		DATA INPUT										
		Project Data										
		Prepared by Date	IClientSample9W.O.10314		Errors and Warnings							
		Units • US • SI	I		Unit Area	Process Tank Farm						
			I Data									
		Calculation Description	1	Sample Manifold Calculation								
		Pressure at Discharge Pipe Roughness	from Manifold	(psig) (ft)		0 0.000151						
			Pipe Man	ifold Data	ld Data			E	Brief Instru	ictions		Result
	Int	Upstream	Downstream	Equiv.	Pipe I.D.	Flowing	1	Make a sys	stem sketch	n, label each	n intersection	Calculated
	mbe	Node	Node	Length	(nominal)	Material		with a "Noc	le" name.		l	Jpstream Pressur
	Š		6	(ft)	(in.)		2	Enter the system data in the space provided				(psig)
Last	1	D	Disch.	49.9	8	MeOH + Toluene		at left. An e	error messa	age appears	below if the	1.6
	∠ 3	Δ	D	40	6	MeOH + Toluene	3	System data is inconsistent. 7.0				7.0
	4	B	c	20	6	MeOH + Toluene	0	"temperature" is usually the boiling point at the 7			79	
nts	5	_	-					relieving pr	essure.		5 p = at ale	
nel	6						4	Play "what-	if" with p	ipe sizes ar	nd flow rates to	
egi	7							ensure the system backpressure doesn't exceed				
e N	8							allowable li	mits for all	possible ve	nting scenarios.	
diat	9											
me	10											
nter	12								Process	Data		
-	13										Allowable	
	14						Flow Rate	Molecular	Temp.	Viscosity	Back Pressure	
	15						(lb/h)	Weight	(deg F)	(cP)	(psig)	
s	16	PSV-01	Α	49.9	6	MeOH	10,000	32	280	0.013	13	9.8
vice	17	PSV-02	A	60	6	Toluene	15,000	92	350.1	0.011	10	9.8
De	18	PSV-03	В	40	4	MeOH	8,000	32	280	0.013	13	10.1
ief	20	PSV-04 PSV-05		60	3	Toluene	5,000	92	350.1	0.011	10	9.9 5.0
Rel	20	1 3 4-03	D	00	5	Toldene	0,433	52	550.1	0.011	10	5.0
to	22											
ed	23											
ect	24											
uuc	25											
ö	26											
ents	27											
jme	28											
Sec	29											
•••	30											

INSTRUCTIONS

- 1. On a piece of paper, or with your computer, draw a SYSTEM SKETCH, showing the tanks to be relieved and piping network on the relief header.
- 2. Assign labels (letters are best) to each NODE (i.e. branch connection) on the sketch. Here's an example of a completed sketch:

- 3. For each segment, make a list with pipe size, equivalent length, and pipe roughness. The eqivalent length is the physical length plus the equivalent length for each bend or fitting. Pipe roughness is expressed in units of feet; normal carbon steel pipe has a roughness of 0.00015 ft.
- 4. For each relief valve, make a list with the fluid name, relieving rate, molecular weight, temperature and viscosity.
- 5. Your sketch contains three types of pipe segments. A) segments connected to the relief valves. These are called "primary segments." B) pipe headers not connected to valves. C) the final segment that discharges to atmosphere (or wherever). Organize your list into the three types. In the example they are: A) P

rimary	Se	gmen	ts
	01	^	

PSV01	- A
PSV02	- A
BO) (00	_

PSV	03	-	в
Dev	<u>۸</u>		D

- PSV04 PSV05 - D
- B) Headers

A - C

- B C
- C D

C) Discharge

D - Discharge

Notice that the first letter always refers to the "upstream" end of the segment.

- 6. Now you are ready to fill in the input section in the Excel spreadsheet template. Blank out any data that is already there, then enter the segment designations and equivalent length for the three types of segments.
- 7. For Primary Segments only, enter the molecular weight, temperature and viscosity at the relieving condition.
- Enter the pipe size (or your first guess pipe size) for each segment.
 Enter the DISCHARGE PRESSURE
- 10. Enter the ALLOWABLE BACKPRESSURE for each of the relieving devices (i.e. maximum pressure allowed at the upstream nodes for the Primary Segments.
- 11. Work with alternatives until the calculated backpressure values do not exceed the allowable values. 12. Repeat the calculation for other scenarios, such as a different mix of simultaneous relief or different temperatures.
- Notes: Higher pressure drops are computed with higher temperatures (all other factors being equal). Therefore, good practice is to assume the temperature of each vent equals the boiling point at the relieving pressure. So, if the vessel contains methanol relieving at 130 psig, the temperature to use would be about 280 deg F which is the temperature at which methanol has a vapor pressure of 130 psig.

