PIPESIZE spreadsheet template for pipe sizing.

Copyright 2013 by Stephen Hall, PE

PIPESIZE is an Excel spreadsheet template. It sizes pipes for liquid or gas flow. *PIPESIZE* is extensively tested; I created the first version in 1989 and have continually enhanced it since.

The 2013 version (3.10) adds a much improved calculation algorithm for heat loss/gain estimates, and a new Line List feature.

The template consists of several worksheets. Most of your data input is on the Data Input worksheet; the others are used for assembling reports and supporting data. Cells requiring User Input are displayed with RED text; other cells are in BLACK.

Figure 1: Most data input is done on the Data Input worksheet

PIPESIZE

Table of Contents

Quick Start	3
System Requirements	4
Initial Setup and Orientation	5
Data Entry Worksheet	8
Quick Results	12
Datasheet	13
Errors and Warnings	14
Pressure Drop Calculations	15
Heat Loss/Gain Calculations	18
Insulation Worksheet	23
Properties Worksheet	24
Line List Worksheet	29
LIQFLOW Worksheet	30
OPTLIQ Worksheet	31
Equivalent Length Worksheet	32
Velocities Worksheet	34

Quick Start

Perform your first pressure drop calculation by following these steps:

- 1. Ensure that Macros are enabled
- 2. Navigate to the Data Input worksheet
- 3. Cell C17: Choose preferred system of units, English or SI (radio buttons)
- 4. Cell G32: Choose Liquid or Gas (radio buttons)
- 5. Cell F31: Enter name of the fluid, or choose one from the pulldown list at H31
- 6. Cell F33: Enter the flowrate (be sure to use the units that are indicated)
- 7. Cell F36: If this is a gas calculation, enter the pressure
- 8. Take note of the messages at Cells E32, G37, G38, and G39. Enter data if it says "Entry Required" (it means that the fluid name entered in Cell 31 is missing from the Properties Table, see page 24)
- 9. Cell D43: If you are calculating for a known pipe diameter, select the "Specific Diameter" (radio button). Otherwise, select "Economic"
- 10. Cell G47: Enter the approximate equivalent length of the pipe segment you are calculating. If you don't know the equivalent length, enter a value that is 1.4 times the actual length of the pipe.

Read results in the table in columns K:N. Notice that results for three pipe sizes are displayed. The specified size (or size determined by *PIPESIZE*) is in the middle, at Rows 35 to 41. It is flanked by the next smaller and next larger sizes.

There are many additional variables that you can enter; they are explained in this manual. However, for the most part, the inputs are self-explanatory.

System Requirements

- Personal computer running Microsoft Excel with Visual Basic for Applications (VBA). This
 requirement means that Open Office and other programs capable of opening and editing basic
 Excel worksheets will not work VBA is required. Excel 97 on the Mac lacks VBA and is therefore
 incompatible, however Office 2010 on the Mac is compatible
- Excel must be configured to allow macros to run. This can be done through Security settings, or by enabling macros each time *PIPESIZE* is opened

Initial Setup and Orientation

When you first open *PIPESIZE* you should see the Data Input screen. If not, select the leftmost tab at the bottom of the Excel window.

We recommend that you start by exploring a bit. Entries that appear in RED are valid cells for data entry. The BLACK cells contain results from intermediate or final calculations. Generally, only the RED cells are unlocked. You quickly navigate among them by using the TAB key.

Although the worksheets are Protected, this is only done to help avoid inadvertent changes to cells that contain formulas. There are no passwords and the entire workbook is Open Source.

PIPESIZE is shipped configured for printing on US letter size paper. If you use A4 paper, please go to each sheet in turn. Go to Page Setup... Then change paper to A4 and left/right margins to 1.5 cm. The pages should then print properly.

Number and date formats vary around the world. While numeric values are formatted according to global settings in Excel, *PIPESIZE* also makes use of text formulas that are formatted according to a string within the formula. This string is unaffected by Excel's global formatting preferences, having a syntax such as: =TEXT(numeric value, "0.00"). To get around this problem, a table of formats is provided on the Pipes worksheet at Row 166. If you use anything other than "dd-mmm-yyyy" for dates, or "#,##0.0" for numbers, edit the formats in the table.

The next thing to do is review the Pipes worksheet. If your company or workgroup has standard pipe specifications you may want to edit the Pipes sheet to accurately portray your specs. If you don't have specifications, consider creating codes for commonly used types, such as "CS" (for carbon steel) and "SS" (stainless steel).

The pipe specification codes are entered in the table at the top of the Pipes worksheet. Codes must be entered in alphabetical order (you can insert new rows if you like). Then, follow the column headings to enter temperature and pressure limits, roughness value, cost data, and related dimensional table number. Although the entries in this table are in customary US units, the *PIPESIZE* reports use either US or SI units for reporting (in accordance with your selection). Each column entry is explained below.

						Cost Factors					
Spec Code	Description	Min Temp	Max Temp	Max Press	Roughness	Purchase	Ratio	Exponent	Size	Emissivity	Conductivity
		deg F	deg F	psig	ft	\$/ft (1 inch)	Fittings		Table		W/m-K
Α	150 lb Carbon Steel	-10	450	150	0.00015	\$1.75	5	1.3	2	0.79	45
A3	125 lb Carbon Steel	-10	450	125	0.00015	\$1.75	5	1.3	2	0.79	54
В	300 lb Carbon Steel	-20	750	300	0.00015	\$1.75	5	1.3	2	0.79	54
С	316L SS Pipe	-100	500	145	0.0001	\$4.50	8	0.89	8	0.85	16.2
CU	Copper Pipe	-100	250	110	0.000005	\$4.50	8	0.89	6	0.78	401
D1	316L SS Sanitary Tubir	-100	450	150	0.000001	\$4.50	8	0.89	15	0.1	16.2
D2	316L SS Zephyrweld To	-100	450	150	0.000005	\$4.50	8	0.89	14	0.1	16.2
F1	Teflon-Lined Pipe	-20	500	170	0.000005	\$4.50	8	0.89	9	0.79	0.3

Figure 2: Pipe Specifications on the Pipes worksheet

<u>Spec Code</u> may be any alphanumeric string. It is usually a designation used on P&IDs and other documents that references a complete pipe specification. The Spec Codes must be sorted alphabetically. Rows may be inserted into the table if more codes are needed.

<u>Description</u> is plain language to describe the pipe specification. It is used on the printed data sheet.

<u>Temperature limits</u> are entered in degrees Fahrenheit. These are the minimum and maximum temperatures allowed for the pipe class, often determined by components in your piping system such as gaskets and valves. If the fluid temperature is outside the range defined by these limits a warning message is printed on the data sheet.

<u>Pressure limit</u> is the maximum gage pressure permitted (psig) for the pipe code. The only thing that temperature and pressure limits affects within <u>PIPESIZE</u> is a Warning in the event that the limits are violated.

<u>Pipe Roughness</u> is entered in units of feet. See the Roughness worksheet for a list of recommendations. Roughness for new pipe is often listed in handbooks, but consider whether it's more appropriate to use a value for used pipe -- one that is more representative of how your system will operate after a couple of years of operation.

<u>Cost Factors</u> are entered for a) initial capital cost of 1 foot of 1 inch pipe, installed, b) a ratio relating the cost of fittings and valves to the cost of pipe, and c) an exponent used to convert to other sizes. This is in accordance with the Peters and Timmerhaus method. We suggest you use values like the ones given until you gain experience with the OPTSIZE worksheet results.

<u>Size Table</u> is a pointer to one of the many pipe dimension tables appearing below. Each dimension table contains five columns of data, which in turn can be formulas to look up wall thicknesses for a given schedule, etc. Use the Pipe Specification Lookup Tables at Row 44 to control the minimum and maximum allowed diameters in your pipe specifications. Also use them to eliminate unwanted sizes such as 1-1/4" or 5". Study the tables given with *PIPESIZE*, and either edit an existing one or create new tables in columns to the right of the existing ones.

	s	ize Table	Black val	ues are for	mulas or co	onstants —	Cal	ımn name is	defin			
8	Red values are				9		Con	umn name is	user-deiir	10		
	Stainless Steel Pipe					Tet	on-Lined Steel			9	eel Tubing	
Size	Schedule	O.D.	Thickness	I.D.	Size	Schedule	O.D.	Thickness	I.D.	Size	Gauge	O.D.
0.125	40S	0.405	0.0680	0.269	0.50	40	0.840	0.1630	0.514	0.75	16	0.750
0.25	40S	0.540	0.0880	0.364	0.75	40	1.050	0.1750	0.700	1.00	16	1.000
0.375	40S	0.675	0.0910	0.493	1.00	40	1.315	0.2630	0.789	1.50	16	1.500
0.50	40S	0.840	0.1090	0.622	1.50	40	1.900	0.2950	1.310	2.00	16	2.000
0.75	40S	1.050	0.1130	0.824	2.00	40	2.375	0.3140	1.747	2.50	16	2.500

The Pipe Specification Lookup Tables can reference any of the several dimension tables found in the PIPES worksheet. Study the Pipe Table formulas to see how this is done. Here's an example dimension table, used to lookup the dimensions of copper pipe:

Pipe Size	Lookup T	able			
Copper ar	nd Red Bra	ss Pipe		Wall Th	ickness
		Nominal Size	OD	Std	XS
		0.125	0.405	0.062	0.100
		0.25	0.540	0.082	0.123
		0.375	0.675	0.090	0.127
		0.50	0.840	0.107	0.149
		0.75	1.050	0.114	0.157

<u>Emissivity</u> is the radiation constant for a bare pipe. Suggested values are given in a table beginning at Row 138 on the Pipes worksheet; emissivity must be between 0 and 1.

<u>Conductivity</u> is the thermal conductivity of the pipe material, W/m-K. The heat loss/gain calculation does not include a provision for lined pipe, so use an estimate for combined conductivity, which should be greater than the material (usually the lining) with the smaller value. For example, the conductivity of polypropylene is 0.2 W/m-K. For polypropylene-lined pipe, where the thickness of the lining is greater than the thickness of the steel, use a value of 0.3 or 0.4 as an estimate for the combined lined pipe system.

Data Entry Worksheet

The data entry worksheet consists of several parts, discussed in turn below. Remember that RED cells are unlocked and available for entry. If you need to change the value of a locked cell, unprotect the worksheet from the Tools menu. There is no password. Use the TAB key to quickly navigate from one entry field to the next.

<u>Project Data</u> appears on the headers of each of the standard reports. Notice that the Date field is automatically filled with today's date. This can be changed by unprotecting the worksheet, as mentioned above. The formula in the date field is: =TEXT(TODAY(),"dd-mmm-yyyy")

The Units radio buttons control whether input and output are shown in English (*i.e.*, customary US) or SI units.

