HEURISTIC ONE-TIME PAD ENCRYPTION

A Dissertation Submitted
to the Graduate School
University of Arkansas Little Rock

in partial fulfillment of requirements

for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

in the Department of Computer Science

in the Donaghey College of Engineering & Information Technology

December 2019

James Burford Joyce

B.S.E.S., University of South Florida, 1994

© Copyright by
James Burford Joyce
2019

This dissertation, “Heuristic One-Time Pad Encryption,” by James Burford Joyce, is approved

by:

Dissertation Advisor:

Dissertation Co-Advisor:

Dissertation Committee

Program Coordinator:

Graduate Dean:

Daniel Berleant
Professor of Information Science

Kenji Yoshigoe

Professor of Information Networking
for Innovation and Design, Toyo
University

Daniel Berleant
Professor of Information Science

Chia-Chu Chiang
Professor of Computer Science

Mariofanna Milanova
Professor of Computer Science

Kenji Yoshigoe

Professor of Information Networking
for Innovation and Design, Toyo
University

Daniel Berleant
Professor of Information Science

Brian Berry
Professor of Chemistry

Fair Use

This dissertation is protected by the Copyright Laws of the United States (Public Law 94- 553,
revised in 1976). Consistent with fair use as defined in the Copyright Laws, brief quotations
from this material are allowed with proper acknowledgment. Use of this material for financial
gain without the author’s express written permission is not allowed.

Duplication

I authorize the Head of Interlibrary Loan or the Head of Archives at the Ottenheimer Library at
the University of Arkansas at Little Rock to arrange for duplication of this dissertation for
educational or scholarly purposes when so requested by a library user. The duplication will be at
the user’s expense.

HEURISTIC ONE-TIME PAD ENCRYPTION by James Burford Joyce, December 2019

ABSTRACT

Heuristic One-Time Pad (HOP) represents a methodology that is compliant with the
requirements as established by Claude Shannon for a globally scalable and permanent encryption
solution. The technique is not limited to encryption; rather, it also encompasses dynamic
hashing and authentication. The two key Shannon-identified problems of continuous random
number generation and secure distribution of encryption keys have been solved and are integral
to the method. At each step of the algorithms, entropy is ‘1’ and unicity is ‘infinite’. All
encryption key generation is independent of the value of the data being encrypted, and is
dependent upon a combination of quasi-random data values and their respective matrix index
values. The creation of functionally random numbers results from combining a plurality of
quasi-random sources and breaking up any potential linear, sequential, or harmonic anomalies.
This, in conjunction with a novel data shuffling and salting technique, ensures that the encryption
cannot be attacked via frequency analysis or even brute force. Contrary to all previous versions
of the One-Time Pad, HOP does not require large encryption keys to be themselves distributed
across any medium; rather, the keys are generated exactly when and where they are needed. The
footprint of HOP is small enough to support operation on systems as small as Internet of Things
(IoT) and wireless sensors, while also being robust enough to handle the encryption needs of the
largest supercomputers. Regarding speed, in direct head-to-head testing HOP is approximately
3.5 times faster than Advanced Encryption Standard (AES). With regards to key security, even

if the encryption keys are stolen, they cannot be used by an unauthorized person or system to

break the encryption. HOP represents a mathematically-proven uncrackable encryption system
which is faster than the competition, runs on all platforms, is globally scalable, and is, as is
intuitive from Shannon’s work, quantum as well as future proof. As such, it ends the historically
perpetual cycle, or race-condition, of encryption algorithm creation and encryption algorithm

breaking.

Acknowledgements

With respect to getting the encryption code to its current point, I must acknowledge and
thank Anna Lanham and Edwin Carp for their countless hours of devotion and tremendous
talents in back office systems architecture and coding. Regarding the last ten years, [would like
to thank my Committee members. Each of you have taught me deep knowledge in areas where |
thought I knew something going in, but now realize I had yet to scratch the surface. This work
would not have been possible without your abilities to confer your knowledge, skills, and

experience. Thank you.

Table of Contents

LIST OF FIGURES.....cciiiiiiiiiiiiiiiiicciiineeniiiiiiiiiiessinsssssssssssaasssssssseeseesssssssssssssssssssssssssssessessssssssssssssssssssnsssssssanaennes IX
LIST OF TABLEScoiiiiiiiiiiiiiiiiiiineeiiiiiiitciiisniissssssssssssssssssssseessssssssssssssssssssssssssassessssssssssssssssssssssssseeseessssssssssses X
INTRODUCTIONcoiiiiiiiiiiiiiiiiiiiisnenesiiiiiiitiiisiiiississssssssmsimmsteetssmisisssssssssssssmimiettessssiisssssssssssssssiieeseesssssssssses 1
ONE-TIME PAD DISCUSSION.......cciiiiiiiiunnnnnnniiiiiiiiiiiiiiisissssssssisiiiiieiessiiiss s st s e 4
PROBLEM ACKNOWLEDGEMENTccuutiiiiiiiiiiiiiiiiiineensiiiiiiiiieininiiiissssssssssmmiiiiseessssms s s 7
HOP METHOD NOTES......coiiiiiiiiiitnnnenniiiiiitiiiiiiiiisissssssssssisimeieetsssisisssssssssssssiitiateesississ s s 8
PERFORMANC Ecoiiiiiiiiiiiiiiiiieeeniiiiiiiesisssissssssssssssssasssssneteesssssssssssssssssssssssssseteessssssssssssssssssssnnsssssnsanssssess 10
HOP OVERVIEWcoiiiiiiiiiiiiiiiiiieeniiiiiiiessssnissssssssssssssssssssststsssssssssssssssssssssssssssssessssssssssssssssssssssssssssssasasssnses 11
ENCRYPTION AND DECRYPTION OVERVIEWcccoiiiiiinnnnnennniiiiiiiiinininnssssssessssmiiiessesnisssssssssssssssssmisesssssns 12
KEY GENERATION OVERVIEW — MATRIX HOPSCOTCHcccuumiiiiiiiiimiiiiiniininneesiniiniieisnssssssssssssssmsssesssssns 13
HOP HOST REQUIREMENTScuiiteiniiiiiiiiiiiiiinnnsnssssssseessisiisiensssssssssssssssssssssssssssssessssssssssssssssssssssssssssssasssssanas 14
AUTO-NEGOTIATE PROCESSccciiiiiiiiiiiiiiiiiinnnenniiiiiiiiiieeiiiiisisssssssssssmiiiimieesississs s st 15
APPLICATIONS ..ottt saaasssssasaes s e s ses s s s s s s s s s aaa s s s s s s e e s s e e s e e s ssssssssssssssssnnnnneeaneeenessssssssssssnen 16
0 o 10) 17
HOP TLS SERVICES.......cciiiiiiiiiiiiiiiiieeniiiiiiiiiiisiiiisssssssssssssssssmeiesessssssssssssssssssssssssssaseesssssssssssssssssssssssssssssasssssssas 18
HOP VOIP AND IMOBILEccooiiiiiinnnnnnnniiiiiiiiiiiiiiissiisssssssssssimiieeissiisisssssss sttt s 19
PRODUCT DELIVERYcciiiiiiiiiiiiiiineenniiiiiiiiisiiiiisssssssssssssssssmmeieiisssisissssssssssssssssssieteessssisssssssssssssssssssssasesssssess 20
HOP SUMMARYcoiiiiiiiiiiiiiiiiiiiiieeiiiiiiiiiiissiiissssssssssssssssssssietsssssssssssssssssssssssssssaseesssssssssssssssssssssssssssasassssssss 23
RANDOM NUMBER GENERATIONccuuiiiiiiiiiiiiiiiiiiiieneeniiniiiieiinsiisssssssssismiiieessssiiss s 24
NIST STATISTICAL TEST SUITEuuueiiiiiiiitiiiiininnsssnssssessiniinisesssssssssssssssssssssssssssssessssssssssssssssssssssssssssssesssssenas 25
NIST STS APPENDIX A — RESULT OF THE CORE GENERATED SEQUENCE (1000 SEQUENCES)ccccoeuererueerssunensenes 36

NIST STS APPENDIX B — RESULT OF THE CORE XOR LOW DENSITY PLAINTEXTS SEQUENCE (1000 SEQUENCES) ... 44
NIST STS APPENDIX C — RESULT OF THE CORE XOR HIGH DENSITY PLAINTEXTS SEQUENCE (1000 SEQUENCES)... 52

ANECDOTAL INFORMATION.cciiiiiiiiiiiiiciiinnnennnniiiiiiiieeiississsssssssssssssiiiisieesissisisssssssssssssmmisieseeesssssssssssssssns 60
“CRYPTOGRAPHY AFTER THE ALIENS LAND"ccccttiireiriureiisneisiseiisseesssssessssseesssresessnesssssesssssssssssesssssesssssseses 60
0010 0L 1 [0 S 68
REFERENCES AND SUPPLEMENTAL RESOURCES.........cccovvuuummmiiiiiiiiiiiiiiisssssssssssnsniiiiiesssnisssssssssssssssssssssesssssns 69
ADDITIONAL SUPPLEMENTAL READINGccciiiuunnnnniiiiiiiiiiiniisiisisssssssssssmimiiiieesinmss e 78

viil

Figure 1

Figure 2

LIST OF FIGURES

ix

21

22

NIST STS Appendix
NIST STS Appendix B
NIST STS Appendix C

LIST OF TABLES

36
44
52

INTRODUCTION

So, what is encryption anyway? Encryption is the art/science of encoding information
with the hope that only authorized people, devices, or processes will be able to access it. The
history of encryption goes back to numerous ancient cultures. Examples include the Greek
Skytale, the Caesar Cipher of Rome, and even the Kama Sutra has a chapter dedicated to “secret
writing”. Also, historically, the world of encryption has been in a race-condition; meaning, since
the proverbial dawn of time, someone invents a method to encrypt data, and someone thereafter
invents a way to break it. The most significant event in encryption cracking did not occur
recently. In fact, al Kindi (~800 A.D.) discovered “frequency analysis”, which has been the
backbone of encryption cracking ever since. Contemporary cryptographers have moved
encryption algorithms towards more and more complex mathematics in an effort to minimize the
risk posed by the ever more evolving world of encryption cracking. An excellent example of this
is Vigenere’s Autokey Cipher (once “believed” to be unbreakable), and the cracking work of
Charles Babbage. Every time a new encryption method has been released, it has eventually been
successfully attacked by new cracking techniques, thereby perpetuating the encryption race-

condition.

Encryption, in general, is not limited to the fields of information theory, mathematics,
and computer science; rather, it also finds itself rife with shades of politics, law enforcement,
sociology, industrial espionage. Its influence has been definitive in issues ranging from the
privacy of a love note, to the lives and deaths of people and empires. Such has been the import

of encryption throughout recorded history, and I posit that its impact on the world will increase

going forward, as its use is rapidly becoming an imperative as opposed to an option. That being
said, this work is not a treatise on the history of encryption: I recommend Singh, Simon, 7he
Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography (New York:
Random House, 1999). For One-Time Pad history specifically, append Singh’s work with,
Bellovin, Steven M., "Frank Miller: Inventor of the One-Time Pad". Cryptologia. 35,(2011), pg.
203-222. As well, this is not an argument for or against the need for stronger encryption, as the
National Institute of Standards and Technology (NIST) has already made that point in the
National Institute of Standards and Technology Interagency/Internal Report (NISTIR) 8105 —
Report on Post-Quantum Cryptography, 28 April 2016. It is not a list or exhibition of grievances
regarding the plurality of industrial espionage efforts directed towards this new one-time pad
technique over the past nine years. Furthermore, it is not a political statement or judgement
related to privacy rights versus the desires of law enforcement agencies to have backdoors or
trapdoors built into all commercial encryption, though I would be glad to answer any questions

in any of these areas in another forum. This work is strictly limited to the technology at hand.

Akin to patent work, it is assumed that the reader of this has “ordinary skill in the art”
(encryption), and has a general knowledge of the one-time pad. The argument of the need for
strong encryption to mitigate the threat of Quantum Computing (QC) has been made by the
National Institute of Standards and Technology (NIST) in their Interagency/Internal Report
(NISTIR) 8105 — Report on Post-Quantum Cryptography, 28 April 2016. I agree in general with
their assessment of the threat, and am proceeding into this work with that in mind: QC does
present a real threat to contemporary encryption, especially (though not exclusively) as it

pertains to asymmetric encryption and encryption handshake techniques. Many “expert”

recommendations are that we expand the sizes of our current keys, using existing algorithms, so
that “larger” quantum computers will be required to crack the encryption. The two obvious
downsides to this are that 1) it perpetuates the race condition and, 2) contemporary algorithms
are already too large to serve the needs of smaller devices (Internet of Things (IoT), wireless
sensor devices, etc.); ergo, increasing the system requirements to run an algorithm leaves smaller
devices unsecured. Furthermore, with respect to attempting to hold off the QC risk (and
perpetuating the race-condition), the future of QC, Non-deterministic Universal Turing Machines
(NUTM), should make it clear that contemporary complex-algorithmic encryption techniques
will eventually lose the race. To clarify, whereas a quantum computer will run an algorithm with
all possible data simultaneously, NUTMs are theorized to run a large plurality (possibly all)
algorithms with all possible data simultaneously. As such, I believe that, ultimately,
contemporary “difficult to break” encryption will lose the race. A different type of encryption

model will be necessary to ensure data privacy and security going forward.

Specifically, regarding the second point above (encryption for small devices), a paper by
Kenji Yoshigoe and Murat Al (“Adaptive Confidentiality Mechanism for Hierarchical Wireless
Sensor Networks,” 2008 IEEE Globecom Workshops, (2008)) is initially what gave me the spark
for this dissertation. The paper expressed the fact that wireless sensor devices do not have the
computing and/or power resources to handle contemporary encryption algorithms, and, as such,
there was a need for strong light-weight encryption techniques to serve that market. I thought “I
can do that”. Then I thought “if this will work for small systems, it should work for all systems”,

and here we are. To note: NIST is looking for both quantum resistant and light-weight

encryption solutions in two different programs. This work consolidates that, resolves the

encryption needs for all devices, and ends the encryption race-condition forever.

