, a P-value was reported.

b) For each P-value, a success/failure assessment was made based on whether it exceeded or

fell below the pre-selected significance level of 0.01.

c) For each statistical test and each sample, two evaluations were made. First, the proportion
of binary sequences in a sample that passed the statistical test was calculated. The P-
value for this proportion is equal to the probability of observing a value equal to or
greater than the calculated proportion. Second, an additional P-value was calculated,
based on a chi-square test (with nine degrees of freedom) applied to the P-values in the

entire sample to ensure uniformity.

d) For both measures described in step (c) above, an assessment was made. A sample was
considered to have passed a statistical test if it satisfied both the proportion and

uniformity assessments.

RESULTS

Core-Generated Binary Sequences (1,000,000 bits x 1,000 Sequences)

The minimum pass rate for each statistical test (except for the random excursion (variant)
test) is approximately = 980 for the sample size of 1000 binary sequences that was being tested.
The subject has surpassed this minimum pass rate for all the associated tests. The minimum pass
rate for the random excursion (variant) test is approximately = 617 for the sample size of 631

binary sequences that was being tested. The subject has surpassed this minimum pass rate. In
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summary, the subject has passed all 15 statistical tests defined by the NIST Statistical Test

Suite.

Core XOR Low Density Plaintext (1,000,000 bits x 1,000 Sequences) *

The minimum pass rate for each statistical test (except for the random excursion (variant)
test) is approximately = 908 for the sample size of 1000 binary sequences that was being tested.
The subject has surpassed this minimum pass rate for all the associated tests. The minimum pass
rate for the random excursion (variant) test is approximately = 599 for the sample size of 613
binary sequences that was being tested. The subject has surpassed this minimum pass rate. In
summary, the subject has passed all 15 statistical tests defined by the NIST Statistical Test

Suite.

Core XOR High Density Plaintext (1,000,000 bits x 1,000 Sequences) *

The minimum pass rate for each statistical test (except for the random excursion (variant)
test) is approximately = 980 for the sample size of 1000 binary sequences that was being tested.
The subject has surpassed this minimum pass rate for all the associated tests. The minimum pass
rate for the random excursion (variant) test is approximately = 599 for the sample size of 613
binary sequences that was being tested. The subject has surpassed this minimum pass rate. In
summary, the subject has passed all 15 statistical tests defined by the NIST Statistical Test

Suite.

* For those tests using high-density plaintexts and low-density plaintexts, the original sequence
of plaintexts were directly XOR-ed to the sequence of the core generated binary sequences. That

is, no obfuscation techniques such as shuffling have been applied to the plaintext prior to these
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tests to assess the strength of the core algorithm. Test results suggest application of such
technique is unnecessary even if plaintext exhibits obvious patterns. It is noted here that AES and
other stream cipher algorithms being used today require obfuscation of plaintext as a part of their

algorithms.

SUMMARY

The core-generated keys have passed all 15 NIST STS tests demonstrating that the core
algorithm generates statistically random binary sequences. More importantly, the binary
sequences produced by directly XOR-ing the binary sequences generated by the core algorithm
and the low-density plaintexts passed all 15 NIST STS tests. Also, the binary sequences
produced by directly XOR-ing the binary sequences generated by the core algorithm and the
high-density plaintexts passed all 15 NIST STS tests. This clearly demonstrates that our core
algorithm can generate statistically random binary sequences out of plaintexts with obvious
patterns. Additionally, if these patterns were kept unchanged our core algorithm continues to

generate statistically random binary sequences.
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NIST STS APPENDIX A - RESULT OF THE CORE GENERATED
SEQUENCE (1000 SEQUENCES)

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF

PASSING SEQUENCES

generator is <data2/core.txt>

The minimum pass rate for each statistical test with the exception of the

random excursion (variant) test is approximately = 980 for a

sample size = 1000 binary sequences.

The minimum pass rate for the random excursion (variant) test

is approximately = 617 for a sample size = 631 binary sequences.

For further guidelines construct a probability table using the MAPLE program

provided in the addendum section of the documentation.
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NIST STS APPENDIX B — RESULT OF THE CORE XOR LOW
DENSITY PLAINTEXTS SEQUENCE (1000 SEQUENCES)

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF

PASSING SEQUENCES

generator is <data2/low_density_xor.txt>

The minimum pass rate for each statistical test with the exception of the

random excursion (variant) test is approximately = 980 for a

sample size = 1000 binary sequences.

