Creating Structure Files for Tile Structures

This step-by-step guide will demonstrate how to produce a structure file for a **tile** type structure. This type of partitioning is useful for cage-based framework structures e.g. zeolites. The latter parts of the guide will discuss visualising tiles with *IsoCryst* and 3dt.

A separate procedure can be used to partition framework structures that are constructed from cages versus **net** structures. Using natural tiles – mathematically calculated units of growth that correspond to rate-determining cage formation steps – complex unit cells can be broken down into a manageable number of units for simulation. Using natural tiles allows the deconstruction of any framework material down to its composing units following regimented mathematical rules. There are some more complex cases where natural tiles may need to be split to smaller units but this again follows set rules. Examples are presented here with a focus on zeolites / zeotypes.

Creating a Tile Structure File (Natural Tiles)

1.) Import a CIF for the framework structure you wish to study into an existing database in *ToposPro*. E.g. approved zeolite framework codes all have readily available CIFs on the International Zeolite Association (IZA) website: <u>https://europe.izastructure.org/IZA-SC/ftc_table.php</u>

Users'Public\Documents\ToposPro\Kit\zeolites unds ră						
cb	🐨 Open			×		
	Look in: Kt		• • • •			
	Name Name	^	Date modified	Ty A		
	Guick access GP		22/05/2018 19:13	Fil		
		dule1 dule2	22/05/2018 19:13 22/05/2018 19:13	Fil		
	Desktop	dule3	22/05/2018 19:13	Fil		
×		dule4 dule5	22/05/2018 19:13 22/05/2018 19:13	Fil		
y ht		dule6	22/05/2018 19:13	Fil		
na pc		dule7	22/05/2018 19:13	Fil		
pd		dule8	22/05/2018 19:13	Fil		
at sv	ma	dule9 dule10	22/05/2018 19:13 22/05/2018 19:13	Fil		
tn to		dule11	22/05/2018 19:13	Fil		
t.	riotinuit.	dule12	22/05/2018 19:13	Fil *		
lv V				Open		
	File nam		•		×	
	Files of t	pe: Cf files (*.cif)		Cancel		

2.) Remove the connecting atoms between the nodes of the cage structures (e.g. bridging oxygen atoms in a zeolite framework) by double-clicking the database entry and navigating to the "Atoms" tab. Select the O atoms and press "Delete". If required, you can set the other atoms in the structure to "Si" or "Al" (or any other element) by selecting the El button next to each atom and selecting the required element type. *Note that the atom composition of a tile / cage e.g. Si vs. Al can be used with the "ordered" growth modification for CrystalGrower*.

No D	DegOx 96,	iOh X	Y	Z	s	;	CN
		6h,C1 0.1	17860 0.3	3980 0.0	6240 1	.0000	0
2	96	5h,C1 0.3	30100 0.2	6740 0.13	2080 1	.0000	0
1	96	6h,C1 0.2	25600 0.3	4900 0.1	1380 1	.0000	0

	I Data in C:\Use al Atoms Cor	mment	Jocument	stioposrioti	(II)ZEOIIIE	:5			×
Name X Rn Ru S S S S S S S S S S S S		DegOx	96,0h 96h,C1		Y 0. 34900	Z 0.11380	S 1.0000	CN 0	
,	Composition	Gene	rate	Delete Atom	Renar	me Atoms	Ox.State I Ox.State fo		R->H H->R
				Reference Co	ode 🗌		(TOPOS)		

- 3.) Now the adjacency matrix will need to be calculated for the framework:
 - With framework materials, we only need to consider the species bonded together directly through valence bond to assemble the tiles. Open *AutoCN* by either clicking the symbol (two overlapping circles) or pressing **CTRL + N**.

