
-by Jeff Knupp,

There are two recent trends I really hate: DevOps and the
notion of the "full-stack" developer. The DevOps movement
is so popular that I may as well say I hate the x86
architecture or monolithic kernels. But it's true: I can't stand
it. The underlying cause of my pain? This fact: not every
company is a start-up, though it appears that every
company must act as though they were.

DevOps
"DevOps" is meant to denote a close collaboration and
cross-pollination between what were previously purely
development roles, purely operations roles, and purely QA
roles. Because software needs to be released at an ever-
increasing rate, the old "waterfall" develop-test-release cycle
is seen as broken. Developers must also take responsibility
for the quality of the testing and release environments.
The increasing scope of responsibility of the
"developer" (whether or not that term is even appropriate
anymore is debatable) has given rise to a chimera-like job
candidate: the "full-stack" developer. Such a developer is
capable of doing the job of developer, QA team member,
operations analyst, sysadmin, and DBA. Before you accuse
me of hyperbole, go back and read that list again. Is there
any role in the list whose duties you wouldn'texpect a "full-
stack" developer to be well versed in?

https://jeffknupp.com/blog/2014/04/15/how-devops-is-killing-the-developer/

Where did these concepts come from? Start-ups, of course
(and the Agile methodology). Start-ups are a peculiar beast
and need to function in a very lean way to survive their first
few years. I don't deny this. Unfortunately, we've taken the
multiple technical roles that engineers at start-ups were
forced to play due to lack of resources into a set of minimum
qualifications for the role of "developer".

Many Hats
Imagine you're at a start-up with a development team of
seven. You're one year into development of a web
applications that X's all the Y's and things are going well,
though it's always a frantic scramble to keep everything
going. If there's a particularly nasty issue that seems to
require deep database knowledge, you don't have the
liberty of saying "that's not my specialty," and handing it off
to a DBA team to investigate. Due to constrained
resources, you're forced to take on the role of DBA and fix
the issue yourself.
Now expand that scenario across all the roles listed earlier.
At any one time, a developer at a start-up may be acting as
a developer, QA tester, deployment/operations analyst,
sysadmin, or DBA. That's just the nature of the business,
and some people thrive in that type of environment.
Somewhere along the way, however, we tricked ourselves
into thinking that because, at any one time, a start-up
developer had to take on different roles he or she should
actually be all those things at once.

If such people even existed, "full-stack"
developers still wouldn't be used as they should. Rather
than temporarily taking on a single role for a short period of
time, then transitioning into the next role, they are meant to
be performing all the roles, all the time. And here's what
really sucks: most good developers can almost pull this off.

The Totem Pole
Good developers are smart people. I know I'm going to get
a ton of hate mail, but there is a hierarchy of usefulness of
technology roles in an organization. Developer is at the top,
followed by sysadmin and DBA. QA teams, "operations"
people, release coordinators and the like are at the bottom
of the totem pole. Why is it arranged like this?

Because each role can do the job of all roles below it
if necessary.
Start-ups taught us this. Good developers can be passable
DBAs if need be. They make decent testers, "deployment
engineers", and whatever other ridiculous term you'd like to
use. Their job requires them to know much of the domain of
"lower" roles. There's one big problem with this, and
hopefully by now you see it:

It doesn't work in the opposite direction.
A QA person can't just do the job of a developer in a pinch,
nor can a build-engineer do the job of a DBA. They never
acquired the specialized knowledge required to perform the

role. And that's fine. Like it or not, there are hierarchies in
every organization, and people have different skill sets and
levels of ability. However, when you make developers take
on other roles, you don't have anyone to take on the role of
development!
An example will make this more clear. My dad is a dentist
running his own practice. He employs a secretary, hygienist,
and dental assistant. Under some sort of "DentOps"
movement, my dad would be making appointments and
cleaning people's teeth while trying to find time to drill
cavities, perform root canals, etc. My dad can do all of the
other jobs in his office, because he has all the specialized
knowledge required to do so.

But no one, not even all of his employees combined,
can do his job.
Such a movement does a disservice to everyone involved,
except (of course) employers. What began as an experiment
aimed at increasing software quality has become a farce,
where the most talented employees are overworked (while
doing less, less useful work) and lower-level positions simply
don't exist.
And this is the crux of the issue. All of the positions
previously held by people of various levels of ability are
made redundant by the "full-stack" engineer. Large
companies love this, as it means they can hire far fewer
people to do the same amount of work. In the process,
though, actual development becomes a vanishingly small

part of a developer's job. This is why we see so many
developers that can't pass FizzBuzz: they never really had to
write any code. All too common a question now, can you
imagine interviewing a chef and asking him what portion of
the day he actually devotes to cooking?

Jack of All Trades, Master of None
If you are a developer of moderately sized software, you
need a deployment system in place. Quick, what are the
benefits and drawbacks of the following such systems:
Puppet, Chef, Salt, Ansible, Vagrant, Docker. Now
implement your deployment solution! Did you even realize
which systems had no business being in that list?
We specialize for a reason: human beings are only capable
of retaining so much knowledge. Task-switching is
cognitively expensive. Forcing developers to take on
additional roles traditionally performed by specialists means
that they:
	 •	 aren't spending their time developing
	 •	 need to keep up with an enormous domain of

knowledge
	 •	 are going to burn out
What's more, by forcing developers to take on "full-stack"
responsibilities, they are paying their employees
far more than the market average for most of those tasks. If
a developer makes 100K a year, you can pay four
developers 100K per year to do 50% development and 50%
release management on a single, two-person task. Or,

simply hire a release manager at, say, 75K
and two developers who develop full-time. And notice the
time wasted by developers who are part time release-
managers but don't always have releases to manage.

Don't Kill the Developer
The effect of all of this is to destroy the role of "developer"
and replace it with a sort of "technology utility-player". Every
developer I know got into programming because they
actually enjoyed doing it (at one point). You do a disservice
to everyone involved when you force your brightest people
to take on additional roles.

Not every company is a start-up. Start-ups don't make
developers wear multiple hats by choice, they do so out of
necessity. Your company likely has enough resource
constraints without you inventing some. Please, don't
confuse "being lean" with "running with the fewest possible
employees". And for God's sake, let developers write
code!