The minimum pass rate for the random excursion (variant) test

is approximately = 599 for a sample size = 613 binary sequences.

For further guidelines construct a probability table using the MAPLE program

provided in the addendum section of the documentation.
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NIST STS APPENDIX C - RESULT OF THE CORE XOR HIGH
DENSITY PLAINTEXTS SEQUENCE (1000 SEQUENCES)

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF

PASSING SEQUENCES

generator is <data2/high_density_xor.txt>

The minimum pass rate for each statistical test with the exception of the

random excursion (variant) test is approximately = 980 for a

sample size = 1000 binary sequences.

The minimum pass rate for the random excursion (variant) test

is approximately = 599 for a sample size = 613 binary sequences.

For further guidelines construct a probability table using the MAPLE program

provided in the addendum section of the documentation.
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ANECDOTAL INFORMATION

Bruce Schneier is widely regarded as one of the greatest minds in cryptography and certainly
deserves his own paragraph. I have crossed paths with him in the past — another story. I find it
humorous and a bit coincidental that while working to commercialize this, in a part of my sales
pitch I would jokingly say that “even if the aliens come down, they can’t crack our encryption”.
My financial advisor, who apparently failed to see the humor, strongly advised me to stop saying
that, even though everyone who heard it laughed and took it tongue-in-cheek. Shortly after I
stopped using that jovial verbiage, Bruce Schneier released a blog essay (“Cryptography after the
Aliens Land”, inline below) that stated anyone who would attempt an OTP was a crackpot. I am
including this as an example of the mindset prevalent amongst cryptographers with respect to
OTP. This mindset has been the result of the general thinking that large encryption keys must be

continuously distributed to all relevant parties in order to perform this type of encryption.

“CRYPTOGRAPHY AFTER THE ALIENS LAND”

e Bruce Schneier, IEEE Security & Privacy, September/October 2018.

Quantum computing is a new way of computing—one that could allow humankind
to perform computations that are simply impossible using today's computing
technologies. It allows for very fast searching, something that would break some of the
encryption algorithms we use today. And it allows us to easily factor large numbers,

something that would break the RSA cryptosystem for any key length.

This is why cryptographers are hard at work designing and analyzing "quantum-

resistant” public-key algorithms. Currently, quantum computing is too nascent for



61

cryptographers to be sure of what is secure and what isn't. But even assuming aliens have
developed the technology to its full potential, quantum computing doesn't spell the end of
the world for cryptography. Symmetric cryptography is easy to make quantum-resistant,
and we're working on quantum-resistant public-key algorithms. If public-key
cryptography ends up being a temporary anomaly based on our mathematical knowledge
and computational ability, we'll still survive. And if some inconceivable alien technology
can break all of cryptography, we still can have secrecy based on information theory—

albeit with significant loss of capability.

At its core, cryptography relies on the mathematical quirk that some things are
easier to do than to undo. Just as it's easier to smash a plate than to glue all the pieces
back together, it's much easier to multiply two prime numbers together to obtain one
large number than it is to factor that large number back into two prime numbers.

Asymmetries of this kind—one-way functions and trap-door one-way functions—underlie

all of cryptography.

To encrypt a message, we combine it with a key to form ciphertext. Without the
key, reversing the process is more difficult. Not just a little more difficult, but
astronomically more difficult. Modern encryption algorithms are so fast that they can
secure your entire hard drive without any noticeable slowdown, but that encryption can't

be broken before the heat death of the universe.

With symmetric cryptography—the kind used to encrypt messages, files, and
drives— that imbalance is exponential, and is amplified as the keys get larger. Adding

one bit of key increases the complexity of encryption by less than a percent (I'm hand-
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waving here) but doubles the cost to break. So a 256-bit key might seem only twice as
complex as a 128-bit key, but (with our current knowledge of mathematics) it's

340,282,366,920,938,463, 463,374,607,431,768,211,456 times harder to break.

Public-key encryption (used primarily for key exchange) and digital signatures
are more complicated. Because they rely on hard mathematical problems like factoring,
there are more potential tricks to reverse them. So you'll see key lengths of 2,048 bits for
RSA, and 384 bits for algorithms based on elliptic curves. Here again, though, the costs
to reverse the algorithms with these key lengths are beyond the current reach of

humankind.

