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HEURISTIC ONE-TIME PAD ENCRYPTION by James Burford Joyce, December 2019 

 

ABSTRACT 
 

Heuristic One-Time Pad (HOP) represents a methodology that is compliant with the 

requirements as established by Claude Shannon for a globally scalable and permanent encryption 

solution.  The technique is not limited to encryption; rather, it also encompasses dynamic 

hashing and authentication.  The two key Shannon-identified problems of continuous random 

number generation and secure distribution of encryption keys have been solved and are integral 

to the method.  At each step of the algorithms, entropy is ‘1’ and unicity is ‘infinite’.  All 

encryption key generation is independent of the value of the data being encrypted, and is 

dependent upon a combination of quasi-random data values and their respective matrix index 

values.  The creation of functionally random numbers results from combining a plurality of 

quasi-random sources and breaking up any potential linear, sequential, or harmonic anomalies.  

This, in conjunction with a novel data shuffling and salting technique, ensures that the encryption 

cannot be attacked via frequency analysis or even brute force.  Contrary to all previous versions 

of the One-Time Pad, HOP does not require large encryption keys to be themselves distributed 

across any medium; rather, the keys are generated exactly when and where they are needed.  The 

footprint of HOP is small enough to support operation on systems as small as Internet of Things 

(IoT) and wireless sensors, while also being robust enough to handle the encryption needs of the 

largest supercomputers.  Regarding speed, in direct head-to-head testing HOP is approximately 

3.5 times faster than Advanced Encryption Standard (AES).  With regards to key security, even 

if the encryption keys are stolen, they cannot be used by an unauthorized person or system to 



  

 

 

break the encryption.  HOP represents a mathematically-proven uncrackable encryption system 

which is faster than the competition, runs on all platforms, is globally scalable, and is, as is 

intuitive from Shannon’s work, quantum as well as future proof.  As such, it ends the historically 

perpetual cycle, or race-condition, of encryption algorithm creation and encryption algorithm 

breaking. 
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INTRODUCTION 

 

So, what is encryption anyway?  Encryption is the art/science of encoding information 

with the hope that only authorized people, devices, or processes will be able to access it.  The 

history of encryption goes back to numerous ancient cultures.  Examples include the Greek 

Skytale, the Caesar Cipher of Rome, and even the Kama Sutra has a chapter dedicated to “secret 

writing”.  Also, historically, the world of encryption has been in a race-condition; meaning, since 

the proverbial dawn of time, someone invents a method to encrypt data, and someone thereafter 

invents a way to break it.  The most significant event in encryption cracking did not occur 

recently.  In fact, al Kindi (~800 A.D.) discovered “frequency analysis”, which has been the 

backbone of encryption cracking ever since.  Contemporary cryptographers have moved 

encryption algorithms towards more and more complex mathematics in an effort to minimize the 

risk posed by the ever more evolving world of encryption cracking.  An excellent example of this 

is Vigenere’s Autokey Cipher (once “believed” to be unbreakable), and the cracking work of 

Charles Babbage.  Every time a new encryption method has been released, it has eventually been 

successfully attacked by new cracking techniques, thereby perpetuating the encryption race-

condition. 

 

Encryption, in general, is not limited to the fields of information theory, mathematics, 

and computer science; rather, it also finds itself rife with shades of politics, law enforcement, 

sociology, industrial espionage.  Its influence has been definitive in issues ranging from the 

privacy of a love note, to the lives and deaths of people and empires.  Such has been the import 

of encryption throughout recorded history, and I posit that its impact on the world will increase 
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going forward, as its use is rapidly becoming an imperative as opposed to an option.  That being 

said, this work is not a treatise on the history of encryption: I recommend Singh, Simon, The 

Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography (New York: 

Random House, 1999).  For One-Time Pad history specifically, append Singh’s work with, 

Bellovin, Steven M., "Frank Miller: Inventor of the One-Time Pad". Cryptologia. 35,(2011), pg. 

203–222.  As well, this is not an argument for or against the need for stronger encryption, as the 

National Institute of Standards and Technology (NIST) has already made that point in the 

National Institute of Standards and Technology Interagency/Internal Report (NISTIR) 8105 – 

Report on Post-Quantum Cryptography, 28 April 2016.  It is not a list or exhibition of grievances 

regarding the plurality of industrial espionage efforts directed towards this new one-time pad 

technique over the past nine years.  Furthermore, it is not a political statement or judgement 

related to privacy rights versus the desires of law enforcement agencies to have backdoors or 

trapdoors built into all commercial encryption, though I would be glad to answer any questions 

in any of these areas in another forum.  This work is strictly limited to the technology at hand. 

 

Akin to patent work, it is assumed that the reader of this has “ordinary skill in the art” 

(encryption), and has a general knowledge of the one-time pad.  The argument of the need for 

strong encryption to mitigate the threat of Quantum Computing (QC) has been made by the 

National Institute of Standards and Technology (NIST) in their Interagency/Internal Report 

(NISTIR) 8105 – Report on Post-Quantum Cryptography, 28 April 2016.  I agree in general with 

their assessment of the threat, and am proceeding into this work with that in mind: QC does 

present a real threat to contemporary encryption, especially (though not exclusively) as it 

pertains to asymmetric encryption and encryption handshake techniques.  Many “expert” 
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recommendations are that we expand the sizes of our current keys, using existing algorithms, so 

that “larger” quantum computers will be required to crack the encryption.  The two obvious 

downsides to this are that 1) it perpetuates the race condition and, 2) contemporary algorithms 

are already too large to serve the needs of smaller devices (Internet of Things (IoT), wireless 

sensor devices, etc.); ergo, increasing the system requirements to run an algorithm leaves smaller 

devices unsecured.  Furthermore, with respect to attempting to hold off the QC risk (and 

perpetuating the race-condition), the future of QC, Non-deterministic Universal Turing Machines 

(NUTM), should make it clear that contemporary complex-algorithmic encryption techniques 

will eventually lose the race.  To clarify, whereas a quantum computer will run an algorithm with 

all possible data simultaneously, NUTMs are theorized to run a large plurality (possibly all) 

algorithms with all possible data simultaneously.  As such, I believe that, ultimately, 

contemporary “difficult to break” encryption will lose the race.  A different type of encryption 

model will be necessary to ensure data privacy and security going forward. 

 

Specifically, regarding the second point above (encryption for small devices), a paper by 

Kenji Yoshigoe and Murat Al (“Adaptive Confidentiality Mechanism for Hierarchical Wireless 

Sensor Networks,” 2008 IEEE Globecom Workshops, (2008)) is initially what gave me the spark 

for this dissertation.  The paper expressed the fact that wireless sensor devices do not have the 

computing and/or power resources to handle contemporary encryption algorithms, and, as such, 

there was a need for strong light-weight encryption techniques to serve that market.  I thought “I 

can do that”. Then I thought “if this will work for small systems, it should work for all systems”, 

and here we are.  To note: NIST is looking for both quantum resistant and light-weight 
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encryption solutions in two different programs.  This work consolidates that, resolves the 

encryption needs for all devices, and ends the encryption race-condition forever. 

ONE-TIME PAD DISCUSSION 

 

During World War I the United States experimented with a then new type of encryption, 

the One-time Pad (OTP), which was believed to be impervious to cracking attempts.  In 1947, 

Claude Shannon (the father of Information Theory) proved that the OTP was mathematically 

impossible to break.  It is the only form of encryption ever conceived to hold this distinction; 

however, while Shannon did prove uncrackability, he also identified two difficulties that would 

need to be overcome for the technique to be used on a large scale: first, OTP relies on a perpetual 

supply of random numbers, which is known to be exceedingly difficult to create; and second, 

there must be a secure way to distribute encryption keys to all parties involved in the 

communications.  Perhaps in no small part to the elusive nature of the solutions to these two 

issues, the OTP has been dubbed the Holy Grail of encryption. 

 

Specific to random number generation, numerous techniques have been tried, from trivial 

(trying to type randomly on a keyboard: this technique has been proven to not work) to complex 

(measuring radioactive particle decay, photon observations, or measuring thermal sensor 

changes: none of these techniques are fast enough to support wire-speed data rates).  The fastest 

contemporary random number generation systems (Quantis  from ID Quantique, and Entropy 

Engine from Whitewood Encryption Systems) can only generate keys at rates ranging from 128 - 

350 megabits per second respectively.  These keys, which still need to be distributed to relevant 

systems, must then be used by external encryption algorithms.  This is nowhere near fast enough 

for current needs, and is a non-sequitur to a practical scalable encryption solution.  For example, 
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a couple of years ago I was consulted regarding the encryption for India’s new national tax 

system.  During the course of our discussions, it was related to me that they had tried both 

Quantis and Entropy Engine, but found that, at best, it would take 18 hours each day just to 

distribute encryption keys to the computers in the nationwide network; whereas, they needed the 

keys to be available in real time to service 24x7 operations, this “solution” would have limited 

their production day to six hours.     

 

The way that contemporary cryptographers have looked at OTP is, in my mind, the 

biggest reason that no one else has yet figured out this problem.  Prevailing belief is that, for 

example, to encrypt 10 petabytes of data, one needs to pre-generate and distribute a 10-petabyte 

encryption key to needed locations.  As such, the prevailing belief amongst cryptographers is that 

trying to implement a scalable OTP would be a key management nightmare.  An example of this 

is found in a Bruce Schneier essay on the OTP: “Cryptography after the Aliens Land”, IEEE 

Security & Privacy, September/October 2018.  In fact, Schneier goes so far as to say: “Today, 

only crackpots try to build general-use systems based on one-time pads—and cryptographers 

laugh at them, because they replace algorithm design problems (easy) with key management and 

physical security problems (much, much harder).”  Another example of cryptographers believing 

that OTP keys must be generated and distributed is a theme I have seen in cryptography blogs: to 

paraphrase - ‘The increasing availability of bandwidth and the decreasing costs of bandwidth are 

making OTP key distribution more feasible.’ 

 

It should be intuitively obvious that the above bandwidth reasoning is a non sequitur and 

perpetuates the race-condition.  It should also be intuitive that if you try to tackle the OTP 
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problem from a position of traditional thinking, any attempts to scale the OTP will be fruitless; 

ergo, Schneier’s key management point is valid… from a traditional perspective.  Regarding 

Schneier’s conjecture that there is some increase in physical security problems, I would offer that 

the point would be valid IF you actually did have to continuously transmit encryption keys to 

everyone all the time.  Heuristic One-Time Pad resolves these issues and provides a fast, 

lightweight, and globally scalable encryption solution that ends the encryption race-condition 

once and for all. 

 

No one has yet to consider the possibility of generating synchronous, functionally 

random, encryption keys on a plurality of devices at the exact time they are needed (e.g. while 

the data to be encrypted or decrypted is being read into memory, and on the system that is doing 

the encrypting/decrypting).  This work solves the problems first identified by Shannon, complies 

with Shannon’s fundamental requirements that keys are destroyed upon use and may not be 

reused, and represents the world’s first and only uncrackable and globally scalable encryption.  

Not only is this the strongest available encryption, but it is also approximately five times faster 

than Advanced Encryption Standard (AES), our current de facto encryption standard, making 

this the only proven unbreakable algorithm and the fastest encryption on (or off) the planet.  It is 

impervious to the threats of today and tomorrow, including ever more evolving cracking 

techniques, QC, NUTM, or anything that comes after (Schneier: “aliens”).  To go out on a limb, I 

would (tongue in cheek) tend to agree with Bruce in that it is certainly alien-proof.  Regarding 

Schneier’s specific issues of key management and physical security, due to new and unique key 

distribution and key-negotiation mechanisms, even if someone steals your keys during initial 
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installation, they still cannot crack your encryption.  As such, the Heuristic One-Time Pad does 

end the encryption race-condition. 

 

PROBLEM ACKNOWLEDGEMENT  

 

Prior to being “well” into this research, initial versions of this document were 

significantly longer, and, in my opinion, the argument that I was making, for the need for post-

quantum encryption, was less strong due to reliance upon speculation/extrapolation on 

technology evolution, trends, etc.  The specific events that made me decide to modify my 

dissertation are as follows.  First: In 2016, popular websites Yahoo and Dropbox made public 

announcements that their userbases had been compromised as a result of the cracking of their 

encryption.  These represent the first two major public announcements by large organizations 

that they were hacked as a result of encryption cracking; Second: while I know of encryption 

compromises in the real world, I cannot be more specific due to legal/contractual obligations.  To 

be clear, in my 30 plus year cyber-security career, I have cracked encryption while performing 

penetration testing for clients, and as a cyber security curriculum author and instructor for the 

United States defense/intelligence community, I have been privy to extensive information on 

encryption cracking; Third: The NISTIR 8105 Report on Post-Quantum Cryptography was 

released.  Prior to the advent of the information from Yahoo, Dropbox, and the NIST Report, my 

paper essentially boiled down to my personal opinion regarding the need for stronger encryption.  

Having NIST validation, and public examples of current technology-based encryption cracking, 

significantly strengthens the argument that stronger encryption is necessary.   
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HOP METHOD NOTES 

 

The actual technique for this encryption is extensively covered in the dissertation defense 

presentation.  As this is a pattern-based heuristic, it seemed that the best way to express this 

technique was to graphically demonstrate it.  As the details are covered in the presentation, I will 

touch on the key transition points here.  At the core of this method is the ability to generate 

random numbers when and where needed.  I have toyed with the one-time pad since I was a child 

and have had the concept of a one-way function in my brain for about as long.  It occurred to me 

that multiple quasi-random generators could be used to generate streams of “functionally” 

random numbers.  The idea of “matrix hopscotch” was also something that I have thought about 

for decades.  When I first started writing them out (“them” being matrices with random 

distributions of the numbers 0 through 255), I tried to manipulate them with controlled sequences 

of modifiers (by “manipulate”, I am referring to the “Go” concept shown in the presentation).  

