

New Simplified Chemistry Class 9 ICSE Solutions Study of Gas Laws

July 13, 2018 by Phani Raju

New Simplified Chemistry Class 9 ICSE Solutions Study of Gas Laws

ICSE Solutions Selina ICSE Solutions ML Aggarwal Solutions

Viraf J Dalal Chemistry Class 9 Solutions and Answers

Simplified Chemistry	Physics	Chemistry	Biology	Maths	Geography	HistoryCivics

Exercise

Question 1.(1988)

"When stating the volume of a gas the pressure and temperature should also be given". Why?

Answer:

Volume of a gas under goes significant change if its pressure or temperature is slightly changed.

Question 1.(1989)

Define or state: Boyle's Law

Answer:

Boyle's Law: "Temperature remaining constant the volume of a given mass of dry gas is inversely proportional to its pressure."

$$V \propto \frac{1}{P} = T = Constant$$

Question 2.(1989)

Express Kelvin Zero in °C

Answer:

Kelvin zero or absolute zero = - 273°C.

Question 1.(1992)

A fixed volume of a gas occupies 760cm³ at 27° C and 70cm of Hg. What will be its vol. at s.t.p. [637 cm³]

Answer:

$$P_1 = 70 \text{ cm of Hg}$$
 $P_2 = 76 \text{ cm of Hg}$ $V_1 = 760 \text{ cm}^3$ $V_2 = ?$ $T_1 = 27^{\circ}\text{C} = (27 + 273) \text{ K}$ $T_2 = 273 \text{ K}$

Using the gas equation,
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$\frac{70 \times 760}{300} = \frac{76 \times V_2}{273}$$

$$V_2 = \frac{70 \times 760 \times 273}{300 \times 76} = 637 \text{ cm}^3$$

Question 1.(1993)

State: Boyle's Law

Answer:

Boyle's Law: "Temperature remaining constant the volume of a given mass of dry gas is inversely proportional to its pressure."

$$V \propto \frac{1}{P} = T = Constant$$

Question 1.(1995)

At 0°C and 760 mm Hg pressure, a gas occupies a volume of 10Q cm³. The Kelvin temperature (Absolute temperature) of the gas is increased by one-fifth while the pressure is increased one and a half times. Calculate the final volume of the gas. [80 cc.]

Answer:

Initial conditions Final conditions $P_{1} = 760 P_{2} = 760 \times \frac{3}{2} = (380 \times 3)$ $V_{1} = 100 V_{2} = ?$ $T_{1} = 0 + 273 = 273 K T_{2} = 273 \times \frac{1}{5} + 273$ $= 273 \times \frac{6}{5}$

Using gas equation
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$V_{2} = \frac{P_{1}V_{1}T_{2}}{T_{1}P_{2}}$$

$$V_{2} = \frac{760 \times 100}{273 \times 380 \times 3} \times \frac{273 \times 6}{5} = 80c.c$$

Question 1.(1996)

The pressure on one mole of gas at s.t.p. is doubled and the temperature is raised to 546 K. What is the final volume of the gas ? [one mole of a gas occupies a volume of 22.4 litres at stp.] [22.4 ltrs.]

Answer:

One mole of gas occupies a volume of 22.4 lit. at s.t.p.

$$\therefore V_1 = 22.4 \text{ lit.}$$

$$P_1 = 1$$
 atm.

$$T_1 = 273 \text{ K}$$

$$V_2 = ?$$

$$P_2 = 2$$
 atm.
 $T_2 = 546$ K

$$T_2 = 546 \text{ K}$$

Using gas equation
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$V_2 = \frac{P_1 V_1 T_2}{T_1 P_2} = \frac{1 \times 22.4 \times 546}{273 \times 2} = 22.4 \text{ lits.}$$

Question 1.(1997)

is it possible to change the temperature and pressure of a fixed mass of gas without changing its volume. Explain your answer.

Answer:

No, it is not possible as change of any one of the parameters (pressure or temperature) has significant effect on volume.

Additional Questions

Question 1.