ONE-TIME PAD DISCUSSION

During World War I the United States experimented with a then new type of encryption,
the One-time Pad (OTP), which was believed to be impervious to cracking attempts. In 1947,
Claude Shannon (the father of Information Theory) proved that the OTP was mathematically
impossible to break. It is the only form of encryption ever conceived to hold this distinction;
however, while Shannon did prove uncrackability, he also identified two difficulties that would
need to be overcome for the technique to be used on a large scale: first, OTP relies on a perpetual
supply of random numbers, which is known to be exceedingly difficult to create; and second,
there must be a secure way to distribute encryption keys to all parties involved in the
communications. Perhaps in no small part to the elusive nature of the solutions to these two

issues, the OTP has been dubbed the Holy Grail of encryption.

Specific to random number generation, numerous techniques have been tried, from trivial
(trying to type randomly on a keyboard: this technique has been proven to not work) to complex
(measuring radioactive particle decay, photon observations, or measuring thermal sensor
changes: none of these techniques are fast enough to support wire-speed data rates). The fastest
contemporary random number generation systems (Quantis from ID Quantique, and Entropy
Engine from Whitewood Encryption Systems) can only generate keys at rates ranging from 128 -
350 megabits per second respectively. These keys, which still need to be distributed to relevant
systems, must then be used by external encryption algorithms. This is nowhere near fast enough

for current needs, and is a non-sequitur to a practical scalable encryption solution. For example,

a couple of years ago I was consulted regarding the encryption for India’s new national tax
system. During the course of our discussions, it was related to me that they had tried both
Quantis and Entropy Engine, but found that, at best, it would take 18 hours each day just to
distribute encryption keys to the computers in the nationwide network; whereas, they needed the
keys to be available in real time to service 24x7 operations, this “solution” would have limited

their production day to six hours.

The way that contemporary cryptographers have looked at OTP is, in my mind, the
biggest reason that no one else has yet figured out this problem. Prevailing belief is that, for
example, to encrypt 10 petabytes of data, one needs to pre-generate and distribute a 10-petabyte
encryption key to needed locations. As such, the prevailing belief amongst cryptographers is that
trying to implement a scalable OTP would be a key management nightmare. An example of this
is found in a Bruce Schneier essay on the OTP: “Cryptography after the Aliens Land”, I[EEE
Security & Privacy, September/October 2018. In fact, Schneier goes so far as to say: “Today,
only crackpots try to build general-use systems based on one-time pads—and cryptographers
laugh at them, because they replace algorithm design problems (easy) with key management and
physical security problems (much, much harder).” Another example of cryptographers believing
that OTP keys must be generated and distributed is a theme I have seen in cryptography blogs: to
paraphrase - ‘The increasing availability of bandwidth and the decreasing costs of bandwidth are

making OTP key distribution more feasible.’

It should be intuitively obvious that the above bandwidth reasoning is a non sequitur and

perpetuates the race-condition. It should also be intuitive that if you try to tackle the OTP

problem from a position of traditional thinking, any attempts to scale the OTP will be fruitless;
ergo, Schneier’s key management point is valid... from a traditional perspective. Regarding
Schneier’s conjecture that there is some increase in physical security problems, I would offer that
the point would be valid IF you actually did have to continuously transmit encryption keys to
everyone all the time. Heuristic One-Time Pad resolves these issues and provides a fast,
lightweight, and globally scalable encryption solution that ends the encryption race-condition

once and for all.

No one has yet to consider the possibility of generating synchronous, functionally
random, encryption keys on a plurality of devices at the exact time they are needed (e.g. while
the data to be encrypted or decrypted is being read into memory, and on the system that is doing
the encrypting/decrypting). This work solves the problems first identified by Shannon, complies
with Shannon’s fundamental requirements that keys are destroyed upon use and may not be
reused, and represents the world’s first and only uncrackable and globally scalable encryption.
Not only is this the strongest available encryption, but it is also approximately five times faster
than Advanced Encryption Standard (AES), our current de facto encryption standard, making
this the only proven unbreakable algorithm and the fastest encryption on (or off) the planet. It is
impervious to the threats of today and tomorrow, including ever more evolving cracking
techniques, QC, NUTM, or anything that comes after (Schneier: “aliens”). To go out on a limb, |
would (tongue in cheek) tend to agree with Bruce in that it is certainly alien-proof. Regarding
Schneier’s specific issues of key management and physical security, due to new and unique key

distribution and key-negotiation mechanisms, even if someone steals your keys during initial

installation, they still cannot crack your encryption. As such, the Heuristic One-Time Pad does

end the encryption race-condition.

PROBLEM ACKNOWLEDGEMENT

Prior to being “well” into this research, initial versions of this document were
significantly longer, and, in my opinion, the argument that I was making, for the need for post-
quantum encryption, was less strong due to reliance upon speculation/extrapolation on
technology evolution, trends, etc. The specific events that made me decide to modify my
dissertation are as follows. First: In 2016, popular websites Yahoo and Dropbox made public
announcements that their userbases had been compromised as a result of the cracking of their
encryption. These represent the first two major public announcements by large organizations
that they were hacked as a result of encryption cracking; Second: while I know of encryption
compromises in the real world, I cannot be more specific due to legal/contractual obligations. To
be clear, in my 30 plus year cyber-security career, I have cracked encryption while performing
penetration testing for clients, and as a cyber security curriculum author and instructor for the
United States defense/intelligence community, I have been privy to extensive information on
encryption cracking; Third: The NISTIR 8105 Report on Post-Quantum Cryptography was
released. Prior to the advent of the information from Yahoo, Dropbox, and the NIST Report, my
paper essentially boiled down to my personal opinion regarding the need for stronger encryption.
Having NIST validation, and public examples of current technology-based encryption cracking,

significantly strengthens the argument that stronger encryption is necessary.

HOP METHOD NOTES

The actual technique for this encryption is extensively covered in the dissertation defense
presentation. As this is a pattern-based heuristic, it seemed that the best way to express this
technique was to graphically demonstrate it. As the details are covered in the presentation, I will
touch on the key transition points here. At the core of this method is the ability to generate
random numbers when and where needed. I have toyed with the one-time pad since I was a child
and have had the concept of a one-way function in my brain for about as long. It occurred to me
that multiple quasi-random generators could be used to generate streams of “functionally”
random numbers. The idea of “matrix hopscotch” was also something that I have thought about
for decades. When I first started writing them out (“them” being matrices with random
distributions of the numbers 0 through 255), I tried to manipulate them with controlled sequences
of modifiers (by “manipulate”, I am referring to the “Go” concept shown in the presentation).
For example, I tried to take a matrix and do a “Go 07, then a “Go 17, and repeat to modify the
matrices. I found that this would always lead to the matrix converging back to its original state
rather quickly. As such, this would never qualify for perpetual random number generation.

After much empiricism, I found that modifying a quasi-random distribution based upon another
quasi-random distribution would result in a sequence of patterns that did not repeat throughout

its cycle.

I did, however, find possible classes of sequences that would break the encryption
requirement of non-repeating keysets. An example of these sequences is, albeit randomly
occurring, when the matrix falls into a straightforward (or backward) sequence of numbers from

0 to 255 in order (no matter where it starts). The “Flip and Swap” technique breaks this

condition. As well, as is intuitive from the graphics, the combination of “numerical order” and
“matrix index” processes breaks any possible repetition short of absolute numerical exhaustion,
which in this case is 16 matrices of 256 elements that can be arranged in any order [16 x 256! x
16!]. That’s 16 times 8.578177753 E+506 times 2.092278988 E+13. Online resources refer to
256! times 2 as being functionally infinite. While we know that it’s not actually infinite, we do
know that we, and perhaps this planet, will be long gone before those permutations have been

exhausted.

Specifically, regarding the Flip & Swap technique, I initially used a single offset, but Dr.
Yoshigoe suggested that it would be preferable to use a double offset. I also tried a triple offset,
but it did not give the algorithm any greater advantage, and would have just used more processor
cycles. The key rotation method, in conjunction with Flip & Swap and the Epoch Roll processes
described in the presentation, appears to satisfy a true one-way function. As such, it also appears
to yield the solution to the “P vs NP”” Millennial Math problem (spoiler: P != NP), though that
formal indirect proof work, while implicitly alluded to, is not included in this dissertation. That
being said, the proof should show that the matrix size (currently 256) approaches infinity, and

should extend the principles for vector-space.

All details of methods for random number generation, data shuffling, salting, encryption,
decryption, dynamic system identification, universal one-way hash functionality, and all

primitives are fully covered in the dissertation defense presentation.

10

PERFORMANCE

As for performance, head-to-head testing was conducted against AES-128 to determine a
relative speed for encryption. All code was written in C, identical test data was used, and the
tests were run on the same processor core (Intel i7 6700K, 4GHz). AES key size — 128 bits,
HOP key size — 2048 bits. AES speed — 624Mbps, HOP speed — 2.162Gbps. It is also important
to note a significant difference between HOP and AES. AES, in and of itself, is not
authenticated encryption, and relies upon an additional hash algorithm to provide authenticated
encryption functionality. HOP is fully authenticated already, as a HOP-based hash function is
built into the encryption and decryption routines. As such, HOP’s speed advantage over AES is
even more significant in that it is generating the encryption keys, performing the encryption, and

generating the hash at the above stated speed, while AES is only performing the encryption.

Random key generation speed was tested against the manufacturers published key
generation rates for Quantis and Entropy Engine. Quantis generates keys at 128Mbps, Entropy

Engine at 350Mbps, and HOP at 2.162Gbps.

11

HOP OVERVIEW

Symmetric One-Time Pad Encryption — Shannon compliant
No external RNG or floating-point instructions — stay in kernel space
Synchronized random keys generated on the fly on each platform

o No need to transfer large keys between relevant systems

o No need to store large keys
256-byte block authenticated encryption (not chained)
Authenticated via 2048-bit Universal One-Way Hash Function (chained)
Dynamic system/engine ID

Secure distribution, authentication, & non-repudiation via auto-negotiate

12

ENCRYPTION AND DECRYPTION OVERVIEW

Encryption:

o Shuffle the un-encrypted data

o Salt the shuffled data — XOR Salt Key with shuffled data

o Shuffle the salted data

o Encrypt the shuffled salted data — XOR Pepper Key with shuffled salted data
Decryption:

o Decrypt the encrypted shuffled salted data — XOR with Pepper Key

o Un-shuffle the shuffled salted data

o Un-salt the salted data — XOR with Salt Key

o Un-shuffle the un-salted data

KEY GENERATION OVERVIEW - MATRIX HOPSCOTCH

Each 16x16 matrix is a randomly distributed permutation of the values 0 — 255*
The values in each matrix are rotated based upon a “value” vs “index” heuristic
The heuristic is akin to the childhood game of Hopscotch

... but the Hopscotch field is changing and is mapped to a Mdbius strip

Each key stack is comprised of four 16x16 matrices*

The matrices are called Epoch, Cycle, Go, and Key

Go controls Key, Cycle controls Go, & Epoch controls the rotation of Cycle values

Two stacks are required to create functionally random keys

13

HOP HOST REQUIREMENTS

Each host will maintain:

o

o

HOTPad executable code < 50kBytes

Salt & Pepper stacks for Send & Receive for all relevant systems
SID stacks for all relevant systems

Dynamic Hash table

Key Management Database

< 7kBytes/connection

14

15

AUTO-NEGOTIATE PROCESS

The auto-negotiate process is a mechanism whereby two or more entangled encryption
engines modify their own keyset in a way such that only they can possibly know what the
updated keysets are, even if someone else had managed to obtain a copy of the original keysets.
The importance of this goes beyond protecting keys from malicious actors out in the world;
rather, this process also protects users against a rogue administrator that has access to the
systems that generated the initial keysets for users’ initial installations of the product. As such, a
manufacturer of this technology will only be able to decrypt traffic that it directed towards its
own systems, but they will not be able to track the encryption keysets of other user-to-user or
system- to-system communications. As such, without actually taking possession of, and having
the ability to authenticate on, a device, it will not be possible for any outside system to

compromise the encryption.

APPLICATIONS

It should be noted that the following list represents product rollout over a ten year period.

* HOP™ On-Cloud — Encryption proxy, TLS-HOP™, and storage services

« HOP™ On-Premise — HOP™ On-Cloud within your firewall

« HOP™ App - Secure voice/video/data mobile and desktop apps for peer-to-peer and
group communications

* Cyber-security consulting services

* Secure Email — HOP™ plugins for email

« Secure Web Browsing — HOP™ plugins for major browsers

* Authentication

* Biometrics

* Blockchain

* Financial transactions

* IoT & wireless sensors

* Chipsets

* Inter Process Communications

* Virtual reality

* User interface — I/O

* Nanotechnology

16

17

HOP PROXY

HOP Proxy Services represent the world’s first mathematically-proven uncrackable, and
globally scalable authenticated encryption solution. This is the first anticipated product that will

use this technology.

* Entangled random HOP keys
» Scale to data size on the fly
* Auto-negotiation
» Establishes encrypted link
* Authenticates
* Non-repudiates
* Modifies & synchronizes keys
» Simple enrolment and delivery
¢ On-Cloud or On-Premise
* Small footprint
* No proprietary equipment
* No asymmetric component

* No random number generator

18

HOP TLS SERVICES

About two years ago, I reached out to Jack Lloyd, the creator of Botan SSL, and
contracted him to build a port for HOP into TLS 1.2. As TLS has been upgraded to version 1.3,

the plan is to get in touch with Jack and have him update the port.

Transport Layer Security (TLS) & its predecessor, Secure Sockets Layer (SSL), both
frequently referred to as "SSL", are the cryptographic protocols that provide communications
security.

* HOP™ — 1% option in the TLS algorithm stack

* Fall-through support for other TLS protocols

* Fastest & strongest TLS implementation available

* Platform ubiquity

* No proprietary equipment

* No asymmetric component

* No external random number generator required

19

HOP VOIP AND MOBILE

HOP™ Desktop — Uncrackable voice, video, and data communications for laptops, desktops, or
even clusters — peer-to-peer and conference
HOP™ Mobile — Uncrackable voice, video, and data communications for smart phones and

tablets — peer-to-peer and conference

20

PRODUCT DELIVERY

It is not sufficient to simply develop an algorithm to provide a full solution. The product
delivery architecture has been crafted to ensure that the user experience is intuitive and the
installation mechanics are transparent. A full and robust environment has been coded up, is
ready for deployment, and covers end-user needs as well as all requisite manufacturer back
office functionality. This architecture is shown on the first of the two flowcharts directly below,

and the data flow is shown on the second flowchart.

