Stochastic Beams and Where to Find Them:

The Gumbel-Top-k Trick for Sampling Sequences Without Replacement W. Kool, H. van Hoof, M. Welling 2019

> ML Paper Club @Google Campus with nPlan 4th July 2019

> > François Steiner - francois@b3metrix.com

The idea

A magic trick to connect **sampling** and (deterministic) **beam search**, applying the "Gumbel-top-k" trick on a factorised distribution over **sequences**.

BEAM SEARCH

Sequence models – the chain rule

$$p_{\boldsymbol{\theta}}(\boldsymbol{y}_{1:t}) = p_{\boldsymbol{\theta}}(y_t | \boldsymbol{y}_{1:t-1}) \cdot p_{\boldsymbol{\theta}}(\boldsymbol{y}_{1:t-1})$$
$$= \prod_{t'=1}^t p_{\boldsymbol{\theta}}(y_{t'} | \boldsymbol{y}_{1:t'-1}).$$

Conditional probability: softmax

$$p_{\boldsymbol{\theta}}(y_t | \boldsymbol{y}_{1:t-1}) = \frac{\exp\left(\phi_{\boldsymbol{\theta}}(y_t | \boldsymbol{y}_{1:t-1})/T\right)}{\sum_{y'} \exp\left(\phi_{\boldsymbol{\theta}}(y' | \boldsymbol{y}_{1:t-1})/T\right)}$$

Greedy search

Figure 22: A search graph where greedy search fails.

In: Neural Machine Translation and Sequence-to-sequence Models: A Tutorial – Neubig 2017

Beam search

Figure 23: An example of beam search with b = 2. Numbers next to arrows are log probabilities for a single word log $P(e_t | F, e_1^{t-1})$, while numbers above nodes are log probabilities for the entire hypothesis up until this point.

In: Neural Machine Translation and Sequence-to-sequence Models: A Tutorial – Neubig 2017

THE GUMBEL TRICK

Gumbel distribution

Related to extreme value theory

■ CDF

$$F(x; \phi, \beta) = e^{-e^{-(x-\phi)/\beta}}$$

$$F^{-1}(x;\phi,\beta) = \phi - \beta \log(-\log(x))$$

- If $U \sim \text{Uniform}(0, 1)$ then $G = \phi \log(-\log(U)) \sim \text{Gumbel}(\phi)$
- It follows that $G' = G + \phi' \sim \text{Gumbel}(\phi + \phi')$

Properties of Gumbel distribution 1 - Gumbel Trick

- Let $G_i \sim \text{Gumbel}(0)$ i.i.d. with $i \in N \subset \mathbb{N}$ and $G_{\phi_i} = \phi_i + G_i$
- Let $I^* = argmax(G_i)$
- Then I^{*} ~ Categorical(p_i) with $p_i \propto e^{\phi_i}$

Properties of Gumbel distribution 2 - Recursion

- Let $G_i \sim \text{Gumbel}(0)$ i.i.d. with $i \in N \subset \mathbb{N}$ and $G_{\phi_i} = \phi_i + G_i$
- Then for any subset $B \subseteq N$
 - $\operatorname{argmax}_{i \in B} G_{\phi_i} \sim Categorical\left(\frac{e^{\phi_i}}{\sum_{i \in B} e^{\phi_i}}, i \in B\right)$
 - $\max_{i \in B} G_{\phi_i} \sim Gumbel(\phi)$ with $e^{\phi} = \sum_{i \in B} e^{\phi_i}$
 - max and argmax above are independent

Properties of Gumbel distribution 3 – Top-k trick

- Let $G_i \sim \text{Gumbel}(0)$ i.i.d. with $i \in N \subset \mathbb{N}$ and $G_{\phi_i} = \phi_i + G_i$
- For $k \le |N|$ let $I_1^*, \dots, I_k^* = \arg \underset{i \in N}{top \ k \ G_{\phi_i}}$
- Then $I_1^*, ..., I_k^*$ is a sample without replacement from *Categorical* $\left(\frac{e^{\phi_i}}{\sum_{i \in N} e^{\phi_i}}\right)$

STOCHASTIC BEAM

Representing the model as a tree

- Internal nodes at level t represent partial sequences y_{1:t}
- Leaves y^i represent finished sequences, $i \in N = \{1, ..., n\}$
- Normalised log-probability of y^i is $\phi_i = \log p_{\theta}(y_i)$

Naive computation of full tree

- Sample G_{ϕ_i} ~ Gumbel(ϕ_i) so that G_{ϕ_i} can be seen as log-probability of sequence y^i
- Let $i_1^*, \dots, i_k^* = \arg top \ k \ G_{\phi_i}$
- Then yⁱ, ..., yⁱ is a sample of sequences without replacement following the model's probability distribution

Probability distribution of internal nodes (representing partial sequences)

■ Let us consider an internal node j and its direct children i $\in C_j$, then

$$p(node j) = \sum_{i \in C_i} p(node i)$$

$$e^{\phi_{j}} = \sum_{i \in C_{j}} e^{\phi_{i}}$$
$$\phi_{j} = \log\left(\sum_{i \in C_{j}} e^{\phi_{i}}\right)$$

where Φ_i is the log probability of the node i

- If each child node $i \sim \text{Gumbel}(\phi_i)$ then: $\max_{i \in C_j} G_{\phi_i} \sim \text{Gumbel}(\phi_j)$
- It follows that this relationship holds for all nodes in the tree

Actual computation

- Top-down, starting by sampling a Gumbel distribution for the root
- Until all leaves reached:
 - For each node one level down, sample a Gumbel distribution conditioned on its max being ≤ G-value of its parent node
 - Once complete, **select the top-k G-values** of current level (or leaves if reached)
 - Sample follows the model distribution (independence of max and argmax)
 - Necessarily have the final top-k values in their descendants
- Final sample true to model distribution
- Cost comparable to beam search: O(kVt) vs O(V^t) for full search (V size of vocabulary)

Algorithm

Algorithm 1 StochasticBeamSearch (p_{θ}, k)

1: Input: one-step probability distribution p_{θ} , beam/sample size k 2: Initialize BEAM empty 3: add $(\boldsymbol{y}^N = \varnothing, \phi_N = 0, G_{\phi_N} = 0)$ to BEAM 4: for t = 1, ..., steps do Initialize EXPANSIONS empty 5: 6: for $(\boldsymbol{y}^{S}, \phi_{S}, G_{\phi_{S}}) \in \text{BEAM}$ do 7: $Z \leftarrow -\infty$ 8: for $S' \in \text{Children}(S)$ do $\phi_{S'} \leftarrow \phi_S + \log p_{\boldsymbol{\theta}}(\boldsymbol{y}^{S'} | \boldsymbol{y}^S)$ 9: 10: $\tilde{G}_{\phi_{S'}} \sim \text{Gumbel}(\phi_{S'})$ 11: $Z \leftarrow \max(Z, G_{\phi_{S'}})$ 12: end for 13: for $S' \in \text{Children}(S)$ do $\tilde{G}_{\phi_{S'}} \leftarrow -\log(\exp(-G_{\phi_S}) - \exp(-Z) + \exp(-G_{\phi_{S'}}))$ 14: add $(\boldsymbol{y}^{S'}, \phi_{S'}, \tilde{G}_{\phi_{S'}})$ to EXPANSIONS 15: 16: end for 17: end for 18: BEAM \leftarrow take top k of EXPANSIONS according to \tilde{G} 19: end for 20: Return BEAM

THAT'S ALL FOR NOW

In: Les Shadoks, Rouxel et al. 1968