What volume will a gas occupy at 740 mm pressure which at 1480 nun occupies 500 cc ? [Temperature being constant] [1000 cc]

Answer:

$$P_1V_1 = P_2V_2$$

1480 × 500 = 740 V_2

$$V_2 = \frac{1480 \times 500}{740} = 1000 \text{c.c}$$

Question 2.

The volume of a given mass of a gas at 27°C is 100 cc. To what temperature should it be heated at the same pressure so that it will occupy a volume of 150 cc ?[177°C]

Answer:

$$V_1 = 100 \text{ cc}$$
 $V_2 = 150 \text{ cc}$ $T_1 = 27 + 273 = 300 \text{ K}$ $T_2 = ?$

$$V_2 = 150 \text{ co}$$

 $T_1 = 7$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2} :: T_1 V_2 = V_1 T_2 :: T_2 = \frac{T_1 V_2}{V_1}$$

$$T_2 = \frac{150 \times 300}{100} = 450 \text{ K}$$

$$T_2 = 450 - 273 = 177^{\circ}C$$

Question 3.

A fixed mass of a gas has a volume of 750 cc at—23°C and 800 mm pressure. Calculate the pressure for

which its volume will be 720 cc. The temperature being —3°C. [900mm]

Answer:

$$V_1 = 750cc$$
 $V_2 = 720cc$
 $T_1 = -23 + 273 = 250K$ $T_2 = -3 + 273 = 270K$
 $P_1 = 800 \text{ mm}$ $P_2 = ?$

Using gas equation
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$P_2 = \frac{P_1 V_1 T_2}{T_1 P_2} = \frac{800 \times 750 \times 270}{250 \times 720}$$

$$P_{2} = 900 \text{ mm}$$

Question 4.

What temperature would be necessary to double the volume of a gas initially at s.t.p. if the pressure is decreased by 50% ? [0°C]

Answer:

$$P_1 = 1 \text{ atm}$$
 $P_2 = 1 \times \frac{50}{100} = \frac{1}{2} \text{ atm.}$ $V_1 = xcc$ $V_2 = 2xcc$ $T_1 = 273K$ $T_2 = ?$

Using gas equation
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$T_{2} = \frac{P_{2}V_{2}T_{1}}{P_{1}V_{1}}$$

$$T_{2} = \frac{1}{2} \times \frac{2x \times 273}{1 \times x} = 273K$$

$$T_{1} = 273 - 273 = 0^{\circ}C$$

Question 5.

A gas cylinder having a capacity of 20 litres contains a gas at 100 atmos. How many flasks of 200 cm³ capacity can be filled from it at 1 atmos. pressure if the temperature remains constant? [10,000]

$$V_1 = 20 \text{ lits.} = 20,000cc$$
 $V_2 = ?$
 $P_1 = 100 \text{ atm.}$ $P_2 = 1 \text{ atm.}$
At constant temperature
$$P_1V_1 = P_2V_2$$

$$V_2 = \frac{P_1V_1}{P_2} = \frac{100 \times 20000}{1} = 2000000cc$$

:. Number of flasks of capacity 200cc
$$n \times 200 = 2000000$$

$$n = \frac{2000000}{200} = 10000 \text{ flasks}$$

Question 6.

A certain mass of gas occupied 850 ml at a pressure of 760 mm of Hg. On increasing the pressure it was found that the volume of the gas was 75% of its initial value. Assuming constant temperature, find the final pressure of the gas? [1013.33 mm of Hg]

Answer:

$$V_1 = 850 \text{ ml}$$

$$V_2 = 850 \times \frac{75}{100} = \frac{850 \times 3}{4}$$
 ml

$$P_1 = 760 \text{ mm of Hg}$$

$$P_{2} = ?$$

At constant temperature $P_1V_1 = P_2V_2$

$$P_2 = \frac{P_1 V_1}{V_2} = \frac{760 \times 850 \times 4}{850 \times 3}$$

$$P_2 = \frac{3040}{3} = 1013.33 \text{ mm of Hg}$$

Question 7.

It is required to reduce the volume of a gas by 20% by compressing it at a constant pressure. To do so, the gas has to be cooled. If the gas attains a final temperature of 157°C, find the initial temperature of the gas ? [264.5°C]

Answer:

Initial conditions

Final conditions

$$V_i = xcc$$
 (suppose)

$$V_2 = \frac{80}{100}x = \frac{4}{5}xcc$$

$$T_1 = ?$$

$$T_2 = 157 + 273 = 430K$$

At constant pressure $\frac{V_1}{T_1} = \frac{V_2}{T_2}$

$$\therefore T_1 = \frac{V_1 T_2}{V_2} = \frac{x \times 430}{\frac{4}{5}x} = \frac{430 \times 5}{4}$$

$$T_1 = 537.5K = 537.5 - 237 = 264.5$$
°C

Question 8.

At a given temperature the pressure of a gas reduces to 75% of its initial value and the volume increases by 40% of its initial value. Find this temperature if the initial temperature was —10°C. [3.15°C]

$$P_2 = \frac{75}{100} \times 1 = \frac{3}{4}$$
 atm.
 $V_2 = \frac{140}{100}x = \frac{7}{5}x$

$$V_1 = xcc$$
 (suppose)

$$V_2 = \frac{140}{100}x = \frac{7}{5}x$$

$$T_1 = -10 + 273 = 263K$$

$$T_2 = ?$$

Using gas equation
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$\therefore T_2 = \frac{P_2 V_2 T_1}{P_1 V_1} = \frac{3}{4} \times \frac{7x}{5} \times \frac{263}{1 \times x} = \frac{5523}{20}$$

$$T_2 = \frac{552.3}{2} = 276.15K = 276.15 - 273$$

$$T_2 = 3.15^{\circ}C$$

Study Of Gas Laws - Unit Test Paper 7

Q.1. Name or state the following:

Question 1.

The law which states that pressure remaining constant the volume of a given mass of dry gas is directly proportional to its absolute [Kelvin] temperature.

Answer:

Charle's Law.

Question 2.

The law which studies the relationship betweeir pressure of a gas and the volume occupied by it at constant temperature.

Answer:

Boyle's Law.

Question 3.

An equation used in chemical calculations which gives a simultaneous effect of changes of temperature and pressure on the volume of a given mass of dry gas

Answer:

Gas equation.

Question 4.

The standard pressure of a gas in cm. of mercury corresponding to one atmospheric pressure.

Answer:

76 cm.

Question 5.

The absolute temperature value corresponding to 35°C.

Answer:

35 + 273 = 308K

Q.2. Give reasons for the following:

Question 1.

Gases unlike solids and liquids exert pressure in all directions.

Answer:

Impact of gas molecules with high velocity causes pressure to be exerted on the walls.

Question 2.

Gases have lower densities compared to solids or liquids.

Answer:

Gases have low densities as the inter-molecular distance between the molecules of gases is very large.

Pressure on the wall =
$$\frac{\text{Force exerted on the wall}}{\text{Total area of the container wall}}$$

Question 3.

Temperature remaining constant the product of the vol. & the press, of a given mass of dry gas is a constant.

Answer:

According to Boyle's Law
$$V \propto \frac{1}{p}$$

$$V = K.\frac{1}{p}$$

- .. P x V = K = a constant
- Product of volume and pressure of a given mass of dry gas is constant. [at constant temperature]

Question 4.

All temperatures on the Kelvin scale are in positive figures.

Answer:

All temperatures on the Kelvin scale are in positive figures.

The temperature -273°C = OK [Absolute zero or zero Kelvin]

Hence it may be negative or positive on Celsius scale, it is always positive on Kelvin as 0° C = 0 + 273 = 273K

Question 5.

Volumes of gases are converted into s.t.p. conditions and then compared.

Answer:

Volumes of gases are converted into s.t.p. conditions and then compared as

volumes of gases change with temperature and pressure – hence a standard value of temperature and pressure is chosen to which gas volumes are referred.

Q.3. Calculate the following:

Question 1.

Calculate the temperature to which a gas must be heated, so that the volume triples without any change

in pressure. The gas is originally at 57"C and having a volume 150 cc.

Answer:

$$V_1 = 150cc$$
 $V_2 = 3 \times 150cc$ $T_1 = (57 + 273) = 330K$ $T_2 = ?$

At constant pressure
$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$
 \therefore $T_2 = \frac{V_2T_1}{V_1}$

$$T_2 = \frac{(3 \times 150) \times 330}{150} = 990K = 990 - 273 = 717^{\circ}C$$

Question 2.

A gas 'X' at -33°C is heated to 127° C at constant pressure. Calculate the percentage increase in the volume of the gas.

Answer:

Let
$$V_1 = xcc$$
 $V_2 = ?$
 $T_1 = -33 + 273$ $T_2 = 127 + 27. = 400K$
 $T_3 = 240K$

At constant pressure
$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

$$V_2 = \frac{V_1 T_2}{T_1} = \frac{x \times 400}{240} = \frac{5x}{3} cc$$

Increase in volume =
$$\frac{5x}{3} - x = \frac{2}{3}x$$
 cc

:. % increase =
$$\frac{2x}{3x} \times 100 = \frac{200}{3} = 66\frac{2}{3}\%$$

Question 3.

Calculate the volume of a gas 'A' at s.t.p., if at 37°C and 775 mm of mercury pressure, it occupies a volume of 9 1/2 litres.

Original conditions

$$T_1 = 37 + 273 = 310K$$

 $P_1 = 775 \text{ mm}$

$$P_1 = 775 \text{ mm}$$

Final conditions

$$T_{2} = 273K$$

$$P_2 = 760 \text{ mm}$$

$$V_1 = 9\frac{1}{2}$$
 litres

$$V_2 = ?$$

Using gas equation
$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

$$\therefore V_2 = \frac{P_1 V_1 T_2}{T_1 P_2}$$

$$V_2 = \frac{775 \times 19 \times 273}{310 \times 2 \times 760} = 17 \frac{1}{16}$$
 litres

Question 4.

Calculate the temperature at which a gas 'A' at 20°C having a volume, of 500 cc. will occupy a volume of 250 cc.

Answer:

Initial conditions

$$T_1 = 20 + 273 = 293K$$

$$I_1 = 20 + 273 = 2931$$

$$T_{2} = ?$$

$$V_1 = 500 \text{ c.c}$$

$$V_2 = 250 \text{ cc}$$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$
 \therefore $T_2 = \frac{T_1 V_2}{V_1} = \frac{293 \times 250}{500}$

$$T_2 = 146.5K = 146.5 - 273 = -126.5$$
°C

Question 5.

A gas 'X' is collected over water at 17°C and 750 mm. pressure. If the volume of the gas collected is 50 cc., calculate the volume of the dry gas at s.t.p. [at 17°C the vapour pressure is 14 mm.]

Answer:

Initial conditions

$$T_1 = 17 + 273 = 290K$$

$$T_{2} = 273K$$

$$P_1 = 750 \text{ mm} - 14 \text{ mm}$$

$$P_{2} = 760 \text{ mm}$$

$$V_1 = 50 \text{ cc}$$

$$V_{2} = ?$$

Using gas equation
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$\therefore V_2 = \frac{P_1 V_1 T_2}{T_1 P_2} = \frac{736 \times 50 \times 273}{290 \times 760} = 45.58$$

Q.4. Assuming temperature remaining constant calculate the pressure of the gas in each of the following:

Question 1.

The pressure of a gas having volume 1000 cc. originally occupying 1500 cc. at 720 mm. pressure.

Answer:

$$P_1 = 720 \text{ mm}$$

$$P_2 = 2$$

$$V_1 = 1500 \text{ cc}$$

$$V_2 = 1000 \text{ cc}$$

At constant temperature $P_1V_1 = P_2V_2$

$$\therefore P_2 = \frac{P_1 V_1}{V_2} = \frac{720 \times 1500}{1000} = 1080 \text{ mm}$$

Question 2.

The pressure of a gas having volume 100 lits, originally occupying 75 dm³ at 700 mm, pressure.

Answer:

$$P_1 = 700 \text{ mm}$$

$$P_{\gamma} = 1$$

$$V_1 = 75 \text{ dm}^3$$

$$V_2 = 100$$
 lits But 1 dm³ = 1 litre

$$\therefore V_2 = 100 \text{ dm}^3$$

At constant temperature $P_1V_1 = P_2V_2$

$$\therefore P_2 = \frac{P_1 V_1}{V_2} = \frac{700 \times 75}{100} = 525 \text{ mm}$$

Question 3.

The pressure of a gas having volume 380 lits originally occupying 800 cm³ at 76 cm. pressure.

Answer:

$$V_1 = 800 \text{ cm}^3$$

$$V_2 = 380 \text{ lit.} = 380 \times 1000 \text{ cm}^3$$

$$P_1 = 76 \text{ cm}$$

At constant temperature $P_1V_1 = P_2V_2$

$$\therefore P_2 = \frac{P_1 V_1}{V_2} = \frac{76 \times 800}{380 \times 1000} = 0.16 \text{ cm of Hg}$$

Question 4.

The pressure of a gas having volume 1800 ml. originally occupying 300 ml. at 6 atms. pressure.

Answer:

$$V_1 = 300 \text{ ml}$$

$$V_2 = 1800 \text{ ml}$$

 $P_2 = ?$

$$P_1 = 6$$
 atm.

At constant temperature $P_1V_1 = P_2V_2$

$$P_2 = \frac{P_1 V_1}{V_2} = \frac{6 \times 300}{1800} = 1 \text{ atm.}$$

Question 5.

The pressure of a gas having volume 1500 cm³ originally occupying 750 cc. at 5 ats. pressure.

$$V_1 = 750 \text{ cc}$$

$$V_2 = 1500 \text{ cc}$$

$$P_1 = 5$$
 atm.

$$P_{2} = ?$$

At constant temperature $P_1V_1 = P_2V_3$

$$\therefore P_2 = \frac{P_1 V_1}{V_2} = \frac{5 \times 750}{1500} = \frac{5}{2} = 2.5 \text{ atm.}$$

Q.5. Calculate the following:

Question 1.

The temp, at which 500 cc. of a gas 'X' at temp. 293K occupies half it's original volume [pressure constant].

Answer:

$$V_1 = 500 \text{ cc}$$

$$V_2 = \frac{500}{2} = 250 \text{ cc}$$

$$T_1 = 293K$$

$$T_{1} = ?$$

At constant pressure

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

$$T_2 = \frac{T_1 V_2}{V_1} = \frac{293 \times 250}{500} = 146.5 K$$

$$= 146.5 - 273 = -126.5$$
°C

Question 2.

The volume at s.t.p. occupied by a gas "Y" originally occupying 760 cc. at 300K and 70 cm. press, of Hg.

Answer:

$$P_1 = 70 \text{ cm}$$

$$P_2 = 76 \text{ cm}$$

 $V_2 = ?$

$$V_1 = 760 \text{ cc}$$

$$V_{2} = ?$$

$$T_1 = 300K$$

$$T_{2} = 273K$$

Using gas equation
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$\therefore V_2 = \frac{P_1 V_1 T_2}{T_1 P_2} = \frac{70 \times 760 \times 273}{300 \times 76} = 637$$

$$V_2 = 637 \text{ c.c}$$

Question 3.

The volume at s.t.p. occupied by a gas 'Z' originally occupying 1.57 dm3 at 310.5K and 75 cm. press. of Hg.

Initial conditions

Final conditions

$$V_1 = 1.57 \text{ dm}^3$$

$$V_{2} = ?$$

$$P_1 = 75 \text{ cm}$$

$$P_{1} = 76 \text{ cm}$$

$$T_1 = 310.5K$$

$$T_{1} = 273K$$

Using gas equation
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$\therefore V_2 = \frac{P_1 V_1 T_2}{T_1 P_2} = \frac{75 \times 1.57 \times 273}{310.5 \times 76} = 1.36 \text{ dm}^3$$

Question 4.

The volume at s.t.p. occupied by a gas 'Q' originally occupying 153.7 cm³ at 287K and 750 mm. pressure [vapour pressure of gas 'Q' at 287K is 12 mm of Hg.]

Answer:

Initial conditions

$$V_1 = 153.7 \text{ cm}^3$$

$$V_2 = ?$$

$$P_1 = 750 \text{ mm} - 12 = 738 \text{ mm}$$
 $P_2 = 760 \text{ mm}$

$$P_{2} = 760 \text{ mm}$$

$$T_1 = 287K$$

$$T_2 = 273K$$

Using gas equation
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$\therefore V_2 = \frac{P_1 V_1 T_2}{T_1 P_2} = \frac{738 \times 153.7 \times 273}{287 \times 760} = 141.707 \text{ cm}^3$$

Question 5.

The temperature to which a gas 'P' has to be heated to triple it's volume, if the gas originally occupied 150 cm³ at 330K [pressure remaining constant].

Answer:

$$T_{1} = 330K$$

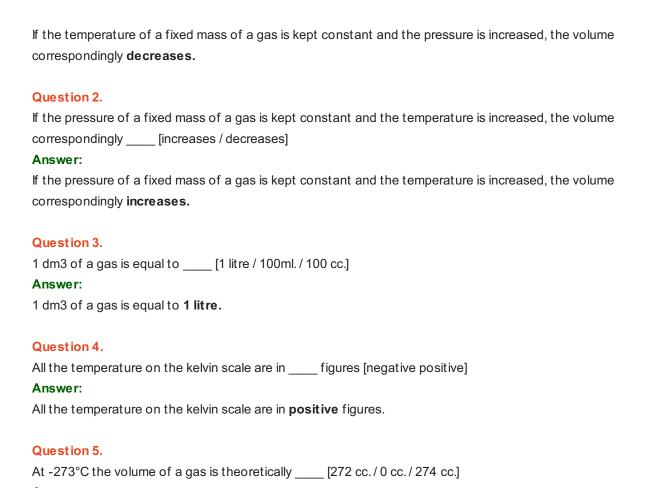
$$V_1 = 150 \text{ cm}^3$$

$$T_2 = 1$$

$$T_2 = ?$$

 $V_2 = 3 \times 150 = 450 \text{ cm}^3$

At constant pressure
$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$


$$\therefore T_2 = \frac{T_1 V_2}{V_1} = \frac{330 \times 450}{150} = 990K$$

$$\Rightarrow$$
 T, = 990 - 273 = 717°C

Q.6. Fill in the blanks with the correct word, from the words in bracket:

Question 1.

If the temperature of a fixed mass of a gas is kept constant and the pressure is increased, the volume correspondingly ____ [increases / decreases]

Share with your Friends if solutions are helpful to YOU www.AptusTopper.com

At -273°C the volume of a gas is theoretically **0 cc.**

Filed Under: ICSE

500+ Long and Short Essay Writing Topics

10 Lines on Topic

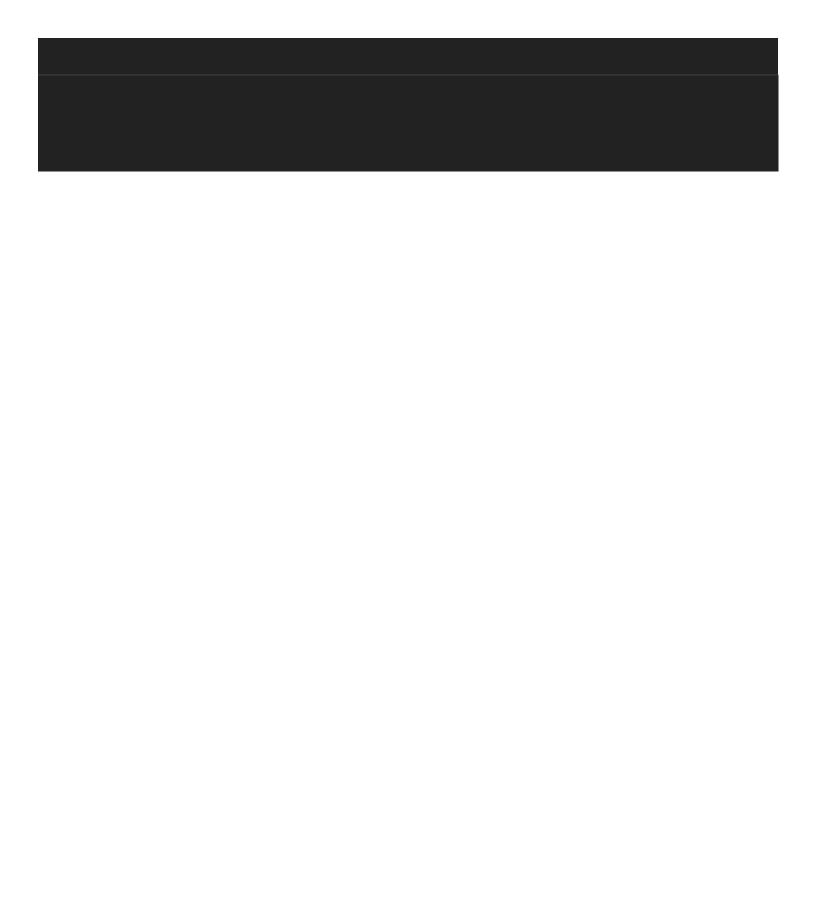
200 + Paragraphs

RS Aggarwal Solutions

RS Aggarwal Solutions Class 10
RS Aggarwal Solutions Class 9
RS Aggarwal Solutions Class 8
RS Aggarwal Solutions Class 7
RS Aggarwal Solutions Class 6
ICSE Solutions
Selina ICSE Solutions
Concise Mathematics Class 10 ICSE Solutions
Concise Physics Class 10 ICSE Solutions
Concise Chemistry Class 10 ICSE Solutions
Concise Biology Class 10 ICSE Solutions
Concise Mathematics Class 9 ICSE Solutions
Concise Physics Class 9 ICSE Solutions
Concise Chemistry Class 9 ICSE Solutions
Concise Biology Class 9 ICSE Solutions
ML Aggarwal Solutions
ML Aggarwal Class 10 Solutions
ML Aggarwal Class 9 Solutions
ML Aggarwal Class 8 Solutions
ML Aggarwal Class 7 Solutions
ML Aggarwal Class 6 Solutions
HSSLive Plus One
HSSLive Plus Two
Kerala SSLC

RECENT POSTS

EWS Certificate | Application Process, Documents Required, Format, How To Apply?


Analytical Essay | How to Write, What is and How to Choose a Topic for an Analytical Essay

Income Certificate | Application Procedure, Uses, Documents Required for Income Certificate

webtopdfconverter.com

Death Certificate | How To Apply, Documents Required and Late Fees for Death Certificate How To Write A Memo Essay | Types, Steps and Format of a Memo Essay Process Analysis Essay | How to Write, Format and Example of a Process Analysis Essay How To Conclude An Essay | Steps and Format of How To Conclude An Essay? How To Write A Book Title In An Essay | Steps, Types and Format of a Book Title Essay How To Write An Informative Essay | Steps and Format of an Informative Essay How To Write An Analytical Essay | Steps and Format of an Analytical Essay Certificate | Certificate Online, What is a Certificate? Types of Certificates and Purposes Search the site ...

RS Aggarwal Solutions	ICSE Solutions		
RS Aggarwal Solutions Class 10	Selina ICSE Solutions		
RS Aggarwal Solutions Class 9	ML Aggarwal Solutions		
RS Aggarwal Solutions Class 8	HSSLive Plus One		
RS Aggarwal Solutions Class 7	HSSLive Plus Two		
RS Aggarwal Solutions Class 6	Kerala SSLC		
English Speech	Distance Education		
		Disclaimer	Privacy Policy
		Area Volume Calculator	
		Go Math Answer Key	

