ATNA-CIPHER, LLC.(ACL) Accordion Cipher-mode Preferable Features

ATNA-CIPHER, LLC.

Tushar Patel Lead Architect/Owner

ATNA-CIPHER, LLC. (408)242-5016 <u>si@atnacipher.com</u> P/O. Box 2130, Sunnyvale, CA 94087 COEVAL AUTHENTICATED ENCRYPTION

Introduction

- ATNA-CIPHER, LLC. (aka ACL) is the incubation entity for the development of an accordion and tweakable style encryption cipher(+/-mode.), namely, "atnaCM."
- As NIST is not seeking a full proposal submission at this time; ACL would like to highlight some key features in the following 5 broad are categories as recommendations for an Accordion Mode.
 - 1. Enciphering Properties like Key Sizes, Block Cipher Sizes and Tweakable Block sizes
 - 2. Parallelism relating to large input sizes
 - 3. Confirmation of keys like encryption, integrity, etc.
 - 4. Fast Drop Tags for Authenticated Encryption
 - 5. Padding Attacks Prevention for all tweaks and enciphering properties
- Subsequent slides present each ones of these topics in some light detail.
- Note: In the slides, messages like payloads/packets are 1-unit of encryption from a possible larger set.

Enciphering Properties (1)

- Cryptography is consistently changing; however, future adaptability has been tedious and difficult,
 - e.g., PQC finalization, Legacy RSA deprecation, SHA-1 deprecation or Next-gen Cryptographic Adaptation of ECDHE ECDSA.
- Currently, Cipher Blocks are integral multiples of 128-bits, AES-128 or Rijndael-256-256 (i.e., 2*128-bit.)
- Cipher Key Sizes and generally multiples of 16-bytes, 24-bytes or 32-bytes, i.e., AES-(128/192/256).
- Recommended hash sizes as per CNSA 2.0 are (SHA-384) 48-bytes, (SHA-512) 64-bytes or SHA-3 Hashes as integral multiples of 128-bits.
- Disk or Container Block Sizes are in Powers of Two, i.e., 2^n where, $n \in \{9,10, ..., (n-1), n\}$ (multiples of 128-bits)
 - (note: blocks can be smaller than 512 in smaller systems)
- Due to interoperability between HW registers (32/64/128/256)-bit and Encryption units,
 - Architectures define blocks in multiples of Cipher Block Sizes (i.e., 128-bits), e.g., AES-NI/ARM: AES-128, AES-256, AES-512, etc.

Enciphering Properties (2)

- Most implementations are limited to 4096 cipher blocks per request, (e.g., TLS, Missing Jumbo in MACSec)
- Given these factors, it would be highly preferable for Accordion modes to,
 - Define Accordion Cipher-Blocks, Hashes and Keys as multiples of 128-bits. (90% cases)
 - For other sizes, padding rules must be defined and security validated/assured. (10% cases.)
 - Update number of cipher blocks to 16384 (i.e., 2¹⁴) from 4096 (i.e., 2¹²)
 - with Rijndael-256-256, it has the necessary future proof single payload size support.
- This RISC style approach permits Accordion HW designs to be compatible, efficient and within safe manufacturing bounds.

Parallelism

- Current architectures support three levels of pipelined Parallelism.
 - Key Schedule Parallelism (like current AES key schedules)
 - Encryption Stage Parallelism like the 14 stages of AES (128-bit block, 256-bit keys)
 - Tweakable Block (like AES-NI encryption in multiples of 128-bit)
- New designs should introduce two more multiprocessing methods
 - Per Message Parallelism: For large packets, implementations can support multiprocessing across multiple AES units.
 - Integrity or MAC parallelism: Most implementations miss multi-processing MACs or integrity checks.
- This initiative should prove out as the most important performance enhancement.
- These 5-levels of parallelism are recommended for Accordion modes.

Confirmations

- The penalties of missing/failing a decryption in a pipeline (e.g., HW) are
 - Costly in proportion to speed.
 - Most HW complete ops. in two passes. (HW packet recirculation is common.)
 - Using Key Confirmations prevent such penalties and utmost important in AEAD.
- All messages should be confirming both Integrity and Enciphering Keys, however, some applications may keep them optional.
 - Persistent or resident encryption like disk and storage may not need this.
- Implementations can include other confirmations like enciphering or domain parameters for better application related security assurances.
- This will be a highly preferable feature set for the Accordion mode.