<u>General Pipeline Data</u> refers to the piping system and materials. Service is a descriptive tag for the purpose of the pipeline. Any text is accepted. The pulldown box (contains "A" in the screen shot below) shows all of the pipe codes contained in the PIPES worksheet. The description of the selected code appears to the right. Similarly, the Insulation pulldown box permits you to select the insulation material for the pipe (or "None"). Heat loss calculations require input of wind velocity and ambient temperature, which are entered next.

<u>Process Data</u> is entered next. Use the radio buttons to specify if you are sizing a line for gas flow or liquid. The units displayed next to each other entry will change depending on whether English or SI units are selected, and whether the fluid is Liquid or Gas.

	Pro	cess Data	
Fluid Name		Therminol XP	501
Molecular Weight		18.016	! Liquid
Actual Flow	(liters/second)	20.00	Gas
Maximum Flow	(liters/second)	50.00	
Flowing Temperature	(deg C)	270.00	
Upstream Pressure	(kPa, absolute)	700.00	
Specific Gravity		0.544 (<<< Entry Ignored)
Absolute Viscosity	(Pascal-seconds)	0.000144 (<<< Entry Ignored)
Thermal Conductivity	(W/m-K)	0.089 (<<< Entry Ignored)
Heat Capacity	(kJ/kg-K)	3.875 (<<< Entry Ignored)

Summary of Units

Property	English (Custo	mary US) Units	SIU	nits	
	Liquid	Gas	Liquid	Gas	
Flowrate	US gal/min	lb/h	liters/s	kg/h	
Temperature	Deg F	Deg F	Deg C	Deg C	
Pressure	psia	psia	kPa	kPa	
Absolute Viscosity	сР	сР	Pascal-sec	Pascal-sec	
Density	lb/ft ³	lb/ft ³	kg/m³	kg/m³	
Length	feet	feet	meters	meters	
Diameter	inches	inches	DN	DN	
Head	ft water	ft water	meters water	meters water	
Velocity	ft/s	ft/s	m/s	m/s	

Enter the fluid name. If the fluid entered matches exactly with one in the compounds list on the PROPERTIES worksheet, the message "Entry Ignored" appears next to Molecular Weight, Specific Gravity, Absolute Viscosity, Thermal Conductivity and Heat Capacity. Otherwise "Entry Required" appears.

TIP:

Use the optional pulldown list of all compounds in your database. This is especially helpful for chemicals such as n-butyl alcohol, which is actually entered in the database as "butyl alcohol, n-". Also, it's easier to find entries for compound mixtures such as "Ethylene Glycol, 40%".

Actual Flow is the design flowrate used in all pressure drop calculations. Maximum flow is used on the worksheet LIQFLOW, which provides the pressure drop and velocity for flows from zero to Maximum, in 10% increments. This is useful when you need to construct a system curve.

The Nominal Pressure is required for gas flows, unnecessary for liquids. The gas properties and pressure drop are highly dependent on system pressure. Enter the INLET pressure here. English units are psia (absolute pressure).

When entering a gas that isn't in the database, you *must* enter the Molecular Weight and the Absolute Viscosity. However, Specific Gravity (compared to liquid water), isn't used because *PIPESIZE* estimates it by assuming ideal gas conditions.

TIP:

Natural gas is usually characterized by its average molecular weight or its specific gravity. Calculate molecular weight by multiplying specific gravity by 29. Use the properties of methane for viscosity, thermal conductivity and heat capacity. A little worksheet is provided to give these properties; you must enter them manually into the data entry area.

Natural Gas suggested pr	operties
Specific gravity	0.75
Molecular w eight:	21.75
Absolute viscosity	0.000011
Thermal conductivity	0.036
Heat capacity	2.220

<u>Size Selection Criteria</u> determines how *PIPESIZE* determines the pipe sizes. Choose the desired option by selecting one of the three radio buttons. If Specific Diameter is chosen, then you enter the nominal diameter of the pipe next to the prompt. For Target Velocity, enter the velocity you desire.

Economic diameter will use the results of the Peters and Timmerhaus calculation on the OPTLIQ worksheet. It's often a good starting point when sizing a new pipe. Or, use Target Velocity, which selects the pipe in your specification code which most closely matches the velocity you enter.

If you enter a specific diameter or target velocity that results in a pipe size outside the range of your pipe specification, then the closest pipe is selected and a Warning message is generated.

<u>Physical Layout</u> is an optional section. If you know the length of the pipeline, and count of fittings, enter the data here. Another way to enter this information is to input the total equivalent length you want to use, with zero fitting count. If this section is left blank, 100 equivalent feet (meters) are assumed.

For gas pressure drop calculations, the total length of pipe is important. The calculation iterates on the total length, and is more accurate when you do enter the length.

		Physical Layout	
Length of pipeline	(meters)		250
90 deg Ell		O Globe Valve	0
Long Rad. Ell		O Gate Valve	0
45 deg Ell		O Ball Valve (reduced por	0
180 deg Bend		O Butterfly Valve	0
TEE-Line Flow		O Plug Valve	0
TEE-Branch Flow		O Angle Valve	0
Bell Mouth Inlet		O Swing Check Valve	0
Square Mouth Inlet		0 Re-Entrant Pipe	0

<u>Report Selection</u> controls which of the worksheets is printed. Use the checkboxes to indicate those reports you want. Then, click on the "Print Reports" button.

Report Selection											
Results Summary	LIQFLOW										
		Print Reports									
✓ Datasheet Style	EquivLength	Tilli Nepolts									
	3										
L Instructions	OPTLIQ										

Quick Results

Results are displayed on the Data Input worksheet. These can be printed, but the intent is to give immediate feedback so changes to the inputs can be made before finalizing the calculation and printing a datasheet. Results for three different pipes sizes are shown: the selected or recommended size is in the middle, flanked by the next smaller and next larger sizes. Use the area on the right to find out the flow rate that would result in a "desired pressure drop" through the line. All pressure drops in PIPESIZE are *frictional* pressure drop; elevation changes are not accounted for.

	RESULTS		
Line		LITE 454 0400	
Line		HTF-151-0136	
Service Material		Combustible Oil 150 lb Carbon Steel	
Ivialeriai		150 ib Carbon Steer	
Fluid Name		Therminol XP	
Actual Flow	(liters/second)	20.00	
Maximum Flow	(liters/second)	50.00	
Temperature	(deg C)	270.00	
Specific Gravity		0.711	
Dynamic Viscosity	(Pascal-seconds)	0.000459	
Roughness	(millimeters)	0.04572	Calculate flow rate based on pressure
			drop, pipe diameter, and equivalent length
Upstream Pressure	kPa abs	700.00	Desired 69 kPa
			Pressure Drop
Next Smaller Size	(DN)	80.00	
Equiv. Length	(meters)	250	
Pressure Drop	(kPa/250 m)	366.7	
	(m. water)	37.5	
Velocity	(m/s)	4.2	9 l/s
Heat loss, bare pipe	(W/m)	2996.7	
Approx downstream t		251.6	
Selected Size	(DN)	100.00	
Equiv. Length	(meters)	250	
Pressure Drop	(kPa/250 m)	91.2	
	(m. water)	9.3	4-1/
Velocity	(m/s)	2.4	17 l/s
Heat loss, bare pipe	(W/m)	3566.3	
Approx downstream t	, , ,	248.0	
Next Larger Size	(DN)	150.00 250	
Equiv. Length	(meters) (kPa/250 m)	11.5	
Pressure Drop	(m. water)	11.5	
Velocity	(m/s)	1.2	49 l/s
Heat loss, bare pipe	(M/m)	4624.6	49 1/5
Approx downstream t	` '	241.5	
Typhox gomisticalli f	emperature (C)	241.3	

Datasheet

The datasheet organizes your pipe information on a form that has the same look as datasheets used throughout the *chemengsoftware* family.

ĕc	her	ner	101					PIPELII	NE SIZINO	G CALCU	LATION		
\geq	her oft	Wal	<u> </u>				CLIENT		LINE NO.				
							Sam	ple			1-0136		
REV	PREPA			TE	APPR	OVAL	W.O.		REQUISIT	ION NO.		ATION NO.	
0	S. I	Hall	03-Ap	r-2013			103		DD 0 0 1 1D			103	
1							_	AREA	PROCURI	-D BY	INSTALLE	:DBY	
2							Process	Utilities					
1							Genera	al					
2	Fluid Se	rvice					Combusti						
3	Pipe Spe	ecificatio	n				A: 150 lb	Carbon S	Steel				
4	Surface		ness	(millimet	ers)		0.04572						
5	Insulatio						Fiberglas	S					
6	Ambient Temperature (deg C) 30												
7 8	Dragge Pete												
9	Process Data Fluid Pumped Therminol XP (liquid)												
10	Design I		te	(liters/s	econd)		20	, x, (,,qu					
11	Maximur			(liters/s	econd)		50						
12	Flow ing			(deg C)			270						
13	Nominal			(kPa, ab	solute)		700						
14	Specific			<u></u>			0.71107						
15	Viscosit	У		(Pascal	-second	s)	0.00046						
16 17					Pasis fa	r Cinina	u. Cnacitia	d Diamate	ar @ 100 D	NI .			
18					0451510	or Sizing	g: Specifie	u Diamett	er @ 100 D	N .			
19		Nom.		O.D.	Wall	I.D.	Reynolds	Friction	Pressur	e Drop/100	equiv m	Velocity	
20		Size	Sched	(mm)	(mm)	(mm)	Number	Factor	(kPa)	(m w ater)		(m/sec)	
21		80	40	88.900	5.486	77.92	5.06E+05	0.0183	146.69	14.98	21.07	4.19	
22	===>	100	40	114.30	6.020	102.2	3.86E+05	0.0177	36.50	3.73	5.24	2.44	
23		150	40	168.27	7.112	154.0	2.56E+05	0.0173	4.60	0.47	0.66	1.07	
24													
25 26	90 deg l	=11		TEE-Line	o Flow		Physical La Globe Valv	ayout o		Plug Valve			
27	Long Ra			TEE-Brr			Gate Valve			Angle Valve			
28	45 deg l		-	Bell Mou			Ball Valve (-		g Check Valve -		
29	180 deg			Sq. Mou		-	Butterfly Va		-	Re-Entrant Pipe -			
30	Straight	Feet of	Pipe (me	asured t	hrough	centerlin	e of fittings)	:	250	meters			
31													
32							Heat Lo						
33		Nom.					Dava		erglass Insu			70	
34 35		Size 80			,	units Watts/m	Bare 2,997	13 mm	25 mm 148	38 mm 110	51 mm 90	76 mm 69	
36	===>	100				watts/m			181	133	108	82	
37		150				Watts/m			251	181	145	107	
38	A		ate surf	ace temp			262		42	38	36	34	
39				•		Su	ımmary of						
40		Nom.	Eq Lgth		ssure D				Heat Loss (
41		Size	(m)		m w ater		Bare	13 mm	25 mm	38 mm	51 mm	76 mm	
42		80	250	366.72 91.25	37.46 9.32	52.7 13.1	749,172	n/a n/a	37,046 45,371	27,521 33,265	22,546	17,353	
43	===>	100	250 250	11.50	9.32 1.17	1.7	891,586 1,156,152	n/a n/a	62,856	45,294	26,964 36,180	20,423 26,771	
45		150	230	11.50	1.17	1.7	1,100,102	ıııa	02,000	70,234	30,100	20,111	
46													
47													
48													
49													
50													
51													
52													

Errors and Warnings

If you see #VALUE everywhere it means that Macros are not enabled. The procedure for enabling macros depends on your version of Excel and your security settings.

