Setting Up and Visualising Interactions With ToposPro

This step-by-step guide will demonstrate methods to obtain and visualise an adjacency matrix for a set of interactions between molecular / ionic species for *CrystalGrower* using *ToposPro*.

Firstly, to check a calculated adjacency matrix you must double-click a database entry / the CIF file which has been read into *ToposPro*, and navigate to the "Adjacency Matrix" tab.

All detected interactions in the crystal structure are shown, with each bonded atom expandable into a list showing which atoms they are connected to and their interaction type. **Bold** – Valence bond, **Blue** – Hydrogen bond, **Red** – Specific bond, Black but not bold – van der Waals interaction and, Crossed – No bond / manually removed bond. All interactions types can be changed by right clicking the interaction, selecting "Change Type" and choosing a new interaction type. *Note that this will also change all symmetry related interactions*.

Setting up the adjacency matrix is <u>crucial</u> and will determine the connectivity of your crystal net for generating your *CrystalGrower* input files. Presented here are multiple methods for calculating an adjacency matrix correctly.

Method 1: With AutoCN

- 1.) Select the database entry / CIF file you want to calculate the interactions for.
- 2.) Open AutoCN (click the symbol with two overlapping circles or CTRL+N)

3.) Select Options and navigate to the Matrix tab.

- **4.)** Three methods exist for calculating the interactions between crystal species (further information on the algorithms behind each calculation method can be found here: https://topospro.com/software/topospro/manual/details-of-the-autocn-algorithms/):
 - a. **Domains** Most versatile, interactions are defined by their contribution to the molecular Voronoi-Dirichlet polyhedron (VDP). Radii of atoms are adjusted based on pairs of bonded atoms in the crystal structure (e.g. metal to non-metal vs. non-metal to halogen etc.). Stronger interactions have larger faces and contribute more to the overall Voronoi Dirichlet Polyhedron (VDP) i.e. they will have a larger solid angle (Ω). MinOm (minimum omega Ω) is the cut-off point for considering interactions, weaker interactions have a lower Ω value. Hydrogen bonds and van der Waals interactions are readily identified.
 - b. <u>Solid Angles</u> Also versatile, interactions are defined in a similar way to Domains, however the radius of each atom type is kept constant and not adjusted based on bonded atom pairs. Interactions are only defined by their face contribution to the overall VDP.
 - c. <u>Ranges</u> Most control over specific interactions, but risks being used arbitrarily. Interactions are specified between atoms and distances are also specified. Can be used to create an adjacency matrix manually with all

interactions defined by the user. Useful for nets with user defined "dummy" nodes e.g. molecule centroids.

- General rule first try Domains and vary MinOm. If you're picking up too many H-bonds and vdW bonds, try Solid Angles and vary MinOm. Finally, if you still have issues, save the generated adjacency matrices from Domains or Solid Angles by selecting "keep matrix" then add the missing interactions with Ranges (or try making the adjacency matrix from scratch with Ranges).
- 5.) For Domains:
 - Select the Domains option in "Method".
 - Ensure Atoms is ticked under the "Save" option.
 - Ensure vdW Cont., Solid Ang., and Dist + Rsds are ticked. (Tick Spec. Cont. if you have specific bonds in your structure).
 - Changing MinOm will include or exclude weaker interactions. Higher MinOm only includes stronger interactions.

- The results window will display the coordination numbers for the atoms and their types.

🚏 A	utoCN:0	:\Use	rs\adar	nr\Do	cuments\Work	\Topos\Urea\Urea_	redo	-		×
<u>D</u> ata	<u>Optio</u>	ns <u>R</u>	un <u>C</u>	ancel	Quit					
v	:1	1.	351	26	.71					^
01 VC	:1	1.	243	28	39					
Coord	linati	on nu	mbers	for	Urea					
Ator	N.	Sp	vdW	Hb	Composit	ion				
H1	1	0	2	1	Nl					
H2	1	0	3	1	Nl					
C1 N1	3	8	0	0	N201 H2C1					
01	1	ŏ	ŏ	4	Cl					
Antra Elaps	ed time	ther me: 0	e are .08 s	3 po ec.	ossible H-b	onds				~
<										>
6072K									-	

6.) For Solid Angles:

- Select the Solid Angles option under "Method"
- Ensure Atoms is ticked under the "Save" option.
- Ensure vdW Cont., Solid Ang., and Dist + Rsds are ticked. (Tick Spec. Cont. if you have specific bonds in your structure).
- Changing MinOm will include or exclude weaker interactions. Higher MinOm only includes stronger interactions.