This one-wayness is based on our mathematical knowledge. When you hear about
a cryptographer "breaking" an algorithm, what happened is that they've found a new
trick that makes reversing easier. Cryptographers discover new tricks all the time, which
is why we tend to use key lengths that are longer than strictly necessary. This is true for

both symmetric and public-key algorithms,; we're trying to future-proof them.

Quantum computers promise to upend a lot of this. Because of the way they work,
they excel at the sorts of computations necessary to reverse these one-way functions. For
symmetric cryptography, this isn't too bad. Grover's algorithm shows that a quantum
computer speeds up these attacks to effectively halve the key length. This would mean
that a 256-bit key is as strong against a quantum computer as a 128-bit key is against a

conventional computer; both are secure for the foreseeable future.

For public-key cryptography, the results are more dire. Shor's algorithm can

easily break all of the commonly used public-key algorithms based on both factoring and
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the discrete logarithm problem. Doubling the key length increases the difficulty to break

by a factor of eight. That's not enough of a sustainable edge.

There are a lot of caveats to those two paragraphs, the biggest of which is that
quantum computers capable of doing anything like this don't currently exist, and no one
knows when—or even if— we'll be able to build one. We also don't know what sorts of
practical difficulties will arise when we try to implement Grover's or Shor's algorithms
for anything but toy key sizes. (Error correction on a quantum computer could easily be
an unsurmountable problem.) On the other hand, we don't know what other techniques
will be discovered once people start working with actual quantum computers. My bet is
that we will overcome the engineering challenges, and that there will be many advances
and new techniques—but they're going to take time to discover and invent. Just as it took
decades for us to get supercomputers in our pockets, it will take decades to work through

all the engineering problems necessary to build large-enough quantum computers.

In the short term, cryptographers are putting considerable effort into designing
and analyzing quantum-resistant algorithms, and those are likely to remain secure for
decades. This is a necessarily slow process, as both good cryptanalysis transitioning
standards take time. Luckily, we have time. Practical quantum computing seems to

always remain "ten years in the future,” which means no one has any idea.

After that, though, there is always the possibility that those algorithms will fall to
aliens with better quantum techniques. I am less worried about symmetric cryptography,
where Grover's algorithm is basically an upper limit on quantum improvements, than [

am about public-key algorithms based on number theory, which feel more fragile. It's
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possible that quantum computers will someday break all of them, even those that today

are quantum resistant.

If that happens, we will face a world without strong public-key cryptography.
That would be a huge blow to security and would break a lot of stuff we currently do, but
we could adapt. In the 1980s, Kerberos was an all-symmetric authentication and
encryption system. More recently, the GSM cellular standard does both authentication
and key distribution—at scale—with only symmetric cryptography. Yes, those systems
have centralized points of trust and failure, but it's possible to design other systems that
use both secret splitting and secret sharing to minimize that risk. (Imagine that a pair of
communicants get a piece of their session key from each of five different key servers.) The
ubiquity of communications also makes things easier today. We can use out-of-band
protocols where, for example, your phone helps you create a key for your computer. We
can use in-person registration for added security, maybe at the store where you buy your
smartphone or initialize your Internet service. Advances in hardware may also help to
secure keys in this world. I'm not trying to design anything here, only to point out that
there are many design possibilities. We know that cryptography is all about trust, and we
have a lot more techniques to manage trust than we did in the early years of the Internet.
Some important properties like forward secrecy will be blunted and far more complex,

but as long as symmetric cryptography still works, we'll still have security.

It's a weird future. Maybe the whole idea of number theory—based encryption,
which is what our modern public-key systems are, is a temporary detour based on our
incomplete model of computing. Now that our model has expanded to include quantum

computing, we might end up back to where we were in the late 1970s and early 1980s:



65

symmetric cryptography, code-based cryptography, Merkle hash signatures. That would

be both amusing and ironic.

Yes, I know that quantum key distribution is a potential replacement for public-
key cryptography. But come on—does anyone expect a system that requires specialized
communications hardware and cables to be useful for anything but niche applications?
The future is mobile, always-on, embedded computing devices. Any security for those will

necessarily be software only.

There's one more future scenario to consider, one that doesn't require a quantum
computer. While there are several mathematical theories that underpin the one-wayness
we use in cryptography, proving the validity of those theories is in fact one of the great
open problems in computer science. Just as it is possible for a smart cryptographer to
find a new trick that makes it easier to break a particular algorithm, we might imagine
aliens with sufficient mathematical theory to break all encryption algorithms. To us,
today, this is ridiculous. Public- key cryptography is all number theory, and potentially
vulnerable to more mathematically inclined aliens. Symmetric cryptography is so much
nonlinear muddle, so easy to make more complex, and so easy to increase key length, that
this future is unimaginable. Consider an AES variant with a 512-bit block and key size,
and 128 rounds. Unless mathematics is fundamentally different than our current
understanding, that'll be secure until computers are made of something other than matter

and occupy something other than space.

But if the unimaginable happens, that would leave us with cryptography based

solely on information theory: one-time pads and their variants. This would be a huge
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blow to security. One-time pads might be theoretically secure, but in practical terms they
are unusable for anything other than specialized niche applications. Today, only
crackpots try to build general-use systems based on one-time pads—and cryptographers
laugh at them, because they replace algorithm design problems (easy) with key
management and physical security problems (much, much harder). In our alien-ridden

science-fiction future, we might have nothing else.

Against these godlike aliens, cryptography will be the only technology we can be
sure of. Our nukes might refuse to detonate and our fighter jets might fall out of the sky,
but we will still be able to communicate securely using one-time pads. There's an

optimism in that.

I have a feeling that I am Bruce’s crackpot, and he does perfectly parody the tongue-in-
cheek humor from my marketing presentations (which was already a parody, specifically of the
movie “Independence Day”, 1996), but that’s okay. Bruce is brilliant, and I’'m not offended. To
detail my very limited experience with Bruce, in the late 1990’s when I was a network architect
and technology security director for Deutsche Bank, Bruce was a respected cryptographer at
banking seminars. His pitch at the time was essentially “you can have absolute security if you
use my encryption”. A few years later when [ was running a security startup based on the
heuristic firewall and Bruce was running a new secure datacenter company (Counterpoint), his
pitch was essentially “you can’t have absolute security, but if you use my datacenters you’ll be
as secure as you can be”. We spoke at the time about the possibility of blending technologies,
but he was not interested. That being said, he wrote patents a couple of years later in which he
forward cited my patent (U.S. Patent 6,519,703 — “Methods and Apparatus for Heuristic

Firewall”), so there was perhaps some interest in the tech after all. I anticipate that this



encryption technology will be initially received by Schneier in similar fashion with hopes that

perhaps one day he will lift the “crackpot” moniker from deep within my psyche;-)
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CONCLUSION

As the first globally scalable OTP solution, HOP represents the strongest and fastest
encryption available. It is compact enough to run on wireless sensors and Internet of Things
(IoT) devices, robust enough to handle the needs of phones, laptops, and the largest cluster
computers, and the fastest and strongest option for Internet Exchange Points. It brings an end to
the encryption race-condition and provides a permanent solution to the encryption needs of any
and all devices for the foreseeable future. While this dissertation is specific to the encryption
world, it should be intuitive that HOP’s random number generation primitives are not limited to
encryption; rather, this technique most definitely applies to any situation in which random
numbers are useful. Additionally intuitive, as HOP is fully authenticated, are the implications of
using this technique with processes and inter process communications, and the positive effects
this will yield in platform, operating system, application, and data security overall. The dynamic
identification primitives have the potential to change the way we look at, and in fact do,
authentication. As a former member of the NIST Biometrics Consortium, I clearly see that the
integration of these techniques with biometric authentication is a no-brainer. Penultimately,
though this is by no means an exhaustive list of applicability, by applying HOP at the core of a
distributed ledger, it will be possibly to not only significantly speed up a blockchain (due to
greatly reduced consensus operations requirements), but also to certify that the blockchain is
secure enough to perform currently elusive tasks such as Title Transfer in real estate, and the
creation of unassailable smart contract environments. Finally, it is not a stretch to say that HOP
can make positive change in all aspects of our handling and processing of data. To quote the

Beatles (1970): “Let It Be”.
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