If you are solving for gaseous flow and the results indicate "critical" it means that the flow rate and conditions result in a flow that exceeds critical velocity. Increase the pipe size, decrease the flow rate or decrease the gas density (increase pressure, decrease temperature).

Additional warnings are printed at the bottom of the Datasheet. The possible messages are:

- **Warning**: Specified Size is non-standard; <SIZE> is used
- **Warning**: Fluid Temperature exceeds maximum permitted by pipe specification
- **Warning**: Fluid Temperature is colder than minimum permitted by pipe specification
- **Warning**: <FLUID> not in databank; check physical properties entry
- **Warning**: Temperature exceeds insulation maximum recommendation
- **Warning**: Temperature lower than insulation minimum recommendation
- **Warning**: <CODE> is not a defined pipe specification; standard IPS pipe sizes are assumed
- **Error**: Pressure drop exceeds nominal pressure
- **Warning**: Viscosity for gas expected to be less than 0.1 cP

Pressure Drop Calculations

The Calcs worksheet collects the data and shows the steps to calculate pressure drop due to friction. The calculations are performed for three pipe sizes: the selected size (based on program-selected "economic" size, specified size input by user, or the size that most closely achieves the velocity target input by the user). Calculations are also done in both SI and English (customary U.S.) units. There are tiny differences in the answers for SI and English units; these differences are the result of rounding and inexact conversion factors.

The Calcs worksheet also has tables with some intermediate values, units conversions, and program variables for things such as radio button selections. These are located at the bottom of the worksheet, beginning at Row 107, and contain no user-defined values.

The top portion of the Calcs worksheet contains user inputs and program lookup values. Columns D:F are in SI units, I:K are in English (U.S.) units. Whichever set of units is selected (radio buttons on the Data Input worksheet) are copied to columns N:P which is highlighted in yellow.

Although properties for both liquid and gas are shown, *PIPESIZE* uses the data set associated with liquid or gas as selected on the Data Input sheet; the other set of properties is ignored and may contain erroneous data.

Figure 3: Rows 14 to 48 on the Calcs worksheet contain user inputs and program lookup values

There is one slightly hidden input in this section. For compressible flow calculations (*i.e.*, gas), you can choose to use an isothermal or adiabatic flow assumption. For isothermal, the gas is assumed to remain

at constant temperature throughout the pipeline. For adiabatic, the gas cools as it expands. Isothermal conditions are usually recommended. Choose isothermal or adiabatic at cell C24.

The next portion of Calcs, from rows 59 to 85, calculates the pressure drop. The Reynolds number is computed based on the inlet conditions to the pipe segment. Friction factor is based on Reynolds number and surface roughness; it uses the Churchill correlation which covers laminar, transitional and turbulent flow regimes. Reynolds number and friction factor are calculated in VBA function subroutines.

					-	F	_				14							
55	A	В	С	D	E	F	G	Н		J	K	L	M	N	0	P		
55 56													0.1.4.111					
57													Selected Un	its: Si				
															Value			
	CALCULA												Units			Larger		
59		Reynolds Number		505,910	385,527	255,916			505,076	384,892	255,495			505,910	385,527	255,916		
60		Friction Factor		0.0183	0.0177	0.0173			0.0183	0.0177	0.0173			0.0183	0.0177	0.0173		
61 62		Velocity at upstream	m/s	4.19	2.44	1.07		ft/s	13.74	7.98	3.52		m/s	4.1934	2.4351	1.0730		
62																		
63		For 100 m or 100 ft of equ																
64		Pressure Drop	kPa/100 m	146.69	36.50	4.60		psi/100 ft	6.47	1.61	0.20		kPa/100 m	146.69	36.50	4.60		
65		Pressure Drop	m water/L	14.98	3.73	0.47		ft water/L	14.94	3.72	0.47		m water/L	14.98	3.73	0.47		
66		Discharge Pressure	kPa abs	553.31	663.50	695.40		psia	95.06	99.91	101.32		kPa abs	553.31	663.50	695.40		
67		Discharge Temperature	C	270.00	270.00	270.00		F	518.00	518.00	518.00		C	270.00	270.00	270.00		
68		Discharge Density	kg/m3	711	711	711		Ib/ft3	44.4	44.4	44.4		kg/m3	711.0673	711.0673	711.0673		
69		Critical (sonic) Velocity	m/s	592.39	592.39	592.39		ft/s	1,943.47	1,943.47	1,943.47		m/s	592.39	592.39	592.39		
70		Velocity at discharge	m/s	4.19	2.44	1.07		ft/s	13.74	7.98	3.52		m/s	4.19	2.44	1.07		
71																		
70 71 72 73		For L equivalent length																
73		Pressure Drop	kPa/L	366.72	91.25	11.50		psi/L	53.04	13.20	1.66		kPa/L	366.72	91.25	11.50		
74		Pressure Drop	m water/L	37.46	9.32	1.17		ft water/L	122.51	30.49	3.84		m water/L	37.46	9.32	1.17		
75 76 77		Discharge Pressure	kPa abs	333.28	608.75	688.50		psia	48.49	88.33	99.86		kPa abs	333.28	608.75	688.50		
76		Discharge Temperature	С	270.0	270.0	270.0		F	518	518	518		С	270.00	270.00	270.00		
77		Discharge Density	kg/m3	711	711	711		Ib/ft3	44.4	44.4	44.4		kg/m3	711.0673	711.0673	711.0673		
78		Critical (sonic) Velocity	m/s	592	592	592		ft/s	1,943	1,943	1,943		m/s	592.39	592.39	592.39		
79		Velocity at discharge	m/s	4.19	2.44	1.07		ft/s	13.74	7.98	3.52		m/s	4.19	2.44	1.07		
80																		
81 82 83		Critical Pressure	kPa absolute	369.80	369.80	369.80		psia	53.63	53.63	53.63							
82		Critical Pressure Drop	kPa	330.20	330.20	330.20		psi	47.89	47.89	47.89							
83			% Drop at Critical	0.47	0.47	0.47			0.47	0.47	0.47							
84		Flow at specified pressur		22,200	44.504	125,379		lb/h	48,929	98.087	276,328		ka/h	22,199.55	44,503,72	125,378,96		
85			I/s	8.7	17.4	49.0		gpm	138	277	780		I/s	8.67	17.39	48.98		
86				0.1	11.4	40.0		36	100	2	,,,,			0.01	11.00	40.00		

Figure 4: Rows 59 to 85 on the Calcs worksheet give calculation results for pressure drop due to friction

The pressure drop for a standard length (100 m for SI and 100 ft for English units), and also for the equivalent length derived from user inputs on the Data Input worksheet, are calculated next. The actual pressure drop calculation is done by a VBA function subroutine, using the following formulas¹:

Incompressible flow (liquids)

$$\Delta P = \frac{f L U^2 \rho}{2 g_c D}$$

Compressible flow, isothermal (gases)

$$\Delta P = \frac{RT Z G^2}{\overline{P} M g_c} \left[\frac{f L}{2D} + \ln \left(\frac{P_1}{P_2} \right) \right]$$

Compressible flow, adiabatic (gases)

$$\frac{f L}{D} = \frac{1}{\gamma} \left(\frac{1}{N_{Ma1}^2} - \frac{1}{N_{Ma2}^2} - \frac{(\gamma + 1)}{2} \ln \left(\frac{N_{Ma2}^2 X_1}{N_{Ma1}^2 X_2} \right) \right)$$

¹ Hall, Stephen, *Rules of Thumb for Chemical Engineers*, 5th Edition, Butterworth-Heinemann (2012).

The variable definitions are:

 $D\,$ = pipe diameter, m or ft

f = Darcy friction factor, dimensionless

$$G$$
 = mass flux, kg/s-m² or lb/s-ft² = $\frac{W}{3600 A}$

 g_c = conversion factor, 1 m/s 2 or 32.17 ft/s 2

L = pipe equivalent length, m or ft

M = molecular weight

 $N_{{\it Ma}}$ = Mach number, dimensionless

P = absolute pressure, Pa or psia

R = gas constant, 8314.5 m 3 -Pa/kgmol-K or 10.73 ft 3 -psi/lbmol-R

T = absolute temperature, °K or °R

U = average fluid velocity at local conditions, m/s or ft/s = $\frac{G}{
ho}$

$$X = 1 + N_{Ma}^{2} \left\lceil \frac{(\gamma - 1)}{2} \right\rceil$$

Z = compressibility factor =1 for a perfect gas

 γ = ratio of specific heats, C_p/C_v

 μ = fluid dynamic viscosity, kg/m-s or lb/ft-h

 ρ = density of gas at local conditions, kg/m³ or lb/ft³ = $\frac{PM}{RT}$

Heat Loss/Gain Calculations

PIPESIZE calculates heat loss or gain from uninsulated and insulated pipes. It displays results for heat flux (W/m or Btu/h-ft), surface temperature of the pipe or insulation, and approximate downstream temperature. VBA function subroutines performs the calculations. The primary reference for a consistent set of equations is Cao². An excellent on-line article is by Haslego³.

Inputs for the Calculations

The heat loss/gain calculations utilize SI values with conversion to U.S. Units if necessary.