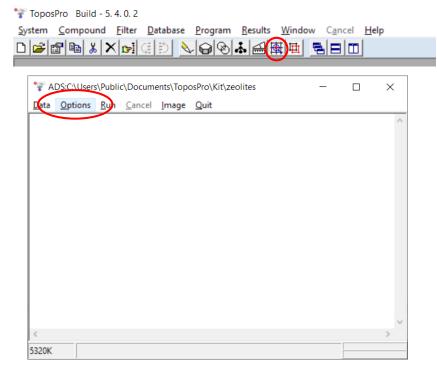
- Select "Options", navigate to the "Matrix" tab and choose the "Solid Angles" option under "Method".

* AutoCNIC\Users\Public\Documents\ToposPro\Kit\zeolites -		×	AutoCN Options ×
Data Options Run Cancel Image Quit			Common VDP Calculations Matrix Hoonds Specific Bonds
		^	Method Dist. Ranges Matrix Data Method VdW Cont. MinOm: 1.50 Ranges Solid Angles Solid Ang. Solid Angles Save As Is Bond Type Save E1-H Bonds Valence Voids Voids None
5313K	_	>	File Name: C:\Users\Public\Documents\ToposPro\Kit\zeolites Data to File Ok Default Restore Cancel

Set a high value for minimum omega (e.g. 10 %), this will count only strong interactions when calculating the Voronoi-Dirichlet polyhedron (VDP) for each atom. This omega is the solid angle (SA), or the face contribution to the VDP – the larger the solid angle, the stronger the interaction, generally.

AutoCN Options		×
Common VDP Calc	ulations Matrix H bonds Speci	
Method C Domains C Ranges Solid Angles Save Voids Keep Matrix	Dist. Ranges Matrix Data Spec. Cor Solid Ang. Dist. + Ris Repulsive E1- H Bon Indirect	Min. Interval 0.300 ds Bond Type • Valence • Specific
File Name: C:\Users Data to File Ok	\Public\Documents\ToposPro\Kit\ Default Restore	zeolites Cancel

- Press OK, then select run.


AutoCN Options	×	✤ AutoCN:C:\Users\Public\Documents\ToposPro\Kit\zeolites	_	×
Common VDP Calculations Matrix H bonds Specific Bonds		Data Options Run Oncel Quit		
C Domains V vdW Cont. Win. Intern C Ranges Oits + Rsds Solid Angles Solid Angles Prove Data Repulsive C Spec	pe nce cific der Waals inds			
File Name: C:\Users\Public\Documents\ToposPro\Kit\zeolites Image: Data to File				
Ok Default Restore Can	cel	<		>
		5317K		

- The results window will open for verification. Check if the coordination in the system is correct, e.g. for an uninterrupted zeolite framework, the coordination for all species should be 4.

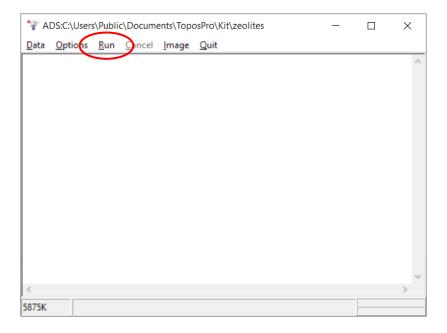
	🚏 Aut	o <mark>CN:C:\U</mark>	Jsers\Pu	blic\Doc	uments	\ToposPro\Kit\zeolites	_	\times
	Data (Options	Run	Cancel	Quit			
	257:BS							^
				S				
	Sil vS	il	2.921	18. 18.	19			
				22. 22.				
	_			ne for Hb		position		
\mathcal{A}	Sil	4 0) 0	0	Si	4		
	Elapse	d time:	0.07	sec.				~
Į	<							>
	5313K							

- If the coordination is overestimated (e.g. in an interrupted zeolite framework, where some species should have a lower coordination that 4) then increase the minimum omega until the correct result is obtained (i.e. some framework atoms with a coordination of 3 or 2, dependent on the structure).

