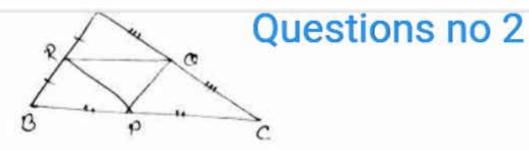
Solution Chapter Mid point Theorem Exercise 2A Questions no 1b

Given: DABC, DIS midpoint OFAC E' is midpoint of BC. AB= 4.4cm To Find: DE

Solution: Since D and E are midpoints of Side Ac and Bc respectively therefore DABC and ADCE are Simillar triangles DABC = ADCE.

$$\frac{AC}{DC} = \frac{CB}{CE} = \frac{AB}{DE}$$


$$\frac{Ac}{Dc} = \frac{AB}{DE} - 0$$

AB = 4.4 cm, DC = ACSubstitute in eq(1)

$$\frac{\partial AC}{AC} = \frac{4.4}{DE}$$

$$\Rightarrow DE = \frac{4.4}{2} = 2.2 \text{ cm}$$

Hence value of DE is 2.2 cm.

given'- P. O. and R one the midpoints of Be, ca

BP: 3.5 cm, Ac : 3 pcm and Pa: 2.7 cm

TO FIND :- (1) PO (11) PO (11) AD (12) AB

Solun: - Since, Pice and Read the midpoint of BC, ca and AB asspertively

By mid-point measem

PO : 1, BC

1) ROS & (BP+PE) D) ROS & x2BP (" Pis mid point

) eo: BP =) Po: 3.5 cm

(i) RP = 1 Ac (by midpoint meanm)

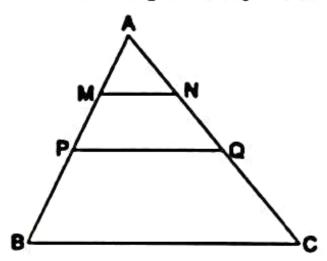
1) RP: 1 (A @ + @ c) => RP: 1 * 2 A @ (. @ is midpoint of Ac)

1) PP : AC 3) PP : Ac 3) PP = 3.8cm

i) IAB= pa (by midpoint measure)

) 1 (AR- RB)= 1 po (.: P is midpoint of AB)

1) PO : 1 XAR 3) AR: PO 1) AR: 2.71m


1 pos 1, ms (by midpoint measure)

3) AB = 2P0 3) AB= 5.4

Question

ID: 1104411788

In the triangle ABC, P and Q are the midpoints of AB and AC respectively. M and N are the midpoints of AP and AQ respectively. If MN = 1.6 cm, find BC.

Given! MN= 1.6 cm, PBQ are mil.

mand Nore mil point APS AQ.

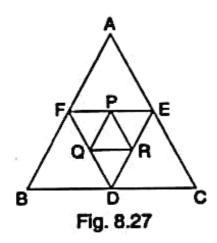
Tofind! BC

Solution: In DAMNBAAPA

$$\frac{AM}{AP} = \frac{MN}{PQ}$$

INA APR & A ABC

$$\frac{AP}{AR} = \frac{PQ}{BC}$$


Pis mid point AB.

Answer: Hence length of BC is 6.4 cm.

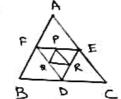
Question

ID: 1104329157

In \triangle ABC (Fig. 8.27), D, E, F are the mid-points of BC, CA and AB respectively. P, Q and R are the mid-points of EF, FD and DE respectively. If AB = 4.8 cm, BC = 7.2 cm and CA = 6.8 cm, find the sides of \triangle PQR.

Given D, E, F are the mid points of BC, CA and AB respectively.

P, Q, R are the mid points of EF, FD and DE respectively:


AB=4.8CM, BC=7.2CM and CA=6.8 CM.

Find the sides of Apar.

Solution: We know that, in a triangle mid boint of two sides are Joined, then Joining line segment is parallel to the

third side and length half of the third side.

So, Here Fand D mid boint of AB and DC of a DABC.

Similarly, P and Q Mid boint of FE and FD of a DDEF.

Hence, the sides PQ, PR and QR of a DPQR are 1.2 cm, 1.7 cm and 1.8 cm respectively.

