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Abstract:
The role of pharmacogenomics in the clinical 
setting is shifting from a reactive testing approach 
toward a preemptive model. Since many clinicians 
have embraced comprehensive medication 
management (CMM), the goal of this white paper 
is to educate healthcare professionals on the value 
of precision medicine and pharmacogenomic 
testing services in CMM care models. We will 
also explore methods for implementation, 
reimbursement opportunities, and present evidence 
to support its role in mitigating polypharmacy and 
optimizing medication regimens, patient outcomes, 
and cost savings.

1. Introduction
Adverse drug events (ADEs) have been categorized 
as a leading cause of preventable death according to 
the Centers for Disease Control and Prevention.1,2

One contributing factor to the use of potentially 
inappropriate medications is polypharmacy.3

Poorly managed medications are associated with 
ADEs, which in turn, can lead to increased cost, 
medication related morbidity, and poor patient 
outcomes.4,5 Furthermore, medication risk scores
that assess appropriateness of drug regimens have 
been independently associated with an increased 
risk of mortality.6-8 It must be realized that risk
factors known to worsen patient outcomes are 
improved through the appropriate selection and 
combination of medications in a regimen. As such, 
improvement does not require the use of expensive 
technologies or invasive procedures. Instead, 
healthcare experts can mitigate these risks and 
optimize medication use through comprehensive 
medication management (CMM) in practice with 
evidence-based guidance.

Comprehensive medication 
management (CMM)
Comprehensive medication management (CMM) 
enables clinical pharmacists and physicians 
to use “a systematic approach to medications 
where physicians and pharmacists ensure that 
medications (whether they are prescription, 
nonprescription, alternative, traditional, vitamins, 
or nutritional supplements) are individually 
assessed to determine that each medication 
is appropriate for the patient, effective for the 
medical condition, safe (given the comorbidities 
and other medications being taken), and able to 
be taken by the patient as intended.”9 Previous 
white papers from the American College of 
Clinical Pharmacy (ACCP) define CMM in 
team-based care.10 CMM, as a patient-centered 
approach to medication management, is shown to 
reduce healthcare costs and improve the patient 

care experience, provider wellbeing, and overall 
care.9 Studies have shown improved medication 
adherence,11 patient experience, healthcare costs, 
and provider well-being following CMM reviews.12

Pharmacogenomics and CMM
Pharmacogenomics has utility as a multifactorial 
process that assesses the genome and explores 
its association with medication optimization.13 
Genetically guided selection of medications has 
improved cost avoidance14 and clinical utility,15 
especially in treating patients with multimorbidity 
(e.g., depression, cardiovascular diseases) and 
polypharmacy.16 Interprofessional CMM models 
that consider genetic variants are shown to 
mitigate medication-related problems (MRPs) and 
improve medication safety.17 It is also shown that 
improved disease management and prevention 
is achieved through precision medicine using 
pharmacogenomic testing.16 Tools that integrate 
genotypic information, predict phenotypes, and 
identify potential phenoconversion are proven to 
be advantageous in patients with polypharmacy 
and chronic diseases.17-22

Overall, pharmacogenomic testing as part of a 
more personalized and precise medicine strategy 
steers away from the one size fits all model and 
could significantly improve the utility and value of 
CMM. We intend this paper to be a resource and 
reference to educate healthcare professionals on the 
value of precision medicine and pharmacogenomic 
testing services in CMM care models.

2. Operationalizing Pharmacogenomics
into the Delivery of CMM
Key elements should be considered before 
integrating pharmacogenomic services into 
an existing CMM care model. A well-defined 
workflow process to optimize interactions 
within the healthcare team is vital to the success 
of any CMM program.23 In 2003, Hood et al.
predicted that pharmacogenomics would lead 
to novel approaches in drug discovery, including 
an individualized application of drug therapy 
and new insights into disease prevention.24

Scientific knowledge has evolved significantly since 
then; however, the translation of this information 
into clinical practice has been challenged by the
hurdles raised by the systematic approaches for 
success25 and the continued need for stakeholder 
and management support.

2.1. An iterative model
The integration of pharmacogenomics into CMM 
care models is a process that employs several 
concepts that must be mastered by the clinician to 
ensure safe, effective, and optimized medication 
use across various systems. For example, variant 

alleles may impact either the pharmacokinetic 
(e.g., drug metabolizing enzymes or transporters) 
or pharmacodynamic (e.g., drug receptor or intra/
extracellular enzymatic systems) properties of a 
drug in an individual, thus dictating considerations 
for dosing changes or therapeutic alternatives for 
the patient.

