Stochastic Beams and Where to Find Them:
 The Gumbel-Top-k Trick for Sampling Sequences Without Replacement
 W. Kool, H. van Hoof, M. Welling 2019
 ML Paper Club @Google Campus with nPlan
 $4^{\text {th }}$ July 2019

The idea

A magic trick to connect sampling and (deterministic) beam search, applying the "Gumbel-top-k" trick on a factorised distribution over sequences.

BEAM SEARCH

Sequence models - the chain rule

$$
\begin{aligned}
p_{\boldsymbol{\theta}}\left(\boldsymbol{y}_{1: t}\right) & =p_{\boldsymbol{\theta}}\left(y_{t} \mid \boldsymbol{y}_{1: t-1}\right) \cdot p_{\boldsymbol{\theta}}\left(\boldsymbol{y}_{1: t-1}\right) \\
& =\prod_{t^{\prime}=1}^{t} p_{\boldsymbol{\theta}}\left(y_{t^{\prime}} \mid \boldsymbol{y}_{1: t^{\prime}-1}\right)
\end{aligned}
$$

Conditional probability: softmax

$$
p_{\boldsymbol{\theta}}\left(y_{t} \mid \boldsymbol{y}_{1: l-1}\right)=\frac{\exp \left(\phi_{\boldsymbol{\theta}}\left(y_{t} \mid \boldsymbol{y}_{1: t-1}\right) / T\right)}{\sum_{y^{\prime}} \exp \left(\phi_{\boldsymbol{\theta}}\left(y^{\prime} \mid \boldsymbol{y}_{1: t-1}\right) / T\right)}
$$

Greedy search

Figure 22: A search graph where greedy search fails.

Beam search

Figure 23: An example of beam search with $b=2$. Numbers next to arrows are log probabilities for a single word $\log P\left(e_{t} \mid F, e_{1}^{t-1}\right)$, while numbers above nodes are \log probabilities for the entire hypothesis up until this point.

THE GUMBEL TRICK

Gumbel distribution

- Related to extreme value theory
- CDF

$$
\begin{gathered}
F(x ; \phi, \beta)=e^{-e^{-(x-\phi) / \beta}} \\
F^{-1}(x ; \phi, \beta)=\phi-\beta \log (-\log (x))
\end{gathered}
$$

- If $U \sim \operatorname{Uniform}(0,1)$ then $G=\phi-\log (-\log (U)) \sim \operatorname{Gumbel}(\phi)$

■ It follows that $G^{\prime}=G+\phi^{\prime} \sim \operatorname{Gumbel}\left(\phi+\phi^{\prime}\right)$

Properties of Gumbel distribution 1 - Gumbel Trick

■ Let $G_{i} \sim \operatorname{Gumbel}(0)$ i.i.d. with $i \in N \subset \mathbb{N}$ and $G_{\phi_{i}}=\phi_{i}+G_{i}$

- Let $I^{*}=\operatorname{argmax}\left(G_{i}\right)$
- Then $\mathrm{I}^{*} \sim$ Categorical $\left(p_{i}\right)$ with $p_{i} \propto e^{\phi_{i}}$

Properties of Gumbel distribution 2 - Recursion

- Let $G_{i} \sim \operatorname{Gumbel}(0)$ i.i.d. with $i \in N \subset \mathbb{N}$ and $G_{\phi_{i}}=\phi_{i}+G_{i}$
- Then for any subset $\mathrm{B} \subseteq \mathrm{N}$
- $\underset{i \in B}{\operatorname{argmax}} G_{\phi_{i}} \sim$ Categorical $\left(\frac{e^{\phi_{i}}}{\sum_{i \in B} e^{\phi_{i}}}, i \in B\right)$
- $\max _{i \in B} G_{\phi_{i}} \sim \operatorname{Gumbel}(\phi)$ with $e^{\phi}=\sum_{i \in B} e^{\phi_{i}}$
- max and argmax above are independent

Properties of Gumbel distribution 3 - Top-k trick

■ Let $G_{i} \sim \operatorname{Gumbel}(0)$ i.i.d. with $i \in N \subset \mathbb{N}$ and $G_{\phi_{i}}=\phi_{i}+G_{i}$

- For $\mathrm{k} \leq|\mathrm{N}| \operatorname{let} I_{1}^{*}, \ldots, I_{k}^{*}=\underset{i \in N}{\arg \operatorname{top}} k G_{\phi_{i}}$
- Then $I_{1}^{*}, \ldots, I_{k}^{*}$ is a sample without replacement from Categorical $\left(\frac{e^{\phi_{i}}}{\sum_{i \in N} e^{\phi_{i}}}\right)$