- 4.) Now the natural tiling will be calculated for the connected framework:
 - Select the ADS module (the symbol displaying a net) and click "Options".

 On the "Common" tab, ensure that "Dimen. Calc", "Write Data to .tnt" and "Essential Rings for 3dt" are selected. (The latter option is for visualising the tile structures with 3dt allowing the production of high quality raytraced images for reports and presentations).

ADS Options	Molecular VDP Continuous	×
Common Flags	Output Flags Atomic Coord. Full Topology Ligands & CA Save to Excel Format Data on New Nets Write Data to .tnt Sesential Rings for 3dt Reep Initial Structure	Simplification Method Standard Cluster Cluster Cluster Cluster Cluster Cluster Skeleton Ring Size Diff. Skeleton Ring Size Cluster Edge Net Skeleton Ring Size Cluster Edge Net Cluster Skeleton Ring Size Cluster Edge Net Cluster Skeleton Ring Size Cluster Edge Net Cluster Skeleton Ring Size Cluster Edge Net Cluster Skeleton Ring Size Cluster Edge Net Cluster Skeleton Skeleton Skeleton Skeleton Cluster Cl
File Name: C:\Users\Public\E Data to File	Documents\ToposPro\Kit\zeolites	 Cancel


- Navigate to the "Topology" tab and ensure that "Point Symbols" and "All Rings" are enabled. Set "Coord. Seq." to 1 (this will search for only nearest neighbours) and set "Max Ring" to the same size or larger than the biggest ring in the framework (most zeolites have 12 rings or below, 16 will capture most structures).

ADS Options			×
Common Topology	ng Molecular VDP Cont	inuous	
Topology Flags Edit Matrix Contract Atom Point Symbols Bend Circuits Classification Entanglement All Rings Net Relations Build Index Keep Bond Types Interpenetration TopNameSuff[No	Minimum AtSA 0.0 Min. InterMoISA 1.5 Minimum MoISA 0.0 Coord. Seq. 1 Max. Ring 16 Max. Ring Sum 2 Max. Ring Angle 360 Int. Cell 1	Van der Waals C At. C Mol. @	None
File Name: C:\Users\P	ublic\Documents\ToposPro\K	it\zeolites	
Data to File	efault Restore	Cancel	

 Navigate to the "Tiling" tab and ensure that "Dual Nets", "Natural Tiles", "Determine Tile Topology", "Search for Separate Tiles", "Locally Strong Rings" and "Single Tiling" are selected. These options will ensure the natural tiling is calculated. Set "Max. Tile Size" to a relatively large number to capture large tiles but not so large that it slows down the calculation (100 is a good estimate, but some tiles are larger than this – 200 will catch these). Press OK.

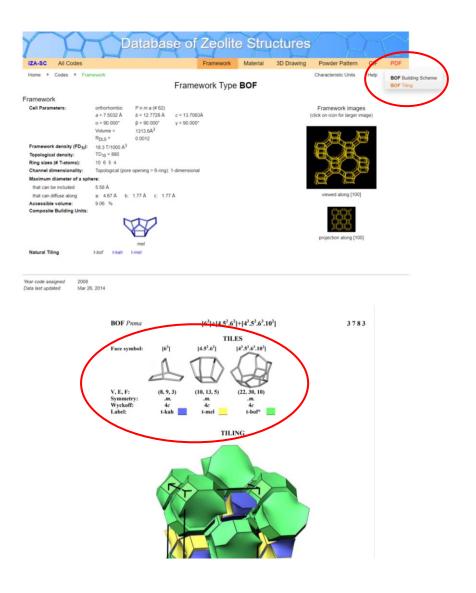
ADS Options Common Topology Tiling Holecular VDP Continuous Tiling Flags ↓ Tiles by Hand ↓ Dual Nets ♥ Determine Tile Topology Save Tile Topology Save Tile Topology ♥ Search for Separate Tiles ♥ Loccally Strong Rings ♥ Single Tiling ↓ Inessential Crossings ↓ 3D Surfaces	×
File Name: C:\Users\Public\Documents\ToposPro\Kit\zeolites Data to File	

- Press run on the *ADS* window.