For example, I tried to take a matrix and do a “Go 0”, then a “Go 1”, and repeat to modify the 

matrices.  I found that this would always lead to the matrix converging back to its original state 

rather quickly.  As such, this would never qualify for perpetual random number generation.  

After much empiricism, I found that modifying a quasi-random distribution based upon another 

quasi-random distribution would result in a sequence of patterns that did not repeat throughout 

its cycle. 

 

I did, however, find possible classes of sequences that would break the encryption 

requirement of non-repeating keysets.  An example of these sequences is, albeit randomly 

occurring, when the matrix falls into a straightforward (or backward) sequence of numbers from 

0 to 255 in order (no matter where it starts).  The “Flip and Swap” technique breaks this 
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condition.  As well, as is intuitive from the graphics, the combination of “numerical order” and 

“matrix index” processes breaks any possible repetition short of absolute numerical exhaustion, 

which in this case is 16 matrices of 256 elements that can be arranged in any order [16 x 256! x 

16!].  That’s 16 times 8.578177753 E+506 times 2.092278988 E+13.  Online resources refer to 

256! times 2 as being functionally infinite.  While we know that it’s not actually infinite, we do 

know that we, and perhaps this planet, will be long gone before those permutations have been 

exhausted. 

 

Specifically, regarding the Flip & Swap technique, I initially used a single offset, but Dr. 

Yoshigoe suggested that it would be preferable to use a double offset.  I also tried a triple offset, 

but it did not give the algorithm any greater advantage, and would have just used more processor 

cycles.  The key rotation method, in conjunction with Flip & Swap and the Epoch Roll processes 

described in the presentation, appears to satisfy a true one-way function.  As such, it also appears 

to yield the solution to the “P vs NP” Millennial Math problem (spoiler: P != NP), though that 

formal indirect proof work, while implicitly alluded to, is not included in this dissertation.  That 

being said, the proof should show that the matrix size (currently 256) approaches infinity, and 

should extend the principles for vector-space. 

 

All details of methods for random number generation, data shuffling, salting, encryption, 

decryption, dynamic system identification, universal one-way hash functionality, and all 

primitives are fully covered in the dissertation defense presentation.   
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PERFORMANCE 

 

As for performance, head-to-head testing was conducted against AES-128 to determine a 

relative speed for encryption.  All code was written in C, identical test data was used, and the 

tests were run on the same processor core (Intel i7 6700K, 4GHz).  AES key size – 128 bits, 

HOP key size – 2048 bits.  AES speed – 624Mbps, HOP speed – 2.162Gbps.  It is also important 

to note a significant difference between HOP and AES.  AES, in and of itself, is not 

authenticated encryption, and relies upon an additional hash algorithm to provide authenticated 

encryption functionality.  HOP is fully authenticated already, as a HOP-based hash function is 

built into the encryption and decryption routines.  As such, HOP’s speed advantage over AES is 

even more significant in that it is generating the encryption keys, performing the encryption, and 

generating the hash at the above stated speed, while AES is only performing the encryption. 

 

Random key generation speed was tested against the manufacturers published key 

generation rates for Quantis and Entropy Engine.  Quantis generates keys at 128Mbps, Entropy 

Engine at 350Mbps, and HOP at 2.162Gbps. 
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HOP OVERVIEW 

 

o Symmetric One-Time Pad Encryption – Shannon compliant 

o No external RNG or floating-point instructions – stay in kernel  space 

o Synchronized random keys generated on the fly on each platform 

o No need to transfer large keys between relevant systems 

o No need to store large keys 

o 256-byte block authenticated encryption (not chained) 

o Authenticated via 2048-bit Universal One-Way Hash Function (chained) 

o Dynamic system/engine ID 

o Secure distribution, authentication, & non-repudiation via auto-negotiate 
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ENCRYPTION AND DECRYPTION OVERVIEW 

 

  Encryption: 

◦ Shuffle the un-encrypted data 

◦ Salt the shuffled data – XOR Salt Key with shuffled data 

◦ Shuffle the salted data 

◦ Encrypt the shuffled salted data – XOR Pepper Key with shuffled salted data 

  Decryption: 

◦ Decrypt the encrypted shuffled salted data – XOR with Pepper Key 

◦ Un-shuffle the shuffled salted data 

◦ Un-salt the salted data – XOR with Salt Key 

◦ Un-shuffle the un-salted data 
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KEY GENERATION OVERVIEW – MATRIX HOPSCOTCH 

 

o Each 16x16 matrix is a randomly distributed permutation of the values 0 – 255* 

o The values in each matrix are rotated based upon a “value” vs “index” heuristic 

o The heuristic is akin to the childhood game of Hopscotch 

o … but the Hopscotch field is changing and is mapped to a Mӧbius strip 

o Each key stack is comprised of four 16x16 matrices* 

o The matrices are called Epoch, Cycle, Go, and Key 

o Go controls Key, Cycle controls Go, & Epoch controls the rotation of Cycle values 

o Two stacks are required to create functionally random keys 
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HOP HOST REQUIREMENTS 

 

  Each host will maintain: 

◦ HOTPad executable code < 50kBytes 

◦ Salt & Pepper stacks for Send & Receive for all relevant systems 

◦ SID stacks for all relevant systems 

◦ Dynamic Hash table 

◦ Key Management Database 

◦ < 7kBytes/connection 
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AUTO-NEGOTIATE PROCESS 

 

The auto-negotiate process is a mechanism whereby two or more entangled encryption 

engines modify their own keyset in a way such that only they can possibly know what the 

updated keysets are, even if someone else had managed to obtain a copy of the original keysets.  

The importance of this goes beyond protecting keys from malicious actors out in the world; 

rather, this process also protects users against a rogue administrator that has access to the 

systems that generated the initial keysets for users’ initial installations of the product.  As such, a 

manufacturer of this technology will only be able to decrypt traffic that it directed towards its 

own systems, but they will not be able to track the encryption keysets of other user-to-user or 

system- to-system communications.  As such, without actually taking possession of, and having 

the ability to authenticate on, a device, it will not be possible for any outside system to 

compromise the encryption. 
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APPLICATIONS 

 

It should be noted that the following list represents product rollout over a ten year period. 

 

• HOPTM On-Cloud – Encryption proxy, TLS-HOPTM, and storage services 

• HOPTM On-Premise –  HOPTM On-Cloud within your firewall 

• HOPTM App - Secure voice/video/data mobile and desktop apps for peer-to-peer and 

group communications  

• Cyber-security consulting services 

• Secure Email – HOPTM plugins for email  

• Secure Web Browsing – HOPTM plugins for major browsers 

• Authentication 

• Biometrics 

• Blockchain 

• Financial transactions 

• IoT & wireless sensors 

• Chipsets 

• Inter Process Communications 

• Virtual reality 

• User interface – I/O 

• Nanotechnology 
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HOP PROXY 

 

HOP Proxy Services represent the world’s first mathematically-proven uncrackable, and 

globally scalable authenticated encryption solution.  This is the first anticipated product that will 

use this technology. 

 

• Entangled random HOP keys 

• Scale to data size on the fly 

• Auto-negotiation 

• Establishes encrypted link 

• Authenticates 

• Non-repudiates 

• Modifies & synchronizes keys  

• Simple enrolment and delivery 

• On-Cloud or On-Premise 

• Small footprint 

• No proprietary equipment 

• No asymmetric component 

• No random number generator 
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HOP TLS SERVICES 

 

About two years ago, I reached out to Jack Lloyd, the creator of Botan SSL, and 

contracted him to build a port for HOP into TLS 1.2.  As TLS has been upgraded to version 1.3, 

the plan is to get in touch with Jack and have him update the port. 

 

Transport Layer Security (TLS) & its predecessor, Secure Sockets Layer (SSL), both 

frequently referred to as "SSL", are the cryptographic protocols that provide communications 

security.  

• HOP™ – 1st option in the TLS algorithm stack 

• Fall-through support for other TLS protocols 

• Fastest & strongest TLS implementation available 

• Platform ubiquity 

• No proprietary equipment 

• No asymmetric component 

• No external random number generator required 
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HOP VOIP AND MOBILE 

 

HOP™ Desktop – Uncrackable voice, video, and data communications for laptops, desktops, or 

even clusters – peer-to-peer and conference 

HOP™ Mobile – Uncrackable voice, video, and data communications for smart phones and 

tablets – peer-to-peer and conference 
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PRODUCT DELIVERY 

 

It is not sufficient to simply develop an algorithm to provide a full solution.  The product 

delivery architecture has been crafted to ensure that the user experience is intuitive and the 

installation mechanics are transparent.  A full and robust environment has been coded up, is 

ready for deployment, and covers end-user needs as well as all requisite manufacturer back 

office functionality.  This architecture is shown on the first of the two flowcharts directly below, 

and the data flow is shown on the second flowchart. 
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Figure 1 
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Figure 2 
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HOP SUMMARY 

 

◦ Authenticated encryption 

◦ The HOP Random Number Generator has passed the NIST STS suite 

◦ Generate keys, encrypt, & hash at 2.16Gbps on a 4.0 GHz i7 (single core) 

◦ Coded in C – far from optimized 

◦ Suitable for all platforms from IoT to Clusters 

◦ TLS friendly 

◦ Mathematically proven uncrackable 

◦ Quantum proof 

◦ NUTM proof 

◦ 👽 proof 
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RANDOM NUMBER GENERATION 

Regarding the ability to create functionally random sequences, 6 megabytes of encryption 

keys were generated and sent to Dr. Kenji Yoshigoe.  He ran the keys through the appropriate 

NIST testing (National Institute of Standards and Technology (NIST), Special Publication 800-

22: A Statistical Test Suite for Random and Pseudorandom Number Generators for 

Cryptographic Applications, April 2010).  The keysets passed in all testing as shown below.  As 

such, this passes the random number generation requirement per Shannon.  Regarding the ability 

to securely distribute keys to respective locations, it should be intuitive to one with ordinary skill 

that the technique described in the presentation delineate a reasonable mechanism for secure key 

distribution, also as per Shannon.  As such, this meets the requirements for a one-time pad.  In 

addition, this encryption also accounts for known-text attack attempts against the keysets by 

shuffling and salting the data at two different points in the encryption process.  As the 

functionally random keysets are, at the core, created deterministically, this series of shuffling and 

salting prevent an attacker from gaining any purchase upon any part of the encryption keys 

themselves.  Below are the results on the NIST randomness testing. The gist is that this technique 

does generate functionally random numbers from deterministic quasi-random matrices. 
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NIST STATISTICAL TEST SUITE 

 

There are several batteries of tests available for testing random or pseudorandom number 

generators; however, the NIST Statistical Test Suite (NIST STS) is the most widely accepted test 

suite. It is often used in preparation of formal certifications or approvals and was used in the 

process for establishing Advanced Encryption Standard (AES) as the current encryption gold 

standard. The NIST STS package is a set of statistical testing procedures for assessing 

randomness of binary sequences of interest and incorporates all recommended NIST tests. This 

has used NIST STS to assess the randomness quality of binary sequences being generated by its 

core technology. Below is a summarized description of the 15 tests of the NIST STS [1]. 

Interested readers are encouraged to read [2]. 

 

1. Frequency (Monobits) Test 

The focus of the test is the proportion of zeroes and ones for the entire sequence. 

The purpose of this test is to determine whether that number of ones and zeros in a 

sequence are approximately the same as would be expected for a truly random sequence. 

The test assesses the closeness of the fraction of ones to ½, that is, the number of ones 

and zeroes in a sequence should be about the same. 

 

2. Test For Frequency Within A Block 

The focus of the test is the proportion of zeroes and ones within M-bit blocks. The 

purpose of this test is to determine whether the frequency of ones in an M-bit block is 

approximately M/2. The default value of M = 128, recommended by NIST, was used for 

this test. 
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3. Runs Test 

The focus of this test is the total number of zero and one runs in the entire 

sequence, where a run is an uninterrupted sequence of identical bits. A run of length k 

means that a run consists of exactly k identical bits and is bounded before and after with a 

bit of the opposite value. The purpose of the runs test is to determine whether the number 

of runs of ones and zeros of various lengths is as expected for a random sequence. In 

particular, this test determines whether the oscillation between such substrings is too fast 

or too slow. 

 

4. Test For The Longest Run Of Ones In A Block 

The focus of the test is the longest run of ones within M-bit blocks. The purpose 

of this test is to determine whether the length of the longest run of ones within the tested 

sequence is consistent with the length of the longest run of ones that would be expected 

in a random sequence. Note that an irregularity in the expected length of the longest run 

of ones implies that there is also an irregularity in the expected length of the longest run 

of zeroes. Long runs of zeroes were not evaluated separately due to a concern about 

statistical independence among the tests. 

 

 

5. Random Binary Matrix Rank Test 
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The focus of the test is the rank of disjoint sub-matrices of the entire sequence. 

The purpose of this test is to check for linear dependence among fixed length substrings 

of the original sequence. 

 

6. Discrete Fourier Transform (Spectral) Test 

The focus of this test is the peak heights in the discrete Fast Fourier Transform. 

The purpose of this test is to detect periodic features (i.e., repetitive patterns that are near 

each other) in the tested sequence that would indicate a deviation from the assumption of 

randomness. 