AutoCN Options			×
Common VDP C	alculations Matrix	H bonds Specific B	3onds
Method C Domains Ranges Solid Angles Save Volds Volds Keep Matrix	Dist. Ranges	Matrix Data	Min0m: 12.50 Min. Intervat: 0.300 Bond Type © Valence © Specific © Van der Waals © H bonds © None
File Name: C:\U:	sers\adamr\Docume	nts\Work\Topos\Urea	AUI
Ok	Default F	Restore	Cancel

- Selecting a type under the "Bond Type" options will convert all identified bonds in the structure to the selected type. This information will only appear in the adjacency matrix after calculating the coordination. This change will not appear in the *AutoCN* text output.

AutoCN Options			×
Common VDP Cal	culations Matrix	H bonds Specific B	Bonds
Method C Domains C Ranges Solid Angles Save Voids Voids Keep Matrix	Dist. Ranges	Matrix Data Spec. Cont. VotW Cont. Solid Ang. Dist. + Rads Save As Is Face Data Repulsive E1 - H Bond Indirect	MinOm: 12.50 Min. Interval 0.300 Bond Type © Valence © Specific © Van der Waals © H bonds © None
File Name: C:\User	s\adamr\Documer	nts\Work\Topos\Urea	a\UI

- The results window will display the coordination numbers for the atoms and their types.

ب	AutoCN:	C:\Use	rs\ada	mr\Doc	uments\Wor	k\Topos\Urea\	Urea_redo	-	×
Data	<u>Optio</u>	ons <u>R</u>	un <u>(</u>	ancel	Quit				 _
V	/C1	1.	351	26.	71				^
01 V	7C1	1.	243	28.	39				
Coor	dinati	on nu	umbers	for	Urea				
Atom	1 CN	Sp	vdW	Hb	Composi	tion			
H1	1	0	0	1	Nl				
H2	1	0	0	1	Nl				
C1	3	0	0	0	N201				
01	1	0	0	4	H2C1				
ATTE	INTION	ther	e are	3 po	ssible H-)	oonds			
Elap	sed ti	me: 0	.09 s	ec.					- 6
									~
<									>
6072	(

- 7.) For Ranges:
 - Select the Ranges option under "Method".
 - Ensure Atoms is ticked under the "Save" option.
 - Ensure vdW Cont., Solid Ang., and Dist + Rsds are ticked. (Tick Spec. Cont. if you have specific bonds in your structure).

AutoCN Options			×	
Common VDP Cal	culations Mat	rix H bonds Specific E	londs	
Method Domains Ranges Solid Angles Save Voids Voids Keep Matrix	Dist. Ranges	Matrix Data → Opec. Bort → vdW Cont. → Solid Ang → Dist. + Rsds → Solid Ang → Dist. + Rsds → Repulsive = E1 - H Bonds ↓ Indirect	MinOm: 12.50 In. Intervat[0.300 Bond Type © Valence © Specific © Van der Waals © H bonds © None	
File Name: C:\Users\adamr\Documents\Work\Topos\Urea\Ur Data to File				
Ok	Default	Restore	Cancel	

- Select the "Dist. Ranges" box.
- Type in the atoms you want to add bonds between, and the range of distances you want these bonds to extend over (in Angstroms). The format is:

Atom1-Atom2 Start Range : End Range - Topos will ask you to correct this if it's incorrectly formatted. E.g. Na-Cl 0:10 will create bonds between all sodium and chloride ions in the structure that are within 10 Å of each other, set to whatever bond type chosen under "Bond Types".

AutoCN Options ×	AutoCh/Chi/Careladamet Degumentet World Tengel Liga Niliga rada
Common VDP Calculations Matrix H bonds Specific Bonds	Data Op AutoCN Options
Method C-N 0.2 Spec. Cont. Min0m: 12.50 C Domains C-N 0.2 Solid Ang. Min. Intervat[0.300 C Ranges C 0 0.2 Solid Ang. Bond Type C Solid Angles Save as E1-H Bonds Valence ✓ Atoms ✓ voids ✓ voids ✓ none	vN1 N1 vH1 vH2 vC1 01 vC1 Common VDP Calculations Matrix Data vH2 vC1 01 vC1 Dist. Ranges CALCO 02 Matrix Data vG1 01 vC1 Domains CALCO 02 V sQU Cont. V Solid Ang. Coordinal Atom C C1 N1 N1 Save Error in ranges of distances. Format is: A-B D1:D2 V als Vals
File Name: C:\Users\adam\Documents\Work\Topos\Urea\Ui	File Name: C:\Users\adam\Documents\Work\Topos\Urea\Ur
Ok Default Restore Cancel	S853K

- The bond type selected under the "Bond Type" option will be assigned to the interactions found at the selected distances. The output window of *AutoCN* will not change, but the adjacency matrix will be updated when checked by double-clicking the database entry.