 A window will open asking to create a child database if one hasn't been created already. The naming convention for the child database created for a tiling is: Original_Database_Name# to differentiate from databases containing simplified nets. Select "Yes" to create a new database and type in your user code 1. A window will then open to assign the central atoms for the net to be calculated for the natural tiling. Select the atoms that define the tile vertices of the system E.g. Si or Al by right clicking and pressing "Select" or use the Ins (Insert) key on the keyboard. Selected atoms will appear in bold. Then press OK.

🚏 Choose	Central Ato		- [) X					
Name	Ox. State	Z	S	CN					
Si(1)		0.25600	0.34900	0.11380	1.0000	4			
Ok Element Whole Molecule Cancel									

	🚏 Choose	_					
	Name	CN					
(Si(1)		0.25600	0.34900	0.11380	1.0000	4
	\smile						
	1:1						
	Ok	Ele	ement	Whole Mole	cule		Cancel


- The tiling will be calculated and the child database will be opened. If the tiling calculation fails for any reason, an error message will be displayed in the *ADS* calculation window. Note that the "Program" tab in the toolbar can always be used to get back to a running module in ToposPro e.g. IsoCryst, AutoCN or ADS. Calculation results will remain as hidden open windows until they are specifically closed or the program is exited.

🏆 ToposPro 🛛 Build - 5. 4. (- a ×
	ter Database Program Besuits Window Cancel Help 刘信② 教員後本倫照職 馬口		
	Net Manual Jen		
C:\Users\Public\Doc	uments\ToposPro\Xittzeolites		
Compounds		^	
UFI UOE UOS	*e`C\Users\Public\Documents\ToposPro\Kit\zeolites#	- 0	—
UOV UOZ	Compounds		
USI	EWT/PPT 1 ABW/sus_PPT 1		
UWY	JNT/PP1 1 JNT/PP2 2		
VET VFI/vfi	JNT/PPT 3 JNT/PPT 4		
VNI VSV	JNT/PPT 5		
WEL/wei	JNT/PPT 6 JNT/PPT 7		
WEN YFI	JNT/PPT 8 JNT/NT		
YUG/yug ZON -SYT	PW/UPPT 1 PW/0/PPT 1		
-SYT SOV	Pww/PPT 1		
SUV SFV_idealized	POR/PFT 1 RTW/PFT 1		
SFV_idealized RWY PWN	RW/Yada/PPT1 S0R/PPT1		
DLS-R_=_0.0037	SOV/PPT 1		
DLS-R_=_0.0037 EWD ETV BSV	STUPPT 1 SVV/PPT 1		
BSV AVE	SW//PPT1 VE.0001		
AVE BCT	YFJ/PDT 1 DDD PDDT 1		
<	FU/PPT 1 BSV/PPT 1		
259:0:257			
	260.26		
Click right button to show I	ocal menu		

5.) To obtain the structure file for this crystal structure: right click the newly created entry or press F9 on the keyboard. Occasionally multiple tilings are generated, but PPT (Primitive Proper Tiling) 1 should be the natural tiling.

	🚏 Data in C:\Users\Public\Documents\ToposPro\Kit\zeolites# — 🛛	×
	File Ouit	
9	29:BSV/PPT 1	^
	20	
	t-gie-1 1 (8,2)(8,3) 6	
	10(0,1,0) 9(-1,-1,0) 4 17(-1,0,-1) 7 17	
	51 3[4] 2[1] 4[1] 7[] 8[1] 9(0,0,1)[1] 14[1] 17[]	
	Si 2[4] 5(0,0,1)[1,2] 7[1] 9(0,0,1)[1,2] 10[2] 14[1] 17[2] 18[1,2] Si 3[4] 4[] 7[1] 10[1] 11(0,-1,0)[1] 16(0,-1,0)[1] 17[] 18[1]	
	51 3[4] 4[] 7[1] 10[1] 11(0,-1,0)[1] 10(0,-1,0)[1] 17[] 10[1] 51 2[4] 2[1,2] 4[1] 6[1,2] 9(0,0,1)[2] 10[1,2] 16(0,-1,0)[1] 17[2]	
	5i 2[4] 6(-1,0,0)[1,2] 7[1] 9(-1,0,0)[2] 10(-1,0,-1)[1,2] 13(-1,-1,-1)[1
	Si 3[4] 4[] 7[1] 9(-1,0,0)[1] 11[1] 15(-1,0,0)[1] 17(-1,0,-1)[] 19(-1	,0,
	Si 3[4] 3[1] 4[1] 7[] 10(0,1,0)[] 11[1] 15(-1,0,0)[1] 16[1]	
	Si 2[4] 5(0,0,1)[1,2] 7[2] 10(0,1,0)[1] 11[2] 13[1] 16[1,2] 18[1,2]	
	5i 3[4] 4[] 7[1] 8[1] 10(0,1,0)[] 13[1] 14[1] 18[1] 5i 3[4] 2[1] 4[1] 7[] 9(-1,-1,0)[] 11(0,-1,0)[1] 15(-1,-1,0)[1] 16(0,	-1
	$\begin{array}{c} 1 \\ 5 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	
	<	> .:

- Read through the structure file to check if the tiling has been calculated correctly (e.g. check the tile names are correct and not called Tile No. - this means a tile in the structure doesn't already exist in the *ToposPro* tile database). If possible (for known zeolites), verify the tiles in the structure file against the tiling shown on the IZA website for each framework code. Note that this can be found by selecting a framework code on the IZA, then clicking PDF and selecting "Tiling".

- Click File and Save As to save the structure file as a .txt which can be used with *CrystalGrower*.
- The format of the structure file for a **tile** structure is discussed in another section of the manual in detail.

- A database of the most common / industrially important zeolites is provided for free with *CrystalGrower*. There is also a full database of all currently approved zeolite structure codes (252 codes as of July 2020) which can be purchased from https://crystalgrower.org/.

Creating a Modified Tile Structure File

Some structures require the calculation of a modified natural tiling. A modified natural tiling involves overruling rule b for natural tiling (i.e. all tile faces must be strong rings). There are set occasions where this can occur, namely when cages are joined together through weak ring "waists" with negative curvature. This results in large cages being split into two or more smaller cages. Some zeolite examples are DDR, LTN and UFI (although there are other examples). This should only be used if it chemically makes sense to separate large tiles into smaller tiles, or if the tiles are creating too large of an energy barrier to get any growth in *CrystalGrower*.

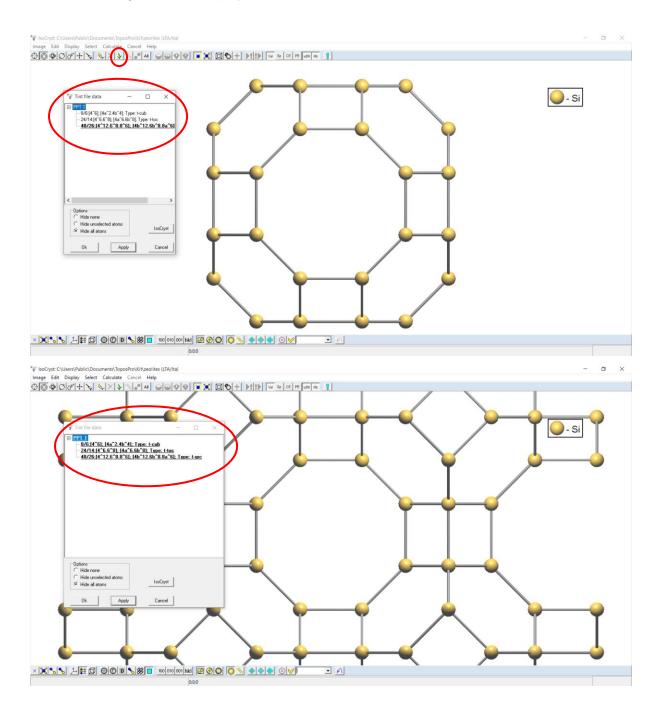
- The approach remains the same for the majority of the calculation, however, changes must be made to the "Topology" tab in the *ADS* Options window.
- "Natural Tiles" and "Locally Strong Rings" must be disabled to calculate a modified natural tiling, this will deactivate rule b.