Figure 1

Cloud/Front Office

Backoffice customer data,----- oo WebServices === | = = = = = mim m e e
|

y

Program files

A

HOP Core

Customer -TLS
repository -Proxy
-Plugins

prospect WebServicesp] WebServices key-set
Database .
engine

WebServicesp

!

SAAS Customer

Phone home

|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
®
o
a
®
<
a
o
7
1
I
|
|
|
|
1

hardware EEEEEE TR
Program files
Customer -TLS
repository -Proxy
) | -Plugins
Hardware purchase/delivery & setup———] hardl;,lx:are
Y
Accounting/Billing/Finance (P&L)
Accounting Call Center
T P&L HR
& Billing

Y

Hardware

Payment

22
Figure 2

ss Data Flow

(——————Customer & Plugin: Customer

|————# Keys Purchased—p] HOP

Prospect

Customer

Device

@ = Signed contract

Registered/Blocked

23

HOP SUMMARY

Authenticated encryption

The HOP Random Number Generator has passed the NIST STS suite
Generate keys, encrypt, & hash at 2.16Gbps on a 4.0 GHz i7 (single core)
Coded in C — far from optimized

Suitable for all platforms from IoT to Clusters

TLS friendly

Mathematically proven uncrackable

Quantum proof

NUTM proof

% proof

24

RANDOM NUMBER GENERATION

Regarding the ability to create functionally random sequences, 6 megabytes of encryption
keys were generated and sent to Dr. Kenji Yoshigoe. He ran the keys through the appropriate
NIST testing (National Institute of Standards and Technology (NIST), Special Publication 800-
22: A Statistical Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications, April 2010). The keysets passed in all testing as shown below. As
such, this passes the random number generation requirement per Shannon. Regarding the ability
to securely distribute keys to respective locations, it should be intuitive to one with ordinary skill
that the technique described in the presentation delineate a reasonable mechanism for secure key
distribution, also as per Shannon. As such, this meets the requirements for a one-time pad. In
addition, this encryption also accounts for known-text attack attempts against the keysets by
shuffling and salting the data at two different points in the encryption process. As the
functionally random keysets are, at the core, created deterministically, this series of shuffling and
salting prevent an attacker from gaining any purchase upon any part of the encryption keys
themselves. Below are the results on the NIST randomness testing. The gist is that this technique

does generate functionally random numbers from deterministic quasi-random matrices.

25

NIST STATISTICAL TEST SUITE

There are several batteries of tests available for testing random or pseudorandom number
generators; however, the NIST Statistical Test Suite (NIST STS) is the most widely accepted test
suite. It is often used in preparation of formal certifications or approvals and was used in the
process for establishing Advanced Encryption Standard (AES) as the current encryption gold
standard. The NIST STS package is a set of statistical testing procedures for assessing
randomness of binary sequences of interest and incorporates all recommended NIST tests. This
has used NIST STS to assess the randomness quality of binary sequences being generated by its
core technology. Below is a summarized description of the 15 tests of the NIST STS [1].

Interested readers are encouraged to read [2].

1. Frequency (Monobits) Test
The focus of the test is the proportion of zeroes and ones for the entire sequence.
The purpose of this test is to determine whether that number of ones and zeros in a
sequence are approximately the same as would be expected for a truly random sequence.
The test assesses the closeness of the fraction of ones to Y4, that is, the number of ones

and zeroes in a sequence should be about the same.

2. Test For Frequency Within A Block
The focus of the test is the proportion of zeroes and ones within M-bit blocks. The
purpose of this test is to determine whether the frequency of ones in an M-bit block is
approximately M/2. The default value of M = 128, recommended by NIST, was used for

this test.

26

3. Runs Test
The focus of this test is the total number of zero and one runs in the entire
sequence, where a run is an uninterrupted sequence of identical bits. A run of length k
means that a run consists of exactly k identical bits and is bounded before and after with a
bit of the opposite value. The purpose of the runs test is to determine whether the number
of runs of ones and zeros of various lengths is as expected for a random sequence. In
particular, this test determines whether the oscillation between such substrings is too fast

or too slow.

4. Test For The Longest Run Of Ones In A Block
The focus of the test is the longest run of ones within M-bit blocks. The purpose
of this test is to determine whether the length of the longest run of ones within the tested
sequence is consistent with the length of the longest run of ones that would be expected
in a random sequence. Note that an irregularity in the expected length of the longest run
of ones implies that there is also an irregularity in the expected length of the longest run
of zeroes. Long runs of zeroes were not evaluated separately due to a concern about

statistical independence among the tests.

5. Random Binary Matrix Rank Test

27

The focus of the test is the rank of disjoint sub-matrices of the entire sequence.
The purpose of this test is to check for linear dependence among fixed length substrings

of the original sequence.

Discrete Fourier Transform (Spectral) Test

The focus of this test is the peak heights in the discrete Fast Fourier Transform.
The purpose of this test is to detect periodic features (i.e., repetitive patterns that are near
each other) in the tested sequence that would indicate a deviation from the assumption of

randomness.

Non-Overlapping (Aperiodic) Template Matching Test

The focus of this test is the number of occurrences of pre-defined target
substrings. The purpose of this test is to reject sequences that exhibit too many
occurrences of a given non-periodic (aperiodic) pattern. For this test and for the
Overlapping Template Matching test, an m-bit window is used to search for a specific m-
bit pattern. If the pattern is not found, the window slides one bit position. For this test,
when the pattern is found, the window is reset to the bit after the found pattern, and the
search resumes. The default value of m =9, recommended by NIST, was used for this

test.

Overlapping (Periodic) Template Matching Test
The focus of this test is the number of pre-defined target substrings. The purpose

of this test is to reject sequences that show deviations from the expected number of runs

10.

11.

28

of ones of a given length. Note that when there is a deviation from the expected number
of ones of a given length, there is also a deviation in the runs of zeroes. Runs of zeroes
were not evaluated separately due to a concern about statistical independence among the
tests. For this test and for the Non-overlapping Template Matching test, an m-bit window
is used to search for a specific m-bit pattern. If the pattern is not found, the window slides
one bit position. For this test, when the pattern is found, the window again slides one bit,
and the search is resumed. The default value of m =9, recommended by NIST, was used

for this test.

Maurer's Universal Statistical Test

The focus of this test is the number of bits between matching patterns. The
purpose of the test is to detect whether or not the sequence can be significantly
compressed without loss of information. An overly compressible sequence is considered

to be non-random.

Linear Complexity Test

The focus of this test is the length of a generating feedback register. The purpose
of this test is to determine whether or not the sequence is complex enough to be
considered random. Random sequences are characterized by a longer feedback register. A
short feedback register implies non-randomness. The default value of 500, recommended

by NIST, was used for this test.

Serial Test

12.

13.

29

The focus of this test is the frequency of each and every overlapping m-bit pattern
across the entire sequence. The purpose of this test is to determine whether the number of
occurrences of the 2™ m-bit overlapping patterns is approximately the same as would be
expected for a random sequence. The pattern can overlap. The default value of m = 16,

recommended by NIST, was used for this test.

Approximate Entropy Test

The focus of this test is the frequency of each and every overlapping m-bit
pattern. The purpose of the test is to compare the frequency of overlapping blocks of two
consecutive/adjacent lengths (m and m+1) against the expected result for a random

sequence. The default value of m = 10, recommended by NIST, was used for this test.

Cumulative Sum (Cusum) Test

The focus of this test is the maximal excursion (from zero) of the random walk
defined by the cumulative sum of adjusted (-1, +1) digits in the sequence. The purpose of
the test is to determine whether the cumulative sum of the partial sequences occurring in
the tested sequence is too large or too small relative to the expected behavior of that
cumulative sum for random sequences. This cumulative sum may be considered as a
random walk. For a random sequence, the random walk should be near zero. For non-

random sequences, the excursions of this random walk away from zero will be too large.

14. Random Excursions Test

30

The focus of this test is the number of cycles having exactly K visits in a
cumulative sum random walk. The cumulative sum random walk is found if partial sums
of the (0, 1) sequence are adjusted to (-1, +1). A random excursion of a random walk
consists of a sequence of n steps of unit length taken at random that begin at and return to
the origin. The purpose of this test is to determine if the number of visits to a state within

a random walk exceeds what one would expect for a random sequence.

15. Random Excursions Variant Test
The focus of this test is the number of times that a particular state occurs in a
cumulative sum random walk. The purpose of this test is to detect deviations from the

expected number of occurrences of various states in the random walk.

TESTING PARAMETERS AND ENVIRONMENT

Subject: Heuristic One-Time Pad Encryption Engine — The algorithm being used as the core of

our encryption technology to deterministically generate binary sequence.

Purpose: To assess the maturity of the subject to deterministically generate random number

sequence.

Sequences Being Tested:
1. Core-generated binary sequence - Binary sequence generated by the subject.
2. Core XOR Low Density Plaintexts” - Binary sequence was generated as a result of

bitwise XOR operation between the core-generated binary sequence and the artificially

31

generated non-random sequence of highly frequent appearances of zeros as described
below.

3. Core XOR High Density Plaintexts™ - Binary sequence generated as a result of bitwise
XOR operation between the core-generated binary sequence and the artificially generated

non-random sequence of highly frequent appearances of ones as described below.

* Low Density Plaintexts consisted of 8,257 blocks as described in [3]. These blocks were
formed from one all zero plaintext block, 128 plaintext blocks of a single one and 127 zeroes (the
one appearing in each of the possible 128 bit positions), and 8,128 plaintext blocks of two ones
and 126 zeroes (the two ones appearing in each combination of two bit positions within the 128-

bit positions).

*High Density Plaintexts consisted of 8,257 blocks as described in [3]. These blocks were
formed from one all ones plaintext block, 128 plaintext blocks of a single zero and 127 ones (the
zero appearing in each of the possible 128 bit positions), and 8,128 plaintext blocks of two
zeroes and 126 ones (the two zeroes appearing in each combination of two bit positions within

the 128-bit positions).

Testing Strategy

Randomness testing was performed using the following strategy:

a) Input parameters such as the sequence length, sample size, and significance level were
fixed for each sample. These parameters were 1,000,000 bits, 1000 binary sequences, and

0.01; respectively, as recommended by NIST [1]. For each binary sequence and each

32

statistical test, a P-value was reported.

b) For each P-value, a success/failure assessment was made based on whether it exceeded or

fell below the pre-selected significance level of 0.01.

c) For each statistical test and each sample, two evaluations were made. First, the proportion
of binary sequences in a sample that passed the statistical test was calculated. The P-
value for this proportion is equal to the probability of observing a value equal to or
greater than the calculated proportion. Second, an additional P-value was calculated,
based on a chi-square test (with nine degrees of freedom) applied to the P-values in the

entire sample to ensure uniformity.

d) For both measures described in step (c) above, an assessment was made. A sample was
considered to have passed a statistical test if it satisfied both the proportion and

uniformity assessments.

RESULTS

Core-Generated Binary Sequences (1,000,000 bits x 1,000 Sequences)

The minimum pass rate for each statistical test (except for the random excursion (variant)
test) is approximately = 980 for the sample size of 1000 binary sequences that was being tested.
The subject has surpassed this minimum pass rate for all the associated tests. The minimum pass
rate for the random excursion (variant) test is approximately = 617 for the sample size of 631

binary sequences that was being tested. The subject has surpassed this minimum pass rate. In

33

summary, the subject has passed all 15 statistical tests defined by the NIST Statistical Test

Suite.

Core XOR Low Density Plaintext (1,000,000 bits x 1,000 Sequences) *

The minimum pass rate for each statistical test (except for the random excursion (variant)
test) is approximately = 908 for the sample size of 1000 binary sequences that was being tested.
The subject has surpassed this minimum pass rate for all the associated tests. The minimum pass
rate for the random excursion (variant) test is approximately = 599 for the sample size of 613
binary sequences that was being tested. The subject has surpassed this minimum pass rate. In
summary, the subject has passed all 15 statistical tests defined by the NIST Statistical Test

Suite.

Core XOR High Density Plaintext (1,000,000 bits x 1,000 Sequences) *

The minimum pass rate for each statistical test (except for the random excursion (variant)
test) is approximately = 980 for the sample size of 1000 binary sequences that was being tested.
The subject has surpassed this minimum pass rate for all the associated tests. The minimum pass
rate for the random excursion (variant) test is approximately = 599 for the sample size of 613
binary sequences that was being tested. The subject has surpassed this minimum pass rate. In
summary, the subject has passed all 15 statistical tests defined by the NIST Statistical Test

Suite.

* For those tests using high-density plaintexts and low-density plaintexts, the original sequence
of plaintexts were directly XOR-ed to the sequence of the core generated binary sequences. That

is, no obfuscation techniques such as shuffling have been applied to the plaintext prior to these

34

tests to assess the strength of the core algorithm. Test results suggest application of such
technique is unnecessary even if plaintext exhibits obvious patterns. It is noted here that AES and
other stream cipher algorithms being used today require obfuscation of plaintext as a part of their

algorithms.

SUMMARY

The core-generated keys have passed all 15 NIST STS tests demonstrating that the core
algorithm generates statistically random binary sequences. More importantly, the binary
sequences produced by directly XOR-ing the binary sequences generated by the core algorithm
and the low-density plaintexts passed all 15 NIST STS tests. Also, the binary sequences
produced by directly XOR-ing the binary sequences generated by the core algorithm and the
high-density plaintexts passed all 15 NIST STS tests. This clearly demonstrates that our core
algorithm can generate statistically random binary sequences out of plaintexts with obvious
patterns. Additionally, if these patterns were kept unchanged our core algorithm continues to

generate statistically random binary sequences.

NIST STS REFERENCES

1. Computer Resource Center, Random Bit Generation: Guide to the Statistical Tests, May

2016. https://csre.nist.gov/Projects/Random-Bit-Generation/Documentation-and-

Software/Guide-to-the-Statistical-Tests

35

2. Rukhin A., et al., A Statistical Test Suite for the Validation of Random Number
Generators and Pseudo Random Number Generators for Cryptographic Applications,
Version STS-2.1, NIST Special Publication 800-22revla, April, 2010.

https://nvlpubs.nist.eov/nistpubs/Legacy/SP/nistspecialpublication800-22rla.pdf

3. Soto, Juan, “Randomness Testing of the Advanced Encryption Standard Candidate
Algorithms”, U.S. Dept. of Commerce, Technology Administration, National Institute of

Standards and Technology, 1999. http://csrc.nist.gov/publications/nistir/ir6390.pdf

36

NIST STS APPENDIX A - RESULT OF THE CORE GENERATED
SEQUENCE (1000 SEQUENCES)

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF

PASSING SEQUENCES

generator is <data2/core.txt>

The minimum pass rate for each statistical test with the exception of the

random excursion (variant) test is approximately = 980 for a

sample size = 1000 binary sequences.