AutoCN Options			×		
Common VDP Ca	lculations Matrix	H bonds Specific B	londs		
Method C Domains Ranges C Solid Angles Save Voids Keep Matrix	Dist. Ranges C-N 0.2 N-H 0.2 C-O 0.2	Matrix Data Spec. Cont. VotW Cont. Solid Ang. Dist. + Rsds Save As Is Face Data Repulsive EI - H Bonds Indirect	Min0m: 12.50 Min. Interval 0.300 Bond Type © Valence © Specific © Van der Waals © H bonds © None		
File Name: [C:\Users\adam\Documents\Work\Topos\Urea\Ur					
Ok	Default Res	tore	Cancel		

- To turn off certain bonds, users can insert a distance range of 0:0. E.g. Ca-Ca 0:0 would ignore all Ca to Ca bonds in a structure.

AutoCN Options			×	
Common VDP Calculation Method Ca-O C Domains Ca-O C Ranges Ca-O	ons Matrix H Ranges 0:3 a 0:0	I bonds Specific B Matrix Data Spec. Cont. ♥ vdW Cont. ♥ Solid Ang. ♥ Dist + Bsds	MinOm: 8.50 Min. Interval	
C Solid Angles Save Voids Keep Matrix Keep Matrix	>	Sake As Is Face Data Repulsive EI - H Bonds Indirect	Bond Type ✓ Valence C Specific C Van der Waals C H bonds C None	
File Name: C:\Users\adamr\Documents\Work\Topos\Calcium				
Ok Def	ault Rest	ore	Cancel	

- 8.) A very useful option to employ with all the above methods is the "Keep Matrix" option. This will retain the last calculated adjacency matrix and add the newly calculated bonds to it. This is a flexible method of adding new connections to the matrix and assigning them a specific type.
 - Using "Ranges" and calcite as an example:
 - All bonds are disabled by setting their distance ranges from 0:0.

AutoCN Options		×		
Common VDP Calculation	s Matrix H bonds Specific I	Bonds		
Method Ca-0 0 C Domains C-0 0: C-0	Anges Matrix Data Spec. Cont. Volve Cont. Solid Ang. Solid Ang. Solid Ang. Face Data Repulsive El - H Bonds	MinOm: 8.50 Min. Interval 0.300 Bond Type Valence Specific Van der Waals H bonds None		
File Name: C:\Users\adamr\Documents\Work\Topos\Calcium Data to File Ok Default Restore Cancel				

- Ca-O and C-O bonds are set to a short range (3 Å and 2 Å, respectively) and set to valence to pick up the main ionic interactions.

AutoCN Options ×	🚏 AutoCN:C:\Users\adamr\Documents\Work\Topos\Calcium Carbon 🛛 🗌	×
Common VDP Calculations Matrix H bonds Specific Bonds	<u>D</u> ata <u>Options Run</u> <u>C</u> ancel <u>Q</u> uit	
Method Ca-0 0.3 Spec Cont. Min0m: 8:50 C Domains C-0 0.2 vdW Cont. Win0m: 8:50 G Ranges 0-0 0.0 Solid Ang. Solid Ang. G Solid Angles 0-0 0.0 Save Bond Type Save E1-H Bonds C H bonds C H bonds V vdW Cont CarCa 0.0 Save C H bonds	vCal 2.357 0.00 Cal vOl 2.357 0.00 Cordination numbers for Calcite_Range_Test	^
Cheep Matrix	C1 3 0 0 0 03 01 3 0 0 C1Ca2 Ca1 6 0 0 0 06	
File Name: [C:\Users\adam/Documents\Work\Topos\Calcium]	Elapsed time: 0.04 sec.	
Ok Default Restore Cancel	5991K	>

- The following adjacency matrix is obtained with C coordinated to 3 O's and Ca coordinated to 6 O's:

- If longer range interactions are required, e.g. van der Waals interactions, they can be added on top of the current matrix. Considering Ca-Ca, C-C and O-O long range interactions for example.
- Selecting the "Keep Matrix" checkbox under the "Save" options, and assigning the required distances (remembering that a range of 0:0 will ignore interactions) will lead to a new set of interactions being discovered:

AutoCN Options	×	Y AutoCN:C:\Users\adamr\Documents\Work\Topos\Calcium Carbon —	\times
Common VDP Calculations Matrix H bonds Specific B	onds	<u>D</u> ata <u>O</u> ptions <u>R</u> un <u>C</u> ancel <u>O</u> uit	
Method Ca0 0.0 C Domains Ca0 0.0 G Ranges C C 0.4.5 C Solid Angles Ca-Ca 0.4.5 Save Ca-Ca 0.4.5 Atoms Ca-Ca 0.4.5 Vidds Ca-Ca 0.4.5 C Actoms Ca-Ca 0.4.5 C Atoms Ca-Ca 0.4.5 Vidds Ca-Ca 0.4.5	MinOm 8.50 Min. Intervat/0.300 Bond Type C Valence C Specific © Van der Waals C H bonds C None	v01 3.409 0.00 Cal vCa1 4.048 0.00 vCa1 4.048 0.00 vCa1 4.048 0.00 vCa1 4.048 0.00 vCa1 4.048 0.00 vCa1 4.048 0.00 Coordination numbers for Calcite_Range_Test Atom ten Sp vdW Hb Composition C1 6 0 0 0 C6 01 12 0 0 0 012 Cal 6 0 0 0 C46	^
File Name: [C:\Users\adam\Documents\Work\Topos\Calcin Data to File Ok Default Restore	um Cancel	Elapsed time: 0.06 sec.	>
		5888K	

- While the *AutoCN* window implies that the previous interactions were replaced and that the new interactions were assigned as valence instead of vdW as requested, checking the Adjacency Matrix tab when double-clicking a database entry shows that the connections have in fact been added and assigned the type of vdW.

- This action can be repeated to add further connections to the matrix. E.g. adding long range C-O "H-bonds":

- The "Keep Matrix" option can be used with any and all combinations of the previously discussed "Method" options i.e. Domains, Ranges and Solid Angles.

Method 2: Using Generate Representations (only available in Full Version of ToposPro)

This route requires first using *AutoCN* to calculate some description of the connectivity in the crystal structure. Use a method from above and aim to overestimate the connectivity (i.e. include even the weakest interactions). Generate Representations is a quick route to produce several separate database entries with varying interaction strengths.

- **1.)** Import your CIF file and run *AutoCN* using method 1 to estimate the connectivity.
- 2.) Click "Compound" and select "Generate Representations"

3.) Select the bond types that you wish to consider and select Solid Angles as the Sort Type. Set the minimum interval to a relatively low number (this is the interval that minimum omega will increment upwards by when searching for interaction sets). Large numbers may miss out on some interaction sets. Also set the mode to remove bonds. To create the new files in the same database, you must also tick Duplicate.

Representation Parameters	×
Consider Bonds A-B A EI EI B EI EI Valence Specific Van der Waals H bonds	Sort Tupe Solid Angles C Distances C Bond Order C Bond Valence C Symmetry C Subgroups Generate
Minimum Interval 1.50	Maximal subgroups
MaxNumAtRatio 0 🔹	C All subgroups C TrEa subgroups only
MaxVolRatio 1	C KIEq subgroups only
MaxSubGrindex 0	Mode
MaxNumBondSets 0	Remove bonds C Create bonds
Min/MaxDegree 0 🚖	
Ok	Cancel

4.) Press OK and the window will close, this will then generate several database entries with varying sets of interactions between crystal species.

Contraction (Contraction (Contr	76/10		
Compounds Urea Urea (connected) Urea (connected) Urea 125	1600		
Uee 2.5 Uee 3.5 Uee 3.6 Uee 3.0 Uee 4.0 Uee 3.0 Uee 4.0 Uee 3.0 Uee 3.0 UE 3			
Urea/Omega-32.00%[Set #2] Urea/Omega-32.00%[Set #1]			
15:7:9 N			

5.) The Omega value for each file is equal to the lowest solid angle it will class as an interaction. The higher values will only include the strongest of interactions, while the lowest will include all of the weaker interactions (as well as the stronger ones). E.g. some example cases for urea:

- Omega = 32.00% even ignores the longer intramolecular valence bonds.