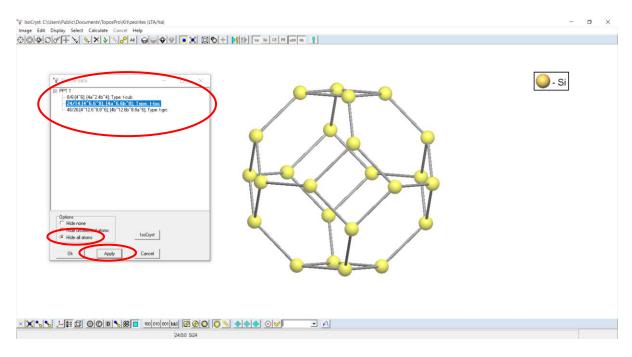
ADS Options		×
Common Topology Tiling M Tiling Flags Tiles by Hand Dual Nets Natural Tiles Determine Tile Topology Save Tile Topology Search for Separate Tiles Locally Strong Rings Single Tiling Inessential Crossings 3D Surfaces	olecular VDP Continuous Max. Tile Size 200 Max. Set Size 0 Rule (a) is active Rule (b) is inactive Rule (c) is active Rule (d) is active	
File Name: C:\Users\Public\Documents\ToposPro\Kit\zeolites		
Ok Default	Restore	

- The "Max. Ring Size" in the "Topology" tab should be reduced to try and get as close as possible to the largest ring size in the framework. This can be verified against the IZA tiling calculation if it is an approved zeolite framework.
- If this approach doesn't work correctly, the "Tiles by Hand" option can be selected, where all rings can be defined manually as tile faces.

Visualising Tiles with IsoCryst

Once a tiling has been calculated, the *ADS* results window can be used to show the structures of the individual tiles which assemble the crystal structure as long as the "Write Data to .tnt" was selected when calculating the tiling with *ADS*.


1.) Click Program in the main *ToposPro* toolbar and select the results window for *ADS* which was created when running the tiling calculation.


2.) Select "Image" and "Primitive/Natural Tiles" which will open an *IsoCryst* window.

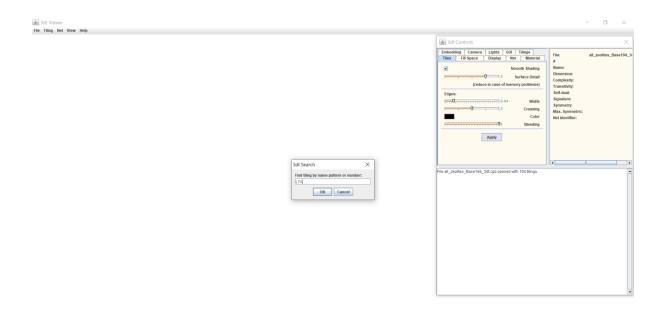
P ADS:C:\Users\Public\Documents\ToposPro\Kit\zeolites	_		×
<u>D</u> ata <u>O</u> ptions <u>R</u> un <u>Cance</u> <u>I</u> mage <u>Q</u> uit			
48/26:[4^12.6^8.8^6]; [4b^12.6b^8.8a^6]; Type: t-grc;	Centroid	:(0.500	,0. ^
<pre>Tiling: 3[4^6]+[4^6.6^8]+[4^12.6^8.8^6] = 3t-cub+t-toc Transitivity: [1343] Simple tiling D-size: 12 Average ring size: 4.97 Number of dangling edges per vertex: 1.00 All proper tilings (S=simple) Rules a,b,c,d are applied</pre>	+t-grc =	3[4a^2	.4b
Tiling Essential rings Transitivity D-size R	ing Size	Dang	lEd
PPT 1/NT 4a,4b,6b,8a [1343] 12	4.97		1
Elapsed time: 5.67 sec.			>
13969K			

