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in: NMT Tutorial ACL 2016 - Luong et al.



When NMT Could Help...

1 like your smile,

t 3
but unlike you put your g
d shoes on my face. k

HOPLIFTERS WILI.
BE PROSTITUTED

in: “Sign of the times - Beijing puts an end to Chinglish” - J. Fullerton, The Australian 5 June 2019



NN architectures

Feed Forward Convolutional Recurrent
Main unit Node Cell
Input Scalar Sequence
Tied weights No Yes
Process - Parallel Sequential
Properties - Translation- Variable length
invariant Position-aware

Self-Attention

Sort of...

Parallel

Captures LT
dependencies



Comparison of complexity, path lengths
and number of sequential operations

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, & is the kernel
size of convolutions and 7 the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) 0O(1) 0O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) 0(1) O(logk(n))

Self-Attention (restricted) O(r-n-d) 0O(1) O(n/r)




RECURRENT
NETWORKS



Recurrent
networks

* Each cellprocesses a sequence
» Suited to sequences of variable length
* Use of "internal” or “cell” state

* On this example, input and output
sequences of identical length

in: Deep Learning — Goodfellow et al. MIT Press 2016



LSTM

A specific case of RNNs
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in: Long Short-Term Memory - Hochreiter et al. 1997



LSTM

A specific case of RNNs

» Several gates control the flow of
information between (time) steps

* Objective: address long-term
dependencies
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in: colah’s blog — Christopher Olah (colah.github.io)



RNNs
architecture
variants

* RNN with single output

* Provides a fixed-size representation of
a sequence

»l \.

fW

in: Deep Learning — Goodfellow et al. MIT Press 2016



RNNs
architecture
variants

* RNN that maps a fixed-length vector
Into a sequence

* Example of use: image captioning

in: Deep Learning — Goodfellow et al. MIT Press 2016



RNN
Encoder-
Decoder

Combination of 2 RNNs

X1 X2 Xt

Encoder

in: Learning Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation - Cho et al. 2014



RNN
Encoder-
Decoder

Combination of 2 RNNs

* Encodinga sequence into a fixed-
length representation

X1 X2 Xt

Encoder

in: Learning Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation - Cho et al. 2014



RNN
Encoder-
Decoder

Combination of 2 RNNs

* Encodinga sequence into a fixed-
length representation

» Decodinga single context vector into a
variable length sequence

X1 X2 Xt

Encoder

in: Learning Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation - Cho et al. 2014



RNN
Encoder-
Decoder

Combination of 2 RNNs

» Encodinga sequence into a fixed-
length representation

» Decodinga single context vector into a
variable length sequence

* Input and output sequences of
different lengths. suitable for machine
translation

X1 X2 Xt

Encoder

in: Learning Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation - Cho et al. 2014



ATTENTION
MECHANISM



Attention
mechanism

* Addresses bottleneck of fixed-length
Intermediate representation

R e e <1l
XXX Xr

in: Neural Machine Translation by Jointly Learning to Align and
Translate - Bahdanau et al. 2015



Attention
mechanism

* Addresses bottleneck of fixed-length
Intermediate representation

* Creates annotations h; for each input X;
using a bi-directional LSTM (Encoder)

R e e <1l
XXX Xr

in: Neural Machine Translation by Jointly Learning to Align and
Translate - Bahdanau et al. 2015



Attention
mechanism

* Addresses bottleneck of fixed-length
Intermediate representation Attention
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in: Neural Machine Translation by Jointly Learning to Align and
Translate - Bahdanau et al. 2015



Attention
mechanism

* Addresses bottleneck of fixed-length
Intermediate representation

* Creates annotations h; for each input X;
using a bi-directional LSTM (Encoder)

» Iteratively produces context vectors
applying a set of weights a..to the
annotations

* Context vectors used as an input by a second
LSTM (Decoder)
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in: Neural Machine Translation by Jointly Learning to Align and
Translate - Bahdanau et al. 2015



Attention
mechanism

* Addresses bottleneck of fixed-length
Intermediate representation

* Creates annotations h; for each input X;
using a bi-directional LSTM (Encoder)

» Iteratively produces context vectors
applying a set of weights a..to the
annotations

* Context vectors used as an input by a second
LSTM (Decoder)

* Weights produced by an attention model
(feed-forward network) - each context
vector is different
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in: Neural Machine Translation by Jointly Learning to Align and
Translate - Bahdanau et al. 2015



Attention model

----------------------------------------------------
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Attention
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in: Neural Machine Translation by Jointly Learning to Align and
Translate - Bahdanau et al. 2015



Attention model Yo W

8«;3' = a(si_l, hj)
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in: Neural Machine Translation by Jointly Learning to Align and
Translate - Bahdanau et al. 2015



Attention model Yo W
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in: Neural Machine Translation by Jointly Learning to Align and
Translate - Bahdanau et al. 2015