ID: 1106758761

Let PQR be a scalene triangle. The midpoints of PQ, QR and RP are L, M and N respectively. Join LM, MN and NL. Prove that the perimeter of ΔLMN is half the perimeter of ΔPQR .

In PQR

L and M are the mid-points of sides of PQ and QR

.LM||PR

similarly

NM || PQ and LN || QR

since

LN ||PMand NM ||PL

. PLNM is a parallelogram

50

$$PL=MN=\frac{a}{2}$$

$$PM=NL=\frac{c}{2}$$

similarly QLNM is a parllelogram

50

$$QL=MN=\frac{a}{2}$$

$$NQ=LM=\frac{b}{2}$$

$$LM = \frac{b}{2}$$

$$MN = \frac{a}{2}$$

$$LN = \frac{c}{2}$$

Perimeter of $\triangle PQR = PQ + QR + PR = a + b + c$

Perimeter of
$$\Delta$$
LMN=LM+MN+LN= $\frac{b}{2}$ + $\frac{a}{2}$ + $\frac{c}{2}$

$$= \frac{a+b+c}{2} = \frac{\text{Perim eter of } \Delta PQR}{2}$$

Question

ID: 1103535019

Prove that the triangle obtained on joining the mid-points of the sides of an equilateral triangle is also equilateral.

Solution

Sol. Since line segment Joining the mid-points of two sides of a triangle is half of the third side. Therefore, D and E are mid-points of BC and AC respectively.

$$\Rightarrow DE = \frac{1}{2}AB \qquad ...(i)$$

E and F are the mid-points of AC and AB respectively.

$$\therefore \qquad \text{EF} = \frac{1}{2} \text{ BC} \qquad \dots (4)$$

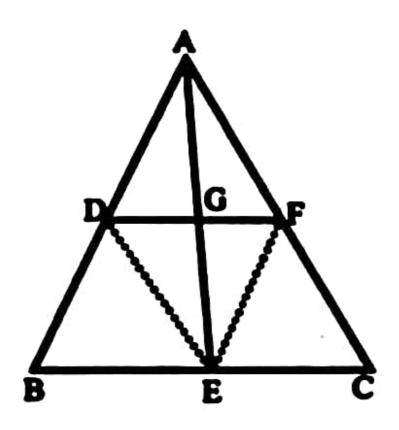
F and D are the mid-points of AB and BC respectively.

$$\therefore \qquad \text{FD} = \frac{1}{2} \text{ AC} \qquad \qquad \dots \text{(iii)}$$

Now, AABC is an equilateral triangle.

$$\Rightarrow \frac{1}{2}AB = \frac{1}{2}BC = \frac{1}{2}CA$$

$$\Rightarrow$$
 DE = EF = FD (using (i), (ii) and (iii))
Hence, DEF is an equilateral triangle.


ID: 1104411858

ABC is a triangle. D, E and F are the midpoints of AB, AC and BC respectively. Prove that DE and AF bisect each other.

Construction: Join EF, and ED

Proof: : E and F are the mid points of BC and AC respectively

∴ EF [AB ...(*i*)

Similarly D and E are the mid points of AB and BC respectively

∴ DE | AC ...(ii)

From (1) and (ii), we have
ADEF is a parallelogram
But the diagonals AE and DF of a
parallelogram bisect each other at G

.: AG = GE and DG = GF

Hence AE and DF bisect each other at G.

folution, 11) if pa=1.8 find ar 41141143 1cm = mn Pn = an (by intercept - 1) . Pa=OR hence OR= 1.8 (2) If PN = 5-8 cm. find GN 4/14/13 PO = OR by Intercept PG = GN PO = OR by Theory) PN = GN $\frac{9}{2}$ $G_1N = \frac{5.8}{2} = 2.9 cm.$ (3) if PR= 4.6 cm, find Pa 4/12/12 and KM = MN PCO = QR (by Intercep) $PCQ = \frac{PR}{9} = \frac{4}{2} = 2.3 \text{ cm}.$ y if pa= 2.4 cm. Fin PN 41112/113 KM2MN hence Pallan (by Intercept
PN = 2 PG Huosen)

PN = 4.8cm