3.) Grow the crystal structure with Grow or **CTRL + W** on the keyboard until all the entries in the Tint file data window become bold. This indicates the atoms that construct the tile are grown and displayed on the screen.

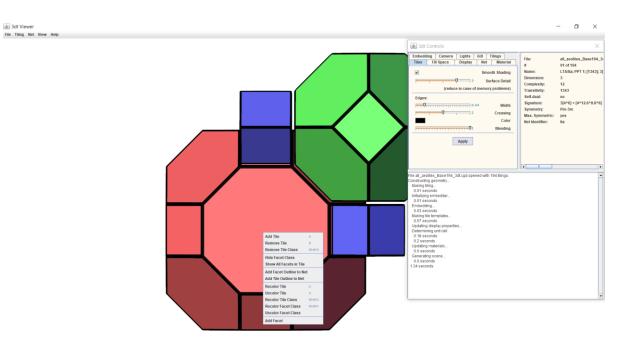
4.) Select any of the tiles in the list, select "Hide All Atoms" and click "Apply". The selected tile will then be displayed in *IsoCryst* and can be studied like any crystal structure.

Visualising Tiles with 3dt

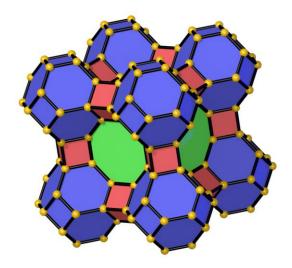
Provided the "Essential Rings for 3dt" option was selected when calculating the tiling, tile structures can be displayed in *3dt* to produce high quality images for reports.


1.) Download 3dt from http://gavrog.org/ and install it on your PC. Note that Java is required to run 3dt.

	Download the Software >>>
ews	
2016	-05-25
	The latest blog entry at https://systre.wordpress.com talks about some Gavrog "history" and new ongoing activities.
2013	-09-30
	A second beta release for 3dt 0.6.0 and SYSTRE 1.2.0 is out. For further information, please visit the download page and check the release notes.
2011	-10-04
	The source code for this project is now hosted on GitHub.


2.) Open 3dt and select Open, and navigate to the 3dt file produced when calculating the tiling. The file will be "Database_name.**cgd**".

📓 3dt Viewer	- a ×
File Tiling Net View Help	
	😹 3dt Controls X
Open data file Look p: Work Storfcuts C.G. TESTNO High ScorePus I 150s	Image: Second constraints File: Image: Second constraints File:
Image: Control of the state of the stat	e194_3at.opd


3.) If the .cgd file contains multiple tilings (*note that answering "no" to the question "do you want to overwrite the .cgd file" when calculating the tiling with ADS will actually append the new structure at the end of the .cgd file*) then type the name or number for the tiling you wish to visualise.

4.) Add or remove tiles by right clicking and selecting "Add Tile" or "Remove Tile"

- **5.)** 3dt contains many options for changing the display of tiles, adding a crystal net on top of the tiles and can produce very high quality images for use in presentations and reports. Users are directed towards 3dt's existing documentation for detailed information on use of the software.
- 6.) Once the structure is presented in the way the user desires, a ray-traced imaged can be produced by selecting File, Raytraced Image (CTRL + R).

