
The CrystalGrower Visualisation Package

Development history: The CrystalGrower visualiser has been adapted over several years by

a number of contributors. This section offers a brief summary of the history and rationale

behind the development of this software.

To study the crystals grown through the CrystalGrower method in detail, it was essential to

develop an approach to visualise the results from these simulations. Early versions of the

software employed Wolfram Mathematica with hard-wired programs for each structure type

being simulated. The results output through this process were limited to the format of simple

XY graphs.1,2 Upon moving to 3D structures, simulation results were processed using Surface

Evolver.3–5 This approach was rather slow and cumbersome, requiring user post-processing

on the images produced by this software. The renderer file size also became an issue for more

complex zeolite cages, with even a relatively simple β cage increasing the file size dramatically

compared to drawing cubes.5 This large increase in file size prohibited the rendering of large

crystals grown through longer simulations.

Due to the limitations imposed by the use of general programs to visualise the results from

CrystalGrower, the decision was made to construct a companion visualisation program from

scratch. This program would be designed from the outset to efficiently visualise results

produced by CrystalGrower. The first version of this program was produced by Gebbie, and

was capable of visualising crystals of a number of zeolite structures including zeolite A, zeolite

Y, offretite, sodalite and erionite.5 The code was written using Microsoft Visual Studio in the

C++ programming language, with calls to the OpenGL and Windows APIs. A database was

present in the program containing the coordinates to build each cage from these select zeolite

frameworks. To construct an entire crystal, these cages were stored as a memory object

known as a display list then translated and repeated at coordinates listed in the output of the

CrystalGrower simulation package. Upon manipulating the visualised crystal, these objects

would be rotated or translated by an amount input by the user and redrawn. Constructing the

program in this manner offered a solution to the issues of file size encountered with Surface

Evolver, as the new input for the visualiser consisted only of X Y Z coordinates and a numerical

value representing the cage structure to draw at the listed coordinates. Several performance

improvements were implemented in the program, including the aforementioned use of display

lists. Fully coordinated cages were also eliminated from the input for the visualiser to improve

performance, as drawing objects completely obscured by the outer layer of crystal offered no

benefit to the user.

Although the standalone visualiser program offered noticeable improvements over the use of

third-party software and was perfectly suited to visualising results from the CrystalGrower

simulation package at the time, issues appeared as CrystalGrower was developed further.

Due to the use of a hardcoded database, the visualiser was limited to rendering cage

structures already stored in the database, meaning it could not be ported to other crystal types

without extensive recoding. With the shift of CrystalGrower towards a general crystal growth

tool, rather than hardcoded for particular zeolite structures, the need arose to adapt the

visualisation package to also contain a general algorithm for cage / tile construction.

Extensive recoding was conducted to adapt the CrystalGrower visualiser (referred to as simply

“the visualiser” throughout this section) to be capable of constructing tiles automatically when

required for framework structures (e.g. zeolites). Support was also added to construct spheres

at the centres of molecules and ions to visualise ionic and molecular crystals in addition to

cage type structures. This feature was then extended to draw entire molecular structures,

including atoms and various bond types as spheres and cylinders, respectively.

The major change to the visualiser involved entirely removing the hardcoded database of

display lists and creating another input file in addition to the current XYZ coordinate input file.

Within this new input file, cage coordinates are listed along with the number of faces present

in the cage and which of the cage vertices are a part of each face. For entirely flat faces, these

are drawn as simple polygons dependent on the number of vertices present in each face. More

complex (non-flat) faces required subdivision into triangles (an object known as a triangle fan

in OpenGL), smoothly shaded into each other to give the illusion of a curved face. Combining

these faces together yields a full cage which can be saved as a display list and called when

required, similar to the original visualiser set up. Once constructed, each cage type is assigned

a numerical value corresponding to the same ordering found in the CrystalGrower simulation

package. The XYZ coordinate data is then fed into the program and the cage display lists are

called at the correct coordinates output by CrystalGrower. An example of each type of input

file used in the visualiser is included in the “Output Files” section of this manual, where all

outputs from the CrystalGrower simulation package are discussed in detail.