Attention model

----------------------------------------------------
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Attention
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in: Neural Machine Translation by Jointly Learning to Align and
Translate - Bahdanau et al. 2015



Attention model

----------------------------------------------------
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eij = a(si—1, h;) Attention .
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in: Neural Machine Translation by Jointly Learning to Align and
Translate - Bahdanau et al. 2015



Formalisation

B S.q: queries, matrix Q
m h, (as attention parameters): keys, matrix K
m h, (as values): values, matrix V

m Attention = a(Q, K).V

R R R <5
XK X Xr

in: Neural Machine Translation by Jointly Learning to Align and
Translate - Bahdanau et al. 2015



TRANSFORMER



Attention-
only
architecture
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Attention-
only
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Attention-
only
architecture

* Addresses limitation of RNNs due to
their sequential nature (complexity,
time, maximum path length)
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Attention-
only
architecture

e Addresses limitation of RNNs due to

their sequential nature (complexity,
time, maximum path length)

*  One central idea: substitute LSTMs
with self-attention mechanisms
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Attention-
only
architecture

e Addresses limitation of RNNs due to

their sequential nature (complexity,
time, maximum path length)

*  One central idea: substitute LSTMs
with self-attention mechanisms

* Numerous details in implementation

Output
Probabilities

¥ X
:
Feed
Forward i
¢ L Y | § [Add& Nom J«~ | Attention
G | Multi-Head ;
Feed : Attention :
Forward ¥ T : Nx
I i
Add & Norm
Nx Add & Norm § e ; _
Self-Attention Mult-Head | | Muti-Head | | | S€lf-Attention
Attention { i Attention 5
X ¥ | L y S
~— ;8 —
Positional _E @ Positional
Encoding % 5 1 & Encoding
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)



Multi-Head
Attention

Changes vs. previous mechanism:

* Dot product (scaled) in place of
feedforward network

* Multiple attention models performed
in parallel across several (learned)
linear projections

Linear
T A
MatMul Concat
f A A A
SoftMax -
T Scaled Dot-Product h
yR— Attention
T ) 1 1
£ L -
SC:”e Linear L] Linear u Linear u
MatMul r r r
Q KV V K Q

from: Attention is All You Need - Vaswani et al. 2017



Attention model

T )
QK )V MatMul

A /dk: f A
SoftMax

)
With d;, dimension of queries and keys Mask (opt.)

I}

Scale

t
MatMul

t 1

Q KV

Attention(Q, K, V) = softmax(

from: Attention is All You Need - Vaswani et al. 2017



Multi-Head (1)

)
Linear
Original input: sequence S encompassing T words ¥
S = (w,) withte[1,T] Lz
After embedding (d,,,,4.; dimensions) and PE: e
Scaled Dot-Product JJ& h
X =[X]withte[1,T], dimension T X d,,,qer Attention
tl t tl
Defining the number of heads h and dimension of g, kandv £ r
Linear L] Linear u Linear L]
dr = dmoder/h
Finally defining 3 (learned) linear projections per head i r r r
Y K Q

WQ, WiK; WiV € ]Rd‘model X dp
l

And a linear transformation W ° e R%model X dmodel

from: Attention is All You Need - Vaswani et al. 2017



Multi-Head (2)

)
Linear
In the case of the encoder, all keys, values and queries ¥
come from the output of the previous layer of the encoder Concat
XD with XO =X Y]
For each head i: Scaled Dot-Product o
0 Attention
Qi = XEOW, (YN 1 R 1|
K; & XDk Linear L] Linear u Linear L]
V; & xa-owy r r r
Y K Q

from: Attention is All You Need - Vaswani et al. 2017



Multi-Head (3)

)
Linear
Every head has therefore the following form (dimension ¥
T X dy): Concat
head; & Attention(Q;, K;, V;) ) 1)
The multi-head is a (learned) linear transform of the Sca'edAt?;:;iZdeCt B& h
concatenation of these different representation subspaces: 1T T T
: 1-1) ) def 0 L L L
MultiHead (X(-D) & Concat(head,, ..., head,)W T L] e u e u
Producing T “annotations” or “hidden states” of dimension
dmodel
Y K Q

from: Attention is All You Need - Vaswani et al. 2017



Multi-Head (4)

)
Linear

m The decoder self-attention mechanism is similar to the ¥
encoder’s, except that during training step future output Concat
values are masked. V)

m Forthe “encoder-decoder” attention mechanism, - Scaled Dot-Product B&
queries come from the previous decoder layer Attention "
(representation of the translated sentence at this step), tl tl tl
while keys and Valuesbotlh come from t.he final outputof (-~ L] e u e u
the encoder (representation of the original sentence to
translate). r r r

Y K Q

from: Attention is All You Need - Vaswani et al. 2017



Other
architecture
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Other
architecture
components

