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in:	NMT	Tutorial	ACL	2016	– Luong	et	al.	



When	NMT	Could	Help…

in:	“Sign	of	the	times	- Beijing	puts	an	end	to	Chinglish”	– J.	Fullerton,	The	Australian	5	June	2019
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Comparison	of	complexity,	path	lengths	
and	number	of	sequential	operations



RECURRENT	
NETWORKS



Recurrent	
networks

• Each	cell processes	a	sequence

• Suited	to	sequences	of	variable	length

• Use	of	”internal”	or	“cell”	state

• On	this	example,	input	and	output	
sequences	of	identical	length

in:	Deep	Learning	– Goodfellow et	al.	MIT	Press	2016



LSTM

A	specific	case	of	RNNs

• Several	gates control	the	flow	of	
information	between	(time)	steps

• Objective:	address	long-term	
dependencies

in:	Long	Short-Term	Memory	– Hochreiter et	al.	1997



LSTM

A	specific	case	of	RNNs

• Several	gates control	the	flow	of	
information	between	(time)	steps

• Objective:	address	long-term	
dependencies

in:	colah’s blog	– Christopher	Olah (colah.github.io)



RNNs	
architecture	
variants
• RNN	with	single	output

• Provides	a	fixed-size	representation	of	
a	sequence

in:	Deep	Learning	– Goodfellow et	al.	MIT	Press	2016



RNNs	
architecture	
variants
• RNN	that	maps	a	fixed-length	vector	

into	a	sequence

• Example	of	use:	image	captioning

in:	Deep	Learning	– Goodfellow et	al.	MIT	Press	2016



RNN	
Encoder-
Decoder
Combination	of	2	RNNs

in:	Learning	Phrase	Representations	using	RNN	Encoder–Decoder	
for	Statistical	Machine	Translation	– Cho	et	al.	2014
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RNN	
Encoder-
Decoder
Combination	of	2	RNNs

• Encoding a	sequence	into	a	fixed-
length	representation

• Decoding a	single	context	vector	into	a	
variable	length	sequence

• Input	and	output	sequences	of	
different	lengths:	suitable	for	machine	
translation

in:	Learning	Phrase	Representations	using	RNN	Encoder–Decoder	
for	Statistical	Machine	Translation	– Cho	et	al.	2014



ATTENTION	
MECHANISM



Attention	
mechanism
• Addresses	bottleneck	of	fixed-length	

intermediate	representation

in:	Neural	Machine	Translation	by	Jointly	Learning	to	Align	and	
Translate	- Bahdanau et	al.	2015
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Attention	
mechanism
• Addresses	bottleneck	of	fixed-length	

intermediate	representation

• Creates	annotations ht for	each	input	Xt
using	a	bi-directional	LSTM	(Encoder)

• Iteratively	produces	context	vectors
applying	a	set	of	weights αt’t to	the	
annotations

• Context	vectors	used	as	an	input	by	a	second	
LSTM	(Decoder)

• Weights	produced	by	an	attention	model	
(feed-forward	network)	– each	context	
vector	is	different

Decoder

Encoder

Attention

ct

in:	Neural	Machine	Translation	by	Jointly	Learning	to	Align	and	
Translate	- Bahdanau et	al.	2015



Attention	model

Attention
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Attention	model

Attention

in:	Neural	Machine	Translation	by	Jointly	Learning	to	Align	and	
Translate	- Bahdanau et	al.	2015

ct



Formalisation

■ st-1:	queries,	matrix	Q

■ ht (as	attention	parameters):	keys,	matrix	K
■ ht (as	values):	values,	matrix	V

■ Attention	=	a(Q,	K).V

in:	Neural	Machine	Translation	by	Jointly	Learning	to	Align	and	
Translate	- Bahdanau et	al.	2015



TRANSFORMER
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Attention-
only	
architecture
• Addresses	limitation	of	RNNs	due	to	

their	sequential	nature	(complexity,	
time,	maximum	path	length)

• One	central	idea:	substitute	LSTMs	
with	self-attention	mechanisms

• Numerous	details	in	implementation

Decoder

Encoder
Attention

Self-AttentionSelf-Attention



Multi-Head	
Attention

Changes		vs.	previous	mechanism:

• Dot	product	(scaled) in	place	of	
feedforward	network

• Multiple	attention	models	performed	
in	parallel	across	several	(learned)	
linear	projections

from:	Attention	is	All	You	Need	– Vaswani	et	al.	2017



Attention	model

With +, dimension of queries and keys

from:	Attention	is	All	You	Need	– Vaswani	et	al.	2017



Original	input:	sequence	S	encompassing	T	words

S	=	(wt)	with	t	; [1, ?]

After	embedding	(DEFGHI dimensions)	and	PE:

X	=	[Xt]	with	t	; [1, ?],	dimension	T × DEFGHI

Defining	the	number	of	heads	h	and	dimension	of	q,	k	and	v

DQ =	DEFGHI/ℎ

Finally	defining	3	(learned)	linear	projections	per	head	X

YZ
[,	YZ

\,	YZ
] ; ℝG_`abc × Gd

And	a	linear	transformation	Ye; ℝG_`abc × G_`abc

Multi-Head	(1)

from:	Attention	is	All	You	Need	– Vaswani	et	al.	2017



In	the	case	of	the	encoder,	all	keys,	values	and	queries	
come	from	the	output	of	the	previous	layer	of	the	encoder	
8(l-1),	with	8(0)	=	8

For	each	head	A:

CD ≝ 8(l-1)	FD
G

HD ≝ 8(l-1)FD
I

JD ≝ 8(l-1)	FD
K

Multi-Head	(2)

from:	Attention	is	All	You	Need	– Vaswani	et	al.	2017



Every	head	has	therefore	the	following	form	(dimension	

5 × 78):

ℎ<=7> ≝ Attention(AB,	DB,	EB)

The	multi-head	is	a	(learned)	linear	transform	of	the	

concatenation	of	these	different	representation	subspaces:

MultiHead(X(l-1)	)	≝ Concat(head1,	…,	headh)R
S

Producing	T	“annotations”	or	“hidden	states”	of	dimension	

7WXYZ[

Multi-Head	(3)

from:	Attention	is	All	You	Need	– Vaswani	et	al.	2017



■ The	decoder	self-attention	mechanism	is	similar	to	the	
encoder’s,	except	that	during	training	step	future	output	
values	are	masked.

■ For	the	“encoder-decoder”	attention	mechanism,	
queries come	from	the	previous	decoder	layer	
(representation	of	the	translated	sentence	at	this	step),	
while	keys	and	values	both	come	from	the	final	output	of	
the	encoder	(representation	of	the	original	sentence	to	
translate).

Multi-Head	(4)

from:	Attention	is	All	You	Need	– Vaswani	et	al.	2017
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Other	
architecture	
components	
• Output	of	attention	mechanism	passed	

through	a	feedforward	network

• The	combination	of	the	attention	
mechanism(s)	and	the	feedforward	
network	constitutes	a	layer

• Both	encoder	and	decoder	have	6	such	
stacked	layers



Numerous	implementation	details

■ Residual	Connection
■ Layer	Normalization
■ Scaled	Dot	Product
■ Multi-Head
■ Linked	embeddings
■ Positional	encoding

■ Residual	Dropout
■ Label	Smoothing
■ Beam	Search



Residual	
connection

• Additional	layers	do	not	always	
improve	performance

• Intuition:	solvers	struggle	to	fit	an	
identity	mapping

• Central	idea:	perform	identity	
mapping	through	shortcut	connection

in:	Deep	Residual	Learning	for	Image	Recognition	
– Kaiming et	al.	2015



Linked	
embeddings

in:	Using	the	Output	Embedding	to	Improve
Language	Models	- Press	et	al.	2017
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Linked	
embeddings

• Output	layer	(from	continuous	
representation	to	score)	has	the	same	
structure	as	the	input	embedding

• Tying	them	(;< = >?@ABC × E<)	

improves	performance

• In	case	of		tokenisation	with	sub-
words,	can	be	tied	3-ways

in:	Using	the	Output	Embedding	to	Improve
Language	Models	- Press	et	al.	2017



Positional	encoding
Let	us	define:

23 ≝
cos(6) sin(6)
−sin(6) cos(6)

6 ≝ 10.000 ⁄=> ?@ABCD

EF ≝
1
0
1
0…
1
0

HIJ?KL

2 ≝
23 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 23 ⁄B@ABCD P

Then	if	ES is	the	positional	encoding	added	to	the	embedding	vector	in	nth position,

ES = 2S EF



Label	smoothing

During	training,	replace	each	ground	truth	one-hot	encoded	vector	:

9, 9, … , 9 , ;, 9, 9, … , 9 (dimension	V	=	size	of	vocabulary)	

With	:

D

E

,

D

E

, … ,

D

E

, (; −

GH;

G

I),

D

E

,

D

E

, … ,

D

E

Which	acts	as	regularization (increases	perplexity,	improves	accuracy	and	BLEU)	by	

preventing	the	model	of	being	“too	confident”	(i.e.	overfitting)	over	the	training	data.

In	the	paper		the	value	retained	for	R is	0.1

in:	Rethinking	the	Inception	Architecture	for	Computer	Vision	– Szegedy et	al.	2015



Greedy	search

in:	Neural	Machine	Translation	and	Sequence-to-sequence	Models:	A	Tutorial	– Neubig 2017



Beam	search

in:	Neural	Machine	Translation	and	Sequence-to-sequence	Models:	A	Tutorial	– Neubig 2017



Results



Moving	
forward…	

“BERT (Bidirectional	Encoder	
Representations	from	
Transformers)	is	conceptually	
simple	and	empirically	
powerful.	It	obtains	new	state-
of-the-art	results	on	eleven	
natural	language	processing	
tasks	(…)”

in:	BERT:	Pre-training	of	Deep	Bidirectional	Transformers	for	
Language	Understanding	– Devlin	et	al.	2018



THAT’S	ALL	FOR	NOW

in:	Les	Shadoks,	Rouxel	et	al.	1968