STOCHASTIC BEAM

Representing the model as a tree

- Internal nodes at level t represent partial sequences $\mathrm{y}_{1: \mathrm{t}}$
- Leaves yi represent finished sequences, $i \in N=\{1, \ldots, n\}$
- Normalised log-probability of y^{i} is $\phi_{i}=\log p_{\theta}\left(y_{i}\right)$

Naive computation of full tree

- Sample $G_{\phi_{i}} \sim \operatorname{Gumbel}\left(\phi_{i}\right)$ so that $G_{\phi_{i}}$ can be seen as log-probability of sequence y^{i}

■ Let $i_{1}^{*}, \ldots, i_{k}^{*}=\underset{i \in N}{\arg \operatorname{top}} k G_{\phi_{i}}$
■ Then $y^{i_{1}^{*}}, \ldots, y^{i_{k}^{*}}$ is a sample of sequences without replacement following the model's probability distribution

Probability distribution of internal nodes (representing partial sequences)

- Let us consider an internal node j and its direct children $i \in C_{j}$, then

$$
\begin{aligned}
& p(\text { node } j)=\sum_{i \in C_{j}} p \text { (node i) } \\
& e^{\phi_{j}}=\sum_{i \in C_{j}} e^{\phi_{i}} \\
& \phi_{j}=\log \left(\sum_{i \in C_{j}} e^{\phi_{i}}\right)
\end{aligned}
$$

where Φ_{i} is the log probability of the node i
■ If each child node $\mathrm{i} \sim \operatorname{Gumbel}\left(\phi_{\mathrm{i}}\right)$ then:

$$
\max _{i \in C_{j}} G_{\phi_{i}} \sim \operatorname{Gumbel}\left(\phi_{\mathrm{j}}\right)
$$

- It follows that this relationship holds for all nodes in the tree

Actual computation

- Top-down, starting by sampling a Gumbel distribution for the root
- Until all leaves reached:
- For each node one level down, sample a Gumbel distribution conditioned on its max being $\leq G$-value of its parent node
- Once complete, select the top-k G-values of current level (or leaves if reached)
- Sample follows the model distribution (independence of max and argmax)
- Necessarily have the final top-k values in their descendants
- Final sample true to model distribution

■ Cost comparable to beam search: $\mathrm{O}(\mathrm{kVt})$ vs $\mathrm{O}\left(\mathrm{V}^{\mathrm{t}}\right)$ for full search (V size of vocabulary)

Algorithm

```
Algorithm 1 StochasticBeamSearch \(\left(p_{\boldsymbol{\theta}}, k\right)\)
1: Input: one-step probability distribution \(p_{\boldsymbol{\theta}}\), beam/sample size \(k\)
2: Initialize BEAM empty
    add ( \(\left.\boldsymbol{y}^{N}=\varnothing, \phi_{N}=0, G_{\phi_{N}}=0\right)\) to BEAM
    for \(t=1, \ldots\), steps do
        Initialize EXPANSIONS empty
        for \(\left(\boldsymbol{y}^{S}, \phi_{S}, G_{\phi_{S}}\right) \in\) BEAM do
            \(Z \leftarrow-\infty\)
            for \(S^{\prime} \in \operatorname{Children}(S)\) do
                    \(\phi_{S^{\prime}} \leftarrow \phi_{S}+\log p_{\boldsymbol{\theta}}\left(\boldsymbol{y}^{S^{\prime}} \mid \boldsymbol{y}^{S}\right)\)
                    \(G_{\phi_{S^{\prime}}} \sim \operatorname{Gumbel}\left(\phi_{S^{\prime}}\right)\)
                    \(Z \leftarrow \max \left(Z, G_{\phi_{S^{\prime}}}\right)\)
            end for
            for \(S^{\prime} \in \operatorname{Children}(S)\) do
                \(\tilde{G}_{\phi_{S^{\prime}}} \leftarrow-\log \left(\exp \left(-G_{\phi_{S}}\right)-\exp (-Z)+\exp \left(-G_{\phi_{S^{\prime}}}\right)\right)\)
                add \(\left(\boldsymbol{y}^{S^{\prime}}, \phi_{S^{\prime}}, \tilde{G}_{\phi_{S^{\prime}}}\right)\) to EXPANSIONS
            end for
        end for
        BEAM \(\leftarrow\) take top \(k\) of EXPANSIONS according to \(\tilde{G}\)
    end for
20: Return BEAM
```


THAT'S ALL FOR NOW