Variable	Source	Location in the	Typical Values
		Spreadsheet	
Reynolds number	Calculated	Calcs:Row 59	Laminar, Transitional, or Turbulent region
			depending on fluid properties and flow rate
Fluid Density	Properties	Calcs:D89	1000 kg/m³ (liquids)
	Data Table or	Cell named "RoSI"	10 kg/m³ (gas)
	User Input		
Dynamic	Properties	Calcs:D90	0.001 Pa-s (liquids)
Viscosity	Data Table or	Cell named	0.0002 m ² /s (gas)
	User Input	"DynamicVisc"	
Thermal	Properties	Calcs:D91	0.06 to 0.6 W/m-K (liquids)
Conductivity	Data Table or	Cell named "kSI"	0.03 W/m-K (gas)
	User Input		
Heat Capacity	Properties	Calcs:D92	4 kJ/kg-K (liquids)
	Data Table or	Cell named "CpSI"	1 kJ/kg-K (gas)
	User Input		
Pipe Inside	Pipes Data	Calcs:D18:F18	5 to 760 mm
Diameter	Table		
Pipe Outside	Pipes Data	Calcs:D16:F16	5 to 760 mm
Diameter	Table		
Pipe Length	Calculated	Calcs:D47:F47	Any length, m (conservative assumption, uses
			equivalent length not actual pipe length)
Fluid Velocity	Calculated	Calcs:D61:F61	0.5 to 5 m/s
Temperature	User Input	Calcs:D88	-15°C to 500°C
inside pipe		Cell named	
		"flowing_temperatureSI"	

² Cao, Eduardo, *Heat Transfer in Process Engineering*, McGraw-Hill, 2010

³ Haslego, Chris, "Making Decisions with Insulation," http://www.cheresources.com/content/articles/heat-transfer/making-decisions-with-insulation (2010).

Variable	Source	Location in the	Typical Values
		Spreadsheet	
Temperature	User Input	Calcs:J132	-15°C to 40°C
environment		Cell named	
		"ambientSI"	
Wind Velocity	User Input	Calcs:D96	0 to 5 m/s
		Cell named	
		"Wind_Velocity"	
Emissivity of Pipe	Pipes Data	Calcs:D98	0.05 to 0.9
or Insulation	Table	Cell named	
		"Emissivity_Bare"	
Thermal	Pipes Data	Calcs:D99	0.1 to 400 W/m-K
Conductivity of	Table	Cell named "_kp"	
Pipe			
Thermal	Insulation	Calcs:D95	0.02 to 0.06 W/m-K
Conductivity of	Data Table	Cell named	
Insulation		"insulation_conductivity"	
Insulation	User Input	Calcs:N101:S101	0 to 4 in
Thickness			

Heat gain/loss calculations are inexact for several reasons: the film coefficient correlations are empirically based, air movement around the pipe is uneven, radiation losses depend on the surroundings, conductive heat transfer through pipe supports and structure are not included, and the effect of fittings, flanges and valves are ignored. However, the calculation in *PIPESIZE* does a good job of estimating the heat flux, surface temperature, and downstream fluid temperature given ideal conditions.

Assumptions:

- The properties of the flowing fluid are constant through the pipeline (the inside heat transfer coefficient is constant)
- Constant ambient temperature and environmental conditions (the program has no way to distinguish if the pipeline is partially outdoors and partially indoors, for example)
- The environment is dry atmospheric air (no provisions for pipes buried in soil, run through a water bath, or weather conditions such as rain or snow)
- Radiation losses based on the emittance of the pipe or insulation jacket, but if the temperature of the flowing fluid is less than that of the environment there are no radiation gains

PIPFSIZF

Two VBA function subroutines perform the heat loss/gain calculations. Find them in the Module named "HeatLoss." The subroutines are self-documented, with variables, formulas, and algorithms explained in comments. Temperature-dependent equations for the thermodynamic properties of air are included in the Module. The calculations in this Module are done in SI units; if U.S. units are selected the spreadsheet converts the results. The function calls are as follows:

Inside Heat Transfer Coefficient

Function h_internalSI(NRe, ro, mu, k, cp, di, L, v)

- 'Inside heat transfer coefficient
- 'SI units
- 'h_internalSI = inside heat transfer coefficient, W/m2-C
- 'NRe = Reynolds number, dimensionless
- 'ro = density, kg/m3
- ' mu = kinematic viscosity, m2/s
- ' k = thermal conductivity, W/m-K
- 'cp = heat capacity, kJ/kg-C
- ' di = inside diameter of pipe, mm
- L = approximate pipe length, m
- 'v = velocity, m/s

This subroutine calculates the Prandl number and the Nusselt number for which the formula depends on the value of the Reynolds number. Then the inside heat transfer coefficient is calculated, for which the reference area is the inside of the pipe. See Cao as previously referenced.

Outside Heat Transfer Coefficient, and Additional Results

Function h_outsideSI(Calc, T1, T4, d_o, d_i, Wind, E, h_inside, kp, Optional ki, Optional kt)

- 'Outside heat transfer coefficient
- ' SI units
- 'h outsideSI = outside heat transfer coefficient, W/m2-C
- 'Calc = return flag 0 = ho, 1 = Q, 2 = T3, 3 = U
- 'T1 = temperature inside the pipe, C
- 'T4 = temperature of the environment, C
- 'd_o = outside diameter of bare pipe, mm
- 'd_i = inside diameter of pipe, mm
- 'Wind = wind velocity, m/s
- 'E = emissivity of pipe or insulation covering, dimensionless
- 'h_inside = inside heat transfer coefficient, W/m2-C
- 'kp = thermal conductivity of pipe, W/m-K
- 'ki = thermal conductivity of insulation, W/m-K
- 'kt = insulation thickness, mm

PIPESIZE

This subroutine calculates the outside heat transfer coefficient. This is an iterative calculation that also determines the heat flux (W/m^2) , surface temperature (°C), and overall heat transfer coefficient (W/m^2-K) . The function returns any one of those values in accordance with the first parameter in the Function call ("Calc").

The calculation makes an assumption for surface temperature and uses that to calculate a Reynolds number for the forced convection case (wind present) and from that the Nusselt number and outside heat transfer coefficient. If the wind is less than 0.5 m/s, the program calculates the no-wind convection case and compares it to the forced convection result, choosing the higher of the two answers. From this result, the overall heat transfer coefficient is calculated which is used to compute the surface temperature of the pipe (or insulation). Then, radiation losses are calculated, added to the overall coefficient, and a revised surface temperature calculated. This becomes the assumed value of the surface temperature and the entire set of calculations is repeated until the calculated surface temperature equals the assumed value.

Note that the reference area for the outside heat transfer coefficient and the overall heat transfer coefficient is the outside of the pipe or insulation.

The results are presented in a set of tables on the "Calcs" worksheet, beginning at Cell N100. The three lines in each table represent the three pipe sizes shown elsewhere in *PIPESIZE*.

			Heat Loss -	W/m								
Inside Coef		Ins	ulation Thickn	ess (in.):								
hi	0	0.5	1	1.5	2	3						
2,637	2,997		148	110	90	69						
1,617	3,566		181	133	108	82						
773	4,625		251	181	145	107						
	0	13	25	38	51	76						
	Insulation Thickness (mm):											
	, ,											
		s	urface Temper	ature, C								
	0	0.5	1	1.5	2	3						
	264		41	37	35	33						
	262		42	38	36	34						
	256		43	39	36	34						
		Approximate Downstream Temperature, C										
	R	0.5	1	1.5	2	3						
	251.6		269.1	269.3	269.4	269.6						
	248.0		268.9	269.2	269.3	269.5						
	241.5		268.5	268.9	269.1	269.3						
	Outsi	de Heat Transfe	er Coefficient, \	N/m 2-C (inclu	des radiatio	n)						
	0	0.5	1	1.5	2	3						
	46		30	29	29	28						
	43		30	29	28	27						
	39		28	28	27	26						
	Over	all Heat Transfe	r Coefficient, V	V/m2-C (inclu	des radiatio	n)						
		Note: corre	cted to the out	side surface	area							
	0	0.5	1	1.5	2	3						
	12.5		1.4	0.9	0.6	0.4						
	14.9		1.5	0.93	0.66	0.41						
	19.3		1.5	1.0	0.7	0.4						

Figure 5: Heat Loss/Gain Results (Therminol XP at 350°C, 50 DN pipe, 10°C environment, no wind)

Insulation Worksheet

Data for insulation are tabulated and the thermal conductivity at the average of the fluid temperature and ambient temperature is calculated. This result is used in the heat loss/gain calculations. Regression coefficients for thermal conductivity are in U.S. units of Btu-in/(h-ft²-F). The formula is:

$$k = m + pT + sT^{2} + tT^{3} + uT^{4}$$

Where the coefficients are in the table, and T is the average temperature, °F. Note that the use of all coefficients is optional; for a fixed thermal conductivity simply enter it in the "m" coefficient and leave the others blank.

Insulation Material	Min. Thickness	The	Thermal Condu		pefficients		Maximum Temperature	Minimum Temperature	Thermal Condu	ctivity, K
	(in)	m	p	s	s t u		(°F)	(°F)	[Btu*in/ (h*ft ² *ºF)]	W/m-K
Calcium Silicate	1	0.369	1.58E-04	3.92E-07	9.40E-11	0.00E+00	1000	250	0.384	0.055
Cellular glass	1	0.289	5.14E-04	4.36E-07	2.27E-10	2.76E-13	900	-450	0.332	0.048
Elastometric foam	0.5						200	-40	0.290	0.042
Fiberglass	1	0.195	4.25E-04	0.00E+00	0.00E+00	0.00E+00		42	0.228	0.033
Mineral Wool	1	0.228	3.72E-04	6.00E-07	0.00E+00	0.00E+00	1200	42	0.261	0.038
Perlite, expanded	1	0.388	4.73E-04	3.06E-07	-8.00E-11	0.00E+00	1000	250	0.427	0.062
Phenolic foam	1	0.116667	6.67E-04				300	75	0.169	0.024
Polystyrene foam	1						165	-65	0.230	0.033
Polyurethane/ Polyisocyanurate							_			
foams	1	0.174	-1.55E-04	-3.39E-07	8.38E-09	1.82E-11	250	-200	0.164	0.024

The minimum and maximum temperatures are used only for determining if a Warning message should be displayed.

The worksheet also includes values for emissivity for various insulation coverings. The values in the "Range" column are recommended guidance numbers. The emissivity used in the radiative heat transfer calculation is in the right-hand column. If you add additional materials to this table, do it by inserting a row, entering your data, and then sorting the list alphabetically. The table is a named range ("Insulation_Cover_Emittance"). The easiest way to add data while preserving the range's name is by inserting a row into the middle of the table.

		Value for
Material	Range	Calc
Aluminum jacketing, gray-dull	.10 to .40	0.2
Aluminum jacketing, oxidized	.10 to .60	0.4
Aluminum jacketing, polished	.03 to .10	0.1
Aluminum paint, new	.20 to .30	0.25
Aluminum paint, weathered	.40 to .70	0.5
Asbestos fabric, white		0.78
Asphalt mastic	.90 to .95	0.95
Galvanized steel jacketing, dull	.20 to .60	0.5
Galvanized steel jacketing, new	.06 to .10	0.1
Paint, black	.90 to .95	0.95
Paint, gray	.80 to .90	0.85
Paint, green	.65 to .80	0.75
Paint, white	.55 to .70	0.6
Plastic, black		0.95
Plastic, white		0.84
PVA mastic, black	.85 to .95	0.9
PVA mastic, gray	.85 to .90	0.9
PVA mastic, green	.70 to .80	0.75
PVA mastic, white	.60 to .79	0.75
Stainless steel jacket, mill finish	.35 to .40	0.4
Stainless steel jacket, oxidized	.80 to .85	0.85
Stainless steel jacket, polished	.22 to .26	0.25
Styrofoam		0.6

Properties Worksheet

Find and add physical property data on the Properties worksheet. Most of the data are correlated to temperature, so the properties table contains equation coefficients for liquids and gases. You can new compounds to the list, and if you have properties at three temperatures, the spreadsheet determines the coefficients for you.