The minimum pass rate for the random excursion (variant) test

is approximately = 617 for a sample size = 631 binary sequences.

For further guidelines construct a probability table using the MAPLE program

provided in the addendum section of the documentation.

C1

95

115

86

91

107

89

108

107

97

109

96

111

99

102

108

98

117

106

106

94

106

115

108

100

91

109

C2

95

98

108

97

95

121

76

98

91

108

98

106

97

107

114

107

95

78

94

98

107

96

107

120

97

99

C3

99

99

106

105

96

94

109

96

104

87

107

109

92

101

100

96

104

90

100

109

112

110

113

89

116

C4

107

93

102

115

104

103

115

105

105

100

&3

100

100

104

107

105

74

89

89

116

Cs

114

90

103

87

107

103

110

98

114

108

100

102

101

99

106

87

118

103

100

107

99

117

100

84

100 98 84

Ceo

107

106

100

128

99

119

98

92

91

114

108

92

104

86

100

106

90

111

105

87

102

97

75

102

109

110

Cc7

112

102

93

89

95

94

96

112

106

90

100

91

96

101

100

100

102

94

101

104

80

92

116

91

103

97

C8

107

107

101

102

91

94

107

98

97

85

105

107

114

99

99

101

102

90

100

95

82

82

111

104

Cc9

88

101

95

102

98

78

91

103

98

&9

112

93

94

86

104

92

&7

99

102

102

95

102

101

100

102

101

C10 P-VALUE PROPORTION STATISTICAL TEST

103

89

100

&5

97

108

103

82

96

111

103

93

109

98

&5

89

112

128

108

107

98

108

92

98

88

98

0.317565

0.749884

0.889118

0.058243

0.99178

0.058612

0.217857

0.649612

0.861264

0.450297

0.471146

0.829047

0.973055

0.674543

0.755819

0.926487

0.399442

0.002322

0.937919

0.935716

0.595549

0.526105

0.020408

0.482707

0.254411

0.858002

988/1000

992/1000

989/1000

991/1000

987/1000

993/1000

988/1000

986/1000

989/1000

987/1000

987/1000

994/1000

987/1000

994/1000

989/1000

989/1000

989/1000

987/1000

986/1000

990/1000

987/1000

984/1000

989/1000

994/1000

992/1000

985/1000

Frequency
BlockFrequency
CumulativeSums
CumulativeSums

Runs

LongestRun

Rank

FFT
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate

NonOverlappingTemplate

37

101

97

111

104

99

99

89

116

110

98

91

73

112

103

102

107

98

109

110

103

98

96

102

106

109

108

98

92

105

101

82

97

96

109

95

103

107

113

79

117

38

84

100

89

118

89

98

96

102

92

106

86

93

119

94

91

108

91

93

82

105

96

101

92

103

82

93

92

109

&5

94

96

99

96

100

108

107

91

96

98

120

99

98

114

106

110

108

98

95

92

103

95

82

97

112

98

90

115

86

91

89

102

107

124

105

97

92

104

111

97

94

93

89

111

91

103

106

91

105

101

99

96

108

114

118

100

113

97

91

104

98

71

90

106

93

88

86

110

115

105

95 86 97

87

103

95

106

102

110

85

87

106

95

110

90

99

108

93

95

111

87

98

94

103

96

101

102

90

105

94

116

104

118

94

111

96

107

100

95

105

99

95

109

91

96

115

109

88

100

89

105

108

105

102

107

100

100

&9

107

96

98

99

93

99

114

103

111

&5

109

95

98

118

&9

109

114

108

92

109

92

101

95

79

94

&9

111

113

110

91

102

102

97

92

95

116

102

110

104

&7

126

100

82

99

97

102

114

117

108

98

104

106

118

102

100

88

97

110

99

106

105

106

115

90

110

79

106

121

87

106

89

99

95

121

87

98

103

84

87

96

104

0.737915

0.473064

0.32985

0.498313

0.935716

0.927677

0.920383

0.674543

0.394195

0.492436

0.15991

0.04687

0.080519

0.461612

0.234373

0.088226

0.402962

0.378705

0.670396

0.06523

0.486588

0.651693

0.733899

0.837781

0.249284

0.158133

0.899171

0.426272

993/1000

985/1000

991/1000

989/1000

992/1000

993/1000

996/1000

987/1000

988/1000

992/1000

992/1000

994/1000

989/1000

993/1000

989/1000

988/1000

990/1000

990/1000

992/1000

990/1000

992/1000

991/1000

988/1000

987/1000

987/1000

985/1000

992/1000

992/1000

NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate

NonOverlappingTemplate

38

103

93

86

89

95

107

113

101

100

93

131

104

106

108

97

96

97

100

102

101

99

97

115

104

86

103

&5

97

89

114

98

117

91

106

110

104

90

106

107

102

94

90

&3

111

105

107

99

38

106

121

89

96

105

90

100

100

101

98

90

90

108

95

114

108

121

96

107

111

87

103

110

78

106

96

104

101

89

107

97

98

101

95

96

108

101

88

96

75

113

107

94

106

101

105

94

108

93

94

97

88

109

115

100

102

95

92

99

106

93

102

81

106

105

115

98

117

106

88

&5

98

111

110

&5

103

105

94

97

115

103

109

101

99

108

102

103

102

87

104

99

106

113

101

82

108

103

112

102

97

105

108

98

101

109

107

101

99

98

108

107

97

94

77

93

110

98

108

108

106

99

90

106

98

114

89

96

107

92

120

95

94

99

97

107

100

98

103

94

98

106

114

92

91

110

90

92

90

115

106

91

91

100

91

98

104

104

98

100

103

104

102

100

100

102

109

90

106

104

94

99

109

109

105

91

78

102

101

106

103

109

110

84

87

107

96

110

105

91

97

110

109

99

101

100

99

86

102

101

&5

103

103

87

105

105

110

&5

100

115

91

0.339271

0.839507

0.749884

0.807412

0.936823

0.773405

0.856359

0.731886

0.973718

0.313041

0.087162

0.877083

0.805569

0.171867

0.707513

0.599693

0.106877

0.670396

0.299736

0.825505

0.862883

0.371941

0.482707

0.743915

0.279844

0.244236

0.500279

0.832561

990/1000

989/1000

995/1000

989/1000

993/1000

988/1000

987/1000

991/1000

993/1000

994/1000

988/1000

992/1000

992/1000

997/1000

993/1000

990/1000

990/1000

992/1000

988/1000

990/1000

995/1000

986/1000

984/1000

995/1000

991/1000

992/1000

988/1000

988/1000

NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate

NonOverlappingTemplate

39

97

79

105

84

106

110

98

104

118

90

95

99

103

86

114

96

110

104

90

110

99

98

96

108

100

105

100

86

91

98

97

103

93

107

94

97

81

102

106

96

86

101

93

112

&5

99

97

107

111

106

91

122

92

112

84

110

104

97

103

110

90

98

97

97

98

100

103

94

111

87

84

97

91

94

112

89

94

92

97

90

111

121

&3

106

102

123

103

107

94

93

89

98

90

99

99

99

97

109

103

90

110

105

116

107

103

98

110

100

115

113

96

94

103

110

92

112

94

96

105

106

105

120

93

116

89

109

111

99

94

91

109

112

90

113

90

100

107

105

102

103

89

94

99

104

113

105

105

112

84

105

112

93

100

103

108

102

108 97 98

106

91

101

89

103

113

121

115

109

120

97

92

94

103

105

104

98

107

101

118

107

114

90

86

108

116

105

&9

82

95

98

96

93

109

107

&7

111

104

118

86

91

116

101

91

115

&7

&7

84

97

113

80

88

98

114

113

96

102

97

94

93

113

90

100

117

93

84

107

91

96

93

106

90

101

107

&7

90

95

118

101

96

101

109

98

86

108

100

103

106

110

98

90

109

102

107

104

118

92

113

105

101

91

0.830808

0.350485

0.272977

0.313041

0.80372

0.957612

0.861264

0.514124

0.24675

0.641284

0.380407

0.989786

0.353733

0.274341

0.251837

0.524101

0.365253

0.893482

0.357

0.209948

0.293952

0.365253

0.365253

0.363593

0.496351

0.352107

0.320607

0.100109

989/1000

995/1000

986/1000

991/1000

991/1000

992/1000

988/1000

989/1000

987/1000

990/1000

988/1000

993/1000

986/1000

997/1000

986/1000

993/1000

989/1000

994/1000

991/1000

992/1000

991/1000

987/1000

994/1000

988/1000

994/1000

991/1000

990/1000

991/1000

NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate

NonOverlappingTemplate

40

100

100

105

91

98

99

105

118

104

102

119

90

92

103

93

93

98

102

108

117

95

104

95

100

84

99

111

108

115

87

108

120

98

72

104

89

96

105

102

84

105

96

110

98

104

102

100

93

94

93

95

100

117

101

99

95

97

112

105

103

97

101

100

91

97

106

102

105

95

92

102

87

100

86

96

99

100

101

95

95

93

111

95

93

87

118

106

80

119

118

97

113

100

107

87

102

103

96

106

107

98

&3

117

115

96

116

108

99

109

98

119

104

&5

115

106

103

93

92

119

101

101

108

99

118

91

94

117

38

87

123 97 93

97

107

98

98

116

84

103

96

106

112

103

106

93

119

101

76

115

94

96

114

96

88

104

108

113

96

104

104

105

88

96

98

108

100

107

99

86

93

100

118

113

108

88

104

110

109

108

93

101

92

103

96

104

102

104

90

116

99

103

100

100

94

108

86

86

104

81

105

118

106

115

100

91

118

96

97

118

106

108

99

94

96

92

90

106

91

116

104

90

86

100

99

84

104

109

90

84

110

110 98 83

&3

98

92

99

104

101

102

94

86

88

107

98

105

106

108

90

92

96

102

98

106

90

109

115

97

102

89

0.639202

0.214439

0.967382

0.678686

0.846338

0.177628

0.552383

0.133404

0.383827

0.474986

0.34565

0.429923

0.674543

0.751866

0.258307

0.653773

0.402962

0.502247

0.216713

0.753844

0.15119

0.316052

0.701366

0.853049

0.036352

0.317565

0.490483

0.209948

997/1000

987/1000

987/1000

993/1000

989/1000

993/1000

990/1000

986/1000

990/1000

985/1000

994/1000

987/1000

991/1000

993/1000

993/1000

991/1000

991/1000

988/1000

992/1000

989/1000

993/1000

987/1000

993/1000

990/1000

988/1000

995/1000

991/1000

991/1000

NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate

NonOverlappingTemplate

41

103

96

96

95

98

96

93

92

102

98

107

116

100

&3

105

101

87

97

123

111

107

59

69

63

67

55

72

62

105

103

101

100

96

105

103

118

115

99

101

103

&5

95

99

96

75

102

51

66

71

58

54

62

54

102 86 96

106

99

102

108

94

106

117

88

88

103

114

102

91

110

100

89

95

&5

92

60

76

63

65

60

57

72

106

112

115

106

110

101

&3

86

106

90

88

104

98

101

101

116

98

89

82

59

62

53

61

72

62

57

94

113

82

94

82

89

108

104

103

104

100

106

106

99

86

80

97

105

93

112

64

63

69

69

74

62

63

110

101

95

104

102

106

105

90

100

93

96

106

111

104

93

103

107

100

97

102

105

75

49

79

70

64

78

63

106

88

86

95

113

107

107

105

111

103

109

121

117

97

102

96

104

95

123

89

110

68

61

76

61

67

51

58

&7

113

109

105

102

104

90

95

112

100

105

101

99

106

110

113

103

72

66

52

71

65

57

61

104

98

94

94

94

97

104

102

94

105

&7

90

77

99

100

93

121

110

104

93

64

61

49

51

61

61

78

101

95

95

108

94

101

88

95

105

93

103

78

96

120

99

120

99

91

94

117

105

59

58

56

58

59

69

63

0.767582

0.854708

0.643366

0.591409

0.893482

0.739918

0.862883

0.169981

0.542228

0.859637

0.875539

0.017546

0.208837

0.488534

0.881662

0.5221

0.134172

0.807412

0.017068

0.455937

0.528111

0.617296

0.617296

0.072735

0.750985

0.709396

0.44021

0.617296

989/1000

992/1000

989/1000

991/1000

991/1000

989/1000

989/1000

993/1000

991/1000

985/1000

990/1000

987/1000

989/1000

992/1000

992/1000

994/1000

992/1000

988/1000

994/1000

990/1000

986/1000

623/631

626/631

625/631

622/631

628/631

628/631

625/631

NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
OverlappingTemplate
Universal
ApproximateEntropy
RandomExcursions
RandomExcursions
RandomExcursions
RandomExcursions
RandomExcursions
RandomExcursions

RandomExcursions

42

65

62

60

63

69

67

67

73

66

55

46

51

66

66

66

64

65

61

56

92

104

94

68

75

70

65

62

64

59

52

49

59

64

65

43

42

59

59

54

62

65

97

&5

66

61

66

62

66

64

62

56

79

68

77

75

65

64

58

76

75

66

70

104

100

106 101

60

58

58

71

64

63

57

64

65

74

49

57

62

61

65

55

60

72

72

110

&3

54

57

50

67

59

66

63

65

62

60

73

60

67

75

67

66

64

58

68

82

107

73

68

77

57

68

66

66

65

60

53

71

62

58

65

72

72

62

62

48

107

114

114 98 89

55

67

80

68

64

58

60

71

61

61

67

69

81

56

62

66

56

42

58

103

100

68

56

53

60

62

55

76

57

75

76

62

72

62

63

58

61

60

67

51

112

99

101

68

66

66

69

65

61

54

64

53

53

62

66

60

77

63

52

63

72

67

103

97

54

61

51

49

52

67

67

64

61

72

60

54

67

62

61

60

72

69

76

103

107

100

0.666838

0.837067

0.069925

0.72554

0.945667

0.985752

0.778883

0.735143

0.24052

0.280086

0.127498

0.470113

0.172922

0.142216

0.969117

0.568055

0.738329

0.273539

0.186968

0.510153

0.496351

0.90876

624/631

623/631

624/631

626/631

625/631

627/631

625/631

626/631

624/631

621/631

626/631

623/631

623/631

625/631

624/631

623/631

618/631

624/631

627/631

990/1000

994/1000

994/1000

RandomExcursions
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
Serial

Serial

LinearComplexity

43

44

NIST STS APPENDIX B — RESULT OF THE CORE XOR LOW
DENSITY PLAINTEXTS SEQUENCE (1000 SEQUENCES)

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF

PASSING SEQUENCES

generator is <data2/low_density_xor.txt>

The minimum pass rate for each statistical test with the exception of the

random excursion (variant) test is approximately = 980 for a

sample size = 1000 binary sequences.