Conventional relief valves usually function when the backpressure is up to 10% of the relieving pressure. For the methanol example above, a backpressure of 13 psig would be acceptable. For balanced relief valves a backpressure up to 50% of relieving pressure is often permissible (65 psig in the example). Consult manufacturer's literature for your specific valves to determine the allowed backpressure.

Example data input corresponding to the sketch

	Pipe Manifold Data									
ent	Upstream	Downstream	Equiv.	Pipe I.D.	Flowing					
đ	Node	Node	Length	(nominal)	Material					
S			(ft)	(in.)						
1	D	Discharge	30	8	MeOH + Toluene					
2	С	D	60	8	MeOH + Toluene					
3	A	С	30	6	MeOH + Toluene					
4	В	С	25	6	MeOH + Toluene					
5										
6										
(
8										
9										
10										
11										
12										
14										
14										
16	PSV-01	Δ	50	6	MeOH					
17	PSV-02	A	60	6	Toluene					
18	PSV-03	В	40	4	МеОН					
19	PSV-04	В	60	3	Toluene					
20	PSV-05	D	60	3	Toluene					
21										
22										
23										
24										
25										
26										
27										
28										
29										
30										

Schemeng					VENT MANIFOLD PRESSURE PROFILE						
	software.com					CLIENT Sample		EQUIP. NO		PAGE	
REV	PREPA	RED BY	DA	TE	APPROVAL	W.O.					
0	S.	Hall	19-Jai	า-2019		10314					
1				UNIT	AREA						
2						Process	Tank Farm				
					Sample	Manifold		tion			
ent	Nodo	Namo	Equiv	Dino	I	Pressure at	discharge	rom manifol	a		(psig) Calculated
g	Un	Down	L enath	Size	Compound	Flow	MW	Temp	Viscosity	Back Pr	Back Pr
s	Stream	Stream	(ft)	(in.)	Compositio	(lb/h)		(deg F)	(cP)	(psig)	(psig)
1	D	Disch.	49.9	8	MeOH + Toluene	44,499	52.3	304	0.012		1.63
2	С	D	60	6	MeOH + Toluene	38,000	48.7	300	0.012		7.57
3	A	C	40	6	MeOH + Toluene	25,000	52.6	304	0.012		9.27
4	В	С	20	6	MeOH + Toluene	13,000	42.7	293	0.013		7.85
5											
7											
8											
9											
10											
11											
12											
14											
15											
16	PSV-01	А	49.9	6	MeOH	10,000	32.0	280	0.013	13	9.82
17	PSV-02	Α	60	6	Toluene	15,000	92.0	350	0.011	10	9.82
18	PSV-03	В	40	4	MeOH	8,000	32.0	280	0.013	13	10.14
19	PSV-04	В	60 60	3	Toluene	5,000	92.0	350	0.011	10	9.90
20	P3V-05	D	60	3	roluene	0,499	92.0	350	0.011	10	4.90
22											
23											
24											
25											
26											
27											
29											
30											
	Notes:										
L	1. Comp	ound pro	perties a	re at the	relieving condition	1s.					
	2. This c	calculatio	n gives a	"snapsh	ot" of the pressure	e profile thro	ugh the ma	nifold at the	simultaneou	IS	
	of sim	ny condi nultaneou	ions sno Is venting	wiii. Aud a will cau	se excessive may	sure in the s	y to ensure	unat no iorse			
	3. "Allow	ved Back	Pressure	e" is the	maximum pressur	e at the disc	harge side	of the relievi	ng device th	at does	
	not in	pact the	relieving	pressur	e of the device. C	onventional	relief valves	are usually	limited to a	backpressu	re
	of 109	% of the r	elieving	pressure	; balanced relief v	alves may w	ork with bac	ckpressure u	p to 50% of	relief press	ure.
L	4. Assur	nes isoth	ermal flo	w, ideal	gas behavior, and	single (gas)	phase.				