 

7. Non-Overlapping (Aperiodic) Template Matching Test 

The focus of this test is the number of occurrences of pre-defined target 

substrings. The purpose of this test is to reject sequences that exhibit too many 

occurrences of a given non-periodic (aperiodic) pattern. For this test and for the 

Overlapping Template Matching test, an m-bit window is used to search for a specific m-

bit pattern. If the pattern is not found, the window slides one bit position. For this test, 

when the pattern is found, the window is reset to the bit after the found pattern, and the 

search resumes. The default value of m = 9, recommended by NIST, was used for this 

test.  

 

8. Overlapping (Periodic) Template Matching Test 

The focus of this test is the number of pre-defined target substrings. The purpose 

of this test is to reject sequences that show deviations from the expected number of runs 
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of ones of a given length. Note that when there is a deviation from the expected number 

of ones of a given length, there is also a deviation in the runs of zeroes. Runs of zeroes 

were not evaluated separately due to a concern about statistical independence among the 

tests. For this test and for the Non-overlapping Template Matching test, an m-bit window 

is used to search for a specific m-bit pattern. If the pattern is not found, the window slides 

one bit position. For this test, when the pattern is found, the window again slides one bit, 

and the search is resumed. The default value of m = 9, recommended by NIST, was used 

for this test.  

 

9. Maurer's Universal Statistical Test 

The focus of this test is the number of bits between matching patterns. The 

purpose of the test is to detect whether or not the sequence can be significantly 

compressed without loss of information. An overly compressible sequence is considered 

to be non-random.  

 

10. Linear Complexity Test 

The focus of this test is the length of a generating feedback register. The purpose 

of this test is to determine whether or not the sequence is complex enough to be 

considered random. Random sequences are characterized by a longer feedback register. A 

short feedback register implies non-randomness. The default value of 500, recommended 

by NIST, was used for this test. 

 

11. Serial Test  



  

 

29 
 

 

The focus of this test is the frequency of each and every overlapping m-bit pattern 

across the entire sequence. The purpose of this test is to determine whether the number of 

occurrences of the 2m m-bit overlapping patterns is approximately the same as would be 

expected for a random sequence. The pattern can overlap. The default value of m = 16, 

recommended by NIST, was used for this test.  

 

12. Approximate Entropy Test 

The focus of this test is the frequency of each and every overlapping m-bit 

pattern. The purpose of the test is to compare the frequency of overlapping blocks of two 

consecutive/adjacent lengths (m and m+1) against the expected result for a random 

sequence. The default value of m = 10, recommended by NIST, was used for this test.  

 

13. Cumulative Sum (Cusum) Test 

The focus of this test is the maximal excursion (from zero) of the random walk 

defined by the cumulative sum of adjusted (-1, +1) digits in the sequence. The purpose of 

the test is to determine whether the cumulative sum of the partial sequences occurring in 

the tested sequence is too large or too small relative to the expected behavior of that 

cumulative sum for random sequences. This cumulative sum may be considered as a 

random walk. For a random sequence, the random walk should be near zero. For non-

random sequences, the excursions of this random walk away from zero will be too large. 

 

14. Random Excursions Test  
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The focus of this test is the number of cycles having exactly K visits in a 

cumulative sum random walk. The cumulative sum random walk is found if partial sums 

of the (0, 1) sequence are adjusted to (-1, +1). A random excursion of a random walk 

consists of a sequence of n steps of unit length taken at random that begin at and return to 

the origin. The purpose of this test is to determine if the number of visits to a state within 

a random walk exceeds what one would expect for a random sequence. 

 

15. Random Excursions Variant Test 

The focus of this test is the number of times that a particular state occurs in a 

cumulative sum random walk. The purpose of this test is to detect deviations from the 

expected number of occurrences of various states in the random walk. 

 

TESTING PARAMETERS AND ENVIRONMENT 

 

Subject: Heuristic One-Time Pad Encryption Engine – The algorithm being used as the core of 

our encryption technology to deterministically generate binary sequence. 

Purpose: To assess the maturity of the subject to deterministically generate random number 

sequence. 

Sequences Being Tested:  

1. Core-generated binary sequence - Binary sequence generated by the subject. 

2. Core XOR Low Density Plaintexts* - Binary sequence was generated as a result of 

bitwise XOR operation between the core-generated binary sequence and the artificially 
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generated non-random sequence of highly frequent appearances of zeros as described 

below.  

3. Core XOR High Density Plaintexts** - Binary sequence generated as a result of bitwise 

XOR operation between the core-generated binary sequence and the artificially generated 

non-random sequence of highly frequent appearances of ones as described below.  

 

* Low Density Plaintexts consisted of 8,257 blocks as described in [3].  These blocks were 

formed from one all zero plaintext block, 128 plaintext blocks of a single one and 127 zeroes (the 

one appearing in each of the possible 128 bit positions), and 8,128 plaintext blocks of two ones 

and 126 zeroes (the two ones appearing in each combination of two bit positions within the 128-

bit positions). 

 

**High Density Plaintexts consisted of 8,257 blocks as described in [3]. These blocks were 

formed from one all ones plaintext block, 128 plaintext blocks of a single zero and 127 ones (the 

zero appearing in each of the possible 128 bit positions), and 8,128 plaintext blocks of two 

zeroes and 126 ones (the two zeroes appearing in each combination of two bit positions within 

the 128-bit positions). 

 

Testing Strategy 

Randomness testing was performed using the following strategy:  

a) Input parameters such as the sequence length, sample size, and significance level were 

fixed for each sample. These parameters were 1,000,000 bits, 1000 binary sequences, and 

0.01; respectively, as recommended by NIST [1]. For each binary sequence and each 
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statistical test, a P-value was reported. 

b) For each P-value, a success/failure assessment was made based on whether it exceeded or 

fell below the pre-selected significance level of 0.01. 

c) For each statistical test and each sample, two evaluations were made. First, the proportion 

of binary sequences in a sample that passed the statistical test was calculated. The P-

value for this proportion is equal to the probability of observing a value equal to or 

greater than the calculated proportion. Second, an additional P-value was calculated, 

based on a chi-square test (with nine degrees of freedom) applied to the P-values in the 

entire sample to ensure uniformity.  

d) For both measures described in step (c) above, an assessment was made. A sample was 

considered to have passed a statistical test if it satisfied both the proportion and 

uniformity assessments.  

 

RESULTS 

 

Core-Generated Binary Sequences (1,000,000 bits x 1,000 Sequences) 

The minimum pass rate for each statistical test (except for the random excursion (variant) 

test) is approximately = 980 for the sample size of 1000 binary sequences that was being tested. 

The subject has surpassed this minimum pass rate for all the associated tests. The minimum pass 

rate for the random excursion (variant) test is approximately = 617 for the sample size of 631 

binary sequences that was being tested. The subject has surpassed this minimum pass rate. In 
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summary, the subject has passed all 15 statistical tests defined by the NIST Statistical Test 

Suite. 

 

Core XOR Low Density Plaintext (1,000,000 bits x 1,000 Sequences) + 

The minimum pass rate for each statistical test (except for the random excursion (variant) 

test) is approximately = 908 for the sample size of 1000 binary sequences that was being tested. 

The subject has surpassed this minimum pass rate for all the associated tests. The minimum pass 

rate for the random excursion (variant) test is approximately = 599 for the sample size of 613 

binary sequences that was being tested. The subject has surpassed this minimum pass rate. In 

summary, the subject has passed all 15 statistical tests defined by the NIST Statistical Test 

Suite.  

 

Core XOR High Density Plaintext (1,000,000 bits x 1,000 Sequences) + 

The minimum pass rate for each statistical test (except for the random excursion (variant) 

test) is approximately = 980 for the sample size of 1000 binary sequences that was being tested. 

The subject has surpassed this minimum pass rate for all the associated tests. The minimum pass 

rate for the random excursion (variant) test is approximately = 599 for the sample size of 613 

binary sequences that was being tested. The subject has surpassed this minimum pass rate. In 

summary, the subject has passed all 15 statistical tests defined by the NIST Statistical Test 

Suite. 

+ For those tests using high-density plaintexts and low-density plaintexts, the original sequence 

of plaintexts were directly XOR-ed to the sequence of the core generated binary sequences. That 

is, no obfuscation techniques such as shuffling have been applied to the plaintext prior to these 
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tests to assess the strength of the core algorithm. Test results suggest application of such 

technique is unnecessary even if plaintext exhibits obvious patterns. It is noted here that AES and 

other stream cipher algorithms being used today require obfuscation of plaintext as a part of their 

algorithms. 

 

 

SUMMARY 

 

The core-generated keys have passed all 15 NIST STS tests demonstrating that the core 

algorithm generates statistically random binary sequences. More importantly, the binary 

sequences produced by directly XOR-ing the binary sequences generated by the core algorithm 

and the low-density plaintexts passed all 15 NIST STS tests.  Also, the binary sequences 

produced by directly XOR-ing the binary sequences generated by the core algorithm and the 

high-density plaintexts passed all 15 NIST STS tests.  This clearly demonstrates that our core 

algorithm can generate statistically random binary sequences out of plaintexts with obvious 

patterns.  Additionally, if these patterns were kept unchanged our core algorithm continues to 

generate statistically random binary sequences.  
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NIST STS APPENDIX A – RESULT OF THE CORE GENERATED 
SEQUENCE (1000 SEQUENCES) 

------------------------------------------------------------------------------ 

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF 

PASSING SEQUENCES 

------------------------------------------------------------------------------ 

   generator is <data2/core.txt> 

------------------------------------------------------------------------------ 

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

The minimum pass rate for each statistical test with the exception of the 

random excursion (variant) test is approximately = 980 for a 

sample size = 1000 binary sequences. 

The minimum pass rate for the random excursion (variant) test 

is approximately = 617 for a sample size = 631 binary sequences. 

For further guidelines construct a probability table using the MAPLE program 

provided in the addendum section of the documentation. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
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            37 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST 

95 95 99 107 114 107 112 80 88 103 0.317565 988/1000 Frequency 

115 98 99 93 90 106 102 107 101 89 0.749884 992/1000 BlockFrequency 

86 108 106 102 103 100 93 107 95 100 0.889118 989/1000 CumulativeSums 

91 97 105 115 87 128 89 101 102 85 0.058243 991/1000 CumulativeSums 

107 95 96 104 107 99 95 102 98 97 0.99178 987/1000 Runs 

89 121 94 103 103 119 94 91 78 108 0.058612 993/1000 LongestRun 

108 76 109 115 110 98 96 94 91 103 0.217857 988/1000 Rank 

107 98 96 105 98 92 112 107 103 82 0.649612 986/1000 FFT 

97 91 104 105 114 91 106 98 98 96 0.861264 989/1000 NonOverlappingTemplate 

109 108 87 100 95 114 90 97 89 111 0.450297 987/1000 NonOverlappingTemplate 

96 98 107 83 108 108 100 85 112 103 0.471146 987/1000 NonOverlappingTemplate 

111 106 109 100 100 92 91 105 93 93 0.829047 994/1000 NonOverlappingTemplate 

99 97 92 100 102 104 96 107 94 109 0.973055 987/1000 NonOverlappingTemplate 

102 107 101 104 101 86 101 114 86 98 0.674543 994/1000 NonOverlappingTemplate 

108 114 100 91 99 100 100 99 104 85 0.755819 989/1000 NonOverlappingTemplate 

98 107 96 107 106 106 100 99 92 89 0.926487 989/1000 NonOverlappingTemplate 

117 95 104 105 87 90 102 101 87 112 0.399442 989/1000 NonOverlappingTemplate 

106 78 90 74 118 111 94 102 99 128 0.002322 987/1000 NonOverlappingTemplate 

106 94 100 91 103 105 101 90 102 108 0.937919 986/1000 NonOverlappingTemplate 

94 98 109 99 100 87 104 100 102 107 0.935716 990/1000 NonOverlappingTemplate 

106 107 112 98 107 102 80 95 95 98 0.595549 987/1000 NonOverlappingTemplate 

115 96 110 99 99 97 92 82 102 108 0.526105 984/1000 NonOverlappingTemplate 

108 107 113 89 117 75 116 82 101 92 0.020408 989/1000 NonOverlappingTemplate 

100 120 89 89 100 102 91 111 100 98 0.482707 994/1000 NonOverlappingTemplate 

91 97 116 116 84 109 103 94 102 88 0.254411 992/1000 NonOverlappingTemplate 

109 99 100 98 84 110 97 104 101 98 0.858002 985/1000 NonOverlappingTemplate 
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101 105 108 106 89 95 86 97 111 102 0.737915 993/1000 NonOverlappingTemplate 