*  QOutput of attention mechanism passed
through a feedforward network

Output
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Other
architecture
components

* Output of attention mechanism passed
through a feedforward network

* The combination of the attention
mechanism(s) and the feedforward
network constitutes a layer
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Other
architecture
components

* Output of attention mechanism passed
through a feedforward network

* The combination of the attention
mechanism(s) and the feedforward
network constitutes a layer

* Both encoder and decoder have 6 such
stacked layers

Positional
Encoding

Output
Probabilities

Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)

Positional
Encoding



Numerous implementation details

m Residual Connection m Residual Dropout
m Layer Normalization m Label Smoothing
m Scaled Dot Product m Beam Search

m Multi-Head
m Linked embeddings

m Positional encoding



Residual
connection

X
weight layer
* Additional layers do not always ./—"(X) l relu
improve performance —_— X
eem v identity

* Intuition: solvers struggle to fit an
identity mapping .F(X) +x

* Central idea: perform identity
mapping through shortcut connection

in: Deep Residual Learning for Image Recognition
- Kaiming et al. 2015



Linked
embeddings

in: Using the Output FEmbedding to Improve
Language Models - Press etal. 2017
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Linked
embeddings

* Output layer (from continuous
representation to score) has the same
structure as the input embedding

in: Using the Output FEmbedding to Improve
Language Models - Press etal. 2017
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Linked
embeddings

* Output layer (from continuous
representation to score) has the same
structure as the input embedding

* Tying them (/IE = /dpmoger X OF)
improves performance

in: Using the Output FEmbedding to Improve
Language Models - Press etal. 2017
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Linked
embeddings

Output layer (from continuous
representation to score) has the same
structure as the input embedding

Tying them (IE = /d;0qe1 X OF)
improves performance

In case of tokenisation with sub-
words, can be tied 3-ways

in: Using the Output FEmbedding to Improve
Language Models - Press etal. 2017
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Positional encoding

Let us define:

R cos(@) sin(0)
9=[—sin(9) cos(60)

0 & 10.0002/%model

1
0

1

def
P, = 0

dmodel

0

0 Redmodel/2
Then if P, is the positional encoding added to the embedding vector in n* position,

P, = R™ P,



Label smoothing

During training, replace each ground truth one-hot encoded vector :
[0, O,..,0,1, O, O, ..., 0] (dimension V = size of vocabulary)
With :
I N P
Which acts as regularization (increases perplexity, improves accuracy and BLEU) by
preventing the model of being “too confident” (i.e. overfitting) over the training data.

In the paper the value retained for € is 0.1

in: Rethinking the Inception Architecture for Computer Vision - Szegedy et al. 2015



Greedy search
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Figure 22: A search graph where greedy search fails.

in: Neural Machine Translation and Sequence-to-sequence Models: A Tutorial - Neubig 2017



Beam search

log P(el|F) log P(e2|F,el) log P(e3|F,el,ez)
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Figure 23: An example of beam search with b = 2. Numbers next to arrows are log probabil-
ities for a single word log P(et | F, etl_l), while numbers above nodes are log probabilities for
the entire hypothesis up until this point.

in: Neural Machine Translation and Sequence-to-sequence Models: A Tutorial - Neubig 2017



Results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

BLEU Training Cost (FLOPs)

Model

EN-DE EN-FR EN-DE EN-FR
ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2 1.0 - 1020
GNMT + RL [38] 24.6 39.92 2.3-10° 1.4-10%
ConvS2S [9] 25.16 40.46 9.6-10® 1.5-10%
MoE [32] 26.03 40.56 2.0-10° 1.2.10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 - 1020
GNMT + RL Ensemble [38] 26.30 41.16 1.8-10%° 1.1.10%!
ConvS2S Ensemble [9] 26.36 41.29 7.7-10° 1.2.10%
Transformer (base model) 27.3 38.1 3.3.10'8

Transformer (big) 28.4 41.8 2.3-10%°




Moving
forward...

“BERT (Bidirectional Encoder
Representations from
Transformers) is conceptually
simple and empirically
powertul. It obtains new state-
of-the-art results on eleven

natural language processing
tasks (...)”

BERT (Ours) OpenAl GPT ELMo

Figure 3: Differences in pre-training model architectures. BERT uses a bidirectional Transformer. OpenAI GPT
uses a left-to-right Transformer. ELMo uses the concatenation of independently trained left-to-right and right-to-
left LSTMs to generate features for downstream tasks. Among the three, only BERT representations are jointly
conditioned on both left and right context in all layers. In addition to the architecture differences, BERT and
OpenAl GPT are fine-tuning approaches, while ELMo is a feature-based approach.

in: BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding - Devlin et al. 2018



THAT'S ALL FOR NOW

in: Les Shadoks, Rouxel et al. 1968