The Properties sheet has three parts. 1) Upper left quadrant gives brief instructions and shows the results for the current fluid (from the Data Input worksheet); 2) Lower right quadrant tabulates the fluids and their coefficients; 3) Upper right quadrant is used for entering new fluids into the list.

Property Results (see Figure 6)

The current fluid, or "Compound Name," as entered on the Data Input worksheet is displayed in Cell C29. *PIPESIZE* looks up the fluid in the Properties Table and reports the result in Cell C30. If the there is an <u>exact</u> match, the properties from the table are used in the calculations. Otherwise, the "Entry Required" prompts appear on the Data Input sheet and the properties returned from this worksheet are ignored.

The values listed in Column D, Rows 28 to 38, are the coefficients pulled from the data table. They are used to calculate viscosity, specific gravity, thermal conductivity, and heat capacity in C33, C34, C37, and C38. Notice that these values are all in American units; conversion to SI is performed on the Calculations worksheet. Also notice that temperature is in Celsius for each of the correlations except for viscosity where Kelvin is used. Apologies for the mixed units of measure, but be careful when working on the Properties worksheet.

Figure 6: Property Results in the upper left quadrant of the Properties worksheet

Properties Data Table (see Figure 7)

Data are tabulated for liquids and gases as defined in the column headers. **Compounds must remain in alphabetical order**. The data fields (columns) are defined here.

Column	Name	Content	Equation				
F	Compound	Fluid name, in alphabetical order	Not applicable				
G	Viscosity Equation	Number corresponding to the equation used for liquid viscosity. See Cells A15:A25	See equations in Cells B15:B25. Viscosity data published in the literature will fit one of these equations. New compounds are fit to Equation 4 (see discussion in the next section).				
H:K	b, m, c, d	Coefficients for the liquid viscosity equation					
L	Liquid Sp. Gr.	Intercept, b	Specific Gravity - m t + h, where t - °C				
М	Sp Gr slope	Slope, m	Specific Gravity = m t + b, where t = °C				
N	Mol. Wt.	Molecular weight	Required for gases				
O:Q	b, c, d	Coefficients for the gas viscosity equation, always Equation 5	See Equation 5 in Cell B23				
R	C_p/C_v	Ratio of specific heats	Required for gases				
S	Liquid Thermal Conductivity	Intercept, b	k = m t + b				
Т	Thermal Conductivity Slope	Slope, m	1 K - 111 C + D				
U	Liquid Heat Capacity	Intercept, b	C = m + h				
V	Heat Capacity Slope	Slope, m	$C_p = m t + b$				
W	Gaseous Thermal Conductivity	Intercept, b	k = m t + b				
Х	Thermal Conductivity Slope	Slope, m	K III C O				
Υ	Gaseous Heat Capacity	Intercept, b	C _p = m t + b				
Z	Heat Capacity Slope	Slope, m	Cp = 111 (1)				

The straight line regressions for specific gravity, thermal conductivity, and heat capacity are rough approximations for the actual values. There are more accurate correlations. However, for the purposes of the *PIPESIZE* spreadsheet, these approximations are better than needed to obtain good results for pressure drop and heat transfer.

	Viscosity					Liquid Sp.	Sp Gr						Liquid Thermal	Thermal Conductivity	Liquid Heat	Heat Capacity	Gaseous Thermal	Thermal Conductivity	Gaseous Heat	Heat Capaci
Compound	Equation	Ь	m	c	d	Gr.	slope	Mol. Wt.	ь	· c	d	Cp/Cv	Conductivity	slope	Capacity	slope	Conductivity	slope	Capacity	slope
Acetaldehyde	1	51400000	-3.39			0.778		44.05					0.106228714		0.5217652				-	
Acetic Acid	1	1.159E+11	-4.445			1.049		60.05					0.0940545	-0.000107349	0.48					
Acetone	2	-3.677	750.08			0.79		58.08					0.093930636	-0.000184971	0.514					
Acetonitrile	1	3851000	-2.849			0.782							0.125414258	-0.000394509	0.53	l l				
Acrylic Acid	1	1.51E+10	-4.0894			1.051		72.07					0.095231214	-0.000166185	0.4992833	l.				
Air	1	1.78E-01				0.874		29	3.04E+01	4.99E-01	-1.09E-04	1.4	-0.105095994	-0.000959815	1.2390390		0.01428	0.000039	0.23645	0.000
Ammonia	3	-8.591	8.76E+02	2.68E-02	-3.61E-05	0.634	-0.0015936	17.03	-9.372	0.3899	-4.405E-05	1.31	0.29969042	-0.00123621	1.1360123	0.0033359	0.011790223	8.12552E-05	0.4889969	0.0004
Amyl Alcohol, t-	3	-25.3557	4.23E+03	5.08E-02	-3.84E-05	0.809		88.15					0.088379508	-3.65058E-05	0.4797082	0.0006794				-
Aniine	1	1.689E+21	-8.325			1.022		93.14					0.102208168	-0.000112909	0.514					-
Denzene	1	1.287E+09	-3.768			0.885		78.11					0.085353999	-0.000168234		0.0007235				\vdash
Brine, CaCl2, 25%	1	2.001E+23	-9.278	-4.16E-04		1.2284							0.28		0.689		0.002428253			5.986
Bromine	3	-1.4	387.5		-5.21E-07			159.83				1.28	0.080117169	-0.00017716				9.81647E-06	0.0540505	
Butane, iso-	-	-16.740223 265.84	2.03E+04 1.60E+02	1.07E+03		0.572 0.594	-0.00123 -0.0011325	58.12 58.12	-2.0985093 -1.0622198	0.0336529		1.39	0.060586958	-0.000215885 -0.000259709	0.5760189	0.0015614	0.006692702	8.31957E-05 8.31957E-05	0.3739031	0.0010
Butane, n- Butyl Acetate, Iso		-4.7686	1303.2			0.594	-0.0011325	116.16	+1.0622198	0.029457		1.39	0.06968483	-0.000259709	0.5763173	0.00011016	0.006892702	8.319572-05	0.3865948	0.000
Butyl Acetate, n-	- 1	2.06E+10	-4.233			0.898		116.16		_			0.081451754	-0.000118421	0.4476211	0.0005589				-
Butyl Alcohol, n-	1	2.06E+10	-7.247			0.810		74.12					0.091425819	-0.000110421	0.44/6211	4.4441999				-
Butyl Alcohol, tert	,	-11.935	4015.7			0.787		74.12					0.06425	-7.5E-05	0.6453667	0.0029925				
Calflo AF	4		1997.487	-60.19		0.732		7-114					0.082708429	-3.00429E-05	0.4417857	0.0023325				
Califio FG		-4.0640252	1707.8923	-54.278889		0.8601282	-0.000476						0.07995	-3.12E-05	0.43					
Calflo HTF		-4.4855893	1997.9578	-81.14		0.8683578							0.08314	-3.00571E-05	0.4417857					
Carbon Dioxide		578.08	185.24			0.777		44.01	25.45	4.55E-01	-8.65E-05	1.304	0.063645888	-0.000717065	0.5466929	0.0016632	0.008835453	4.62428E-05	0.1992282	0.0001
Carbon Monoxide	1	0.17				0.79		28.01	32.28	4.75E-01	-9.65E-05	1.404					0.013483497	3.97192E-05	0.2464989	4.353
Chemtherm 550	4	-5.1158219	2128.6535	-63.356667		0.8846154	+0.0007212						0.071541333	-7.83E-05	0.40832	0.000918				
Chlorine	1	19610	-1.934			1.563		70.906	5.175	4.57E-01	-8.85E-05	1.355	0.084683643	-0.000341822			0.004703846	1.83472E-05	0.1144586	2.443
Chlorobenzene	1	173500000	-3.376			1.106		112.56					0.077328516	-0.00011763	0.314893	0.0003839				
Chloroform	2	-3.406	832.5			1.489		119.39					0.069749518	-0.000157514	0.251					
Cyclohexane	3	4.7423	-2.53E+02	-1.69E-02	1.25E-05	0.779		84.16					0.072121145	-0.000165409	1.85		0.001048094	6.55271E-05	0.1145399	2.167
Dimethylformamide	2	-3.6999	1033			0.967	-0.0009	73.09					0.111685427	-0.000152621	0.485					
Dowtherm A		-4.1427481	1425.6389	-31.141111		1.1155691	-0.0010733	166					0.081977996	-9.24151E-05	0.3611309					-
Dowtherm G	-	-3.8039418	1436.9205	-39.29		1.1076496	-0.0007356						0.080847571	-6.64714E-05	0.3664686					-
Dowtherm HT	- 4	-3.202376 -4.518763	1201.1026	-52.801111 -16.701111		0.9962179	-0.0006635 -0.0008674						0.074988069	-5.87861E-05 -0.000122603	0.3399144					-
Dowtherm J		-4.518763 -3.7439459												-0.000122603 0.000478714						-
Dynalene PG - 20 Voffs Dynalene PG - 40 Voffs		-4.0578688	658.32342 747.14728	-145.48573 -159.32119		1.028418	-0.0005305						0.270480868	0.000478714	0.9391748	0.0005248				-
Dynalene PG - 60 Vorts	-	-4.2709737	936.23424	-159.32119		1.0457626	-0.0006683				_		0.180596328	0.0003194	0.7770787	0.0007863			_	-
Dynalene PG + 80 Voffs	1	-4.6103044	1143.8308	+143.2188		1.0690127	-0.0006322						0.148864349	1.52607E-06	0.6601533	0.0010035				-
Dynalene Solar Glycol	1	-4.3458108	1235.458	-92.019134		1.0468234							0.19355814	0.000217674		0.0014028				
Ethane	-	-4 444	2.90E+02	1.91E-02	-4.16E-05	0.386	-0.0018564	30.07	5.576	3.06E-01	-5.31E-05	1.44	0.051125	-0.000405804	0.7559331	0.0020433	0.009171546	9.574735-05	0.4019925	0.0008
Ethyl Acetate	1	5448000	-2.888	1.510-02	14,100,100	0.901	10,0010304	88.1	0.010	3.000-01	10.010100	1,44	0.088439306	-0.000208092	0.475		0.003111340	5.514150-65	0.4013323	0.400
Ethyl Alcohol	1	5.2768+13	-5.53			0.80636	-0.0008456	46.07					0.101734104	-0.00016185	0.6					
Ethyl Alcohol, 40%	1	4.949E+23	-9.4045			0.93518									-					
Ethyl Hexanol, 2-	6	1798	351.17			0.833		130.231					0.0773		0.5104	0.002385				
Ethylene	3	-7.706	4.68E+02	3.73E-02	-7.63E-05	0.356	-0.0021018	28.05	3.586	3.51E-01	-8.06E-05	1.67	0.047449292	-0.000619292	1.0524909	0.0050241	0.01148284	8.30925E-05	0.3551041	0.000
Ethylene Glycol	2	-7.7786	3139.8			1.114							0.147976879	0	0.555					
Ethylene Glycol, 40%	2	-10.12	3266			1.045														
Formamide	2	-7.8437	2693			1.139		45.04												
Formic Acid	2	-5.1098	1671.3			1.226		46.03					0.159405556	-4.75E-05						
Gasoline, S6*API	1	19163000	-3.0327			0.8							0.078		0.53					
Helium	1	0.0035962				0.125		4.0026	197.17			1.66					0.080651234	0.000205872	1.2407083	-1.815
Heptane	3	-5.7782	8.06E+02	1.34E-02	-1.48E-05	0.684		100.21					0.084161944	-0.00017175	0.51208	0.000792				
Hexane, n-	1	9.00E+06	-3.01E+00			0.659		86.17					0.073845604	-0.000190879	0.5198396	0.0009979				\leftarrow
Hitec	- 4	-1.9675258	1447,9959	-105.57889		2.0768205	-0.0007269	44.11					0.35		0.373	0				\leftarrow
Hydrazine	3	-8.024	1299	1.61E-02	-1.33E-05	1.008		32.05							0.7247167	0.0005513				-
Hydrochloric Acid, 31.59	1	1.891E+09	-3.6348			1.16		0.0155	04.03	0.006.01	0.765.00						0.00007111	0.00001000	0.4544670	0.000
Hydrogen	1	0.013	886.7	5 455 11	£ 47£ 11	0.071		2.0159	21.87	2.22E-01	-3.75E-05	1.41					0.09567148	0.000316061	3.4144472	0.000
Hydrogen Bromide	3	-9.238 -9.554	866.7	3.43E-02	-5.17E-05	2.16		80.92	0.551	F 455 01	0.000.00						0.000047744		0.4007000	4.707
Hydrogen Chloride	5		-9.451	5.45E-01	-9.66E-05	1.193 0.786		36.46 60.09	-9.554	5.45E-01	-9.66E-05	1.4	0.001747007	0.000433534	0.676000	0.0036353	0.089017341		0.1897986	1.707
isopropyi Alcohol	-	5.009E+23	-9.491		- 4				/	- Carron 1	_	(22.2)	0.081242907		U.5/59664	0.0026252			_	$\overline{}$
H Data Input / D	latasheet Styl	e / Calcs /	Line List	instruction	ons / LIQF	LOW / Eq	uvLength ,	OPTLIQ	 Insulation 	Pipes	Propertie	Velociti	es / Roughnes	S V						

Figure 7: Physical Properties Data Table in the lower right quadrant of the Properties worksheet

Entering New Fluids into the Properties Table (see Figure 8)

This is a handy tool for determining the regression coefficients for each of the temperature-dependent physical properties. The input section, within the black boxes, has three parts: units of measure, liquid properties, and gaseous properties.

After entering data, the program converts it to the US Units used in the Physical Properties Data Table and fits the data to straight lines or, in the case of viscosity, to Equation 4 or Equation 5. The viscosity equations are not, technically "fit" since there are three coefficients and three data points. However, as long as your initial viscosity data is good, the resulting equations will do an excellent job interpolating to other values.

When done, click on the "Add compound or update data" button. If your fluid is not already in the Properties Table, the macro inserts a new row and copies the values into the table. However, if your fluid is already in the table, the macro gives you a choice of overwriting existing data, or just adding any new data that you may have entered. For instance, there is no data for gaseous acetone in the table. If you enter values for gaseous acetone then click the button, you could add that data to the table without affecting the existing values for liquid acetone.

Alternatively, you can Unprotect the worksheet (there is no password) and enter or edit the data in the Properties Table directly. To use a single constant value for any property, just enter it (in the proper units) under the "b" column. For example, the value for specific gravity of acetaldehyde is a constant 0.778 in the distribution version of *PIPESIZE* (see Cell L41).

To delete a fluid from the Properties table, first Unprotect the worksheet (there is no password), highlight the row you want to delete, and use the Excel menu selection Delete... Delete Sheet Rows.

Figure 8: Enter New Fluids or Data in the upper right quadrant of the Properties worksheet

Line List Worksheet

The Line List is a flexible repository for your calculations. Each column that corresponds to a workbook variable is named. In the example below, Cell C9 is selected. Notice that the cell is named "LineList_Spec". Each column is similarly named; this is how the VBA Macro finds its way around the sheet. You may rearrange the columns as long as the column's named cells are retained.

You may also insert blank rows (to group lines into plant areas for example, and add other explanatory information and notes.

When the "Save Current Calc to Line List" is selected, a new line of data is added immediately below the last line. If there are notes or other information below your line list, the Macro is somewhat intelligent: it finds the last piece of data in the "Pressure Out" column and puts the new line there.

Figure 9: Line List worksheet

To restore a line to the calculation page ("Data Input"), you select any cell in the Row with the line you want to restore. Click "Restore Selected Line to Calc Sheet." The following things will happen:

- Macro checks to be sure a valid row is selected
- The Fluid name is transferred to "Data Input" and the Macro checks to see if the Fluid is in the database.
- If the Fluid is not in the database, the viscosity and density values, and Molecular Weight if it's a gas, are transferred to the "Entry Required" cells on "Data Input"
- The other data is transferred
- Since the fitting count, if any, is not saved to the Line List, only the total equivalent length is transferred. To ensure that the correct equivalent length is utilized, the number of each of the fitting types is reset to zero.
- The "Specific Diameter" calculation method is selected, and the nominal pipe size is transferred to "Data Input" as that diameter

LIQFLOW Worksheet

This datasheet presents ten flow calculations for each of the three pipe sizes. It uses the user input in cell F34 on the Data Input worksheet as the maximum flow rate, and calculates results at ten equal intervals.

≷C	hemer	ıa	_		EFFEC	T OF FLO	OW VAR	IATION			
≶S	hemer oftwai	e.com		CLIENT San	nple	LINE NO. HTF-151-0136					
REV	PREPARED BY	DATE	APPROVAL	W.O.	•	REQUISIT	TON NO.	SPECIFIC	ATION NO		
0	S. Hall	02-Apr-2013		103	314			18	103		
1				UNIT	AREA	PROCURI	ED BY	INSTALLE	D BY		
2				Process	Utilities						
1				Gener	al						
2	Fluid Service			Combusti							
	Pipe Specificatio	n			Carbon S	teel					
4	Surface Roughn	ess (millimet	ers)	0.04572							
5	Insulation			Fiberglas	SS						
6	Ambient Tempera	ature (deg C)		30							
7											
8				Process							
	Fluid Pumped			Thermino	ol XP (liqu	id)					
	Design Flow Rat			20							
	Maximum Flow F		'	50							
	Flow ing Tempera			270							
	Nominal Pressure	e (kPa, at	osolute)	700							
	Specific Gravity	, ,		0.71107							
	Viscosity	(m-Paso	cal-seconds)	0.45929							
16	0 11 51 0		00 DN	T ====	D	Ed. C.	D-11- D/40	0	17-126		
	Smaller Pipe S	ıze	80 DN	Flow	Reynolds	Friction		00 equiv m	Velocity		
	Schedule	r (2000)	40 88.900	(kg/h) 12,799	Number 126.478	Factor	(kPa)	(m w ater) 1.04	(m/s)		
	Outside Diamete Wall Thickness	, ,		25,598	252,956	0.0202 0.0190	10.1		1.05		
	Inside Diameter	(mm) (mm)	5.486 77.927	38,398	379,434	0.0190	38.2 83.7		2.10 3.15		
	Flow Area	(m2)	0.005	51,197	505,911	0.0183	146.7		4.19		
23	riow Area	(IIZ)	0.003	63,996	632,389	0.0183	227.1		5.24		
24				76,795	758,867	0.0181	324.9		6.29		
25				89,594	885,345	0.0179	440.2	44.94	7.34		
26				102,394	1,011,823	0.0178	572.8	58.48	8.39		
27				115,193	1,138,301	0.0178	722.8		9.44		
28				127,992	1,264,779	0.0178	890.2		10.48		
	Selected Pipe	Size	100 DN	Flow	Reynolds	Friction		00 equiv m	Velocity		
	Schedule	JJ	40	(kg/h)	Number	Factor	(kPa)	(m w ater)	(m/s)		
31	Outside Diamete	r (mm)	114.30	12,799	96,382	0.0203	2.6	,	0.61		
32	Wall Thickness	(mm)	6.020	25,598	192,764	0.0187	9.6	0.98	1.22		
33	Inside Diameter	(mm)	102.26	38,398	289,146	0.0181	21.0	2.14	1.83		
34	Flow Area	(m2)	0.008	51,197	385,529	0.0177	36.5	3.73	2.44		
35				63,996	481,911	0.0175	56.3	5.75	3.04		
36				76,795	578,293	0.0173	80.3		3.65		
37				89,594	674,675	0.0172	108.5	11.07	4.26		
38				102,394	771,057	0.0171	140.9	14.39	4.87		
39				115,193	867,439	0.0170	177.5		5.48		
40				127,992	963,822	0.0169	218.4		6.09		
	Next Larger Pi	pe Size	150 DN	Flow	Reynolds	Friction		00 equiv m	Velocity		
	Schedule		40	(kg/h)	Number	Factor	(kPa)	(m w ater)	(m/s)		
	Outside Diamete	, ,	168.27	12,799	63,979	0.0210	0.3		0.27		
	Wall Thickness	(mm)	7.112	25,598	127,959	0.0188	1.2		0.54		
	Inside Diameter	(mm)	154.05	38,398	191,938	0.0179	2.7	0.27	0.80		
	Flow Area	(m2)	0.019	51,197	255,918	0.0173	4.6		1.07		
47				63,996	319,897	0.0169	7.0		1.34		
48				76,795	383,877	0.0167	10.0		1.61		
49				89,594	447,856	0.0165	13.4		1.88		
50				102,394	511,836	0.0163	17.3		2.15		
51				115,193	575,815	0.0162	21.8		2.41		
52				127,992	639,795	0.0161	26.7	2.73	2.68		

OPTLIQ Worksheet

When the "Economic" pipe sizing criteria is selected on the Data Input worksheet, the result is calculated on this OPTLIQ sheet.

SELECTED PIPE DIAMETER SEPARED BY DATE APPROVAL W.O. Sample MTF-151-0138	≥ _	homo	•	_	1	SFI	FCTFD PIP	F DIAM	IFTFR	
REPARED BY DATE APREDVAL W.O. 10314 REQUISITION NO. S-Hall 02-Apr-2013 Process Utilities PROCURED BY INSTALLED BY INSTALLED BY Process Utilities PROCURED BY INSTALLED	Ş℃	HEILIGI	9		CLIENT					
REPARED BY DATE APREDVAL W.O. 10314 REQUISITION NO. S-Hall 02-Apr-2013 Process Utilities PROCURED BY INSTALLED BY INSTALLED BY Process Utilities PROCURED BY INSTALLED	≶S	oftwa	re.com		_	nla	LIIVE IVO.			
1						ipie	DEO! IISIT!			ATION NO
The content of the				AFFROVAL	4	21/	REQUISITIO	JIV IVO.		
Process Utilities		S. Flaii	02-Apr-2013		1		DDOCUDE) DV	1	
Fluid Service					-1		PROCUREL	JBY	INSTALLE	DBY
2 Plud Service Combustible Oil 3 Pipe Specification A: 150 lb Carbon Steel 5 Insulation Fiberglass 6 Arribient Temperature (deg C) 30 7 8 Process Data 9 Plud Pumped Therminol XP (liquid) 10 Design Flow Rate (liters/second) 50 11 Maximum Flow Rate (liters/second) 50 12 Flowing Temperature (deg C) 270 13 Nominal Pressure (deg C) 270 14 Specific Gravity 0,71107 15 Viscosity (Pascal-seconds) 0,00046 16 17 Purchase cost of new pipe, 1 inch diameter, \$\frac{1}{2}\text{ firmer bounds} \frac{1}{2}\text{ firmer bounds} \frac{1}{2}					Process	Utilities				
2 Plud Service Combustible Oil 3 Pipe Specification A: 150 lb Carbon Steel 5 Insulation Fiberglass 6 Arribient Temperature (deg C) 30 7 8 Process Data 9 Plud Pumped Therminol XP (liquid) 10 Design Flow Rate (liters/second) 50 11 Maximum Flow Rate (liters/second) 50 12 Flowing Temperature (deg C) 270 13 Nominal Pressure (deg C) 270 14 Specific Gravity 0,71107 15 Viscosity (Pascal-seconds) 0,00046 16 17 Purchase cost of new pipe, 1 inch diameter, \$\frac{1}{2}\text{ firmer bounds} \frac{1}{2}\text{ firmer bounds} \frac{1}{2}	4				0	-1				
Surface Roughness		Chrid Conring								
4 Surface Roughness (millimeters) 0.04572 5 Insulation Fiberglass 6 Ambient Temperature (deg C) 30 7 B Process Data 8 Process Data Pharminol XP (Ilquid) 9 Fluid Pumped Therminol XP (Ilquid) 10 Design Flow Rate (liters/second) 20 11 Maximum Flow Rate (liters/second) 50 12 Flowing Temperature (deg C) 270 13 Norminal Pressure (kPa, absolute) 700 14 Specific Gravity 0.71107 15 Viscosity (Pascal-seconds) 0.00046 16 Image: Process Data 1.71 17 Economic Data 1.71 18 Purchase cost of new pipe, 1 inch diameter, \$/ft \$1.75 19 Ratio of costs for fittings a installation to purch, cost of pipe 5 10 Factor relating pipe cost to diameter (exponential) 1.30 21 Frictional loss due to fittings and bends,			-				011			
5 Insulation Fiberglass 6 Arrbient Temperature (deg C) 30 7 7 8 Process Data 9 Fluid Pumped Therminol XP (liquid) 10 Design Flow Rate (liters/second) 50 11 Maximum Flow Rate (liters/second) 50 12 Flowing Temperature (deg C) 270 13 Nominal Pressure (kPa, absolute) 700 14 Specific Gravity 0.71107 15 Viscosity (Pascal-seconds) 0.00046 16 Floric Gravity 0.71107 15 Viscosity (Pascal-seconds) 0.00046 16 Floric Gravity 0.71107 15 Viscosity (Pascal-seconds) 0.00046 16 Floric relating pipe cost to diameter (exponential) 1.30 17 Patricase cost of new pipe, 1 inch diameter, \$/fit \$1.75 20 Factor relating pipe cost to diameter (exponential) 1.30 21 <t< td=""><td></td><td></td><td></td><td>0.00</td><td></td><td>Carbon</td><td>Steel</td><td></td><td></td><td></td></t<>				0.00		Carbon	Steel			
Ambient Temperature Cleg C 30			iess (iiiiiiiiiiet							
Process Data Proc			tura (dog C)			S				
Process Data Therminol XP (liquid)		Ambient Temper	ature (deg c)		30					
Plaid Pumped Therminol XP (liquid)					D	D-1-				
Design Flow Rate (liters/second) 20		Christ Darson and								
Maximum Flow Rate (liters/second) 50			/!:taua/a	1\		ol XP (liq	iuid)			
12 Flowing Temperature (deg C) 270										
13 Nominal Pressure (kPa, absolute) 700				econa)						
14 Specific Gravity										
15			-	osolute)						
Recommic Data St.75 St.75										
18		viscosity	(Pascal	-seconas)	0.00046					
18										
Ratio of costs for fittings & installation to purch. cost of pipe 5					Economic	Data			04.75	
Factor relating pipe cost to diameter (exponential) 1.30									·	
Prictional loss due to fittings and bends, % of straight pipe 35%										
22										
Cost of electricity, \$/kw hr				bends, % of stra	aight pipe					
24 Efficiency of motor and pump, % 60% 25 Annual fixed charges for maintenance, % of pipe cost 20% 26 Basis for Sizing: Specified Diameter @ 100 DN 27 Basis for Sizing: Specified Diameter @ 100 DN 28 Optimum diameter calculated using Peters & Timmerhaus formula 4.21 29 Closest pipe size from specified material class 4 30 Smaller Selected Next Larger 31 Size Size Size 32 Size Size Size 33 Actual Size inch nominal size 3 4 6 34 inch actual inside diame 3.068 4.026 6.065 35 Velocity feet/second 13.74 7.98 3.52 36 Reynolds No. 505,076 384,892 255,495 37 Friction Factor 0.0183 0.0177 0.0173 38 Pressure Drop psi/100 equiv ft 6.466 1.609 0.203 39 4 6 42 Pumping Cost (pow er) \$25.83 \$6.93 \$0.95										
25									*	
Basis for Sizing: Specified Diameter @ 100 DN										
Basis for Sizing: Specified Diameter @ 100 DN		Annual fixed ch	arges for mainter	nance, % of pipe	cost				20%	
28										
Closest pipe size from specified material class Smaller Selected Next Larger	-						ter @ 100 DN			
Smaller Selected Next Larger					nerhaus for	nula				
Smaller Selected Next Larger		Closest pipe size	e from specified	material class					4	
Size										
33 Actual Size inch nominal size 3 4 6 34 inch actual inside diame 3.068 4.026 6.065 35 Velocity feet/second 13.74 7.98 3.52 36 Reynolds No. 505,076 384,892 255,495 37 Friction Factor 0.0183 0.0177 0.0173 38 Pressure Drop psi/100 equiv ft 6.466 1.609 0.203 39 40 Calculated Costs, \$ per year per foot of installed piping: 41 3 4 6 42 Pumping Cost (pow er) \$25.83 \$6.93 \$0.95 43 Initial Piping (capital expenditure) \$43.80 \$63.66 \$107.84 44 Annual Piping (maintenance) \$8.76 \$12.73 \$21.57 45 Total \$34.59 \$19.66 \$22.52 48 9 50 Reference: Peters & Timmerhaus 51 Plant Design and Economi					Smaller		Selected _		Next Larger	•
34 inch actual inside diame 3.068 4.026 6.065 35 Velocity feet/second 13.74 7.98 3.52 36 Reynolds No. 505,076 384,892 255,495 37 Friction Factor 0.0183 0.0177 0.0173 38 Pressure Drop psi/100 equiv ft 6.466 1.609 0.203 39 40 Calculated Costs, \$ per year per foot of installed piping: 41 3 4 6 42 Pumping Cost (pow er) \$25.83 \$6.93 \$0.95 43 Initial Piping (capital expenditure) \$43.80 \$63.66 \$107.84 44 Annual Piping (maintenance) \$8.76 \$12.73 \$21.57 45 Total \$34.59 \$19.66 \$22.52 48 49 50 Reference: Peters & Timmerhaus 51 Plant Design and Economics for Chemical Engineers							and the same of th			
35 Velocity feet/second 13.74 7.98 3.52 36 Reynolds No. 505,076 384,892 255,495 37 Friction Factor 0.0183 0.0177 0.0173 38 Pressure Drop psi/100 equiv ft 6.466 1.609 0.203 39 40 Calculated Costs, \$ per year per foot of installed piping: 41 6 42 Pumping Cost (pow er) \$25.83 \$6.93 \$0.95 43 Initial Piping (capital expenditure) \$43.80 \$63.66 \$107.84 44 Annual Piping (maintenance) \$8.76 \$12.73 \$21.57 45 Total \$34.59 \$19.66 \$22.52 47 48 49 50 Reference: Peters & Timmerhaus Flant Design and Economics for Chemical Engineers Flant Design and Economics for Chemical Engineers 52		Actual Size			-				-	
36 Reynolds No. 505,076 384,892 255,495 37 Friction Factor 0.0183 0.0177 0.0173 38 Pressure Drop psi/100 equiv ft 6.466 1.609 0.203 39 40 Calculated Costs, \$ per year per foot of installed piping: 41 6 6 41 9 255.83 \$6.93 \$0.95 \$0.95 43 Initial Piping (capital expenditure) \$43.80 \$63.66 \$107.84 44 Annual Piping (maintenance) \$8.76 \$12.73 \$21.57 45 Total \$34.59 \$19.66 \$22.52 47 48 49 Plant Design and Economics for Chemical Engineers 51 Plant Design and Economics for Chemical Engineers	-									
37 Friction Factor 0.0183 0.0177 0.0173 38 Pressure Drop psi/100 equiv ft 6.466 1.609 0.203 39 40 Calculated Costs, \$ per year per foot of installed piping:			feet/se	cond	_					
38 Pressure Drop psi/100 equiv ft 6.466 1.609 0.203 39 40 Calculated Costs, \$ per year per foot of installed piping: 41 6 6 42 Pumping Cost (pow er) \$25.83 \$6.93 \$0.95 43 Initial Piping (capital expenditure) \$43.80 \$63.66 \$107.84 44 Annual Piping (maintenance) \$8.76 \$12.73 \$21.57 45 Total \$34.59 \$19.66 \$22.52 47 48 49 50 Reference: Peters & Timmerhaus Flant Design and Economics for Chemical Engineers 52 Flant Design and Economics for Chemical Engineers 52 Flant Design and Economics for Chemical Engineers 53 56.93 \$0.95 \$0.									_ ′	
39 40 Calculated Costs, \$ per year per foot of installed piping: 3 4 6 6 42 Pumping Cost (pow er) \$25.83 \$6.93 \$0.95 43 Initial Piping (capital expenditure) \$43.80 \$63.66 \$107.84 44 Annual Piping (maintenance) \$8.76 \$12.73 \$21.57 45 Total \$34.59 \$19.66 \$22.52 47 48 49 50 Reference: Peters & Timmerhaus Flant Design and Economics for Chemical Engineers Flan	37									
Calculated Costs, \$ per year per foot of installed piping: 41		Pressure Drop	psi/100	equiv ft	6.466		1.609		0.203	
41 3 4 6										
41 3 4 6	40	Calculated Costs	s, \$ per year per	foot of installed						
43 Initial Piping (capital expenditure) \$43.80 \$63.66 \$107.84 44 Annual Piping (maintenance) \$8.76 \$12.73 \$21.57 45 Total \$34.59 \$19.66 \$22.52 47 48 50 Reference: Peters & Timmerhaus 51 Plant Design and Economics for Chemical Engineers 52					3					
44 Annual Piping (maintenance) \$8.76 \$12.73 \$21.57 45 Total \$34.59 \$19.66 \$22.52 47 48 49 Feters & Timmerhaus 51 Plant Design and Economics for Chemical Engineers 52	42		(pow er)						
44 Annual Piping (maintenance) \$8.76 \$12.73 \$21.57 45 Total \$34.59 \$19.66 \$22.52 47	43	Initial Piping	(capital	expenditure)						
47 48 49 50 Reference: Peters & Timmerhaus 51 Plant Design and Economics for Chemical Engineers 52	44				\$8.76		\$12.73		\$21.57	
48 49 50 Reference: Peters & Timmerhaus 51 Plant Design and Economics for Chemical Engineers 52	45	Total			\$34.59		\$19.66		\$22.52	
49 50 Reference: Peters & Timmerhaus 51 Plant Design and Economics for Chemical Engineers 52	47									
49 50 Reference: Peters & Timmerhaus 51 Plant Design and Economics for Chemical Engineers 52	48									
50 Reference: Peters & Timmerhaus 51 Plant Design and Economics for Chemical Engineers 52										
51 Plant Design and Economics for Chemical Engineers 52	50	Reference:	Peters & Timmer	haus						
52					Chemical Er	ngineers				