97 101 91 110 111 87 116 89 98 100 0.473064 985/1000 NonOverlappingTemplate 

111 82 93 108 91 103 104 107 113 88 0.32985 991/1000 NonOverlappingTemplate 

104 97 82 98 103 95 118 96 110 97 0.498313 989/1000 NonOverlappingTemplate 

99 96 105 95 106 106 94 98 91 110 0.935716 992/1000 NonOverlappingTemplate 

99 109 96 92 91 102 111 99 102 99 0.927677 993/1000 NonOverlappingTemplate 

89 95 101 103 105 110 96 93 102 106 0.920383 996/1000 NonOverlappingTemplate 

116 103 92 95 101 85 107 99 97 105 0.674543 987/1000 NonOverlappingTemplate 

110 107 103 82 99 87 100 114 92 106 0.394195 988/1000 NonOverlappingTemplate 

98 113 82 97 96 106 95 103 95 115 0.492436 992/1000 NonOverlappingTemplate 

91 79 93 112 108 95 105 111 116 90 0.15991 992/1000 NonOverlappingTemplate 

73 117 92 98 114 110 99 85 102 110 0.04687 994/1000 NonOverlappingTemplate 

112 88 109 90 118 90 95 109 110 79 0.080519 989/1000 NonOverlappingTemplate 

103 84 85 115 100 99 109 95 104 106 0.461612 993/1000 NonOverlappingTemplate 

102 100 94 86 113 108 91 98 87 121 0.234373 989/1000 NonOverlappingTemplate 

107 89 96 91 97 93 96 118 126 87 0.088226 988/1000 NonOverlappingTemplate 

98 118 99 89 91 95 115 89 100 106 0.402962 990/1000 NonOverlappingTemplate 

109 89 96 102 104 111 109 109 82 89 0.378705 990/1000 NonOverlappingTemplate 

110 98 100 107 98 87 88 114 99 99 0.670396 992/1000 NonOverlappingTemplate 

103 96 108 124 71 98 100 108 97 95 0.06523 990/1000 NonOverlappingTemplate 

98 102 107 105 90 94 89 92 102 121 0.486588 992/1000 NonOverlappingTemplate 

96 92 91 97 106 103 105 109 114 87 0.651693 991/1000 NonOverlappingTemplate 

102 106 96 92 93 96 108 92 117 98 0.733899 988/1000 NonOverlappingTemplate 

106 86 98 104 88 101 105 101 108 103 0.837781 987/1000 NonOverlappingTemplate 

109 93 120 111 86 102 102 95 98 84 0.249284 987/1000 NonOverlappingTemplate 

108 119 99 97 110 90 107 79 104 87 0.158133 985/1000 NonOverlappingTemplate 

98 94 98 94 115 105 100 94 106 96 0.899171 992/1000 NonOverlappingTemplate 

92 91 114 93 105 94 100 89 118 104 0.426272 992/1000 NonOverlappingTemplate 
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103 89 108 104 85 115 109 99 104 84 0.339271 990/1000 NonOverlappingTemplate 

93 114 98 101 98 103 107 97 102 87 0.839507 989/1000 NonOverlappingTemplate 

86 98 113 89 100 99 101 107 100 107 0.749884 995/1000 NonOverlappingTemplate 

89 117 95 107 102 95 99 100 100 96 0.807412 989/1000 NonOverlappingTemplate 

95 91 105 97 95 109 98 98 102 110 0.936823 993/1000 NonOverlappingTemplate 

107 87 90 98 92 101 108 103 109 105 0.773405 988/1000 NonOverlappingTemplate 

113 106 100 101 99 99 107 94 90 91 0.856359 987/1000 NonOverlappingTemplate 

101 110 82 95 106 108 97 98 106 97 0.731886 991/1000 NonOverlappingTemplate 

100 104 96 96 93 102 94 106 99 110 0.973718 993/1000 NonOverlappingTemplate 

93 90 100 108 102 103 77 114 104 109 0.313041 994/1000 NonOverlappingTemplate 

131 106 101 101 81 102 93 92 94 99 0.087162 988/1000 NonOverlappingTemplate 

104 107 98 88 106 96 110 91 99 101 0.877083 992/1000 NonOverlappingTemplate 

106 99 90 96 105 87 98 110 109 100 0.805569 992/1000 NonOverlappingTemplate 

108 102 90 75 115 104 108 90 109 99 0.171867 997/1000 NonOverlappingTemplate 

97 94 108 113 98 99 108 92 105 86 0.707513 993/1000 NonOverlappingTemplate 

96 90 95 107 117 106 106 90 91 102 0.599693 990/1000 NonOverlappingTemplate 

97 83 114 94 106 113 99 115 78 101 0.106877 990/1000 NonOverlappingTemplate 

100 111 108 106 91 101 90 106 102 85 0.670396 992/1000 NonOverlappingTemplate 

102 105 121 101 88 82 106 91 101 103 0.299736 988/1000 NonOverlappingTemplate 

101 107 96 105 85 108 98 91 106 103 0.825505 990/1000 NonOverlappingTemplate 

99 99 107 94 98 103 114 100 99 87 0.862883 995/1000 NonOverlappingTemplate 

97 88 111 108 111 112 89 91 88 105 0.371941 986/1000 NonOverlappingTemplate 

115 86 87 93 110 102 96 98 108 105 0.482707 984/1000 NonOverlappingTemplate 

104 106 103 94 85 97 107 104 90 110 0.743915 995/1000 NonOverlappingTemplate 

86 121 110 97 103 105 92 104 97 85 0.279844 991/1000 NonOverlappingTemplate 

103 97 78 88 105 108 120 98 103 100 0.244236 992/1000 NonOverlappingTemplate 

85 89 106 109 94 98 95 100 109 115 0.500279 988/1000 NonOverlappingTemplate 

97 96 96 115 97 101 94 103 110 91 0.832561 988/1000 NonOverlappingTemplate 
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97 91 104 106 113 90 108 97 98 96 0.830808 989/1000 NonOverlappingTemplate 

79 98 97 102 96 113 106 105 114 90 0.350485 995/1000 NonOverlappingTemplate 

105 97 103 123 94 90 91 89 113 95 0.272977 986/1000 NonOverlappingTemplate 

84 103 110 103 103 100 101 82 96 118 0.313041 991/1000 NonOverlappingTemplate 

106 93 90 107 110 107 89 95 102 101 0.80372 991/1000 NonOverlappingTemplate 

110 107 98 94 92 105 103 98 97 96 0.957612 992/1000 NonOverlappingTemplate 

98 94 97 93 112 102 113 96 94 101 0.861264 988/1000 NonOverlappingTemplate 

104 97 97 89 94 103 121 93 93 109 0.514124 989/1000 NonOverlappingTemplate 

118 81 98 98 96 89 115 109 98 98 0.24675 987/1000 NonOverlappingTemplate 

90 102 100 94 105 94 109 107 113 86 0.641284 990/1000 NonOverlappingTemplate 

95 106 103 90 106 95 120 87 90 108 0.380407 988/1000 NonOverlappingTemplate 

99 96 94 99 105 99 97 111 100 100 0.989786 993/1000 NonOverlappingTemplate 

103 86 111 99 120 88 92 104 94 103 0.353733 986/1000 NonOverlappingTemplate 

86 101 87 99 93 99 94 118 117 106 0.274341 997/1000 NonOverlappingTemplate 

114 93 84 97 116 104 103 86 93 110 0.251837 986/1000 NonOverlappingTemplate 

96 112 97 109 95 113 105 91 84 98 0.524101 993/1000 NonOverlappingTemplate 

110 85 91 103 89 105 104 116 107 90 0.365253 989/1000 NonOverlappingTemplate 

104 99 94 90 109 105 98 101 91 109 0.893482 994/1000 NonOverlappingTemplate 

90 97 112 82 111 112 107 91 96 102 0.357 991/1000 NonOverlappingTemplate 

110 107 89 110 84 84 101 115 93 107 0.209948 992/1000 NonOverlappingTemplate 

99 111 94 105 84 105 118 87 106 91 0.293952 991/1000 NonOverlappingTemplate 

98 106 92 116 88 112 107 87 90 104 0.365253 987/1000 NonOverlappingTemplate 

96 91 97 107 99 93 114 84 101 118 0.365253 994/1000 NonOverlappingTemplate 

108 122 90 103 94 100 87 97 107 92 0.363593 988/1000 NonOverlappingTemplate 

100 92 111 98 91 103 90 113 89 113 0.496351 994/1000 NonOverlappingTemplate 

105 112 99 110 109 95 86 80 99 105 0.352107 991/1000 NonOverlappingTemplate 

100 84 121 100 98 108 108 88 92 101 0.320607 990/1000 NonOverlappingTemplate 

86 110 83 115 112 102 116 98 87 91 0.100109 991/1000 NonOverlappingTemplate 



  

 

41 
 

 

100 115 97 101 96 97 108 103 102 81 0.639202 997/1000 NonOverlappingTemplate 

100 87 112 95 116 107 113 96 91 83 0.214439 987/1000 NonOverlappingTemplate 

105 108 95 95 108 98 96 104 93 98 0.967382 987/1000 NonOverlappingTemplate 

91 120 105 93 99 98 104 102 96 92 0.678686 993/1000 NonOverlappingTemplate 

98 98 103 111 109 96 104 85 97 99 0.846338 989/1000 NonOverlappingTemplate 

99 72 97 95 98 108 105 104 118 104 0.177628 993/1000 NonOverlappingTemplate 

105 104 101 93 119 93 88 90 106 101 0.552383 990/1000 NonOverlappingTemplate 

118 89 100 87 104 80 96 116 108 102 0.133404 986/1000 NonOverlappingTemplate 

104 96 91 118 85 116 98 99 99 94 0.383827 990/1000 NonOverlappingTemplate 

102 105 97 106 115 84 108 103 94 86 0.474986 985/1000 NonOverlappingTemplate 

119 102 106 80 106 103 100 100 96 88 0.34565 994/1000 NonOverlappingTemplate 

90 84 102 119 103 96 107 100 92 107 0.429923 987/1000 NonOverlappingTemplate 

92 105 105 118 93 106 99 94 90 98 0.674543 991/1000 NonOverlappingTemplate 

103 96 95 97 92 112 86 108 106 105 0.751866 993/1000 NonOverlappingTemplate 

93 110 91 113 119 98 93 86 91 106 0.258307 993/1000 NonOverlappingTemplate 

93 98 102 100 97 103 100 83 116 108 0.653773 991/1000 NonOverlappingTemplate 

98 104 86 107 101 106 118 86 104 90 0.402962 991/1000 NonOverlappingTemplate 

102 102 116 87 101 93 113 104 90 92 0.502247 988/1000 NonOverlappingTemplate 

108 100 92 102 108 119 108 81 86 96 0.216713 992/1000 NonOverlappingTemplate 

117 93 92 103 99 101 88 105 100 102 0.753844 989/1000 NonOverlappingTemplate 

95 94 102 96 118 76 104 118 99 98 0.15119 993/1000 NonOverlappingTemplate 

104 93 87 106 89 115 110 106 84 106 0.316052 987/1000 NonOverlappingTemplate 

95 95 100 107 91 94 109 115 104 90 0.701366 993/1000 NonOverlappingTemplate 

100 100 86 98 94 96 108 100 109 109 0.853049 990/1000 NonOverlappingTemplate 

84 117 96 83 117 114 93 91 90 115 0.036352 988/1000 NonOverlappingTemplate 

99 101 99 117 88 96 101 118 84 97 0.317565 995/1000 NonOverlappingTemplate 

111 99 100 115 87 88 92 96 110 102 0.490483 991/1000 NonOverlappingTemplate 

108 95 123 97 93 104 110 98 83 89 0.209948 991/1000 NonOverlappingTemplate 
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103 105 102 86 96 110 106 87 104 101 0.767582 989/1000 NonOverlappingTemplate 

96 103 106 106 94 101 88 113 98 95 0.854708 992/1000 NonOverlappingTemplate 

96 101 99 112 113 95 86 109 94 95 0.643366 989/1000 NonOverlappingTemplate 

95 100 102 115 82 104 95 105 94 108 0.591409 991/1000 NonOverlappingTemplate 

98 96 108 106 94 102 113 95 94 94 0.893482 991/1000 NonOverlappingTemplate 

96 105 94 110 82 106 107 102 97 101 0.739918 989/1000 NonOverlappingTemplate 

93 103 106 101 89 105 107 104 104 88 0.862883 989/1000 NonOverlappingTemplate 

92 118 117 83 108 90 105 90 102 95 0.169981 993/1000 NonOverlappingTemplate 

102 115 88 86 104 100 111 95 94 105 0.542228 991/1000 NonOverlappingTemplate 

98 99 88 106 103 93 103 112 105 93 0.859637 985/1000 NonOverlappingTemplate 

107 101 103 90 104 96 109 100 87 103 0.875539 990/1000 NonOverlappingTemplate 

116 82 114 88 100 106 121 105 90 78 0.017546 987/1000 NonOverlappingTemplate 

100 86 102 104 106 111 117 101 77 96 0.208837 989/1000 NonOverlappingTemplate 

83 103 91 98 106 104 97 99 99 120 0.488534 992/1000 NonOverlappingTemplate 

105 85 110 101 99 93 102 106 100 99 0.881662 992/1000 NonOverlappingTemplate 

101 95 100 96 86 103 96 110 93 120 0.5221 994/1000 NonOverlappingTemplate 

87 99 89 101 80 107 104 113 121 99 0.134172 992/1000 NonOverlappingTemplate 

97 96 95 116 97 100 95 103 110 91 0.807412 988/1000 NonOverlappingTemplate 

123 75 85 98 105 97 123 96 104 94 0.017068 994/1000 OverlappingTemplate 

111 102 91 89 93 102 89 109 97 117 0.455937 990/1000 Universal 

107 99 92 82 112 105 110 95 93 105 0.528111 986/1000 ApproximateEntropy 

59 51 60 59 64 75 68 72 64 59 0.617296 623/631 RandomExcursions 

69 66 76 62 63 49 61 66 61 58 0.617296 626/631 RandomExcursions 

63 71 63 53 69 79 76 52 49 56 0.072735 625/631 RandomExcursions 

67 58 65 61 69 70 61 71 51 58 0.750985 622/631 RandomExcursions 

55 54 60 72 74 64 67 65 61 59 0.709396 628/631 RandomExcursions 

72 62 57 62 62 78 51 57 61 69 0.44021 628/631 RandomExcursions 

62 54 72 57 63 63 58 61 78 63 0.617296 625/631 RandomExcursions 
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65 68 66 60 54 73 55 68 68 54 0.666838 624/631 RandomExcursions 