Fast Drop Tagging

- Fast drop tags is a method to achieve message parallel cross-compatibility and confirmations (e.g., keys.)
- Many current modes push items like Flow Control and Attack Prevention to the upper layers.
 - These layers may allow DoS attacks if not using AEAD ciphers over upper-layer headers,
 - 1. Inline DoS as packets can get queued in the stack until flow control processing.
 - 2. No upper bound An attacker can DoS replay in leaps shortening the window.
- In compromised and mirrored hypervisors, VMs and containers, it may be possible to mirror ciphertext based on protocol knowledge, e.g., SPI, RTSP headers to a compromised unit with an upper layer side-channel in JavaScript, e.g., attacks on multicast groups.
 - While subject to bad implementations, such attacks have been known to occur in the past.
 - Not all systems can incur the costs of Enclaves, or Cloud/Global TPMs and HSMs.
- Fast Drop Tags implementing bounds on flow control and providing service segmentation adaptation and assembly in cipher-modes to thwart or eliminate such attacks.
- It is highly preferable for Accordion designs to include this functionality.

Prevention of Padding Attacks (1)

- Previous cipher-modes have had some issues with the first-two blocks (CTR/CBC) (due to implementation error) leading to
 - The introduction of authenticated encryption like AES-GCM.
 - Repetition Padding Attacks due to Chosen Plaintext and Chosen Ciphertexts + padding.
 - Attacks from late-stage verification of cryptographic algorithms (a FIPS 140-2/3 release is usually 6 months after an initial release.)
- Padding and enciphering must support, both bits and byte modes.
 - Bit-Mode is for IoT and other stream applications like MPEG bit-fields.
 - Variable Bit-padded cipher blocks are more difficult to crack than Byte-padded cipher blocks.
 - Currently less than 96-bits can be brute-forced. This applies to certain fields securely encrypted, however, the field itself can be brute-forced or rainbow tabled.

Prevention of Padding Attacks (2)

- Implementations must use different padding bits for Integrity Calculations and Enciphering Padding Schemes.
 - Additionally necessary to support integrity checking at intermediate nodes in transport without decryption.
- It should be a must to provide the proofs and results alongside submissions
 - Theoretical Proofs of IND CCA1, CCA2 and IND-CPA, IND-CPA2
 - Formalized testing of the same and provided under the new FIPS ACTS (i.e., CAVP test).
- This is already a required property of an Accordion mode.

Accordion Compliance Section 3

- Modes must support selecting parameters to comply with the 3 types mentioned in Section
 3. of the Accordion requirements.
 - ACL postpones the discussion of its atnaCM details until the final requirements of Accordion mode making some adjustments if necessary.
- Approaches of Accordion Mode should support
 - Segmentation Allowing or preventing access to sub-segments of ciphertext.
 - Such support should allow random-access to ciphertext sub-segments.
 - As kernel sk-buffs (Linux), mbuffs (BSD) only allow a tail increment of (36/40)-bytes.
 - Current Verification Tags or MAC(s) must be within this limit to prevent performance loss due to fragmenting an sk-buff in two.
 - Also simplifies message exchange across the OS kernel to user space interfaces.
 - Should support extendibility and adaptability methods due to diverse application needs.
 - Should facilitate backdoor free, data search in the encrypted form and law enforcement.

Accordion Compliance (Misc.)

- Approaches of Accordion Mode should support
 - Segmentation Allowing or preventing access to sub-segments of ciphertext.
 - Such support should allow random-access to ciphertext sub-segments.
 - As kernel sk-buffs (Linux), mbuffs (BSD) only allow a tail increment of (36/40)-bytes.
 - Current Verification Tags or MAC(s) must be within this limit to prevent performance loss due to fragmenting an sk-buff in two.
 - Also simplifies message exchange across the OS kernel to user space interfaces.
 - Should support extendibility and adaptability methods due to diverse application needs.
 - Should facilitate backdoor free, data search in the encrypted form and law enforcement.