- Omega = 15.50% includes the stronger intermolecular interactions (e.g. H-bonds)

Omega = 2.50 % includes the weakest intermolecular interactions (e.g. long range vdW interactions.

Investigating Molecular Connectivity

Users can investigate the calculated connectivity for the crystal structure using the visualisation package within ToposPro - IsoCryst - (CTRL + I) / pencil symbol on the toolbar.

 Y ToposPro
 Build - 5. 3. 3. 5

 System
 Compound
 Eilter
 Database
 Program
 Results
 Window
 Cancel
 Help

 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □

Using the Grow key - (**CTRL+W**) / plant symbol on the toolbar - will grow the structure based on the currently selected atoms and bond types. Turning off bond types will not allow the structure to grow through these connections. If no atoms are selected, then the structure will behave as if all atoms are selected when pressing the grow key.

🚏 IsoCryst: C:\Users\adamr\Documents	\Work\Topos\Urea\Urea_redo {Urea}
Image Edit Display Select Calcu	l <mark>late</mark> C <u>a</u> ncel <u>H</u> elp
$\bigcirc \bigcirc $	Val Sp CE PE vdW Hb 8

The scene can be rotated in the XY plane or the Z plane with the Rotate and Z-Rotate tools, respectively:

IsoCryst: C:\Users\adamr\Documents\Work\Topos\Urea\Urea_redo {Urea} Edit Display Select Calculate Cancel Help Image

And can be translated in the Z and XY plane by the Magnify / Shrink and Translate tools, respectively:

🚏 IsoCryst: C:\Users\adamr\Documents\Work\Topos\Urea\Urea_redo {Urea}					
nage <u>E</u> dit <u>Display</u> <u>S</u> elect <u>C</u> alculate C <u>a</u> ncel <u>H</u> elp					
) 🛛 🚭 🖸 🕜 🕂 📏 💊 🗶 🖉 🖓 🔎 All 🖕 🎬 🏈 💥 💢 🏹 🛄 🛇 🕂 💽 🕪 Val So CE PE volve Ho. 💡					

Atoms can be selected with the Select option. Once enabled, left clicking will select an atom and right clicking will deselect an atom.

IsoCryst: C:\Users\adamr\Documents\Work\Topos\Urea\Urea_redo {Urea} Edit Display Select Calculate Cancel Help Image € O D O" + > > > > > AI O O AI O O + > > > Val Sp CE PE volv Hb 8

If the "Select Polymeric Chain" option is selected in the bottom toolbar, then all atoms connected by the enabled bond types will be selected. This option is useful for selecting all molecules linked by interactions.

e.g. Urea linked only by valence bonds:

vdW bonds only:

These selection methods can be combined with the grow button to grow the neighbouring molecules to a species.

Using urea as an example to produce an image of all neighbours for a central species:

1.) Enable only valence bonds and activate Select Polymeric Chain.

2.) Select an individual urea molecule.

- **3.)** Use the "show selection only" option to only display the urea molecule fragment.

4.) Press Grow to add connected atoms to the molecule.

5.) Keep selecting the molecule and growing it until the full molecule is complete. (Right click to deselect all atoms).

Image Edit Display Select Calcular, Cancel Help Image Edit Display Select Calcular, Cancel Help Image Edit Display Select Calcular, Cancel Help	-	σ	×
	С С С С С С С С С С С С С С С С С С С		

6.) Now activate the Hb and vdW bonds to enable growth through hydrogen bonds and vdW interactions, and press Grow once.

7.) These are the first atoms that are located on neighbouring molecules, connected to the central molecule by H-bonds and vdW interactions. Switching off Hb and vdW will return to only allowing growth via valence bonds, so the molecules will be completed if Grow is pressed repeatedly with no atoms selected.

8.) Switch Hb and vdW back on to display the required interactions again.

Users can also change bonds individually by using the Edit Bond tool. This includes making bonds invisible, changing the drawing style and recolouring. First the bonded atoms must be selected, then Edit > Edit Bond (or **CTRL+B**), followed by selecting the options for the desired changes.

Additional options for colouring etc. can be found by clicking the exclamation mark symbol (*IsoCryst* options) or by clicking atoms with the Magic wand symbol.

Images can be saved directly from *IsoCryst* by selecting Image > Save:

