TANKJKT

Heat Transfer Calculations for Jacketed Tanks

SCREEN SHOTS

Copyright 2015

By chemengsoftware.com

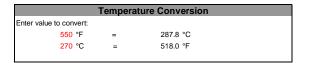
Visit http://www.pipesizingsoftware.com/ for further information and ordering

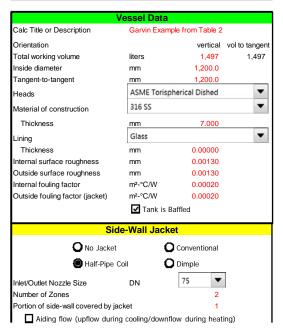
The following page shows the Data Input worksheet. Pop-up comment boxes and dynamic prompts guide your data entry.

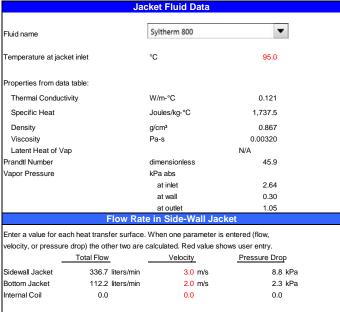
Heat Transfer in Jacketed Vessels

Version 3

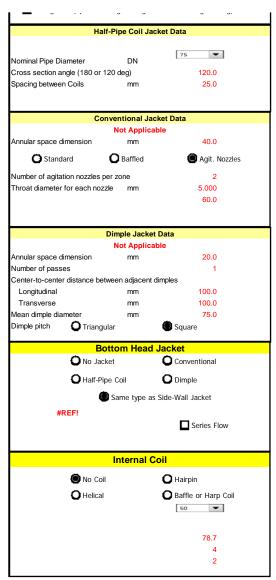
by Stephen M. Hall, PE Copyright 2015

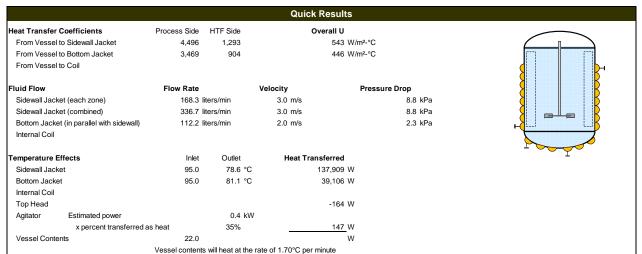

All cells are locked except user-defined data; unlock sheet from Tools menu (no password required) VIEW-COMMENTS to see some additional explanations.

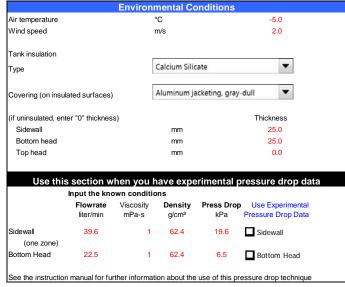

Scroll down and to the right to enter data.


	Project Da	ıta	
Prepared by	xx	Client	xx
Date	xx	W.O.	XX
		Unit	XX
		Area	XX
Customary US	SI	Equip No	xx

To restore a saved calculation, select it from the drop-down box below, then click the "Restore Saved Calculation" button







V	essel Fluid Data	
Name		Water
Bulk Temp	°C	22.0
✓ Use prope	rties of water	
Thermal Conductivity	W/m-°C	0.607
Specific Heat	Joules/kg-°C	4,183.9
Density	g/cm³	0.997
Viscosity @20C	Pa-s	0.00099
Note: k, Cp and density assumed Viscosity is adjusted, but better to Impeller Type Turbine (Rush	enter 3 values below Agitator Data	
Impeller Diameter	mm	384.0
Blade Height	mm	72.0
Blade Pitch (90 deg = upright)	degrees	90
Number of blades		6
Agitator Rotational Speed	rpm	180

Calculated tip speed

Viso	osity for F	luid inside	the Vessel				
Viscosity data at three t	emperatures	☐ Use this data					
Temp.	Visc.		Temp				
°F	cP		°K				
68	0.578		293				
104	0.446		313	0.97			
140	0.347		333				
Viscosity coefficients							
	Α	В	С				
	-16.56	19,462.31	922.21				
Temperature of interest	t	77 °F					
Predicted viscosity		0.54 cl	P				
			298.15 °K				

meters/min

217.1

Two pre-formatted reports are included. The first summarizes the input data, and presents the calculation results. The second includes a timeline, calculated using 60 "time slices" at a user-defined interval.

Because this is a spreadsheet, it's easy to customize the reports. Add your logo and address.

The report formats complement chemengsoftware's other products such as PIPESIZE, VentManifold, and others.

E •	hemer	JACKETED VESSEL HEAT TRANSFER									
	software com				CLIENT	•		EQUIP. NO PAGE			
	VILWAI	2.45	4555	0) / 1		XX		X			
REV	PREPARED BY	DATE	APPR	OVAL	W.O.	10 2		REQUISITI	ON NO.	SPECIFICAT	TON NO.
0	XX	XX			UNIT	xx AR	EΛ	PROCURE	n RV	INSTALLED	RV
2					xx	XX	LA	FROCORLI	וטכ	INSTALLED	ы
_			Ġ	arvin E	xample		ble 2				
1											
2	Orientation		vertical,	cylindric	al	Coi	ntents		Water		
3	Total working vol	ume	1,497				k Tempe			°C	
4	Inside diameter		1,200					nductivity		W/m-°C	
5	Tangent-to-tange	ent	1,200				ecific He	at		Joules/kg-°C	
6	Heads			orispher	rical Dishe		nsity	.000		g/cm³	
7 8	Material of constr Thickness	ruction	316 SS	mm		VIS	cosity @	20C	0.00099	Pa-s	
9	Lining		Glass	mm							
10	Thickness		Olass	mm							
11	Internal surface re	oughness	0.0013			Aai	tator Ty	pe	Turbine (Ru	ushton)	
12	Outside surface r	•	0.0013				eller Dia		,	mm	
13	Internal fouling fa	-	0.0002	m²-°C/V	٧	Spe			180	rpm	
14	Outside fouling fa	actor (jacket)	0.0002	m²-°C/V	٧						
15	Vessel is baffled										
16	NA di di				Jack	et Fluid			0.14	22	
17	Method for deterr		te in jacket or	coil:			id Name		Syltherm 80	°C	
18 19	Target V	Value	2	m/s				e at jacket in anductivity		W/m-°C	
20	Pressure drop in		_		iacket		ecific He	•		Joules/kg-°C	
21	Syltherm 800	Side Wall detel	mines now in	DOLLOITI	jacket		nsity	αι		g/cm ³	
22	Dow Chemical	Co.					cosity		0.00350	-	
23	Polydimethyl-s										
24	Estimated vessel	wall temp.	29.745	°C		Pra	ndtl Nun	nber	46	dimensionles	s
25	Approx. max. vap	or pressure	2.6396	kPa abs	S						
26			D: 0 "		Jacket an						
27	Sidewall Jacket T	ype Half-	-Pipe Coil					ed angle; 25			
28 29	Bottom Jacket Ty	rno ∐alf	-Pipe Coil					m2 total hea ed angle; 25			
30	Bollom Jacket Ty	/pe Haii	-Fipe Coli				-	parallel with		:11 100ps	
31	Internal Coil Type	e No C	Coil	1 1112 110	Jat transi	or arca,	piped ii	i paralici witi	i Sidewali		
32	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
33	Environmental: -5	5°C, 2 m/s; Sid	dewall, Bottor	n, Calc	ium Silica	<u>ite in</u> sul	ation				
34					Calculat						
35	Heat Transfer Co			F	Process S		Wall		Overall U		
36	4	essel to Sidew			,	196	1,181	1,293		W/m²-°C	
37		essel to Bottor	n Jacket		3,4	169	1,182	904	446	W/m²-°C	
38 39	From Ve	essel to Coil								Pressure	
40	Fluid Flow				Flow Ra	ıte.		Velocity		Drop	
41	4	Jacket (each	zone)			8.3 liter	s/min	3.0	m/s	8.8 k	Pa
42		Jacket (cach				6.7 liter		3.0		8.8 k	
43		Jacket (in para	,	wall)		2.2 liter		2.0		2.3 k	
44	Internal	Coil		·							
45	Temperature Eff	ects	Inlet	Outlet	_		Surface		Heat Trans		
46	Sidewall		95.0	78.6			13.0		137,909		
47	Bottom		95.0	81.1	l °C		13.0	°C	39,106	W	
48	Internal		25.0	05.0		. .	٠	00	40.	147	
49	Top Hea	95.0	95.0 95.0	95.0	9	5.0	8.5	-0	-164 147		
50 51	Agitator Vessel 0	Contents	22.0	kW °C		x 35%	0	•	176,998	-	
52		Vessel conte			te of 1.7 d	legC pe	r minute	:	0,000	••	
<u> </u>						- '					

Bo	heme	1961				Ī		JACK	ETED V	ESSEL	HEAT TR	ANSFE	R	
S	oftware.com			CLIE	NT x :	x	EQU	EQUIP. NO XX		PAGE				
REV	PREPARED B		ATE	APF	ROVAL	W.O.			REQ	UISITIO	N NO.	SPEC	IFICATIO	ON NO.
0	XX	XX				UNIT	. X	x AREA	DDO	CURED	DV	INICT	ALLED B	V
2						XX		AKEA XX	PRO	CUKED	гвт	IIVSTF	ALLED B	Y
_					Garvin									
1						Ve	ssel D	ata						
2	Orientation				l, cylindri	cal		Content	-		Vater			
3	Total working v				7 liters				nperature			°C		
4 5	Inside diamete				0 mm 0 mm			Specific	Conduct	ivity		W/m-° Joules		
6	Tangent-to-tangent	geni		-	Torisphe	rical Dis		Density	пеаі		,	g/cm³	7kg- C	
_	Material of con	struction		316 S	•	noai Bi		Viscosity	@20C		0.00099	-		
8	Thickness				7 mm			,						
9	Lining			Glass										
10	Thickness				mm				_					
	Internal surface	-		0.0013				Agitator			urbine (R	ushton) · mm		
12 13	Outside surface Internal fouling	-	:55	0.0013	o mm 2 m²-°C/	W		Speed	Diamete	ı		rpm		
14	Outside fouling		cket)		2 m²-°C/			Spoou			100	יייקי		
15	Vessel is baffle		,											
16						Jac	cket Fl							
	Method for dete		low rate	in jacket	or coil:			Fluid Na			Syltherm 8			
18 19	l arge	t Velocity Value			3 m/s				ture at ja Conduct			°C ∶W/m-°		
20		value			3 111/5			Specific		ivity	1,725.8			
21	Pressure drop	in sidewal	ll determi	ines flow	in bottom	iacket		Density	riout			g/cm ³	, ng O	
22						•		Viscosity	,		0.00350	-		
23														
	Estimated vess	sel wall te	mp.	29.74	5 °C			Prandtl N	Number		45.9	dimen	sionless	
25 26						laakat	and C	oil Data						
_	Sidewall Jacke	t Type	Half-Pi	ipe Coil					uded and	ıle: 25 m	nm betwee	en loops	3	
28		71									transfer a			
	Bottom Jacket	Туре	Half-Pi	ipe Coil	•			•	-		nm betwee	en loops	6	
30					1 m2 h	eat tran	sfer ar	ea; pipe	d in paral	llel with	sidewall			
31 32	Internal Coil Ty	pe	No Co	II										
-	Environmental:	-5°C. 2 n	n/s: Side	wall. Bott	om. Calo	ium Sil	icate ir	sulation						
34		,	•		meline (c				interval	s)				
35														
36	100 -													
37	90 -													
38 39	80 -													
40	º 70 −													
41	- 60 atc													
42	5 0 -													
43	Temperature													
44 45	. 30													
46	20 -													
47	10 -													
48	0 -	0 1	5 3	0 4	5 60	<u> </u>	75	90	105	120	135	150	165	 180
49		0 1	5 3	0 4	J 60	<i>J</i> 1	5	90	103	120	135	150	100	100
50 51							Time	(minut	es)					
ગા														

Calculations are performed in open-source Visual Basic for Applications (VBA) macros. The results are collected into an array that is output to a worksheet. This makes it easy to review the results without any clutter.

Heat Transfer in Jacketed Vessels

Version 3

Result Details

	1	2	3	4	
	Sidewall	Bottom	Coil	Top Head	
HTF Film Coefficient, ho	1,293	904	0.0000		W/m2-C
Process Film Coefficient, hi	4,496	3,469	0.0000	7.95	W/m2-C
Overall Coefficient, U	543	446	0.0000	3.96	W/m2-C
Heat Transferred, Q	137,909	39,106	0	-164	W
HTF Flow Rate	17,511	5,837	0.0000		kg/h
HTF Pressure Drop	8.76	2.28	0.0000		kPa
HTF Velocity	3.0	2.0	0.000		m/s
HTF Temperature In	95.0	95.0	0.0		С
HTF Temperature Out	78.6	81.1	0.0		С
HTF Temperature Average	86.8	88.0	0.0		С
HTF Temperature Wall	59.9	55.7	0.0		С
Process Temperature	22.0	22.0	22.0	22.0	С
Process Temperature Wall	29.7	30.4	22.0	8.5	С
Wall Coefficient, hw	1,181.3	1,181.6	0.00000	1,511.8	W/m2-C
Agitator Power	419.9	147.0			W
Environmental film coefficient, he	9.176	2.850		7.948	W/m2-C
Jacket-to-environment Ue	1.80	1.26			W/m2-C
Jacket-to-environment Qe	-749	-156			W
Process-to-environment Ue				3.96	W/m2-C
Process-to-environment Qe				-164	W
Surface Temperature	13.0	36.0		8.5	С