62 75 61 58 57 68 67 56 66 61 0.837067 623/631 RandomExcursionsVariant 

60 70 66 58 50 77 80 53 66 51 0.069925 624/631 RandomExcursionsVariant 

63 65 62 71 67 57 68 60 69 49 0.72554 626/631 RandomExcursionsVariant 

69 62 66 64 59 68 64 62 65 52 0.945667 625/631 RandomExcursionsVariant 

67 64 64 63 66 66 58 55 61 67 0.985752 627/631 RandomExcursionsVariant 

67 59 62 57 63 66 60 76 54 67 0.778883 625/631 RandomExcursionsVariant 

73 52 56 64 65 65 71 57 64 64 0.735143 626/631 RandomExcursionsVariant 

66 49 79 65 62 60 61 75 53 61 0.24052 624/631 RandomExcursionsVariant 

55 59 68 74 60 53 61 76 53 72 0.280086 621/631 RandomExcursionsVariant 

46 64 77 49 73 71 67 62 62 60 0.127498 626/631 RandomExcursionsVariant 

51 65 75 57 60 62 69 72 66 54 0.470113 623/631 RandomExcursionsVariant 

66 43 65 62 67 58 81 62 60 67 0.172922 623/631 RandomExcursionsVariant 

66 42 64 61 75 65 56 63 77 62 0.142216 625/631 RandomExcursionsVariant 

66 59 58 65 67 72 62 58 63 61 0.969117 624/631 RandomExcursionsVariant 

64 59 76 55 66 72 66 61 52 60 0.568055 623/631 RandomExcursionsVariant 

65 54 75 60 64 62 56 60 63 72 0.738329 618/631 RandomExcursionsVariant 

61 62 66 72 58 62 42 67 72 69 0.273539 624/631 RandomExcursionsVariant 

56 65 70 72 68 48 58 51 67 76 0.186968 627/631 RandomExcursionsVariant 

92 97 104 110 82 107 90 112 103 103 0.510153 990/1000 Serial 

104 85 100 83 107 114 103 99 98 107 0.496351 994/1000 Serial 

94 106 101 114 98 89 100 101 97 100 0.90876 994/1000 LinearComplexity 
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NIST STS APPENDIX B – RESULT OF THE CORE XOR LOW 
DENSITY PLAINTEXTS SEQUENCE (1000 SEQUENCES) 

 

------------------------------------------------------------------------------ 

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF 

PASSING SEQUENCES 

------------------------------------------------------------------------------ 

   generator is <data2/low_density_xor.txt> 

------------------------------------------------------------------------------ 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

The minimum pass rate for each statistical test with the exception of the 

random excursion (variant) test is approximately = 980 for a 

sample size = 1000 binary sequences. 

The minimum pass rate for the random excursion (variant) test 

is approximately = 599 for a sample size = 613 binary sequences. 

For further guidelines construct a probability table using the MAPLE program 

provided in the addendum section of the documentation. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST 

101 100 94 91 106 108 99 97 103 101 0.983938 988/1000 Frequency 

103 107 109 97 94 106 88 104 100 92 0.880145 990/1000 BlockFrequency 

93 122 96 82 104 113 93 109 93 95 0.180568 991/1000 CumulativeSums 

91 98 95 95 95 117 99 109 93 108 0.6952 993/1000 CumulativeSums 

116 100 113 98 82 113 101 84 105 88 0.142062 984/1000 Runs 

112 88 109 77 105 91 102 100 103 113 0.221317 994/1000 LongestRun 

98 89 97 97 98 104 95 118 102 102 0.816537 992/1000 Rank 

111 90 110 101 96 92 103 109 100 88 0.703417 987/1000 FFT 

97 94 113 90 92 80 93 124 104 113 0.06943 995/1000 NonOverlappingTemplate 

104 94 116 99 106 109 92 103 91 86 0.558502 988/1000 NonOverlappingTemplate 

125 90 104 96 96 89 91 113 102 94 0.22248 983/1000 NonOverlappingTemplate 

110 107 100 96 91 93 101 108 106 88 0.798139 989/1000 NonOverlappingTemplate 

87 118 83 97 92 92 109 112 110 100 0.189625 987/1000 NonOverlappingTemplate 

103 102 106 97 96 93 99 101 103 100 0.998169 984/1000 NonOverlappingTemplate 

103 101 109 102 97 111 101 74 106 96 0.38899 985/1000 NonOverlappingTemplate 

99 113 85 88 98 107 107 116 89 98 0.33297 990/1000 NonOverlappingTemplate 

95 90 107 113 102 105 97 92 104 95 0.846338 987/1000 NonOverlappingTemplate 

114 98 87 99 98 90 89 100 128 97 0.126658 985/1000 NonOverlappingTemplate 

107 103 119 84 94 86 106 87 104 110 0.197981 986/1000 NonOverlappingTemplate 

99 99 85 91 109 102 95 106 105 109 0.779188 988/1000 NonOverlappingTemplate 

100 87 115 125 106 101 94 93 96 83 0.106877 992/1000 NonOverlappingTemplate 

112 108 101 96 100 105 96 92 92 98 0.912724 992/1000 NonOverlappingTemplate 

102 93 93 104 104 93 99 110 94 108 0.921624 992/1000 NonOverlappingTemplate 

83 113 101 106 109 91 107 92 97 101 0.55442 997/1000 NonOverlappingTemplate 

89 99 90 95 107 97 124 105 90 104 0.33297 993/1000 NonOverlappingTemplate 

115 100 79 85 95 119 92 115 99 101 0.073872 992/1000 NonOverlappingTemplate 
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100 103 78 111 109 99 112 96 93 99 0.431754 987/1000 NonOverlappingTemplate 

100 85 94 108 102 96 97 103 100 115 0.751866 992/1000 NonOverlappingTemplate 

115 98 90 94 93 107 94 110 102 97 0.727851 990/1000 NonOverlappingTemplate 

93 105 101 93 100 91 103 93 104 117 0.771469 987/1000 NonOverlappingTemplate 

106 99 87 109 106 90 111 102 86 104 0.574903 990/1000 NonOverlappingTemplate 

110 91 98 97 118 100 104 95 97 90 0.670396 993/1000 NonOverlappingTemplate 

86 108 94 95 109 87 92 114 102 113 0.347257 996/1000 NonOverlappingTemplate 

93 93 107 106 97 85 102 117 99 101 0.624627 990/1000 NonOverlappingTemplate 

96 105 115 89 100 103 97 101 101 93 0.870856 995/1000 NonOverlappingTemplate 

96 98 82 91 110 112 98 100 102 111 0.536163 991/1000 NonOverlappingTemplate 

103 95 96 100 97 103 102 105 95 104 0.997943 993/1000 NonOverlappingTemplate 

84 82 111 103 116 92 101 101 110 100 0.254411 992/1000 NonOverlappingTemplate 

97 103 110 106 106 86 86 118 101 87 0.292519 991/1000 NonOverlappingTemplate 

104 107 85 114 110 100 93 87 95 105 0.480771 989/1000 NonOverlappingTemplate 

100 100 105 90 96 101 100 105 110 93 0.957612 994/1000 NonOverlappingTemplate 

94 85 107 104 92 119 111 93 100 95 0.39594 992/1000 NonOverlappingTemplate 

83 109 123 81 112 111 111 75 90 105 0.004365 990/1000 NonOverlappingTemplate 

102 99 97 107 86 104 115 104 97 89 0.693142 991/1000 NonOverlappingTemplate 

105 109 85 94 71 99 122 93 119 103 0.012128 990/1000 NonOverlappingTemplate 

115 109 80 117 91 100 100 92 93 103 0.214439 988/1000 NonOverlappingTemplate 

110 82 97 105 119 96 90 120 88 93 0.083526 991/1000 NonOverlappingTemplate 

95 97 100 115 91 96 96 107 111 92 0.733899 991/1000 NonOverlappingTemplate 

116 84 97 110 100 88 91 110 110 94 0.288249 982/1000 NonOverlappingTemplate 

103 82 107 97 98 96 110 102 95 110 0.699313 991/1000 NonOverlappingTemplate 

115 106 95 93 111 84 98 101 109 88 0.399442 990/1000 NonOverlappingTemplate 

112 100 104 109 93 90 93 100 105 94 0.834308 989/1000 NonOverlappingTemplate 

93 94 83 108 102 100 105 97 119 99 0.496351 991/1000 NonOverlappingTemplate 

92 111 90 105 99 104 91 112 89 107 0.614226 995/1000 NonOverlappingTemplate 
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98 91 89 97 102 116 98 100 104 105 0.816537 992/1000 NonOverlappingTemplate 

93 103 111 101 92 104 102 98 116 80 0.415422 994/1000 NonOverlappingTemplate 

85 88 99 97 103 109 104 109 108 98 0.705466 987/1000 NonOverlappingTemplate 

114 97 106 104 103 78 98 111 102 87 0.313041 991/1000 NonOverlappingTemplate 

103 98 101 102 102 96 93 107 85 113 0.807412 992/1000 NonOverlappingTemplate 

107 107 92 88 99 87 103 92 111 114 0.469232 988/1000 NonOverlappingTemplate 

120 103 105 83 113 97 101 97 95 86 0.254411 986/1000 NonOverlappingTemplate 

105 95 101 85 91 101 109 108 105 100 0.809249 985/1000 NonOverlappingTemplate 

95 107 103 105 110 89 91 89 103 108 0.735908 994/1000 NonOverlappingTemplate 

87 106 109 87 93 106 104 103 113 92 0.536163 989/1000 NonOverlappingTemplate 

108 115 102 96 113 62 107 94 103 100 0.01695 990/1000 NonOverlappingTemplate 

127 91 101 107 110 88 96 82 89 109 0.057875 986/1000 NonOverlappingTemplate 

97 90 106 88 94 105 108 116 111 85 0.337688 991/1000 NonOverlappingTemplate 

103 96 99 101 88 99 113 96 102 103 0.930026 992/1000 NonOverlappingTemplate 

107 104 100 97 82 102 87 105 106 110 0.603841 992/1000 NonOverlappingTemplate 

103 101 88 94 105 99 110 102 99 99 0.95493 990/1000 NonOverlappingTemplate 

98 98 113 111 94 83 97 104 111 91 0.484646 989/1000 NonOverlappingTemplate 

101 99 116 95 95 92 117 102 103 80 0.293952 991/1000 NonOverlappingTemplate 

93 102 96 85 107 106 105 101 98 107 0.869278 991/1000 NonOverlappingTemplate 

95 104 103 100 99 90 110 89 117 93 0.626709 988/1000 NonOverlappingTemplate 

114 106 98 95 101 86 98 113 102 87 0.53012 988/1000 NonOverlappingTemplate 

96 104 100 98 99 91 100 109 105 98 0.986227 990/1000 NonOverlappingTemplate 

93 109 91 107 102 97 101 105 97 98 0.959347 987/1000 NonOverlappingTemplate 

89 118 108 91 96 88 101 107 99 103 0.524101 985/1000 NonOverlappingTemplate 

116 102 86 93 122 94 107 100 87 93 0.16626 991/1000 NonOverlappingTemplate 

98 82 94 106 104 114 104 90 92 116 0.313041 991/1000 NonOverlappingTemplate 

93 85 93 104 92 122 103 99 110 99 0.352107 985/1000 NonOverlappingTemplate 

86 103 131 96 106 103 102 101 86 86 0.062036 997/1000 NonOverlappingTemplate 
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97 94 113 90 92 80 93 124 103 114 0.06523 995/1000 NonOverlappingTemplate 

76 98 112 109 100 78 105 111 104 107 0.090936 997/1000 NonOverlappingTemplate 

113 93 103 125 90 107 102 77 86 104 0.041981 980/1000 NonOverlappingTemplate 

95 103 117 86 89 84 101 102 109 114 0.225998 988/1000 NonOverlappingTemplate 

93 110 109 90 116 100 100 88 92 102 0.536163 992/1000 NonOverlappingTemplate 

104 106 111 102 102 97 106 101 90 81 0.649612 992/1000 NonOverlappingTemplate 

107 90 109 86 96 117 114 88 90 103 0.224821 989/1000 NonOverlappingTemplate 

94 100 94 81 88 110 130 102 95 106 0.058612 991/1000 NonOverlappingTemplate 

104 99 111 96 90 89 79 100 104 128 0.063615 991/1000 NonOverlappingTemplate 

82 96 100 102 101 110 102 109 95 103 0.775337 988/1000 NonOverlappingTemplate 

100 91 103 101 116 103 92 97 90 107 0.761719 992/1000 NonOverlappingTemplate 

99 100 84 95 108 102 100 123 91 98 0.380407 985/1000 NonOverlappingTemplate 

125 108 93 103 97 91 91 102 96 94 0.371941 982/1000 NonOverlappingTemplate 

82 107 92 90 96 104 104 106 117 102 0.424453 993/1000 NonOverlappingTemplate 

92 92 115 96 106 97 92 91 120 99 0.383827 988/1000 NonOverlappingTemplate 

105 101 102 83 107 111 88 110 97 96 0.576961 990/1000 NonOverlappingTemplate 

93 115 93 97 101 108 102 99 95 97 0.886162 995/1000 NonOverlappingTemplate 

100 82 107 93 97 102 121 89 117 92 0.141256 989/1000 NonOverlappingTemplate 

96 95 105 95 101 113 98 101 102 94 0.961869 984/1000 NonOverlappingTemplate 

89 100 111 86 106 112 101 96 90 109 0.518106 992/1000 NonOverlappingTemplate 

116 80 112 111 102 101 100 86 103 89 0.185555 985/1000 NonOverlappingTemplate 

104 87 117 108 87 94 73 102 117 111 0.02641 990/1000 NonOverlappingTemplate 

94 122 97 90 95 106 104 92 102 98 0.55646 991/1000 NonOverlappingTemplate 

100 107 102 100 112 89 87 111 88 104 0.566688 997/1000 NonOverlappingTemplate 

102 110 83 101 89 111 95 99 110 100 0.572847 992/1000 NonOverlappingTemplate 

101 111 82 102 94 122 109 100 91 88 0.17377 994/1000 NonOverlappingTemplate 

97 115 103 104 99 84 94 118 90 96 0.357 992/1000 NonOverlappingTemplate 

102 93 102 95 98 111 101 99 95 104 0.980883 989/1000 NonOverlappingTemplate 
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86 110 91 111 99 103 76 106 115 103 0.139655 993/1000 NonOverlappingTemplate 

82 97 101 104 91 99 98 107 119 102 0.484646 994/1000 NonOverlappingTemplate 

93 93 89 105 112 104 94 105 104 101 0.849708 993/1000 NonOverlappingTemplate 

93 105 103 95 96 116 91 108 102 91 0.72987 993/1000 NonOverlappingTemplate 

109 102 82 88 115 119 105 94 91 95 0.15991 988/1000 NonOverlappingTemplate 

101 94 99 99 102 96 107 101 95 106 0.995373 986/1000 NonOverlappingTemplate 

102 113 99 97 101 92 107 101 88 100 0.881662 992/1000 NonOverlappingTemplate 

96 96 109 94 107 100 104 97 99 98 0.986227 987/1000 NonOverlappingTemplate 

101 90 89 92 98 100 118 106 94 112 0.504219 991/1000 NonOverlappingTemplate 

112 91 102 101 117 87 91 104 93 102 0.496351 988/1000 NonOverlappingTemplate 

110 103 102 78 102 102 103 97 102 101 0.711601 989/1000 NonOverlappingTemplate 

94 101 85 110 101 101 98 101 115 94 0.709558 992/1000 NonOverlappingTemplate 

104 96 97 82 115 118 110 91 75 112 0.028434 988/1000 NonOverlappingTemplate 

95 112 97 102 101 90 93 100 108 102 0.911413 992/1000 NonOverlappingTemplate 

88 90 95 99 117 87 104 117 109 94 0.242986 987/1000 NonOverlappingTemplate 

114 107 93 77 102 96 110 98 97 106 0.357 986/1000 NonOverlappingTemplate 

91 120 90 104 93 103 112 108 81 98 0.197981 989/1000 NonOverlappingTemplate 

94 97 104 114 111 91 96 93 96 104 0.783019 990/1000 NonOverlappingTemplate 

89 114 95 107 98 100 104 107 105 81 0.488534 989/1000 NonOverlappingTemplate 

82 112 95 111 115 102 102 107 80 94 0.148653 991/1000 NonOverlappingTemplate 

99 105 110 108 111 87 104 87 97 92 0.59762 991/1000 NonOverlappingTemplate 

90 111 102 82 95 101 108 109 104 98 0.595549 990/1000 NonOverlappingTemplate 

103 96 95 106 92 112 113 101 89 93 0.705466 985/1000 NonOverlappingTemplate 

96 96 112 106 97 100 92 117 91 93 0.632955 992/1000 NonOverlappingTemplate 

96 98 95 90 104 108 106 110 88 105 0.807412 993/1000 NonOverlappingTemplate 

88 115 113 104 104 108 83 88 99 98 0.295391 993/1000 NonOverlappingTemplate 

114 97 89 97 80 112 101 109 91 110 0.248014 985/1000 NonOverlappingTemplate 

106 107 105 104 100 96 87 96 107 92 0.883171 984/1000 NonOverlappingTemplate 
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97 94 108 99 102 114 90 94 95 107 0.816537 991/1000 NonOverlappingTemplate 

101 117 100 109 105 90 99 97 88 94 0.651693 992/1000 NonOverlappingTemplate 

107 96 104 102 99 99 105 110 83 95 0.81108 989/1000 NonOverlappingTemplate 

114 109 94 113 96 96 106 88 98 86 0.442831 986/1000 NonOverlappingTemplate 

100 111 111 110 106 84 104 95 80 99 0.292519 989/1000 NonOverlappingTemplate 

103 115 100 83 90 78 98 98 105 130 0.015598 992/1000 NonOverlappingTemplate 

106 92 92 103 95 120 126 79 89 98 0.030806 990/1000 NonOverlappingTemplate 

97 91 104 87 98 107 111 116 94 95 0.568739 987/1000 NonOverlappingTemplate 

105 97 100 113 109 100 99 104 88 85 0.668321 993/1000 NonOverlappingTemplate 

99 113 84 97 109 102 96 99 102 99 0.796268 992/1000 NonOverlappingTemplate 

88 113 102 98 88 113 97 106 92 103 0.583145 994/1000 NonOverlappingTemplate 

99 106 99 118 94 88 94 104 102 96 0.725829 992/1000 NonOverlappingTemplate 

111 107 107 99 120 84 96 96 93 87 0.258307 992/1000 NonOverlappingTemplate 

91 101 104 99 95 99 93 107 103 108 0.96586 992/1000 NonOverlappingTemplate 

111 98 92 122 90 90 100 108 80 109 0.116065 989/1000 NonOverlappingTemplate 

109 112 99 80 105 90 96 107 103 99 0.508172 986/1000 NonOverlappingTemplate 

101 91 84 118 99 94 94 135 85 99 0.009333 989/1000 NonOverlappingTemplate 

86 104 131 95 106 103 102 100 87 86 0.064418 997/1000 NonOverlappingTemplate 

112 91 92 86 105 109 100 92 101 112 0.534146 988/1000 OverlappingTemplate 

121 94 99 92 110 93 95 102 103 91 0.524101 985/1000 Universal 

92 109 91 109 87 108 106 101 88 109 0.532132 988/1000 ApproximateEntropy 

51 55 66 70 61 69 72 47 55 67 0.249701 607/613 RandomExcursions 

68 48 56 77 59 66 75 57 46 61 0.070744 604/613 RandomExcursions 

61 68 63 63 65 56 59 53 59 66 0.955982 609/613 RandomExcursions 

72 71 57 53 70 48 60 60 52 70 0.22948 608/613 RandomExcursions 

63 65 56 54 55 61 56 74 67 62 0.748093 601/613 RandomExcursions 

83 64 51 58 58 54 64 58 58 65 0.241456 603/613 RandomExcursions 

60 72 48 51 71 59 78 55 64 55 0.116054 608/613 RandomExcursions 
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53 56 59 64 58 67 57 72 62 65 0.839987 607/613 RandomExcursions 

68 57 69 59 54 68 61 55 62 60 0.88243 607/613 RandomExcursionsVariant 

64 67 72 58 55 67 57 60 47 66 0.53911 607/613 RandomExcursionsVariant 

67 69 64 63 71 54 60 60 52 53 0.667811 605/613 RandomExcursionsVariant 

68 65 71 67 59 56 63 64 53 47 0.509568 604/613 RandomExcursionsVariant 

63 74 61 58 59 76 62 54 53 53 0.379067 603/613 RandomExcursionsVariant 

62 68 72 57 55 71 51 60 56 61 0.599625 603/613 RandomExcursionsVariant 

66 60 62 83 59 61 52 54 59 57 0.282511 605/613 RandomExcursionsVariant 

71 65 57 67 54 64 54 61 60 60 0.872348 605/613 RandomExcursionsVariant 

62 63 50 53 70 68 64 75 55 53 0.330947 607/613 RandomExcursionsVariant 

63 47 46 61 79 57 60 66 61 73 0.082315 606/613 RandomExcursionsVariant 

57 50 54 67 65 64 67 47 77 65 0.196314 608/613 RandomExcursionsVariant 

59 52 59 45 72 71 67 66 65 57 0.289435 602/613 RandomExcursionsVariant 

61 52 52 62 71 56 66 75 62 56 0.458724 602/613 RandomExcursionsVariant 

62 55 62 55 43 56 70 75 57 78 0.057593 606/613 RandomExcursionsVariant 

64 61 54 62 48 51 54 79 57 83 0.019935 606/613 RandomExcursionsVariant 

66 52 59 55 52 80 68 47 67 67 0.095539 605/613 RandomExcursionsVariant 

67 50 57 69 60 56 65 58 60 71 0.701669 607/613 RandomExcursionsVariant 

61 57 71 59 53 61 55 61 70 65 0.816833 608/613 RandomExcursionsVariant 

102 93 103 107 102 88 98 93 100 114 0.827279 994/1000 Serial 

110 94 93 101 114 104 80 84 106 114 0.169044 990/1000 Serial 

82 109 101 110 124 97 102 90 99 86 0.1252 991/1000 LinearComplexity 
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NIST STS APPENDIX C – RESULT OF THE CORE XOR HIGH 
DENSITY PLAINTEXTS SEQUENCE (1000 SEQUENCES) 

 

------------------------------------------------------------------------------ 

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF 

PASSING SEQUENCES 

------------------------------------------------------------------------------ 

   generator is <data2/high_density_xor.txt> 

------------------------------------------------------------------------------ 

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

The minimum pass rate for each statistical test with the exception of the 

random excursion (variant) test is approximately = 980 for a 

sample size = 1000 binary sequences. 

The minimum pass rate for the random excursion (variant) test 

is approximately = 599 for a sample size = 613 binary sequences. 

For further guidelines construct a probability table using the MAPLE program 

provided in the addendum section of the documentation. 
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST 

101 100 94 91 106 108 99 97 103 101 0.983938 988/1000 Frequency 

103 107 109 97 94 106 88 104 100 92 0.880145 990/1000 BlockFrequency 

93 122 96 82 104 113 93 109 93 95 0.180568 991/1000 CumulativeSums 

91 98 95 95 95 117 99 109 93 108 0.6952 993/1000 CumulativeSums 

116 100 113 98 82 113 101 84 105 88 0.142062 984/1000 Runs 

101 95 97 90 94 111 104 118 94 96 0.653773 990/1000 LongestRun 

100 79 110 96 96 103 103 123 110 80 0.062821 994/1000 Rank 

111 90 110 101 96 92 103 109 100 88 0.703417 987/1000 FFT 

86 104 131 95 106 103 102 100 87 86 0.064418 997/1000 NonOverlappingTemplate 

101 91 84 118 99 94 94 135 85 99 0.009333 989/1000 NonOverlappingTemplate 

109 112 99 80 105 90 96 107 103 99 0.508172 986/1000 NonOverlappingTemplate 

111 98 92 122 90 90 100 108 80 109 0.116065 989/1000 NonOverlappingTemplate 

91 101 104 99 95 99 93 107 103 108 0.96586 992/1000 NonOverlappingTemplate 

111 107 107 99 120 84 96 96 93 87 0.258307 992/1000 NonOverlappingTemplate 

99 106 99 118 94 88 94 104 102 96 0.725829 992/1000 NonOverlappingTemplate 

88 113 102 98 88 113 97 106 92 103 0.583145 994/1000 NonOverlappingTemplate 

99 113 84 97 109 102 96 99 102 99 0.796268 992/1000 NonOverlappingTemplate 

105 97 100 113 109 100 99 104 88 85 0.668321 993/1000 NonOverlappingTemplate 

97 91 104 87 98 107 111 116 94 95 0.568739 987/1000 NonOverlappingTemplate 

106 92 92 103 95 120 126 79 89 98 0.030806 990/1000 NonOverlappingTemplate 

103 115 100 83 90 78 98 98 105 130 0.015598 992/1000 NonOverlappingTemplate 

100 111 111 110 106 84 104 95 80 99 0.292519 989/1000 NonOverlappingTemplate 

114 109 94 113 96 96 106 88 98 86 0.442831 986/1000 NonOverlappingTemplate 

107 96 104 102 99 99 105 110 83 95 0.81108 989/1000 NonOverlappingTemplate 

101 117 100 109 105 90 99 97 88 94 0.651693 992/1000 NonOverlappingTemplate 

97 94 108 99 102 114 90 94 95 107 0.816537 991/1000 NonOverlappingTemplate 
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106 107 105 104 100 96 87 96 107 92 0.883171 984/1000 NonOverlappingTemplate 

114 97 89 97 80 112 101 109 91 110 0.248014 985/1000 NonOverlappingTemplate 

88 115 113 104 104 108 83 88 99 98 0.295391 993/1000 NonOverlappingTemplate 

96 98 95 90 104 108 106 110 88 105 0.807412 993/1000 NonOverlappingTemplate 

96 96 112 106 97 100 92 117 91 93 0.632955 992/1000 NonOverlappingTemplate 

103 96 95 106 92 112 113 101 89 93 0.705466 985/1000 NonOverlappingTemplate 

90 111 102 82 95 101 108 109 104 98 0.595549 990/1000 NonOverlappingTemplate 

99 105 110 108 111 87 104 87 97 92 0.59762 991/1000 NonOverlappingTemplate 

82 112 95 111 115 102 102 107 80 94 0.148653 991/1000 NonOverlappingTemplate 

89 114 95 107 98 100 104 107 105 81 0.488534 989/1000 NonOverlappingTemplate 

94 97 104 114 111 91 96 93 96 104 0.783019 990/1000 NonOverlappingTemplate 

91 120 90 104 93 103 112 108 81 98 0.197981 989/1000 NonOverlappingTemplate 

114 107 93 77 102 96 110 98 97 106 0.357 986/1000 NonOverlappingTemplate 

88 90 95 99 117 87 104 117 109 94 0.242986 987/1000 NonOverlappingTemplate 

95 112 97 102 101 90 93 100 108 102 0.911413 992/1000 NonOverlappingTemplate 

104 96 97 82 115 118 110 91 75 112 0.028434 988/1000 NonOverlappingTemplate 

94 101 85 110 101 101 98 101 115 94 0.709558 992/1000 NonOverlappingTemplate 

110 103 102 78 102 102 103 97 102 101 0.711601 989/1000 NonOverlappingTemplate 

112 91 102 101 117 87 91 104 93 102 0.496351 988/1000 NonOverlappingTemplate 

101 90 89 92 98 100 118 106 94 112 0.504219 991/1000 NonOverlappingTemplate 

96 96 109 94 107 100 104 97 99 98 0.986227 987/1000 NonOverlappingTemplate 

102 113 99 97 101 92 107 101 88 100 0.881662 992/1000 NonOverlappingTemplate 

101 94 99 99 102 96 107 101 95 106 0.995373 986/1000 NonOverlappingTemplate 

109 102 82 88 115 119 105 94 91 95 0.15991 988/1000 NonOverlappingTemplate 

93 105 103 95 96 116 91 108 102 91 0.72987 993/1000 NonOverlappingTemplate 

93 93 89 105 112 104 94 105 104 101 0.849708 993/1000 NonOverlappingTemplate 

82 97 101 104 91 99 98 107 119 102 0.484646 994/1000 NonOverlappingTemplate 

86 110 91 111 99 103 76 106 115 103 0.139655 993/1000 NonOverlappingTemplate 
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102 93 102 95 98 111 101 99 95 104 0.980883 989/1000 NonOverlappingTemplate 

97 115 103 104 99 84 94 118 90 96 0.357 992/1000 NonOverlappingTemplate 

101 111 82 102 94 122 109 100 91 88 0.17377 994/1000 NonOverlappingTemplate 

102 110 83 101 89 111 95 99 110 100 0.572847 992/1000 NonOverlappingTemplate 

100 107 102 100 112 89 87 111 88 104 0.566688 997/1000 NonOverlappingTemplate 

94 122 97 90 95 106 104 92 102 98 0.55646 991/1000 NonOverlappingTemplate 

104 87 117 108 87 94 73 102 117 111 0.02641 990/1000 NonOverlappingTemplate 

116 80 112 111 102 101 100 86 103 89 0.185555 985/1000 NonOverlappingTemplate 

89 100 111 86 106 112 101 96 90 109 0.518106 992/1000 NonOverlappingTemplate 

96 95 105 95 101 113 98 101 102 94 0.961869 984/1000 NonOverlappingTemplate 

100 82 107 93 97 102 121 89 117 92 0.141256 989/1000 NonOverlappingTemplate 

93 115 93 97 101 108 102 99 95 97 0.886162 995/1000 NonOverlappingTemplate 

105 101 102 83 107 111 88 110 97 96 0.576961 990/1000 NonOverlappingTemplate 

92 92 115 96 106 97 92 91 120 99 0.383827 988/1000 NonOverlappingTemplate 

82 107 92 90 96 104 104 106 117 102 0.424453 993/1000 NonOverlappingTemplate 

125 108 93 103 97 91 91 102 96 94 0.371941 982/1000 NonOverlappingTemplate 

99 100 84 95 108 102 100 123 91 98 0.380407 985/1000 NonOverlappingTemplate 

100 91 103 101 116 103 92 97 90 107 0.761719 992/1000 NonOverlappingTemplate 

82 96 100 102 101 110 102 109 95 103 0.775337 988/1000 NonOverlappingTemplate 

104 99 111 96 90 89 79 100 104 128 0.063615 991/1000 NonOverlappingTemplate 

94 100 94 81 88 110 130 102 95 106 0.058612 991/1000 NonOverlappingTemplate 

107 90 109 86 96 117 114 88 90 103 0.224821 989/1000 NonOverlappingTemplate 

104 106 111 102 102 97 106 101 90 81 0.649612 992/1000 NonOverlappingTemplate 

93 110 109 90 116 100 100 88 92 102 0.536163 992/1000 NonOverlappingTemplate 

95 103 117 86 89 84 101 102 109 114 0.225998 988/1000 NonOverlappingTemplate 

113 93 103 125 90 107 102 77 86 104 0.041981 980/1000 NonOverlappingTemplate 

76 98 112 109 100 78 105 111 104 107 0.090936 997/1000 NonOverlappingTemplate 

97 94 113 90 92 80 93 124 103 114 0.06523 995/1000 NonOverlappingTemplate 
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86 103 131 96 106 103 102 101 86 86 0.062036 997/1000 NonOverlappingTemplate 

93 85 93 104 92 122 103 99 110 99 0.352107 985/1000 NonOverlappingTemplate 

98 82 94 106 104 114 104 90 92 116 0.313041 991/1000 NonOverlappingTemplate 

116 102 86 93 122 94 107 100 87 93 0.16626 991/1000 NonOverlappingTemplate 

89 118 108 91 96 88 101 107 99 103 0.524101 985/1000 NonOverlappingTemplate 

93 109 91 107 102 97 101 105 97 98 0.959347 987/1000 NonOverlappingTemplate 

96 104 100 98 99 91 100 109 105 98 0.986227 990/1000 NonOverlappingTemplate 

114 106 98 95 101 86 98 113 102 87 0.53012 988/1000 NonOverlappingTemplate 

95 104 103 100 99 90 110 89 117 93 0.626709 988/1000 NonOverlappingTemplate 

93 102 96 85 107 106 105 101 98 107 0.869278 991/1000 NonOverlappingTemplate 

101 99 116 95 95 92 117 102 103 80 0.293952 991/1000 NonOverlappingTemplate 

98 98 113 111 94 83 97 104 111 91 0.484646 989/1000 NonOverlappingTemplate 

103 101 88 94 105 99 110 102 99 99 0.95493 990/1000 NonOverlappingTemplate 

107 104 100 97 82 102 87 105 106 110 0.603841 992/1000 NonOverlappingTemplate 

103 96 99 101 88 99 113 96 102 103 0.930026 992/1000 NonOverlappingTemplate 

97 90 106 88 94 105 108 116 111 85 0.337688 991/1000 NonOverlappingTemplate 

127 91 101 107 110 88 96 82 89 109 0.057875 986/1000 NonOverlappingTemplate 

108 115 102 96 113 62 107 94 103 100 0.01695 990/1000 NonOverlappingTemplate 

87 106 109 87 93 106 104 103 113 92 0.536163 989/1000 NonOverlappingTemplate 

95 107 103 105 110 89 91 89 103 108 0.735908 994/1000 NonOverlappingTemplate 

105 95 101 85 91 101 109 108 105 100 0.809249 985/1000 NonOverlappingTemplate 

120 103 105 83 113 97 101 97 95 86 0.254411 986/1000 NonOverlappingTemplate 

107 107 92 88 99 87 103 92 111 114 0.469232 988/1000 NonOverlappingTemplate 

103 98 101 102 102 96 93 107 85 113 0.807412 992/1000 NonOverlappingTemplate 

114 97 106 104 103 78 98 111 102 87 0.313041 991/1000 NonOverlappingTemplate 

85 88 99 97 103 109 104 109 108 98 0.705466 987/1000 NonOverlappingTemplate 

93 103 111 101 92 104 102 98 116 80 0.415422 994/1000 NonOverlappingTemplate 

98 91 89 97 102 116 98 100 104 105 0.816537 992/1000 NonOverlappingTemplate 
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92 111 90 105 99 104 91 112 89 107 0.614226 995/1000 NonOverlappingTemplate 

93 94 83 108 102 100 105 97 119 99 0.496351 991/1000 NonOverlappingTemplate 

112 100 104 109 93 90 93 100 105 94 0.834308 989/1000 NonOverlappingTemplate 

115 106 95 93 111 84 98 101 109 88 0.399442 990/1000 NonOverlappingTemplate 

103 82 107 97 98 96 110 102 95 110 0.699313 991/1000 NonOverlappingTemplate 

116 84 97 110 100 88 91 110 110 94 0.288249 982/1000 NonOverlappingTemplate 

95 97 100 115 91 96 96 107 111 92 0.733899 991/1000 NonOverlappingTemplate 

110 82 97 105 119 96 90 120 88 93 0.083526 991/1000 NonOverlappingTemplate 

115 109 80 117 91 100 100 92 93 103 0.214439 988/1000 NonOverlappingTemplate 

105 109 85 94 71 99 122 93 119 103 0.012128 990/1000 NonOverlappingTemplate 

102 99 97 107 86 104 115 104 97 89 0.693142 991/1000 NonOverlappingTemplate 

83 109 123 81 112 111 111 75 90 105 0.004365 990/1000 NonOverlappingTemplate 

94 85 107 104 92 119 111 93 100 95 0.39594 992/1000 NonOverlappingTemplate 

100 100 105 90 96 101 100 105 110 93 0.957612 994/1000 NonOverlappingTemplate 

104 107 85 114 110 100 93 87 95 105 0.480771 989/1000 NonOverlappingTemplate 

97 103 110 106 106 86 86 118 101 87 0.292519 991/1000 NonOverlappingTemplate 

84 82 111 103 116 92 101 101 110 100 0.254411 992/1000 NonOverlappingTemplate 

103 95 96 100 97 103 102 105 95 104 0.997943 993/1000 NonOverlappingTemplate 

96 98 82 91 110 112 98 100 102 111 0.536163 991/1000 NonOverlappingTemplate 

96 105 115 89 100 103 97 101 101 93 0.870856 995/1000 NonOverlappingTemplate 

93 93 107 106 97 85 102 117 99 101 0.624627 990/1000 NonOverlappingTemplate 

86 108 94 95 109 87 92 114 102 113 0.347257 996/1000 NonOverlappingTemplate 

110 91 98 97 118 100 104 95 97 90 0.670396 993/1000 NonOverlappingTemplate 

106 99 87 109 106 90 111 102 86 104 0.574903 990/1000 NonOverlappingTemplate 

93 105 101 93 100 91 103 93 104 117 0.771469 987/1000 NonOverlappingTemplate 

115 98 90 94 93 107 94 110 102 97 0.727851 990/1000 NonOverlappingTemplate 

100 85 94 108 102 96 97 103 100 115 0.751866 992/1000 NonOverlappingTemplate 

100 103 78 111 109 99 112 96 93 99 0.431754 987/1000 NonOverlappingTemplate 
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115 100 79 85 95 119 92 115 99 101 0.073872 992/1000 NonOverlappingTemplate 

89 99 90 95 107 97 124 105 90 104 0.33297 993/1000 NonOverlappingTemplate 

83 113 101 106 109 91 107 92 97 101 0.55442 997/1000 NonOverlappingTemplate 

102 93 93 104 104 93 99 110 94 108 0.921624 992/1000 NonOverlappingTemplate 

112 108 101 96 100 105 96 92 92 98 0.912724 992/1000 NonOverlappingTemplate 

100 87 115 125 106 101 94 93 96 83 0.106877 992/1000 NonOverlappingTemplate 

99 99 85 91 109 102 95 106 105 109 0.779188 988/1000 NonOverlappingTemplate 

107 103 119 84 94 86 106 87 104 110 0.197981 986/1000 NonOverlappingTemplate 

114 98 87 99 98 90 89 100 128 97 0.126658 985/1000 NonOverlappingTemplate 

95 90 107 113 102 105 97 92 104 95 0.846338 987/1000 NonOverlappingTemplate 

99 113 85 88 98 107 107 116 89 98 0.33297 990/1000 NonOverlappingTemplate 

103 101 109 102 97 111 101 74 106 96 0.38899 985/1000 NonOverlappingTemplate 

103 102 106 97 96 93 99 101 103 100 0.998169 984/1000 NonOverlappingTemplate 

87 118 83 97 92 92 109 112 110 100 0.189625 987/1000 NonOverlappingTemplate 

110 107 100 96 91 93 101 108 106 88 0.798139 989/1000 NonOverlappingTemplate 

125 90 104 96 96 89 91 113 102 94 0.22248 983/1000 NonOverlappingTemplate 

104 94 116 99 106 109 92 103 91 86 0.558502 988/1000 NonOverlappingTemplate 

97 94 113 90 92 80 93 124 104 113 0.06943 995/1000 NonOverlappingTemplate 

117 108 96 120 117 79 74 90 108 91 0.003996 985/1000 OverlappingTemplate 

121 94 99 92 110 93 95 102 103 91 0.524101 985/1000 Universal 

92 109 91 109 87 108 106 101 88 109 0.532132 988/1000 ApproximateEntropy 

53 56 59 64 58 67 57 72 62 65 0.839987 607/613 RandomExcursions 

60 72 48 51 71 59 78 55 64 55 0.116054 608/613 RandomExcursions 

83 64 51 58 58 54 64 58 58 65 0.241456 603/613 RandomExcursions 

63 65 56 54 55 61 56 74 67 62 0.748093 601/613 RandomExcursions 

72 71 57 53 70 48 60 60 52 70 0.22948 608/613 RandomExcursions 

61 68 63 63 65 56 59 53 59 66 0.955982 609/613 RandomExcursions 

68 48 56 77 59 66 75 57 46 61 0.070744 604/613 RandomExcursions 
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51 55 66 70 61 69 72 47 55 67 0.249701 607/613 RandomExcursions 

61 57 71 59 53 61 55 61 70 65 0.816833 608/613 RandomExcursionsVariant 

67 50 57 69 60 56 65 58 60 71 0.701669 607/613 RandomExcursionsVariant 

66 52 59 55 52 80 68 47 67 67 0.095539 605/613 RandomExcursionsVariant 

64 61 54 62 48 51 54 79 57 83 0.019935 606/613 RandomExcursionsVariant 

62 55 62 55 43 56 70 75 57 78 0.057593 606/613 RandomExcursionsVariant 

61 52 52 62 71 56 66 75 62 56 0.458724 602/613 RandomExcursionsVariant 

59 52 59 45 72 71 67 66 65 57 0.289435 602/613 RandomExcursionsVariant 

57 50 54 67 65 64 67 47 77 65 0.196314 608/613 RandomExcursionsVariant 

63 47 46 61 79 57 60 66 61 73 0.082315 606/613 RandomExcursionsVariant 

62 63 50 53 70 68 64 75 55 53 0.330947 607/613 RandomExcursionsVariant 

71 65 57 67 54 64 54 61 60 60 0.872348 605/613 RandomExcursionsVariant 

66 60 62 83 59 61 52 54 59 57 0.282511 605/613 RandomExcursionsVariant 

62 68 72 57 55 71 51 60 56 61 0.599625 603/613 RandomExcursionsVariant 

63 74 61 58 59 76 62 54 53 53 0.379067 603/613 RandomExcursionsVariant 

68 65 71 67 59 56 63 64 53 47 0.509568 604/613 RandomExcursionsVariant 

67 69 64 63 71 54 60 60 52 53 0.667811 605/613 RandomExcursionsVariant 

64 67 72 58 55 67 57 60 47 66 0.53911 607/613 RandomExcursionsVariant 

68 57 69 59 54 68 61 55 62 60 0.88243 607/613 RandomExcursionsVariant 

102 93 103 107 102 88 98 93 100 114 0.827279 994/1000 Serial 

110 94 93 101 114 104 80 84 106 114 0.169044 990/1000 Serial 

85 92 111 104 103 95 104 97 107 102 0.800005 994/1000 LinearComplexity 
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

ANECDOTAL INFORMATION 

 

Bruce Schneier is widely regarded as one of the greatest minds in cryptography and certainly 

deserves his own paragraph.  I have crossed paths with him in the past – another story.  I find it 

humorous and a bit coincidental that while working to commercialize this, in a part of my sales 

pitch I would jokingly say that “even if the aliens come down, they can’t crack our encryption”.  

My financial advisor, who apparently failed to see the humor, strongly advised me to stop saying 

that, even though everyone who heard it laughed and took it tongue-in-cheek.  Shortly after I 

stopped using that jovial verbiage, Bruce Schneier released a blog essay (“Cryptography after the 

Aliens Land”, inline below) that stated anyone who would attempt an OTP was a crackpot.  I am 

including this as an example of the mindset prevalent amongst cryptographers with respect to 

OTP.  This mindset has been the result of the general thinking that large encryption keys must be 

continuously distributed to all relevant parties in order to perform this type of encryption. 

“CRYPTOGRAPHY AFTER THE ALIENS LAND” 

• Bruce Schneier, IEEE Security & Privacy, September/October 2018. 

Quantum computing is a new way of computing—one that could allow humankind 

to perform computations that are simply impossible using today's computing 

technologies. It allows for very fast searching, something that would break some of the 

encryption algorithms we use today. And it allows us to easily factor large numbers, 

something that would break the RSA cryptosystem for any key length. 

This is why cryptographers are hard at work designing and analyzing "quantum-

resistant" public-key algorithms. Currently, quantum computing is too nascent for 
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cryptographers to be sure of what is secure and what isn't. But even assuming aliens have 

developed the technology to its full potential, quantum computing doesn't spell the end of 

the world for cryptography. Symmetric cryptography is easy to make quantum-resistant, 

and we're working on quantum-resistant public-key algorithms. If public-key 

cryptography ends up being a temporary anomaly based on our mathematical knowledge 

and computational ability, we'll still survive. And if some inconceivable alien technology 

can break all of cryptography, we still can have secrecy based on information theory—

albeit with significant loss of capability. 

At its core, cryptography relies on the mathematical quirk that some things are 

easier to do than to undo. Just as it's easier to smash a plate than to glue all the pieces 

back together, it's much easier to multiply two prime numbers together to obtain one 

large number than it is to factor that large number back into two prime numbers. 

Asymmetries of this kind—one-way functions and trap-door one-way functions—underlie 

all of cryptography. 

To encrypt a message, we combine it with a key to form ciphertext. Without the 

key, reversing the process is more difficult. Not just a little more difficult, but 

astronomically more difficult. Modern encryption algorithms are so fast that they can 

secure your entire hard drive without any noticeable slowdown, but that encryption can't 

be broken before the heat death of the universe. 

With symmetric cryptography—the kind used to encrypt messages, files, and 

drives— that imbalance is exponential, and is amplified as the keys get larger. Adding 

one bit of key increases the complexity of encryption by less than a percent (I'm hand-
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waving here) but doubles the cost to break. So a 256-bit key might seem only twice as 

complex as a 128-bit key, but (with our current knowledge of mathematics) it's 

340,282,366,920,938,463, 463,374,607,431,768,211,456 times harder to break. 

Public-key encryption (used primarily for key exchange) and digital signatures 

are more complicated. Because they rely on hard mathematical problems like factoring, 

there are more potential tricks to reverse them. So you'll see key lengths of 2,048 bits for 

RSA, and 384 bits for algorithms based on elliptic curves. Here again, though, the costs 

to reverse the algorithms with these key lengths are beyond the current reach of 

humankind. 

This one-wayness is based on our mathematical knowledge. When you hear about 

a cryptographer "breaking" an algorithm, what happened is that they've found a new 

trick that makes reversing easier. Cryptographers discover new tricks all the time, which 

is why we tend to use key lengths that are longer than strictly necessary. This is true for 

both symmetric and public-key algorithms; we're trying to future-proof them. 

Quantum computers promise to upend a lot of this. Because of the way they work, 

they excel at the sorts of computations necessary to reverse these one-way functions. For 

symmetric cryptography, this isn't too bad. Grover's algorithm shows that a quantum 

computer speeds up these attacks to effectively halve the key length. This would mean 

that a 256-bit key is as strong against a quantum computer as a 128-bit key is against a 

conventional computer; both are secure for the foreseeable future. 

For public-key cryptography, the results are more dire. Shor's algorithm can 

easily break all of the commonly used public-key algorithms based on both factoring and 
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the discrete logarithm problem. Doubling the key length increases the difficulty to break 

by a factor of eight. That's not enough of a sustainable edge. 

There are a lot of caveats to those two paragraphs, the biggest of which is that 

quantum computers capable of doing anything like this don't currently exist, and no one 

knows when—or even if— we'll be able to build one. We also don't know what sorts of 

practical difficulties will arise when we try to implement Grover's or Shor's algorithms 

for anything but toy key sizes. (Error correction on a quantum computer could easily be 

an unsurmountable problem.) On the other hand, we don't know what other techniques 

will be discovered once people start working with actual quantum computers. My bet is 

that we will overcome the engineering challenges, and that there will be many advances 

and new techniques—but they're going to take time to discover and invent. Just as it took 

decades for us to get supercomputers in our pockets, it will take decades to work through 

all the engineering problems necessary to build large-enough quantum computers. 

In the short term, cryptographers are putting considerable effort into designing 

and analyzing quantum-resistant algorithms, and those are likely to remain secure for 

decades. This is a necessarily slow process, as both good cryptanalysis transitioning 

standards take time. Luckily, we have time. Practical quantum computing seems to 

always remain "ten years in the future," which means no one has any idea. 

After that, though, there is always the possibility that those algorithms will fall to 

aliens with better quantum techniques. I am less worried about symmetric cryptography, 

where Grover's algorithm is basically an upper limit on quantum improvements, than I 

am about public-key algorithms based on number theory, which feel more fragile. It's 



  

 

64 
 

 

possible that quantum computers will someday break all of them, even those that today 

are quantum resistant. 

If that happens, we will face a world without strong public-key cryptography. 

That would be a huge blow to security and would break a lot of stuff we currently do, but 

we could adapt. In the 1980s, Kerberos was an all-symmetric authentication and 

encryption system. More recently, the GSM cellular standard does both authentication 

and key distribution—at scale—with only symmetric cryptography. Yes, those systems 

have centralized points of trust and failure, but it's possible to design other systems that 

use both secret splitting and secret sharing to minimize that risk. (Imagine that a pair of 

communicants get a piece of their session key from each of five different key servers.) The 

ubiquity of communications also makes things easier today. We can use out-of-band 

protocols where, for example, your phone helps you create a key for your computer. We 

can use in-person registration for added security, maybe at the store where you buy your 

smartphone or initialize your Internet service. Advances in hardware may also help to 

secure keys in this world. I'm not trying to design anything here, only to point out that 

there are many design possibilities. We know that cryptography is all about trust, and we 

have a lot more techniques to manage trust than we did in the early years of the Internet. 

Some important properties like forward secrecy will be blunted and far more complex, 

but as long as symmetric cryptography still works, we'll still have security. 

It's a weird future. Maybe the whole idea of number theory—based encryption, 

which is what our modern public-key systems are, is a temporary detour based on our 

incomplete model of computing. Now that our model has expanded to include quantum 

computing, we might end up back to where we were in the late 1970s and early 1980s: 
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symmetric cryptography, code-based cryptography, Merkle hash signatures. That would 

be both amusing and ironic. 

Yes, I know that quantum key distribution is a potential replacement for public-

key cryptography. But come on—does anyone expect a system that requires specialized 

communications hardware and cables to be useful for anything but niche applications? 

The future is mobile, always-on, embedded computing devices. Any security for those will 

necessarily be software only. 

There's one more future scenario to consider, one that doesn't require a quantum 

computer. While there are several mathematical theories that underpin the one-wayness 

we use in cryptography, proving the validity of those theories is in fact one of the great 

open problems in computer science. Just as it is possible for a smart cryptographer to 

find a new trick that makes it easier to break a particular algorithm, we might imagine 

aliens with sufficient mathematical theory to break all encryption algorithms. To us, 

today, this is ridiculous. Public- key cryptography is all number theory, and potentially 

vulnerable to more mathematically inclined aliens. Symmetric cryptography is so much 

nonlinear muddle, so easy to make more complex, and so easy to increase key length, that 

this future is unimaginable. Consider an AES variant with a 512-bit block and key size, 

and 128 rounds. Unless mathematics is fundamentally different than our current 

understanding, that'll be secure until computers are made of something other than matter 

and occupy something other than space. 

But if the unimaginable happens, that would leave us with cryptography based 

solely on information theory: one-time pads and their variants. This would be a huge 



  

 

66 
 

 

blow to security. One-time pads might be theoretically secure, but in practical terms they 

are unusable for anything other than specialized niche applications. Today, only 

crackpots try to build general-use systems based on one-time pads—and cryptographers 

laugh at them, because they replace algorithm design problems (easy) with key 

management and physical security problems (much, much harder). In our alien-ridden 

science-fiction future, we might have nothing else. 

Against these godlike aliens, cryptography will be the only technology we can be 

sure of. Our nukes might refuse to detonate and our fighter jets might fall out of the sky, 

but we will still be able to communicate securely using one-time pads. There's an 

optimism in that. 

I have a feeling that I am Bruce’s crackpot, and he does perfectly parody the tongue-in-

cheek humor from my marketing presentations (which was already a parody, specifically of the 

movie “Independence Day”, 1996), but that’s okay.  Bruce is brilliant, and I’m not offended.  To 

detail my very limited experience with Bruce, in the late 1990’s when I was a network architect 

and technology security director for Deutsche Bank, Bruce was a respected cryptographer at 

banking seminars.  His pitch at the time was essentially “you can have absolute security if you 

use my encryption”.  A few years later when I was running a security startup based on the 

heuristic firewall and Bruce was running a new secure datacenter company (Counterpoint), his 

pitch was essentially “you can’t have absolute security, but if you use my datacenters you’ll be 

as secure as you can be”.  We spoke at the time about the possibility of blending technologies, 

but he was not interested.  That being said, he wrote patents a couple of years later in which he 

forward cited my patent (U.S. Patent 6,519,703 – “Methods and Apparatus for Heuristic 

Firewall”), so there was perhaps some interest in the tech after all.  I anticipate that this 
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encryption technology will be initially received by Schneier in similar fashion with hopes that 

perhaps one day he will lift the “crackpot” moniker from deep within my psyche;-) 
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CONCLUSION 

 

As the first globally scalable OTP solution, HOP represents the strongest and fastest 

encryption available.  It is compact enough to run on wireless sensors and Internet of Things 

(IoT) devices, robust enough to handle the needs of phones, laptops, and the largest cluster 

computers, and the fastest and strongest option for Internet Exchange Points.  It brings an end to 

the encryption race-condition and provides a permanent solution to the encryption needs of any 

and all devices for the foreseeable future.  While this dissertation is specific to the encryption 

world, it should be intuitive that HOP’s random number generation primitives are not limited to 

encryption; rather, this technique most definitely applies to any situation in which random 

numbers are useful.  Additionally intuitive, as HOP is fully authenticated, are the implications of 

using this technique with processes and inter process communications, and the positive effects 

this will yield in platform, operating system, application, and data security overall.  The dynamic 

identification primitives have the potential to change the way we look at, and in fact do, 

authentication.  As a former member of the NIST Biometrics Consortium, I clearly see that the 

integration of these techniques with biometric authentication is a no-brainer.  Penultimately, 

though this is by no means an exhaustive list of applicability, by applying HOP at the core of a 

distributed ledger, it will be possibly to not only significantly speed up a blockchain (due to 

greatly reduced consensus operations requirements), but also to certify that the blockchain is 

secure enough to perform currently elusive tasks such as Title Transfer in real estate, and the 

creation of unassailable smart contract environments.  Finally, it is not a stretch to say that HOP 

can make positive change in all aspects of our handling and processing of data.  To quote the 

Beatles (1970): “Let It Be”.  
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