Accordion Feedback

- Parameter Lengths Key (n * 128-bit), Tweak (n * cipher-block-length), data-input (any size with efficient lengths (90% cases) and inefficient lengths (10% cases)
- 256-bit cipher blocks Yes, in short, any multiple of 128-bits.
- Security Goals many, in general known attack free at 256 bit. min strength, PRF: Keyed, min 384-bits (~strength 192 bits or more)
- AEAD Yes, in general: support all three operational cases in Accordion Requirements, however, there may be algorithms that a preferred in each case.
- Potential Design Strategies SW/HW/FW Codesign, Facilitate fast path applications
- Performance Targets At optimal rates, it should be faster than comparable AES-GCM.
- Please review the document "ATNA Accordion Cipher-mode Proposal Summary" submitted alongside this presentation for some additional information.

References

- 1. NIST SP800-38(A/B/C/D/E/F/G), SP800-90Ar1, NIST SP800-90B, NIST PQC Round 4., NIST SP800-131Ar2 Proposal of Requirements for an Accordion Mode
- 2. FIPS 140-2/3, 180-1,180-2,180-3,180-4, FIPS 198-1, SP800-108., ACTS, CAVP Algorithm Tests, CMVP and other FIPS and Common Criteria Specifications.
- 3. A) Thomas Leighton Morgan Kaufmann Publishers, Parallel Algorithm Architectures, 1992. b) Dr. Donald Knuth Addison Wesley Publishers, The Art of Computer Programming, Vol. 1 through 4B.c) William Stallings Cryptography and Networking Security
- 4. The Crossed Cube Architecture for Parallel Computation Kemel Efe, Transactions on Parallel and Distributed Systems, Vol. 3, 0.5, Sept. 1992.
- 5. GCM Multiple: a) The Galois/Counter Mode of Operation (GCM), D. McGrew, J Viega, b) Development of the Advanced Encryption Standard Aug 16, 2021, c) Authentication Weakness in AES-GCM, Neil Ferguson, 2005, d) Authentication Failures in NIST version of GCM, Antoine Joux, e) On the Construction of Variable-Input-Length Ciphers, M. Bellare, P. Rogaway, f) Padding Oracle Attacks on CBC-mode Encryption with Secret and Random IVs- Arnold K. L. Yau? , Kenneth G. Paterson and Chris J. Mitchell, g)) A Tweakable Encryption Mode, S. Halevi and P. Rogaway, h) Proposals for Standardization of Encryption Schemes John Preuß Mattsson, Ben Smeets, Erik Thormarker *Ericsson, i*) Different Types of Attacks on Block Ciphers - Wageda Ibrahim Al Sobky, Hala Saeed Omar, j) Cycling Attacks on GCM, GHASH and Other Polynomial MACs and Hashes- Markku-Juhani O. Saarinen, k) Partitioning Oracle Attacks Julia Len Paul Grubbs Thomas Ristenpart, I) Authentication Key Recovery on Galois/Counter Mode (GCM) - John Mattsson and Magnus Westerlund, m) Adiantum: lengthpreserving encryption for entry-level processors - Paul Crowley and Eric Biggers
- A) Bit Twiddling Hacks, Sean Eron Anderson, Stanford., f) Digital Design Nicholas L. Pappas. g) Arithmetic Tutorial Collection, Douglas W. Jones University of IOWA 2001 h) Operating Systems Concepts 10th Edition, Silberschatz, Galvin, Gagne Wiley 2018.
- 7. PQC a) Shor's Algorithm: <u>https://www.nccoe.nist.gov/sites/default/files/2023-12/pqc-migration-nist-sp-1800-38b-preliminary-draft.pdf, b</u>) Grover's Algorithm : <u>https://csrc.nist.gov/csrc/media/Events/2024/fifth-pqc-standardization-conference/documents/papers/on-practical-cost-of-grover.pdf</u>
- 8. There are many other books, papers, presentation and documents over the years and hence, a full list is not possible to reproduce here.

ATNA-CIPHER, LLC.

Acknowledgements

- ACL hopes this presentation is helpful towards the final requirements for the Accordion Mode.
- Sincere appreciation to NIST for organizing this event and allowing ACL to present.
- Sincere appreciation to all the Seers, Attendees, Mentors, Colleagues, Well-wishers, ACL members, and Family for your time, dedication, suggestions and support for the "atnaCM" solution.
- Details, Questions, Concerns? Info
 - si@atnacipher.com
 - https://www.atnacipher.com