Pharmacogenomic considerations are not, 
however, included in usual evidence-based 
guidelines for the management of chronic 
diseases, especially given the notion that national 
consensus treatment guidelines formulate their 
recommendations using generalizable evidence 
from large populations enrolled in randomized 
clinical trials rather than information from selected 
individuals.26-28 Once the use of pharmacogenomic 
information becomes part of the clinical decision 
procedure, a constant and reiterative effort must be 
implemented to refine the process. See Figure 1 for 
a graphic depiction of the combined model.

2.2 Walk before you run
Currently, more than 300 therapeutic products 
recognized by the United States Food and Drug 
Administration (FDA) include pharmacogenomic 
information in their drug labeling (see Table 1 for 
type of information).29

CMM programs may find it particularly 
challenging to launch broad pharmacogenomics 
programs that aim to test all therapeutic classes 
of medications and their various indications. It is 
highly advisable to focus on a series of drugs (either 
from a drug class or a particular indication or those 
impacted by gene variants tested by a particular 
assay on a selected gene), then make interventions 
only for those drugs or those genes. One ideal 
way to initiate such services and gain confidence 
is to follow clinically actionable gene-drug pairs 
described by the Clinical Pharmacogenetics 
Implementation Consortium (CPIC) in their 
consensus guidelines.30

For instance, as a first step to establishing a 
pharmacogenomics program foundation, one 
could apply pharmacogenomic knowledge related 

Table 1: Examples of pharmacogenomic information 
on drug labels

Genomic biomarkers

Drug exposure and clinical response variability

Risk for adverse events

Genotype specific dosing

Mechanisms of drug action

Polymorphic drug target and disposition genes

Trial design features
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to CYP2C19 for clopidogrel, CYP2C9 for warfarin, 
or CYP2D6 for some antidepressants. As a second 
step, one could review additional drugs that share 
similar metabolic pathways involving CYP2C19, 
such as proton pump inhibitors, or CYP2C9, such 
as nonsteroidal anti-inflammatory drugs, and 
finally on CYP2D6, such as opioids. As a final 
step, one may want to consider drugs impacted 
by more than one genetic polymorphism, such as 
antidepressants being metabolized by CYP2D6 
and CYP2C19, or warfarin being metabolized 
by CYP2C9 and interacting with the vitamin K 
epoxide reductase complex encoded by VKORC1, 
and then the role of CYP4F2 and CYP2C cluster.

2.3 Initiate your combined 
pharmacogenomic-CMM program by 
targeting a special population
At the initiation of a pharmacogenomic program, 
it is advisable to start the person-centered CMM 
activities by targeting patients who are treated 
for one specific disease. Select patients with 
diseases that are relevant based on your clinical 
activities and expertise. For instance, one could 
start by focusing on patients who are treated with 
azathioprine for rheumatoid arthritis. In this case, 
it would be important to recognize the major 
enzymatic systems involved in the activation of the 
prodrug to its active metabolites (i.e., thioguanine 
nucleotides).

For example, clinicians should be cognizant 
of the effects of thiopurine methyltransferase 
(TPMT) and nudix hydrolase (NUD15) enzymes, 
as both exhibit genetic polymorphisms associated 
with reduced enzyme activities (e.g., TPMP*2, 
TPMP*3A, TPMP*3C, NUDT15 C415T 
rs116855232). These polymorphisms have the 
potential to impact azathioprine’s dosage and 
administration, as well as the patient’s risk of 
toxicity and myelosuppression associated with 
higher levels of thioguanine. Clinicians should 
consider guidelines from CPIC and the Dutch 
Pharmacogenetics Working Group (DPWG) when 
determining appropriate doses for individuals with 
low or deficient enzyme activity.31-34

As a second example, one could consider the 
role of the hepatic solute carrier organic anion 
transporter family member 1B1 (SLCO1B1) on 
the efficacy and toxicity of simvastatin in patients 
treated for hypercholesterolemia, and even consider 
other factors in a research environment, such as the 
role of the monocarboxylate transporter 1 (MCT1) 
on drug accumulation in muscle cells and toxicity 
that may be not currently part of the guidelines.35,36

Once a practitioner masters most of these 
skills, pharmacogenomic testing could target 
patients who are unable to reach therapeutic goals 
or experience ADEs in the context of a more 

comprehensive strategy that defines a person-
centered CMM approach.10 This could include 
patients with multimorbidity, with polypharmacy, 
or who can benefit from preventative therapy.10 Yet, 
this approach would require one to understand 
the patient’s medication history, comorbidities, 
preferences, and beliefs.9

It is important to note that patients with 
polypharmacy often need more extensive 
pharmacogenomic interpretation, as they are more 
likely to have multiple drug-gene and drug-drug 
gene pair interactions. Medication therapy should 
be evaluated using a person-centered approach 
that identifies environmental factors (e.g., smoking 
tobacco) and actual use patterns of all 
medications, including over-the-counter, bioactive 
supplements, recreational drugs, and prescriptions. 
Risk stratification strategies can be useful in 
identifying patient cohorts suitable for these 
services.4,37 Thus, the complementary outcomes 
associated with pharmacogenomics and CMM care 

models have the potential to optimize medication 
safety, effectiveness, and appropriateness.

2.4 Phenoconversion
Interpretation of a genetic test result and translation 
of the genetic code into a predicted phenotype of a 
person is faced with obstacles. One must question:

i.	 what is the reproducibility and precision of 
the test used?

ii.	 were the appropriate single nucleotide 
polymorphisms, alleles, and haplotypes tested?

iii.	 how were the results validated? and
iv.	 were the results predictive of a phenotype?

For example, one cannot ascertain the “predicted 
phenotype” from a report if only five different 
alleles are tested for CYP2D6, as we know that more 
than 100 different alleles exist, leading to various 
haplotypes and phenotypes.25 Expert tools have 
been developed to assist practitioners, but they 
require routine updates and should be reflective 
of the demographic population being tested.38 
One proposed solution is the use of therapeutic 
drug monitoring, if available, to predict accuracy 
of phenotypes.

Next, one should consider other confounding 
variables that could modify the predicted 
phenotype into the clinically “observed 
phenotype.” The modulation of phenotypic traits 
is called phenoconversion.

For instance, a genetic test using DNA 
sequencing could establish that a patient is CYP2D6 
*1/*1, also known as a normal metabolizer of 
CYP2D6 as the predicted phenotype. Based 
on this result, one would expect the patient to 
“normally” metabolize CYP2D6 substrates, such 
as beta blockers (e.g., propranolol, metoprolol, 
nebivolol, carvedilol),39-43 antidepressants
(e.g., amitriptyline, venlafaxine),44-47 antihistamines 
(i.e., diphenhydramine), and to be able to activate 
opioid prodrugs into their active metabolites 
(e.g., codeine into morphine or oxycodone 
into oxymorphone, respectively).47 However,
coadministration of medications that are potent 
inhibitors of CYP2D6, (e.g., quinidine, terbinafine, 
or paroxetine) or higher affinity substrates 
(e.g., bupropion) would decrease CYP2D6 
activity and impair the metabolism of other 
medications, thus, potentially phenoconverting a 
“normal metabolizer” into either an “intermediate 
metabolizer” or a “poor metabolizer”.19

Diseases such as type 2 diabetes and chronic 
inflammatory status can also modulate CYP450 
activities associated with phenoconversion.48,49 
Under these conditions, the risk of toxicity would 
be increased for active products, and a lack of 
efficacy would be expected for the prodrugs.

Figure 1: A comprehensive medication management 
and pharmacogenomic testing model.
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The benefit of combining pharmacogenomic 
testing with a CMM approach is the ability 
to consider all covariables (normal or 
phenoconverted) that may impact, the predictive 
appreciation and estimation of the individual’s 
ability to metabolize drugs and expected efficacy 
or toxicity.

2.5 Obtain access to Advanced Clinical 
Decision Support Systems (CDSS)
As patients continue to present with more 
complex drug regimens, clinicians need access to 
comprehensive tools. Use of advanced CDSS guides 
healthcare members and improves the quantity 
of clinically relevant recommendations50 while 
considering the most appropriate medication given 
unique patient characteristics. Advanced CDSS 
also help to personalize drug regimens that are 
in alignment with national consensus treatment 
guidelines, but otherwise not optimal given 
patient-specific drug-drug interactions and genetic 
predispositions. Interprofessional team-based care 
with a clinical pharmacist working in collaborative 
practice with a physician is one way that healthcare 
workers can practice synergistically, with all their 
competencies supported by CDSS to take into 
consideration pharmacokinetic/pharmacodynamic 
drug properties, drug-drug interactions, 
pharmacogenetics, and efficacy and toxicity of each 
active drug ingredient.51

At minimum, clinicians should be preemptively 
alerted by the CDSS to the potential of a gene-drug 

interaction. Most clinicians are only exposed to 
interruptive alerting; in the ideal case, clinicians 
should also have access to advanced CDSS that go 
beyond traditional drug-drug interaction databases 
and software systems. The advanced CDSS should 
provide meaningful and actionable clinical insights 
by considering every element of a medication 
regimen.4,52,53 Furthermore, the provision of 
computer-based decision support and clinical 
recommendations employed by CDSS is known 
to improve clinical practice.54

2.6 Work as a team
Clinical pharmacists should work in tandem with 
other clinicians to assess the patient, evaluate 
medication therapy, and develop an action plan.10 
Clinical pharmacists also play a key role in the 
assessment of a drug regimen for medication 
appropriateness, effectiveness, safety, and 
adherence – while collaborating with others to help 
the patient achieve clinical goals for each therapy.9 
It is also critical that such assessments take into 
account not only the pharmacogenomics, but also 
the pharmacodynamic and patient demographic 
variables that influence medication effectiveness.

The final component associated with a successful 
pharmacogenomic-integrated CMM care model 
is the development of a patient action plan that 
includes baseline health marker data and goals 
of therapy. To achieve desired clinical goals 
and outcomes, routine follow-up with patients 
is required to determine effects of changes, 

reassess actual outcomes, and recommend 
further therapeutic changes.9 Watanabe et 
al. proposed that clinical pharmacists play a 
key role in the expansion of CMM programs, 
particularly through collaborative practice 
agreements (CPAs), and these programs should 
include pharmacogenomics-based practices.55 
Interprofessional collaborative practice (ICP) 
enables healthcare professionals to complement 
the expertise of one another to improve patient 
health outcomes.56 Studies have documented that 
CPAs between clinical pharmacists and prescribers 
may have value in this arena and lends evidence to 
support that ICP improves patient health outcomes 
and reduced costs.55

2.7 Favor pre-emptive testing
Conceptually, pharmacogenomic testing 
requires the collection and transfer of a 
sample to a specialized laboratory, sample 
processing for DNA isolation and analysis, data 
interpretation, return of results, and medication 
profile reevaluation. To date, the usual time 
encountered between sample collection and 
obtaining results is approximately 7-10 days.56 
This delay in turnaround time prohibits the 
prescriber from efficiently using the results from 
pharmacogenomic testing to initiate appropriate 
therapy. Pharmacogenomics is experiencing a 
shift from a reactive approach to a more proactive 
testing model.25 With consented, preemptive 
testing, the prescriber and the clinical pharmacist 
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have direct access to the results during the 
assessment and prescribing process. In the context 
of a CPA between the clinical pharmacist and 
providers, information can be readily available in 
real time, and pharmacogenomic results are better 
received in appropriate context.22 In addition, 
patient convenience is optimized using a CPA as it 
decreases the demand on the pharmacogenomic 
laboratory and offers more sufficient time for 
reporting and result interpretation.

2.8 Stakeholder acceptance
One key prerequisite for implementing an effective 
pharmacogenomic-integrated CMM care model 
is prescriber and patient acceptance. Another 
critical element is the need for management buy-in 
to support and maintain the pharmacogenomic-
integrated CMM care model under their purview. 
Often, clinician resistance results from poor 
literacy in genomics.25 Some studies have defined 
a need to supplement pharmacogenomic test 
results with educational materials and courses 
to support implementation.58,59 One survey by 
Peterson et al. found that educational course 

participation better informed healthcare providers 
on the use of pharmacogenomics in their practice.60 
In addition, education may promote the integration 
of pharmacogenomic test results into the care plan 
and further mitigate medico-legal risks associated 
with clinical negligence.

Hence, it is advised that all pharmacogenomic-
integrated CMM care models integrate educational 
courses. Education is crucial to effect change, 
so the next generation of prescribers can use 
pharmacogenomics as a tool to optimize treatment 
outcomes. In turn, prescribers are able to advise 
patients with knowledge about the process and 
purpose of preemptive testing.

3. Value of Pharmacogenomic-
Integrated CMM Care Models
Pharmacogenomic integration into existing 
CMM care models is known to decrease 
cost61 and to improve provider education and
patient satisfaction.61,62 In addition, the value of
pharmacogenomic-integrated CMM care models 
improves patient access to healthcare,62 and clinical 
outcomes.62,64-68

In certain populations (e.g., Programs of 
All Inclusive Care for the Elderly, PACE), the 
cost‑avoidance benefits of pharmacogenomic-
integrated CMM care models have demonstrated 
promising results.14 One study by Bain et al. 
found a mean cost avoidance of $1,983 per 
actionable drug-gene pair.14 Another study found 
that pharmacists using a pharmacogenomics 
tool designed to analyze cumulative drug-gene 
interaction helped predict the magnitude of 
drug-level changes and provided more meaningful 
recommendations to providers.61 As a result, multi-
gene tests are superior to single gene tests, given 
their increased cost effectiveness.69

In other cases, pharmacogenomic testing 
guides clinicians to reduce total medication costs 
and improve patient outcomes by reducing risks 
associated with unsafe medications.70 In one 
study, pharmacogenomic testing decreased the 
probability of death from suicide compared to 
patients who received standard care for certain 
mental health conditions.64 Thase et al. also found 
that provider education and patient satisfaction 
improved with pharmacogenomic testing.64 
Hence, the significance of testing is that it facilitates 
identification of MRPs and optimization of 
medication action plans used in CMM.62

Finally, studies consistently show that 
nearly all patients carry at least one actionable 
pharmacogenomic variant,69,71 and that nearly 
one in five medications in the United States have 
a labeled pharmacogenomic recommendation 
based on those variants.72 For many years, 
pharmacogenomic testing has been valued 
and acclaimed in various settings – including 
CMM and PACE – towards the mitigation of 
polypharmacy, optimization of medication 
regimens and patient outcomes, and cost savings.14

As preemptive pharmacogenomic testing has 
been associated with reduced ADEs,73 it is advisable 
to incorporate preemptive testing into CMM 
care models. Importantly, patients should not be 
excluded based on certain conditions, as there 

Table 2: Recommended data to collect and monitor 
to facilitate reimbursement

Patient name/ID

Insurer

CD-10 code

Medications at time of test order and/or results

CPT code

Amount billed 

Test successfully reimbursed (yes/no)

Amount reimbursed (e.g., full, partial)
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is a clear association between the potential for 
preemptive testing and improved patient outcomes 
for all patients.25

4. Reimbursement Mechanisms for
Pharmacogenomic CMM Services
Payer coverage for pharmacogenomic testing 
remains inconsistent in the United States, but it 
is improving. Current procedural terminology 
(CPT®) codes have been developed to facilitate 
billing and coverage of some single gene 
tests.74 Certain large commercial payers have
introduced new coverage policies for multigene 
panels, specifically for antidepressants and 
antipsychotics.75 Similarly, significant new local
coverage determinations (LCDs) that include both 
single and panel-based tests were promulgated 
for Medicare beneficiaries through the MolDx 
program.76 Testing for more than 50 actionable
gene/drug pairs included in CPIC guidelines and/
or FDA labeling is covered for patients in the 28 
states impacted.76 However, the guidelines are
vague regarding coverage in preemptive testing 
models, as the policies convey that testing is 
indicated when medications are being considered 
for use (or medications that have already been 
administered); particularly for those that are 
medically necessary, appropriate, and approved 
for use based on indication and known gene(s)–
drug interactions.

Since reimbursement for pharmacogenomic 
testing remains inconsistent, the field faces 
multiple challenges in this area. Reimbursement 
is determined by the insurer based on their own 
analyses of available evidence supporting the 
clinical utility of testing. This inconsistency creates 
a lack of transparency that drives a cautious 
approach for many providers that are considering 
clinical billing for pharmacogenomic testing.

There is also significant variability among 
insurers, which creates apprehension and 
hesitancy among providers who are ordering 
the test. While CPT® codes are now available 
for pharmacogenomic testing, documentation 
of testing and results in medical records 
is inconsistent.77

The major medical insurance industry has 
been largely resistant to advocacy and other 
efforts to standardize evidence evaluation, clinical 
utility determination, and documentation for 
pharmacogenomic testing. In addition, while 
pre‑emptive pharmacogenomic testing is preferable 
to reactionary single-gene testing, many insurers 
remain hesitant to cover panel-based testing as 
compared with single-gene tests despite the clear 
benefit of panel-based testing.78 Finally, because it is 
an emerging science, many clinicians are unfamiliar 
with the billing logistics for pharmacogenomic 

testing and may have difficulties navigating 
this process.

Beyond the testing, scaling reimbursement for 
clinician services is also needed to establish CMM 
services that incorporate pharmacogenomics. 
Because testing is scientifically complex, results can 
affect numerous medications at the time the test 
is conducted and throughout the patient’s lifetime 
and thereby create challenges for reimbursement in 
a CMM setting. Fewer patients may be eligible for 
pharmacogenomic testing coverage as compared 
to patients qualifying for CMM. This could 
decrease sustainability of pharmacogenomics as a 
CMM service and limit its growth.79 Unlike many 
other routine clinical tests, pharmacogenomic 
testing may require pre- and post-test medication 
assessment and/or patient education. Therefore, 
it is not solely the test that must be reimbursed, 
but also the provider’s time and efforts.80 
Until pharmacogenomics has established a history 
of clinical use, several patient visits may be required 
to allow for time for the test results to be returned 
and pre- and/or post-test counseling (i.e., two-visit 
care model). Taken together, these may complicate 
financial viability.

4.1 Research your patient and payer mix
Before beginning pharmacogenomic-integrated 
CMM care models, identify which of your patients 
are most likely to benefit and their primary insurer 
to identify existing pharmacogenomic testing 
coverage policies, indications, billing codes, and 
any documentation requirements. Some insurers 
provide guidance for documentation needed for 
test reimbursement. For example, the Centers for 
Medicare and Medicaid Services (CMS) LCD for 
pharmacogenomic testing states that among
required elements, providers must have a record 
of drugs being considered for treatment and their 
indications to ensure test coverage.80 It further 
specifies that pharmacogenomic testing is not 
considered reasonable and necessary solely based 
on a patient having a particular diagnosis.80 
Although not universally applicable, this type of 
guidance is increasingly available from insurers to 
inform best billing and documentation practices for 
pharmacogenomic testing. This step can also help 
clinicians identify if payers have any requirements 
for or restrictions on coverage of pre-emptive vs. 
single gene testing.

4.2 Document billing and  
reimbursement outcomes
Clinicians should consider adopting a 
continuous quality improvement approach 
to pharmacogenomic test reimbursement 
data. Ongoing monitoring of billing data 
metrics can inform needed changes in the 

clinical service or workflow to optimize the 
likelihood of reimbursement. Documentation 
and dissemination of these data are also 
important in moving pharmacogenomic CMM 
models forward, as it provides clinicians who are 
considering implementing pharmacogenomics 
with objective information to guide their 
operational strategies. Table 2 shows the data that 
is most recommended to collect and monitor on 
an ongoing basis.

4.3 Explore strategies to increase 
efficiencies and educational opportunities
Use of mechanisms to streamline pre- and post-
test patient education, medication management, 
and clinician engagement can help increase 
sustainability of a new service. For example, 
choosing whether to adopt a two- vs. one-
visit model, degree of reliance on telehealth or 
printed materials as compared with face-to-
face education, and choice of documentation 
strategy can all influence the quality of care, as 
well as financial viability of a new service. Use of 
appropriate patient-facing clinical decision support 
(e.g., patient/provider education and return of 
results via secure web portal) for genomic data has 
been shown to be feasible, may enhance patient and 
provider understanding, and can help streamline 
the education process.81

4.4 Explore emerging practice models
Pharmacogenomics could be integrated into 
established CMM practices within employer health 
programs or chronic care management programs. 
One example reduced healthcare spending through 
a collaborative partnership between retirees, 
physicians, and pharmacists from a coalition.82 
The pilot program’s real time approach contributed 
to it as a scalable model for employers and other 
benefit managers.82 New clinics in community 
settings that incorporate creative multidisciplinary 
models involving clinical pharmacists, physicians, 
and genetic counselors have been deployed83,84 
and can support billing through CPAs or 
established providers.

5. Conclusion
Integration of pharmacogenomic testing into 
CMM care models is fulfilling its promise to 
increase cost savings, improve patient outcomes, 
and ensure medication safety. To achieve this 
promise, healthcare teams should participate in 
educational courses to improve health literacy in 
genomics. As more healthcare providers become 
knowledgeable in pharmacogenomics, testing 
should be considered for all patients that receive 
CMM services, especially, those on multi-drug 
regimens who have:
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1) a higher likelihood of positive correlations 
of the pharmacogenomic results to their 
medication outcomes;

2) an increased probability of phenoconversion, 
and

3) genotype-to-phenotype mismatches requiring 
results interpretation.

Finally, healthcare systems should adopt 
pharmacogenomic-integrated CMM care

models that use advanced clinical decision 
support systems to personalize care and 
mitigate the risk of medication safety related 
problems, adverse drug events, and medication 
related mortality. JoPM
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