The minimum pass rate for the random excursion (variant) test

is approximately = 599 for a sample size = 613 binary sequences.

For further guidelines construct a probability table using the MAPLE program

provided in the addendum section of the documentation.

C1

101

103

93

91

116

112

98

111

97

104

125

110

87

103

103

99

95

114

107

99

100

112

102

&3

89

115

C2

100

107

122

98

100

88

89

90

94

94

90

107

118

102

101

113

90

98

103

99

87

108

93

113

99

100

C3

94

109

96

95

113

109

97

110

113

116

104

100

&3

106

109

&5

107

87

119

&5

115

101

93

101

90

79

C4

91

82

95

98

97

101

90

102

88

113

99

91

125

96

104

106

95

&5

Cs

106

94

104

95

82

105

98

96

92

106

96

91

92

96

97

98

102

98

94

109

106

100

104

109

107

95

Ceo

108

106

113

117

113

91

104

92

80

109

89

93

92

93

111

107

105

90

86

102

101

105

97

119

C7

99

93

99

101

102

103

93

91

101

109

99

101

107

97

89

106

95

94

96

99

107

124

92

C8

97

104

109

109

84

100

118

109

124

103

113

108

112

101

74

116

92

100

106

93

92

110

105

115

c9

103

100

105

103

102

100

104

91

102

106

110

103

106

104

128

104

105

96

92

97

90

99

C10

101

92

95

108

88

113

102

88

113

86

94

88

100

100

96

98

95

97

110

109

&3

98

108

101

104

101

P-VALUE PROPORTION STATISTICAL TEST

0.983938

0.880145

0.180568

0.6952

0.142062

0.221317

0.816537

0.703417

0.06943

0.558502

0.22248

0.798139

0.189625

0.998169

0.38899

0.33297

0.846338

0.126658

0.197981

0.779188

0.106877

0.912724

0.921624

0.55442

0.33297

0.073872

988/1000

990/1000

991/1000

993/1000

984/1000

994/1000

992/1000

987/1000

995/1000

988/1000

983/1000

989/1000

987/1000

984/1000

985/1000

990/1000

987/1000

985/1000

986/1000

988/1000

992/1000

992/1000

992/1000

997/1000

993/1000

992/1000

Frequency
BlockFrequency
CumulativeSums
CumulativeSums

Runs

LongestRun

Rank

FFT
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate

NonOverlappingTemplate

45

100

100

115

93

106

110

86

93

96

96

103

84

97

104

100

94

&3

102

105

115

110

95

116

103

115

112

93

92

103

&5

98

105

99

91

108

93

105

98

95

82

103

107

100

&5

109

99

109

109

82

97

84

82

106

100

94

111

78

94

90

101

87

98

94

107

115

82

96

111

110

&5

105

107

123

97

&5

80

97

100

97

107

104

&3

90

111

108

94

93

109

97

95

106

89

91

100

103

106

114

90

104

81

107

94

117

105

115

110

93

109

108

105

109

102

93

100

106

118

109

100

110

116

106

110

96

112

86

71

91

119

91

100

98

111

102

99

&5

103

112

103

100

101

119

111

104

99

100

96

84

90

100

104

112 96 93

97

94

103

111

104

92

102

97

98

102

101

86

93

100

111

111

115

122

100

90

96

91

110

98

93

105

91

103

110

93

102

95

114

117

101

100

105

101

118

87

105

93

75

104

93

92

120

107

110

102

101

100

97

112

100

102

104

86

97

102

99

101

102

95

110

101

95

110

100

90

97

119

93

88

111

110

95

109

105

119

89

99

115

97

117

104

90

113

101

93

111

104

100

87

105

93

95

105

89

103

103

93

92

94

110

88

94

99

107

0.431754

0.751866

0.727851

0.771469

0.574903

0.670396

0.347257

0.624627

0.870856

0.536163

0.997943

0.254411

0.292519

0.480771

0.957612

0.39594

0.004365

0.693142

0.012128

0.214439

0.083526

0.733899

0.288249

0.699313

0.399442

0.834308

0.496351

0.614226

987/1000

992/1000

990/1000

987/1000

990/1000

993/1000

996/1000

990/1000

995/1000

991/1000

993/1000

992/1000

991/1000

989/1000

994/1000

992/1000

990/1000

991/1000

990/1000

988/1000

991/1000

991/1000

982/1000

991/1000

990/1000

989/1000

991/1000

995/1000

NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate

NonOverlappingTemplate

46

98

93

&5

114

103

107

120

105

95

87

108

127

97

103

107

103

98

101

93

95

114

96

93

89

116

98

93

86

91

103

88

97

98

107

103

95

107

106

115

91

90

96

104

101

98

99

102

104

106

104

109

118

102

82

&5

103

89

111

99

106

101

92

105

101

103

109

102

101

106

99

100

88

113

116

96

103

98

100

91

108

86

94

93

131

97

101

97

104

102

88

&3

&5

105

87

96

107

88

101

97

94

111

95

&5

100

95

98

107

91

93

106

104

96

102

103

103

102

99

113

91

110

93

113

110

94

88

82

105

94

95

107

99

101

99

102

96

122

104

106

116

104

109

96

87

97

101

106

62

105

99

102

99

&3

92

106

90

86

91

97

88

94

114

122

103

98

102

104

98

93

103

101

109

91

104

107

96

108

113

87

110

97

117

105

110

98

100

101

101

107

104

103

102

100

109

111

107

92

97

108

89

103

94

82

116

96

105

102

104

102

101

89

113

109

105

107

100

90

99

101

104

116

108

102

&5

111

95

105

103

113

103

89

111

102

106

99

111

103

98

117

102

105

97

99

87

92

110

86

105

80

98

87

113

114

86

100

108

92

100

109

&5

103

110

99

91

80

107

98

103

93

116

0.816537

0.415422

0.705466

0.313041

0.807412

0.469232

0.254411

0.809249

0.735908

0.536163

0.01695

0.057875

0.337688

0.930026

0.603841

0.95493

0.484646

0.293952

0.869278

0.626709

0.53012

0.986227

0.959347

0.524101

0.16626

0.313041

0.352107

0.062036

992/1000

994/1000

987/1000

991/1000

992/1000

988/1000

986/1000

985/1000

994/1000

989/1000

990/1000

986/1000

991/1000

992/1000

992/1000

990/1000

989/1000

991/1000

991/1000

988/1000

988/1000

990/1000

987/1000

985/1000

991/1000

991/1000

985/1000

997/1000

NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate

NonOverlappingTemplate

47

97

76

113

95

93

104

107

94

104

82

100

99

125

82

92

105

93

100

96

89

116

104

94

100

102

101

97

102

94

98

93

103

110

106

90

100

99

96

91

100

108

107

92

101

115

82

95

100

80

87

122

107

110

111

115

93

113 90 92

112

103

117

109

111

109

94

111

100

103

84

93

92

115

102

93

107

105

111

112

117

97

102

&3

82

103

102

109

125

86

90

102

86

81

96

102

101

95

103

90

96

&3

97

93

95

86

111

108

90

100

101

102

104

95

100

90

89

116

102

96

88

90

101

116

108

97

96

106

107

101

97

101

106

102

87

95

112

89

94

99

80

107

84

100

97

117

110

89

110

103

102

91

104

97

111

108

102

113

112

101

94

106

111

122

84

111

93

105

102

101

100

106

114

130

79

102

92

100

91

104

92

88

102

121

98

101

100

73

104

87

95

109

94

101

124

111

77

102

88

101

88

102

100

109

97

123

102

106

91

110

99

89

101

96

86

102

92

111

99

100

118

99

103

104

86

109

92

90

90

95

104

95

90

91

96

117

120

97

95

117

102

90

103

117

102

88

110

91

90

114

107

104

114

102

81

103

106

128

103

107

98

94

102

99

96

97

92

94

109

89

111

98

104

100

88

96

104

0.06523

0.090936

0.041981

0.225998

0.536163

0.649612

0.224821

0.058612

0.063615

0.775337

0.761719

0.380407

0.371941

0.424453

0.383827

0.576961

0.886162

0.141256

0.961869

0.518106

0.185555

0.02641

0.55646

0.566688

0.572847

0.17377

0.357

0.980883

995/1000

997/1000

980/1000

988/1000

992/1000

992/1000

989/1000

991/1000

991/1000

988/1000

992/1000

985/1000

982/1000

993/1000

988/1000

990/1000

995/1000

989/1000

984/1000

992/1000

985/1000

990/1000

991/1000

997/1000

992/1000

994/1000

992/1000

989/1000

NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate

NonOverlappingTemplate

48

86

82

93

93

109

101

102

96

101

112

110

94

104

95

88

114

91

94

89

82

99

90

103

96

96

88

114

106

110

97

93

105

102

94

113

96

90

91

103

101

96

112

90

107

120

97

114

112

105

111

96

96

98

115

97

107

91

101

89

103

82

99

99

109

89

102

102

&5

97

97

95

93

90

104

95

95

110

102

95

112

95

113

89

105

111

104

105

95

88

99

97

94

92

101

78

110

82

102

99

77

104

114

107

111

108

82

106

106

90

104

97

104

112

96

115

102

101

107

98

117

102

101

115

101

117

102

93

111

98

115

111

95

92

97

104

104

80

100

103

99

104

116

119

96

92

100

100

87

102

101

118

90

87

96

103

91

100

102

87

101

112

100

108

108

112

96

76

98

94

91

105

107

107

104

118

91

103

98

110

93

104

110

112

96

104

102

104

108

113

92

106

&3

101

87

106

107

105

108

94

101

101

97

106

104

97

101

91

100

117

98

108

93

107

107

87

109

101

117

110

88

109

96

115

119

104

102

91

95

88

99

94

93

102

115

75

108

109

97

81

96

105

80

97

104

89

91

88

99

91

107

103

102

101

91

95

106

100

98

112

102

101

94

112

102

106

98

104

94

92

93

93

105

98

110

92

0.139655

0.484646

0.849708

0.72987

0.15991

0.995373

0.881662

0.986227

0.504219

0.496351

0.711601

0.709558

0.028434

0911413

0.242986

0.357

0.197981

0.783019

0.488534

0.148653

0.59762

0.595549

0.705466

0.632955

0.807412

0.295391

0.248014

0.883171

993/1000

994/1000

993/1000

993/1000

988/1000

986/1000

992/1000

987/1000

991/1000

988/1000

989/1000

992/1000

988/1000

992/1000

987/1000

986/1000

989/1000

990/1000

989/1000

991/1000

991/1000

990/1000

985/1000

992/1000

993/1000

993/1000

985/1000

984/1000

NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate

NonOverlappingTemplate

49

97

101

107

114

100

103

106

97

105

99

88

99

111

91

111

109

101

86

112

121

92

51

68

61

72

63

&3

60

94

117

96

109

111

115

92

91

97

113

113

106

107

101

98

112

91

104

91

94

109

55

48

68

71

65

64

72

108

100

104

94

111

100

92

104

100

84

102

99

107

104

92

99

84

131

92

99

91

66

56

63

57

56

51

48

99

109

102

113

110

&3

103

87

113

97

98

118

99

99

122

80

118

95

86

92

109

70

77

63

53

54

58

51

102

105

99

96

106

90

95

98

109

109

88

94

120

95

90

105

99

106

105

110

87

61

65

70

55

58

71

114

90

99

96

84

78

120

107

100

102

113

88

84

99

90

90

94

103

109

108

69

66

56

48

61

54

59

99

105

106

104

98

126

111

99

96

97

94

96

93

100

96

94

102

100

95

106

72

75

59

60

56

64

78

94

97

110

88

95

98

79

116

104

99

106

104

96

107

108

107

135

100

92

102

101

47

57

53

60

74

58

55

95

88

98

80

105

89

88

102

92

102

93

103

80

103

&5

87

101

103

88

55

46

59

52

67

58

64

107

94

95

86

99

130

98

95

&5

99

103

96

87

108

109

99

99

86

112

91

109

67

61

66

70

62

65

55

0.816537

0.651693

0.81108

0.442831

0.292519

0.015598

0.030806

0.568739

0.668321

0.796268

0.583145

0.725829

0.258307

0.96586

0.116065

0.508172

0.009333

0.064418

0.534146

0.524101

0.532132

0.249701

0.070744

0.955982

0.22948

0.748093

0.241456

0.116054

991/1000

992/1000

989/1000

986/1000

989/1000

992/1000

990/1000

987/1000

993/1000

992/1000

994/1000

992/1000

992/1000

992/1000

989/1000

986/1000

989/1000

997/1000

988/1000

985/1000

988/1000

607/613

604/613

609/613

608/613

601/613

603/613

608/613

NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
OverlappingTemplate
Universal
ApproximateEntropy
RandomExcursions
RandomExcursions
RandomExcursions
RandomExcursions
RandomExcursions
RandomExcursions

RandomExcursions

50

53

68

64

67

68

63

62

66

71

62

63

57

59

61

62

64

66

67

61

102

110

82

56

57

67

69

65

74

68

60

65

63

47

50

52

52

55

61

52

50

57

93

94

59

69

72

64

71

61

72

62

57

50

46

54

59

52

62

54

59

57

71

103

93

109 101

64

59

58

63

67

58

57

&3

67

53

61

67

45

62

55

62

55

69

59

107

101

110

58

54

55

71

59

59

55

59

54

70

79

65

72

71

43

48

52

60

53

67

68

67

54

56

76

71

61

64

68

57

64

71

56

56

51

80

56

61

102 88

114 104

124 97

57

61

57

60

63

62

51

52

54

64

60

67

67

66

70

54

68

65

55

98

80

72

55

60

60

64

54

60

54

61

75

66

47

66

75

75

79

47

58

61

93

84

102 90

62

62

47

52

53

53

56

59

60

55

61

77

65

62

57

57

67

60

70

100 114

106 114

99

65

60

66

53

47

53

61

57

60

53

73

65

57

56

78

&3

67

71

65

86

0.839987

0.88243

0.53911

0.667811

0.509568

0.379067

0.599625

0.282511

0.872348

0.330947

0.082315

0.196314

0.289435

0.458724

0.057593

0.019935

0.095539

0.701669

0.816833

0.827279

0.169044

0.1252

607/613

607/613

607/613

605/613

604/613

603/613

603/613

605/613

605/613

607/613

606/613

608/613

602/613

602/613

606/613

606/613

605/613

607/613

608/613

994/1000

990/1000

991/1000

51

RandomExcursions
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
Serial

Serial

LinearComplexity

52

NIST STS APPENDIX C - RESULT OF THE CORE XOR HIGH
DENSITY PLAINTEXTS SEQUENCE (1000 SEQUENCES)

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF

PASSING SEQUENCES

generator is <data2/high_density_xor.txt>

The minimum pass rate for each statistical test with the exception of the

random excursion (variant) test is approximately = 980 for a

sample size = 1000 binary sequences.

The minimum pass rate for the random excursion (variant) test

is approximately = 599 for a sample size = 613 binary sequences.

For further guidelines construct a probability table using the MAPLE program

provided in the addendum section of the documentation.

C1

101

103

93

91

116

101

100

111

86

101

109

111

91

111

99

88

99

105

97

106

103

100

114

107

101

97

C2

100

107

122

98

100

95

79

90

104

91

112

98

101

107

106

113

113

97

91

92

115

111

109

96

117

94

C3

94

109

96

95

113

97

110

110

131

84

99

92

104

107

99

102

84

100

104

92

100

111

94

104

100

108

c4

91

97

82

95

98

90

96

101

95

118

80

122

99

99

118

98

97

113

87

103

&3

110

113

102

109

99

Cs

106

94

104

95

82

94

96

96

106

99

105

90

95

120

94

88

109

109

98

95

90

106

96

99

105

102

Ceo

108

106

113

117

113

111

103

92

103

94

90

90

99

84

88

113

102

100

107

120

78

84

96

99

90

114

Cc7

99

88

93

99

101

104

103

103

102

94

96

100

93

96

94

97

96

99

111

126

98

104

106

105

99

90

C8

97

104

109

109

84

118

123

109

100

135

107

108

107

96

104

106

99

104

116

c9

103

100

93

93

105

94

110

100

87

&5

103

80

103

93

102

92

102

88

94

89

105

80

98

88

95

C10 P-VALUE PROPORTION STATISTICAL TEST

101

92

95

108

88

96

80

88

86

99

99

109

108

87

96

103

99

&5

95

98

130

99

86

95

94

107

0.983938

0.880145

0.180568

0.6952

0.142062

0.653773

0.062821

0.703417

0.064418

0.009333

0.508172

0.116065

0.96586

0.258307

0.725829

0.583145

0.796268

0.668321

0.568739

0.030806

0.015598

0.292519

0.442831

0.81108

0.651693

0.816537

988/1000

990/1000

991/1000

993/1000

984/1000

990/1000

994/1000

987/1000

997/1000

989/1000

986/1000

989/1000

992/1000

992/1000

992/1000

994/1000

992/1000

993/1000

987/1000

990/1000

992/1000

989/1000

986/1000

989/1000

992/1000

991/1000

Frequency
BlockFrequency
CumulativeSums
CumulativeSums

Runs

LongestRun

Rank

FFT
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate

NonOverlappingTemplate

53

106

114

88

96

96

103

90

99

82

89

94

91

114

88

95

104

94

110

112

101

96

102

101

109

93

93

82

86

107

97

115

98

96

96

111

105

112

114

97

120

107

90

112

96

101

103

91

90

96

113

94

102

105

93

97

110

105

89

113

95

112

95

102

110

97

&5

102

102

89

109

99

99

82

103

89

101

91

104

97

104

90

106

106

82

108

111

107

114

104

77

99

102

82

110

78

101

92

97

99

88

95

105

104

111

100

80

104

104

92

95

111

115

98

111

102

117

101

115

101

102

117

98

107

101

102

115

96

112

91

99

96

112

108

108

100

112

101

87

102

100

91

103

96

87

90

118

101

102

87

100

100

92

96

119

116

104

103

87

101

&3

106

113

108

104

102

104

96

112

110

104

93

110

98

103

91

118

104

107

107

105

94

98

76

96

109

88

110

117

101

109

107

107

93

108

117

100

101

97

104

106

101

101

94

108

105

107

106

107

91

99

88

91

89

104

97

80

105

96

81

97

109

108

75

115

102

93

94

99

88

95

91

102

104

119

115

92

110

98

105

93

93

92

94

81

104

98

106

102

112

94

101

102

112

98

100

106

95

91

101

102

103

0.883171

0.248014

0.295391

0.807412

0.632955

0.705466

0.595549

0.59762

0.148653

0.488534

0.783019

0.197981

0.357

0.242986

0.911413

0.028434

0.709558

0.711601

0.496351

0.504219

0.986227

0.881662

0.995373

0.15991

0.72987

0.849708

0.484646

0.139655

984/1000

985/1000

993/1000

993/1000

992/1000

985/1000

990/1000

991/1000

991/1000

989/1000

990/1000

989/1000

986/1000

987/1000

992/1000

988/1000

992/1000

989/1000

988/1000

991/1000

987/1000

992/1000

986/1000

988/1000

993/1000

993/1000

994/1000

993/1000

NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate

NonOverlappingTemplate

102

97

101

102

100

94

104

116

89

96

100

93

105

92

82

125

99

100

82

104

94

107

104

93

95

113

76

97

93

115

111

110

107

122

87

80

100

95

82

115

101

92

107

108

100

91

96

99

100

90

106

110

103

93

98

94

102

103

82

102

97

117

112

111

105

107

93

102

115

92

93

103

100

111

109

111

109

117

103

112

95

104

102

101

100

90

108

111

86

95

93

97

&3

96

90

103

95

101

102

96

81

86

125

109

98

99

94

89

112

95

87

102

106

101

97

101

107

106

96

97

108

116

101

90

88

96

102

116

89

90

100

113 90 92

111

84

122

111

106

94

101

112

113

102

108

111

97

104

91

102

103

110

89

110

117

97

100

84

107

78

80

101

94

109

95

87

104

73

100

101

98

121

102

88

92

104

91

100

92

102

79

130

114

106

100

101

102

105

93

99

118

100

99

111

92

102

96

101

89

99

110

91

106

102

123

97

109

100

102

102

77

111

124

90

91

110

88

102

117

103

90

102

117

95

97

120

117

96

91

90

95

104

95

90

90

92

109

86

104

103

104

96

88

100

104

98

111

89

109

94

92

97

96

102

94

98

107

103

128

106

103

81

102

114

104

107

114

0.980883

0.357

0.17377

0.572847

0.566688

0.55646

0.02641

0.185555

0.518106

0.961869

0.141256

0.886162

0.576961

0.383827

0.424453

0.371941

0.380407

0.761719

0.775337

0.063615

0.058612

0.224821

0.649612

0.536163

0.225998

0.041981

0.090936

0.06523

989/1000

992/1000

994/1000

992/1000

997/1000

991/1000

990/1000

985/1000

992/1000

984/1000

989/1000

995/1000

990/1000

988/1000

993/1000

982/1000

985/1000

992/1000

988/1000

991/1000

991/1000

989/1000

992/1000

992/1000

988/1000

980/1000

997/1000

995/1000

NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate

NonOverlappingTemplate

55

86

93

98

116

89

93

96

114

95

93

101

98

103

107

103

97

127

108

87

95

105

120

107

103

114

&5

93

98

103

&5

82

102

118

109

104

106

104

102

99

98

101

104

96

90

91

115

106

107

95

103

107

98

97

88

103

91

131

93

94

86

108

91

100

103

96

116

113

88

100

99

106

101

102

109

103

101

105

92

101

106

99

111

89

96

104

106

93

91

107

95

100

&5

105

&5

&3

88

102

104

97

101

97

106

104

122

96

102

99

101

99

107

95

94

105

82

88

94

110

113

93

110

91

113

99

102

103

103

102

103

122

114

94

88

97

91

86

90

106

92

&3

99

102

99

105

62

106

101

97

87

96

78

109

104

116

102

103

104

107

101

101

100

98

110

105

117

97

110

87

113

108

96

107

104

91

109

101

103

93

98

104

102

98

101

99

90

100

107

105

109

113

89

101

102

104

102

105

96

116

82

94

103

89

108

97

92

107

111

109

100

86

110

92

99

97

105

102

117

98

103

111

99

106

102

111

89

103

113

103

105

95

111

&5

102

108

116

104

116

93

103

98

98

87

93

107

80

91

99

110

103

&5

109

100

92

108

100

86

114

113

87

98

80

105

0.062036

0.352107

0.313041

0.16626

0.524101

0.959347

0.986227

0.53012

0.626709

0.869278

0.293952

0.484646

0.95493

0.603841

0.930026

0.337688

0.057875

0.01695

0.536163

0.735908

0.809249

0.254411

0.469232

0.807412

0.313041

0.705466

0.415422

0.816537

997/1000

985/1000

991/1000

991/1000

985/1000

987/1000

990/1000

988/1000

988/1000

991/1000

991/1000

989/1000

990/1000

992/1000

992/1000

991/1000

986/1000

990/1000

989/1000

994/1000

985/1000

986/1000

988/1000

992/1000

991/1000

987/1000

994/1000

992/1000

NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate

NonOverlappingTemplate

56

92

93

112

115

103

116

95

110

115

105

102

&3

94

100

104

97

84

103

96

96

93

86

110

106

93

115

100

100

111

94

100

106

82

84

97

82

109

109

99

109

&5

100

107

103

82

95

98

105

93

108

91

99

105

98

&5

103

&3

104

107

97

100

97

&5

97

123

107

105

&5

110

111

96

82

115

107

94

98

87

101

90

94

78

105

108

109

93

110

115

105

117

94

107

81

104

90

114

106

103

100

91

89

106

95

97

109

93

94

108

111

99

102

93

111

98

100

91

119

91

71

86

112

92

96

110

106

116

97

110

100

97

109

118

106

100

93

102

109

104

100

90

84

96

88

96

96

100

99

104

111

119

101

100

86

92

103

112

103

&5

87

100

90

99

91

105

93

98

110

91

96

90

100

122

115

111

111

100

93

86

101

102

98

97

102

92

104

111

103

94

97

112

97

100

101

102

110

107

120

92

93

104

75

93

105

87

118

101

105

100

101

117

114

95

102

93

110

103

89

119

105

109

95

110

111

88

93

119

97

90

100

110

95

101

110

95

102

101

99

102

97

86

104

102

100

112 96 93

107

99

94

88

110

94

92

93

103

103

89

105

95

93

105

87

100

104

111

93

101

113

90

104

117

97

115

99

0.614226

0.496351

0.834308

0.399442

0.699313

0.288249

0.733899

0.083526

0.214439

0.012128

0.693142

0.004365

0.39594

0.957612

0.480771

0.292519

0.254411

0.997943

0.536163

0.870856

0.624627

0.347257

0.670396

0.574903

0.771469

0.727851

0.751866

0.431754

995/1000

991/1000

989/1000

990/1000

991/1000

982/1000

991/1000

991/1000

988/1000

990/1000

991/1000

990/1000

992/1000

994/1000

989/1000

991/1000

992/1000

993/1000

991/1000

995/1000

990/1000

996/1000

993/1000

990/1000

987/1000

990/1000

992/1000

987/1000

NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate

NonOverlappingTemplate

57

115

89

&3

102

112

100

99

107

114

95

99

103

103

87

110

125

104

97

117

121

92

53

60

&3

63

72

61

68

100

99

113

93

108

87

99

103

98

90

113

101

102

118

107

90

94

94

108

94

109

56

72

64

65

71

68

48

79

90

101

93

101

115

&5

119

87

107

&5

109

106

&3

100

104

116

113

96

99

91

59

48

51

56

57

63

56

&5

95

106

104

96

125

91

84

99

113

88

102

97

97

96

96

99

90

120

92

109

64

51

58

54

53

63

77

95

107

109

104

100

106

109

94

98

102

98

96

92

91

96

106

92

117

110

58

71

58

55

70

65

59

119

97

91

93

105

101

102

86

90

105

107

111

93

92

93

89

109

80

108

67

59

54

61

48

56

66

92

124

107

99

96

94

95

106

89

97

107

101

99

109

101

91

93

74

95

106

57

78

64

56

60

59

75

115

105

110

92

93

106

100

92

116

74

101

112

108

113

103

124

90

102

101

72

55

58

74

60

53

57

99

90

97

94

92

96

105

104

128

104

89

106

103

110

106

102

91

104

108

103

88

62

64

58

67

52

59

46

101

104

101

108

98

&3

109

110

97

95

98

96

100

100

88

94

86

113

91

91

109

65

55

65

62

70

66

61

0.073872

0.33297

0.55442

0.921624

0.912724

0.106877

0.779188

0.197981

0.126658

0.846338

0.33297

0.38899

0.998169

0.189625

0.798139

0.22248

0.558502

0.06943

0.003996

0.524101

0.532132

0.839987

0.116054

0.241456

0.748093

0.22948

0.955982

0.070744

992/1000

993/1000

997/1000

992/1000

992/1000

992/1000

988/1000

986/1000

985/1000

987/1000

990/1000

985/1000

984/1000

987/1000

989/1000

983/1000

988/1000

995/1000

985/1000

985/1000

988/1000

607/613

608/613

603/613

601/613

608/613

609/613

604/613

NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
NonOverlappingTemplate
OverlappingTemplate
Universal
ApproximateEntropy
RandomExcursions
RandomExcursions
RandomExcursions
RandomExcursions
RandomExcursions
RandomExcursions

RandomExcursions

58

51 55
61 57
67 50
66 52
64 61
62 55
61 52
59 52
57 50
63 47
62 63
71 65
66 60
62 68
63 74
68 65
67 69
64 67
68 57
102 93
110 94

&5 92

66

71

57

59

54

62

52

59

54

46

50

57

62

72

61

71

64

72

69

103

93

111

70

59

69

55

62

55

62

45

67

61

53

67

&3

57

58

67

63

58

59

107

101

104

61

53

60

52

48

43

71

72

65

79

70

54

59

55

59

59

71

55

54

69

61

56

80

51

56

56

71

64

57

68

64

61

71

76

56

54

67

68

102 88

114 104

103 95

72

55

65

68

54

70

66

67

67

60

64

54

52

51

62

63

60

57

61

98

80

47

61

58

47

79

75

75

66

47

66

75

61

54

60

54

64

60

60

55

93

84

104 97

55

70

60

67

57

57

62

65

77

61

55

60

59

56

53

53

52

47

62

100 114

106 114

107 102

67

65

71

67

&3

78

56

57

65

73

53

60

57

61

53

47

53

66

60

0.249701

0.816833

0.701669

0.095539

0.019935

0.057593

0.458724

0.289435

0.196314

0.082315

0.330947

0.872348

0.282511

0.599625

0.379067

0.509568

0.667811

0.53911

0.88243

0.827279

0.169044

0.800005

607/613

608/613

607/613

605/613

606/613

606/613

602/613

602/613

608/613

606/613

607/613

605/613

605/613

603/613

603/613

604/613

605/613

607/613

607/613

994/1000

990/1000

994/1000

59

RandomExcursions
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
RandomExcursionsVariant
Serial

Serial

LinearComplexity

60

ANECDOTAL INFORMATION

Bruce Schneier is widely regarded as one of the greatest minds in cryptography and certainly
deserves his own paragraph. I have crossed paths with him in the past — another story. I find it
humorous and a bit coincidental that while working to commercialize this, in a part of my sales
pitch I would jokingly say that “even if the aliens come down, they can’t crack our encryption”.
My financial advisor, who apparently failed to see the humor, strongly advised me to stop saying
that, even though everyone who heard it laughed and took it tongue-in-cheek. Shortly after I
stopped using that jovial verbiage, Bruce Schneier released a blog essay (“Cryptography after the
Aliens Land”, inline below) that stated anyone who would attempt an OTP was a crackpot. I am
including this as an example of the mindset prevalent amongst cryptographers with respect to
OTP. This mindset has been the result of the general thinking that large encryption keys must be

continuously distributed to all relevant parties in order to perform this type of encryption.

“CRYPTOGRAPHY AFTER THE ALIENS LAND”

e Bruce Schneier, IEEE Security & Privacy, September/October 2018.

Quantum computing is a new way of computing—one that could allow humankind
to perform computations that are simply impossible using today's computing
technologies. It allows for very fast searching, something that would break some of the
encryption algorithms we use today. And it allows us to easily factor large numbers,

something that would break the RSA cryptosystem for any key length.

This is why cryptographers are hard at work designing and analyzing "quantum-

resistant” public-key algorithms. Currently, quantum computing is too nascent for

61

cryptographers to be sure of what is secure and what isn't. But even assuming aliens have
developed the technology to its full potential, quantum computing doesn't spell the end of
the world for cryptography. Symmetric cryptography is easy to make quantum-resistant,
and we're working on quantum-resistant public-key algorithms. If public-key
cryptography ends up being a temporary anomaly based on our mathematical knowledge
and computational ability, we'll still survive. And if some inconceivable alien technology
can break all of cryptography, we still can have secrecy based on information theory—

albeit with significant loss of capability.

At its core, cryptography relies on the mathematical quirk that some things are
easier to do than to undo. Just as it's easier to smash a plate than to glue all the pieces
back together, it's much easier to multiply two prime numbers together to obtain one
large number than it is to factor that large number back into two prime numbers.

Asymmetries of this kind—one-way functions and trap-door one-way functions—underlie

all of cryptography.

To encrypt a message, we combine it with a key to form ciphertext. Without the
key, reversing the process is more difficult. Not just a little more difficult, but
astronomically more difficult. Modern encryption algorithms are so fast that they can
secure your entire hard drive without any noticeable slowdown, but that encryption can't

be broken before the heat death of the universe.

With symmetric cryptography—the kind used to encrypt messages, files, and
drives— that imbalance is exponential, and is amplified as the keys get larger. Adding

one bit of key increases the complexity of encryption by less than a percent (I'm hand-

62

waving here) but doubles the cost to break. So a 256-bit key might seem only twice as
complex as a 128-bit key, but (with our current knowledge of mathematics) it's

340,282,366,920,938,463, 463,374,607,431,768,211,456 times harder to break.

Public-key encryption (used primarily for key exchange) and digital signatures
are more complicated. Because they rely on hard mathematical problems like factoring,
there are more potential tricks to reverse them. So you'll see key lengths of 2,048 bits for
RSA, and 384 bits for algorithms based on elliptic curves. Here again, though, the costs
to reverse the algorithms with these key lengths are beyond the current reach of

humankind.

This one-wayness is based on our mathematical knowledge. When you hear about
a cryptographer "breaking" an algorithm, what happened is that they've found a new
trick that makes reversing easier. Cryptographers discover new tricks all the time, which
is why we tend to use key lengths that are longer than strictly necessary. This is true for

both symmetric and public-key algorithms,; we're trying to future-proof them.

Quantum computers promise to upend a lot of this. Because of the way they work,
they excel at the sorts of computations necessary to reverse these one-way functions. For
symmetric cryptography, this isn't too bad. Grover's algorithm shows that a quantum
computer speeds up these attacks to effectively halve the key length. This would mean
that a 256-bit key is as strong against a quantum computer as a 128-bit key is against a

conventional computer; both are secure for the foreseeable future.

For public-key cryptography, the results are more dire. Shor's algorithm can

easily break all of the commonly used public-key algorithms based on both factoring and

63

the discrete logarithm problem. Doubling the key length increases the difficulty to break

by a factor of eight. That's not enough of a sustainable edge.

There are a lot of caveats to those two paragraphs, the biggest of which is that
quantum computers capable of doing anything like this don't currently exist, and no one
knows when—or even if— we'll be able to build one. We also don't know what sorts of
practical difficulties will arise when we try to implement Grover's or Shor's algorithms
for anything but toy key sizes. (Error correction on a quantum computer could easily be
an unsurmountable problem.) On the other hand, we don't know what other techniques
will be discovered once people start working with actual quantum computers. My bet is
that we will overcome the engineering challenges, and that there will be many advances
and new techniques—but they're going to take time to discover and invent. Just as it took
decades for us to get supercomputers in our pockets, it will take decades to work through

all the engineering problems necessary to build large-enough quantum computers.

In the short term, cryptographers are putting considerable effort into designing
and analyzing quantum-resistant algorithms, and those are likely to remain secure for
decades. This is a necessarily slow process, as both good cryptanalysis transitioning
standards take time. Luckily, we have time. Practical quantum computing seems to

always remain "ten years in the future,” which means no one has any idea.

After that, though, there is always the possibility that those algorithms will fall to
aliens with better quantum techniques. I am less worried about symmetric cryptography,
where Grover's algorithm is basically an upper limit on quantum improvements, than [

am about public-key algorithms based on number theory, which feel more fragile. It's

64

possible that quantum computers will someday break all of them, even those that today

are quantum resistant.

If that happens, we will face a world without strong public-key cryptography.
That would be a huge blow to security and would break a lot of stuff we currently do, but
we could adapt. In the 1980s, Kerberos was an all-symmetric authentication and
encryption system. More recently, the GSM cellular standard does both authentication
and key distribution—at scale—with only symmetric cryptography. Yes, those systems
have centralized points of trust and failure, but it's possible to design other systems that
use both secret splitting and secret sharing to minimize that risk. (Imagine that a pair of
communicants get a piece of their session key from each of five different key servers.) The
ubiquity of communications also makes things easier today. We can use out-of-band
protocols where, for example, your phone helps you create a key for your computer. We
can use in-person registration for added security, maybe at the store where you buy your
smartphone or initialize your Internet service. Advances in hardware may also help to
secure keys in this world. I'm not trying to design anything here, only to point out that
there are many design possibilities. We know that cryptography is all about trust, and we
have a lot more techniques to manage trust than we did in the early years of the Internet.
Some important properties like forward secrecy will be blunted and far more complex,

but as long as symmetric cryptography still works, we'll still have security.

It's a weird future. Maybe the whole idea of number theory—based encryption,
which is what our modern public-key systems are, is a temporary detour based on our
incomplete model of computing. Now that our model has expanded to include quantum

computing, we might end up back to where we were in the late 1970s and early 1980s:

65

symmetric cryptography, code-based cryptography, Merkle hash signatures. That would

be both amusing and ironic.

Yes, I know that quantum key distribution is a potential replacement for public-
key cryptography. But come on—does anyone expect a system that requires specialized
communications hardware and cables to be useful for anything but niche applications?
The future is mobile, always-on, embedded computing devices. Any security for those will

necessarily be software only.

There's one more future scenario to consider, one that doesn't require a quantum
computer. While there are several mathematical theories that underpin the one-wayness
we use in cryptography, proving the validity of those theories is in fact one of the great
open problems in computer science. Just as it is possible for a smart cryptographer to
find a new trick that makes it easier to break a particular algorithm, we might imagine
aliens with sufficient mathematical theory to break all encryption algorithms. To us,
today, this is ridiculous. Public- key cryptography is all number theory, and potentially
vulnerable to more mathematically inclined aliens. Symmetric cryptography is so much
nonlinear muddle, so easy to make more complex, and so easy to increase key length, that
this future is unimaginable. Consider an AES variant with a 512-bit block and key size,
and 128 rounds. Unless mathematics is fundamentally different than our current
understanding, that'll be secure until computers are made of something other than matter

and occupy something other than space.

But if the unimaginable happens, that would leave us with cryptography based

solely on information theory: one-time pads and their variants. This would be a huge

66

blow to security. One-time pads might be theoretically secure, but in practical terms they
are unusable for anything other than specialized niche applications. Today, only
crackpots try to build general-use systems based on one-time pads—and cryptographers
laugh at them, because they replace algorithm design problems (easy) with key
management and physical security problems (much, much harder). In our alien-ridden

science-fiction future, we might have nothing else.

Against these godlike aliens, cryptography will be the only technology we can be
sure of. Our nukes might refuse to detonate and our fighter jets might fall out of the sky,
but we will still be able to communicate securely using one-time pads. There's an

optimism in that.

I have a feeling that I am Bruce’s crackpot, and he does perfectly parody the tongue-in-
cheek humor from my marketing presentations (which was already a parody, specifically of the
movie “Independence Day”, 1996), but that’s okay. Bruce is brilliant, and I’'m not offended. To
detail my very limited experience with Bruce, in the late 1990’s when I was a network architect
and technology security director for Deutsche Bank, Bruce was a respected cryptographer at
banking seminars. His pitch at the time was essentially “you can have absolute security if you
use my encryption”. A few years later when [was running a security startup based on the
heuristic firewall and Bruce was running a new secure datacenter company (Counterpoint), his
pitch was essentially “you can’t have absolute security, but if you use my datacenters you’ll be
as secure as you can be”. We spoke at the time about the possibility of blending technologies,
but he was not interested. That being said, he wrote patents a couple of years later in which he
forward cited my patent (U.S. Patent 6,519,703 — “Methods and Apparatus for Heuristic

Firewall”), so there was perhaps some interest in the tech after all. I anticipate that this

encryption technology will be initially received by Schneier in similar fashion with hopes that

perhaps one day he will lift the “crackpot” moniker from deep within my psyche;-)

67

68

CONCLUSION

As the first globally scalable OTP solution, HOP represents the strongest and fastest
encryption available. It is compact enough to run on wireless sensors and Internet of Things
(IoT) devices, robust enough to handle the needs of phones, laptops, and the largest cluster
computers, and the fastest and strongest option for Internet Exchange Points. It brings an end to
the encryption race-condition and provides a permanent solution to the encryption needs of any
and all devices for the foreseeable future. While this dissertation is specific to the encryption
world, it should be intuitive that HOP’s random number generation primitives are not limited to
encryption; rather, this technique most definitely applies to any situation in which random
numbers are useful. Additionally intuitive, as HOP is fully authenticated, are the implications of
using this technique with processes and inter process communications, and the positive effects
this will yield in platform, operating system, application, and data security overall. The dynamic
identification primitives have the potential to change the way we look at, and in fact do,
authentication. As a former member of the NIST Biometrics Consortium, I clearly see that the
integration of these techniques with biometric authentication is a no-brainer. Penultimately,
though this is by no means an exhaustive list of applicability, by applying HOP at the core of a
distributed ledger, it will be possibly to not only significantly speed up a blockchain (due to
greatly reduced consensus operations requirements), but also to certify that the blockchain is
secure enough to perform currently elusive tasks such as Title Transfer in real estate, and the
creation of unassailable smart contract environments. Finally, it is not a stretch to say that HOP
can make positive change in all aspects of our handling and processing of data. To quote the

Beatles (1970): “Let It Be”.

69

REFERENCES AND SUPPLEMENTAL RESOURCES

Additional Algorithms and Identifiers for RSA Cryptography for use in the Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile, RFC 4055.

Advanced Encryption Standard (AES), FIPS Publication 197, National Institute of
Standards and Technology (NIST).

Al-Kadi, Ibraham A., The Origins of Cryptology: The Arab Contributions, Cryptologia,
vol. 16, no. 2 (April 1992).

Anderson, Ross, Security Engineering: A Guide to Building Dependable Distributed
Systems, 2" Edition (Somerset, NJ: Wiley, 2008).

Ash, Avner, Gross, Robert, Fearless Symmetry: Exposing the Hidden Pattern of Numbers
(Princeton: Princeton University Press, 2006).

Bamford, James, Body of Secrets: Anatomy of the Ultra-Secret National Security Agency
(New York: Random House, 2001).

Bellovin, Steven M., Frank Miller: Inventor of the One-Time Pad, Cryptologia, vol. 35
(2011), pg. 203-222.

Bernstein, Dennis S., Matrix Mathematics: Theory, Facts, and Formulas - Second Edition (Princeton:
Princeton University Press, 2009).

Bernstein, Dennis S., Scalar, Vector, and Matrix Mathematics: Theory, Facts, and
Formulas - Revised and Expanded Edition (Princeton: Princeton University Press, 2018).
Beutelspacher, Albrecht, Cryptology (Washington, D.C.: Mathematical Association of
America, 1994).

Blunden, Bill, The Rootkit Arsenal (Plano, TX: Wordware Publishing, 2009).

70

Broder, Christian G., Practische Grammatik der Lateinischen Sprache, (Leipzig: F.C.W.
Bogel, 1815).

The Camellia Cipher in OpenPGP, RFC 5581.

Chen, Lily, NIST Crypto Standard Approaches — Past, Present, and Future, NIST

Presentation, https://csrc.nist.2ov/CSRC/media/Presentations/The-NIST-Standardization-

Approach-on-Cryptography/images-media/chen-lily-threshold-crypto-workshop-March-

2019.pdf.

Chow, Jerry and Osbourne, Michael, “ENCRYPTION INCEPTION: The solution to
quantum computers cracking cryptography is already here”, Quartz, 2 May 2019.
Coron, Jean-Sebastien; Dodis, Yevgeniy; Malinaud, Cecile; & Puniya, Prashant,
Merkle- Damgard revisited : how to construct a hash function”, September 4, 2007,

https://cs.nyu.edu/~dodis/ps/merkle.pdf.

Cracker Tools, https://blackarch.org/cracker.html.

CrackStation, https://crackstation.net.

Crypto StackExchange, community crypto blog, https://crypto.stackexchange.com.

Cryptographic Algorithm Implementation Requirements and Usage Guidance for
Encapsulating Security Payload (ESP) and Authentication Header (AH), RFC 8221.
Cryptographic Message Syntax (CMS), RFC 3369.

Cryptographic Message Syntax (CMS) Algorithms, RFC 3370.

Cryptographic Protection of TCP Streams (tcpcrypt), RFC 8548.

Cryptology ePrint Archive, community crypto research site, https://eprint.iacr.org.

Data Encryption Standard, FIPS Pub. 46-1 (Washington, D.C.: National Bureau of

Standards, 1987).

71

Davis, Michael; Bodmer, Sean; & LeMasters, Aaron, Hacking Exposed ™ Malware &
Rootkits Security Secrets & Solutions (New York: McGraw-Hill, 2010).

A Description of the Camellia Encryption Algorithm, RFC 3713.

Diffie, Whitfield & Hellman, Martin, New Directions in Cryptography, IEEE
Transactions on Information Theory, vol. 22 (1976), pg 644-654.

Diffie, Whitfield, and Landau, Susan, Privacy on the Line (Cambridge, MA: MIT Press,
1998).

Diffie-Hellman Key Agreement Method, RFC 2631.

Digital Signature Standard, FIPS Publication 186-3, National Institute of Standards and
Technology (NIST), June 2009.

Encryption Cracking Tools,

http://books.gigatux.nl/mirror/wireless/0321202171/ch06lev1secl.html.

ESET, corporate website, 2019, https://www.eset.com/us/business/endpoint-

security/encryption/.

Franksen, Ole Immanuel, Mr. Babbage’s Secret (London: Prentice-Hall, 1985).
Gardner, Martin, Codes, Ciphers, and Secret Writing, (Mineola, NY: Dover, 1984).
GOST R 34.12-2015: Block Cipher "Kuznyechik," RFC 7801.

Green, Matthew, A few thoughts on cryptographic engineering, blog,

https://blog.cryptographyengineering.com.

Guide to Industrial Control Systems (ICS) Security: Supervisory Control and Data
Acquisition (SCADA) Systems, Distributed Control Systems (DCS), and Other Control

System Configurations such as Programmable Logic Controllers (PLC), Special

72

Publication 800-82 revision 2, National Institute of Standards and Technology (NIST),
May 2015.

Guide to SSL VPN, Special Publication 800-113, National Institute of Standards and
Technology (NIST), July 2008.

Guide to Storage Encryption Technologies for End User Devices, Special Publication
800-111, National Institute of Standards and Technology (NIST), November 2007.
Guidelines for Cryptographic Algorithm Agility and Selecting Mandatory-to-Implement
Algorithm, RFC 7696.

Guidelines for Cryptographic Key Management, RFC 4107.

Guideline for Using Cryptographic Standards in the Federal Government: Directives,
Mandates and Policies, Special Publication 800-175A, National Institute of Standards and
Technology (NIST), August 2016.

Guideline for Using Cryptographic Standards in the Federal Government: Cryptographic
Mechanisms, Special Publication 800-175B, National Institute of Standards and
Technology (NIST), August 2016.

Hellman, Martin E., An Extension of the Shannon Theory Approach to Cryptography,
IEEE Transactions on Information Theory, vol. 23 (1977), pg. 289-294.

Hellman, Martin E., The Mathematics of Public Key Cryptography, Scientific American,
vol. 241 (August 1977).

Hioureas, Vasilios, Encryption 101: How to break encryption, Malwarebytes Labs blog,

https://blog.malwarebytes.com/threat-analysis/2018/03/encryption-101-how-to-break-

encryption/.

73

ID Quantique, corporate website, 2019, https://www.idquantique.com/quantum-safe-

security/overview/gkd-technology/.

Internet X.509 Public Key Infrastructure: Additional Algorithms and Identifiers for DSA
and ECDSA, RFC 5758.

Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile, RFC 5280.

Ironclad Encryption, corporate website, 2019, https://www.ironcladencryption.com.

Joyce, James B., Methods and Apparatus for Heuristic Firewall, U.S. Patent 6,519,703,
2000.

Joyce, James B., Methods and Apparatus for Heuristic/Deterministic Finite Automata,
U.S. Patent Application , 2006.

Kahn, David, The Codebreakers (New York: Scribner, 1996).

Kahn, David, Seizing the Enigma (London: Arrow, 1996).

Korn, Granino A. & Korn, Theresa M., Mathematical Handbook for Scientists and
Engineers (Mineola, NY: Dover, 2000).

Kugler, Otto, One time pad encryption, Mils Electronic, Austria, 2019,

https://www.cryptomuseum.com/manuf/mils/files/mils_otp_proof.pdf.

Kurose, James F. & Ross, Keith W., Computer Networking — A Top-Down Approach,
(New York: Addison-Wesley, 5% Edition, 2010).

The Legion of the Bouncy Castle, http://www.bouncycastle.org.

Leon-Garcia, Alberto & Widjaja, Indra, Communication Networks: Fundamental

Concepts and Key Architectures (New York: McGraw-Hill, 2" Edition 2004).

74

Luenberger, David G., Information Science (Princeton: Princeton University Press,
2006).

Mayhan, Robert J., Discrete-Time and Continuous-Time Linear Systems (Reading, MA:
Addison-Wesley, 1984).

The MD5 Message-Digest Algorithm, Request for Comment (RFC) 1321.

Menezes, Alfred J.; van Oorschot, Paul C.; & Vanstone, Scott A., Handbook of Applied
Cryptography (Waterloo, Canada: CRC Press, 1996).

Mermin, David N., Quantum Computer Science: An Introduction (Cambridge, UK:
Cambridge University Press, 2007).

Naor, Moni & Yung, Moti, Universal One-Way Hash Functions and their Cryptographic
Applications, 21* ACM Symposium on Theory of Computing, revised May 1995,

http://www.wisdom.weizmann.ac.il/~naor/PAPERS/uowhf.pdf.

Newton, David E., Encyclopedia of Cryptology (Santa Barbara: ABC-Clio, 1997).

OpenPGP Message Format, RFC 4880.

Post-Quantum, corporate website, 2019, UK, https://www.post-quantum.com.

The PPP Triple-DES Encryption Protocol (3DESE), RFC 2420.

Pressman, Roger S., Software Engineering: A Practitioner’s Approach (New Y ork:
McGraw-Hill, 7t Edition 2010).

Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications
Version 2.1, RFC 3447.

Quintessence Labs, corporate website, 2019, https://www.quintessencelabs.com.

Recommendation for Key Management - Part 1 (Revised), Special Publication 800-57,

National Institute of Standards and Technology (NIST), March 2007.

75

Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm
Cryptography (Revised), Special Publication 800-56A, National Institute of Standards
and Technology (NIST), March 2007.

Recommendation for Random Bit Generator (RBG) Constructions: 2nd Draft, Special
Publication 800-90C, National Institute of Standards and Technology (NIST), April
2016.

Report on Post-Quantum Cryptography, Interagency/Internal Report (NISTIR) 8105,
National Institute of Standards and Technology, 28 April 2016.

Rijmenants, Dirk, CIPHER MACHINES AND CRYPTOLOGY: One-time Pad, 2004-

2019, http://users.telenet.be/d.rijmenants/en/onetimepad.htm

Rivest, Ronald L.; A. Shamir; & L. Adleman, A Method for Obtaining Digital Signatures
and Public Key Cryptosystems, Communications of the ACM 21, (1978), pg. 120-126.

RSA, corporate website, https://www.rsa.com, 2019.

RSA Code-Breaking Contest Again Won by Distributed.Net and Electronic Frontier
Foundation, RSA, 1999,

http://www.rsasecurity.com/press_release.asp?doc_id=462&id=1034.

Schneier, Bruce, Applied Cryptography. Protocols, Algorithms, and Source Code in C
(New York: John Wiley & Sons, 1996).

Schneier, Bruce, Schneier on Security, 2004-2019, http://www.schneier.com.

Secure Hash Standard, FIPS Publication 180-3, National Institute of Standards and

Technology (NIST), October 2008.

76

Security and Privacy Controls for Federal Information Systems and Organizations,
Special Publication 800-53 revision 4, National Institute of Standards and Technology
(NIST), April 2013.

Security Implications of Using the Data Encryption Standard (DES), RFC 4772.

SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions, FIPS
Publication 202, National Institute of Standards and Technology (NIST).

Shannon, Claude E., The Mathematical Theory of Communication (Urbana: University of
Illinois Press, 1949).

Shannon, Claude E., Communication Theory of Secrecy Systems, Bell System Technical
Journal 28, (1949), pg. 656-715.

Singh, Simon, The Code Book: The Science of Secrecy from Ancient Egypt to Quantum
Cryptography (New York: Random House, 1999).

A Statistical Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications, Special Publication 800-22, National Institute of Standards
and Technology (NIST), April 2010.

Symantec, corporate website, US, https://www.symantec.com/products/encryption, 2019.

Tiwari, Harshvardhan, Merkle-Damgard Construction Method and Alternatives: A
Review, JIOS, vol.. 41, no. 2, 2017.

Transitioning the Use of Cryptographic Algorithms and Key Lengths, Special Publication
800-131A Rev2, National Institute of Standards and Technology (NIST), March 2019.
The Translations and KGB Cryptographic Systems, in The Venona Story, National
Security Agency, Fort Meade, Maryland, 15 Jan. 2004, pp. 26-27.

The Transport Layer Security (TLS) Protocol Version 1.2, RFC 5246.

77

Tripathi, A.N., Linear Systems Analysis (New Dehli: New Age International Publishers,
274 edition 1998).

UNSW Newsroom, “200 times faster than ever before: the speediest quantum operation
yet” University of New South Wales, 18 July, 2019,

https://newsroom.unsw.edu.au/news/science-tech/200-times-faster-ever-speediest-

guantum-operation-yet.

US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF), RFC 6234.

Use of the Advanced Encryption Standard (AES) Encryption Algorithm in Cryptographic
Message Syntax (CMS), RFC 3565.

Use of Elliptic Curve Cryptography (ECC) Algorithms in Cryptographic Message Syntax
(CMS), RFC 5753.

Using SHA2 Algorithms with Cryptographic Message Syntax, RFC 5754.

Whitewood Security, corporate website, 2019, http://whitewoodsecurity.com.

Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital
Signature Standard (ECDSA), X9.62-2005, November, 2005.

Yoshigoe, Kenji & Al, Murat, Adaptive Confidentiality Mechanism for Hierarchical
Wireless Sensor Networks, 2008 IEEE Globecom Workshops, 2008.

Zimmerman, Philip R., The Official PGP User’s Guide (Cambridge, MA: MIT Press,

1996).

78

ADDITIONAL SUPPLEMENTAL READING

Revisiting the OTP, http://ijns.jalaxy.com.tw/contents/ijns-v6-n1/ijns-2008-v6-n1-p94-

102.pdf.

Crypto Overview, Perfect Sec OTP, https://www.ics.uci.edu/~stasio/fall04/lect1.pdf.

Shannon Impossibility, proofs etc., https://cs.nyu.edu/~dodis/ps/one-time-pad.pdf.

Cryptography chapter 20, https://introtcs.org/public/lec_19 cryptography.pdf.

Disproof, https://techcrunch.com/2015/08/16/a-disproof-of-the-one-time-pad/.

OTP — unifying Shannon material, https://arxiv.org/pdf/0803.0046.pdf.

Essential Shannon, https://eprint.iacr.org/2000/059.pdf.

Perfect Ciphers, https://secgroup.dais.unive.it/teaching/cryptography/shannon-theory-on-

perfect-ciphers/.

OTP — Protecting Everything, https://www.linkedin.com/pulse/protecting-everything-

one-time-pad-encryption-internet-julian-murguia.

OTP — Port Hop, http://introspectivenetworks.com/history-of-the-one-time-pad/.

Patent for Port Hopping OTP, http://patft.uspto.gov/netacgi/nph-

Parser?Sect]1=PT0O2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPT0%2Fsearch-

bool.html&r=1&=G&I1=50&col1=AND&d=PTXT&s1=%22streaming+one+time+pad%

22.TL.&OS=TTL/.

Bell Labs — Claude Shannon, https://www.bell-labs.com/claude-shannon/.

Perfect Adversarial Indistinguishability,

http://www.cs.miami.edu/home/burt/learning/Csc609.162/perfect-secrecy-notes.pdf.

Burton Rosenberg CV, http://www.cs.miami.edu/home/burt/papers/cv.html.

Shannon’s paper, http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf.

79

Pigeon OTP story,

http://www.circleid.com/posts/20160504_writing_the next chapter for the historic_one

_time_pad/.

Frank Miller, https://www.nytimes.com/2011/07/26/science/26code.html.