Equivalent Length Worksheet

This worksheet shows how the equivalent length is calculated.

For most fittings and sizes, the equivalent length is obtained from a table of values (using U.S. units), at Cell Q91 in the worksheet. To edit the values first Unprotect the sheet. If the table lacks the value then the "K" method is used to estimate the equivalent length.

If you don't know the number of fittings, then a good rule of thumb is to add 35% to 40% to the physical length of pipe to account for the fittings. In this case, first estimate the total length of pipe. Multiply by 1.35 or 1.4. Enter the value on the Data Input worksheet (Cell G47 named "Pipe_Length"). Put a value of 0 for all fittings.

The results are tabulated in the data sheet on this worksheet.

Valves

The worksheet has instructions and an example for calculating the equivalent length of a valve for which only the flow coefficient (Cv) is known. You can either edit the table of values with the equivalent length of your specific valve, or simply add the calculated equivalent length to the overall pipe length entered on the Data Input worksheet (Cell G47 named "Pipe_Length").

Equipment

Equipment manufacturers often provide a pressure drop at specified flow conditions. For example, the tube-side pressure drop for a heat exchanger is reported on the heat exchanger datasheet, at the flow rate given on the datasheet. You can find the equivalent length by entering the flow data (fluid, flow rate, temperature, density, viscosity) on the Data Input worksheet, then change the pipe length (all fittings set to 0) until the calculated pressure drop equals the pressure drop reported by the equipment manufacturer.

If your pressure drop data is for water at 60°F (which is the case for valves – the flow coefficient is the flow rate of water at 60°F, in gpm, that results in a pressure drop of 1 psi), then use the calculator on the Equivalent Length worksheet to determine the equivalent length. This calculator utilizes a Function subroutine called EqLUSa which has four arguments:

Function EqLUSa(W, Pdrop, d, epsilon), where

W = flow rate, lb/h (= gpm x 500)

Pdrop = known pressure drop (reported by equipment manufacturer), psi

d = inside pipe diameter of the pipe segment that the equipment is installed in, inch

epsilon = roughness of pipe that equipment is installed in, ft

EQUIVALENT LENGTH OF PIPE CILENT LINE NO. Sample HTF-191-0138 HTF-191-0138 MTF-191-0138 MTF-191	≥ _	home	201	_		1	FOLIIV	AI FNT I I	FNGTH (OF PIPE		
REV PREPARED BY DATE APPROVAL W.O. 10314 REQUISITION NO. SPECIFICATION 181033 18103 181033 181033 181033 181033 181033 181033 181033 181033 181033 181033 181033 181033 181033	şc	Heille	<u>'9</u>			CLIENT	<0.7					
REPARED BY	≥S	ottwa	re.com			_	nle	LIIVE IVO.	HTF-1	51-0136		
O S. Hall Q2-Apr-2013	REV	PREPARED BY	DATE	A PPRO	DVAL		р.с	REQUISIT			ATION NO	
The content of the					· · · · -	-	314	= = = = = = = = = = = = = = = = = = =				
Process Utilities Proc						UNIT	AREA	PROCURE	D BY			
Plud Service						-1	Utilities					
Plud Service		•		•		•		•				
3 Pipe Specification A: 150 lb Carbon Steel												
A S S S S S S S S S												
Section Sect		Pipe Specification	on 			A: 150 Ib	Carbon S	iteel				
Pipe Size 80 DN												
Telephone Tele												
S 9 10 11 11 12 13 14												
10												
11	9											
12 13 14 15 16 17 17 17 17 17 17 18 17 18 18	10	1										
13	11]										
Tittings												
Fittings												
16		I		oe Size								
17									,			
18												
TEF-Line Flow						1			_			
TEE-Branch Flow 0 0.0 0 0.0 0.0 0.0 0.0 180 deg Bend 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0						1						
180 deg Bend	_					1			_			
Globe Valve						1						
Cate Valve 0 0.0 0 0.0 0 0.0			•		0	0.0	0	0.0	0	0.0		
Butterfly Valve		Gate Va	alve		0	0.0	0	0.0	0	0.0		
Plug Valve	24	Ball Val	ve (red. port)		0	0.0	0	0.0	0	0.0		
Angle Valve	25				0	0.0	0	0.0	0	0.0		
Swing Check Valve 0 0.0 0 0.0 0 0.0 0 0.0 0									_			
Bell Mouth Inlet						1			_			
Square Mouth Inlet						1			_			
Re-Entrant Pipe 0 0.0 0 0.0 0 0.0									_			
Straight Pipe 250 250 250 Total Equiv Meters 250 250 250 Total Equiv Meters 250 250 250 Equivalent lengths are calculated using a table of values. If the fitting/size combination does not appear in the table, the "K Value" method is used. "K Value" data are from the Hydraulic Institute, Pipe Friction Manual, regressed. K Value" data are from the Hydraulic Institute, Pipe Friction Manual, regressed.						1			_			
Straight Pipe 250 250 250 Total Equiv Meters 250 250 250 Total Equiv Meters 250 250 250 Equivalent lengths are calculated using a table of values. If the fitting/size combination does not appear in the table, the "K Value" method is used. "K Value" data are from the Hydraulic Institute, Pipe Friction Manual, regressed. K Value" data are from the Hydraulic Institute, Pipe Friction Manual, regressed.		Re-Entr	ан пре		U	0.0	U	0.0	U	0.0		
Total Equiv Meters 250 250 250 250 250 250 250 25		Straight	Pine			250		250		250		
Total Equiv Meters 250 250 250 250 250 250 250 25		Chaight	. r ipo			200		200		200		
36 37 38 39 40 41 Equivalent lengths are calculated using a table of values. If the fitting/size combination does not appear in the table, the "K Value" method is used. "K Value" data are from the Hydraulic Institute, Pipe Friction Manual, regressed. K Value" data are from the Hydraulic Institute, Pipe Friction Manual, regressed.		Total Ed	uiv Meters	-		250		250		250		
37 38 39 40 41 Equivalent lengths are calculated using a table of values. If the fitting/size combination does not appear in the table, the "K Value" method is used. "K Value" data are from the Hydraulic Institute, Pipe Friction Manual, regressed. 43 44 45 46 47 48 49 50 51												
38 39 40 41 42 Equivalent lengths are calculated using a table of values. If the fitting/size combination does not appear in the table, the "K Value" method is used. "K Value" data are from the Hydraulic Institute, Pipe Friction Manual, regressed. 44 45 46 47 48 49 50 51		1										
Equivalent lengths are calculated using a table of values. If the fitting/size combination does not appear in the table, the "K Value" method is used. "K Value" data are from the Hydraulic Institute, Pipe Friction Manual, regressed. K Value" data are from the Hydraulic Institute, Pipe Friction Manual, regressed. K Value" data are from the Hydraulic Institute, Pipe Friction Manual, regressed.	38	1										
Equivalent lengths are calculated using a table of values. If the fitting/size combination does not appear in the table, the "K Value" method is used. "K Value" data are from the Hydraulic Institute, Pipe Friction Manual, regressed. 44 45 46 47 48 49 50 51												
42 If the fitting/size combination does not appear in the table, the "K Value" method is used. 43 "K Value" data are from the Hydraulic Institute, Pipe Friction Manual, regressed. 44 45 46 47 48 49 50 51												
"K Value" data are from the Hydraulic Institute, Pipe Friction Manual, regressed. 44 45 46 47 48 49 50 51			•		•							
44 45 46 47 48 49 50 51		4	-			-				ed.		
45 46 47 48 49 50 51		"K Valu	e" data are from	tne Hydra	aulic Ins	stitute, Pipe F	riction Mai	nual, regres	sed.			
46 47 48 49 50 51		l										
47 48 49 50 51		1										
48 49 50 51		1										
49 50 51		ł										
50 51		1										
51												
		1										
	52	1										

PIPESIZE

Velocities Worksheet

This worksheet tabulates recommended velocities for various services. The information contained on this sheet was compiled from several sources, and is intended to be a simple starting point, not a definitive declaration.

*** END OF DOCUMENT ***