
	

https://wamumegalomeso.norin.co.za/gdy?utm_term=update+table+join+snowflake

Update	table	join	snowflake

Update	table	with	inner	join	in	snowflake.		Update	table	using	left	join	in	snowflake.	

	

@Simon	Darr	Left	joins	are	often	needed	in	updates	to	ensure	that	non-matching	records	are	set	to	NULL.	For	example,	if	you	have	a	set	of	records	with	existing	values	and	you	want	to	do	an	update	to	overwrite	those	values,	based	on	joined	subtables,	you'll	want	to	ensure	that	any	records	for	which	there	are	no	joined	subrecords	get	set	to	NULL.	By
using	an	INNER	JOIN	(or	the	WHERE	in	Snowflake)	it	means	that	recors	with	no	matching	subrecords	will	be	excluded	from	the	update,	thus	leaving	values	on	those	records	unchanged.	

This	would	leave	old,	out	of	date,	and	potentially	invalid	data	in	place.	You	can	get	around	this	by	using	to	steps,	first	nulling	out	all	of	the	values	and	then	doing	the	update,	but	this	seems	highly	inefficient	and	error	prone	compared	to	what	can	be	done	in	SQL	Server	with	a	LEFT	JOIN.	×Sorry	to	interruptCSS	Error	ReferenceSQL	Command
ReferenceQuery	SyntaxJOIN	Categories:Query	Syntax	A	JOIN	operation	combines	rows	from	two	tables	(or	other	table-like	sources,	such	as	views	or	table	functions)	to	create	a	new	combined	row	that	can	be	used	in	the	query.	For	a	conceptual	explanation	of	joins,	see	Working	with	Joins.	This	topic	describes	how	to	use	the	JOIN	construct	in	the
FROM	clause.	The	JOIN	subclause	specifies	(explicitly	or	implicitly)	how	to	relate	rows	in	one	table	to	the	corresponding	rows	in	the	other	table.	Although	the	recommended	way	to	join	tables	is	to	use	JOIN	with	the	ON	subclause	of	the	FROM	clause,	an	alternative	way	to	join	tables	is	to	use	the	WHERE	clause.	For	details,	see	the	documentation	for
the	WHERE	clause.	Use	one	of	the	following:	SELECT	...	FROM	[{	INNER	|	{	LEFT	|	RIGHT	|	FULL	}	[OUTER]	}]	JOIN	[ON]	[...]	SELECT	*	FROM	[{	INNER	|	{	LEFT	|	RIGHT	|	FULL	}	[OUTER]	}]	JOIN	[USING()]	[...]	SELECT	...	FROM	[{	|	NATURAL	[{	LEFT	|	RIGHT	|	FULL	}	[OUTER]]	|	CROSS	}]	JOIN	[...]	object_ref1	and
object_ref2Each	object	reference	is	a	table	or	table-like	data	source.	JOINUse	the	JOIN	keyword	to	specify	that	the	tables	should	be	joined.	Combine	JOIN	with	other	join-related	keywords	(e.g.	INNER	or	OUTER)	to	specify	the	type	of	join.	The	semantics	of	joins	are	as	follows	(for	brevity,	this	topic	uses	o1	and	o2	for	object_ref1	and	object_ref2,
respectively).	
Join	Type	Semantics	o1	INNER	JOIN	o2	For	each	row	of	o1,	a	row	is	produced	for	each	row	of	o2	that	matches	according	to	the	ON	condition	subclause.	(Note	that	you	can	also	use	a	comma	to	specify	an	inner	join.	For	an	example,	see	the	examples	section	below.)	If	you	use	INNER	JOIN	without	the	ON	clause	(or	if	you	use	comma	without	a	WHERE
clause),	the	result	is	the	same	as	using	CROSS	JOIN:	a	Cartesian	product	(every	row	of	o1	paired	with	every	row	of	o2).	
o1	LEFT	OUTER	JOIN	o2	The	result	of	the	inner	join	is	augmented	with	a	row	for	each	row	of	o1	that	has	no	matches	in	o2.	The	result	columns	referencing	o2	contain	null.	o1	RIGHT	OUTER	JOIN	o2	The	result	of	the	inner	join	is	augmented	with	a	row	for	each	row	of	o2	that	has	no	matches	in	o1.	
The	result	columns	referencing	o1	contain	null.	o1	FULL	OUTER	JOIN	o2	Returns	all	joined	rows,	plus	one	row	for	each	unmatched	left	side	row	(extended	with	nulls	on	the	right),	plus	one	row	for	each	unmatched	right	side	row	(extended	with	nulls	on	the	left).	o1	CROSS	JOIN	o2	For	every	possible	combination	of	rows	from	o1	and	o2	(i.e.	Cartesian
product),	the	joined	table	contains	a	row	consisting	of	all	columns	in	o1	followed	by	all	columns	in	o2.	A	CROSS	JOIN	cannot	be	combined	with	an	ON	condition	clause.	However,	you	can	use	a	WHERE	clause	to	filter	the	results.	o1	NATURAL	JOIN	o2	A	NATURAL	JOIN	is	identical	to	an	explicit	JOIN	on	the	common	columns	of	the	two	tables,	except
that	the	common	columns	are	included	only	once	in	the	output.	(A	natural	join	assumes	that	columns	with	the	same	name,	but	in	different	tables,	contain	corresponding	data.)	See	the	Examples	section	below	for	some	examples.	
A	NATURAL	JOIN	can	be	combined	with	an	OUTER	JOIN.	A	NATURAL	JOIN	cannot	be	combined	with	an	ON	condition	clause	because	the	JOIN	condition	is	already	implied.	However,	you	can	use	a	WHERE	clause	to	filter	the	results.	See	also:Lateral	Join	Default:	INNER	JOIN	If	the	word	JOIN	is	used	without	specifying	INNER	or	OUTER,	then	the
JOIN	is	an	inner	join.	ON	conditionA	boolean	expression	that	defines	the	rows	from	the	two	sides	of	the	JOIN	that	are	considered	to	match,	for	example:	ON	object_ref2.id_number	=	object_ref1.id_number	Conditions	are	discussed	in	more	detail	in	the	WHERE	clause	documentation.	The	ON	clause	is	prohibited	for	CROSS	JOIN.	The	ON	clause	is
unnecessary	(and	prohibited)	for	NATURAL	JOIN;	the	join	columns	are	implied.	For	other	joins,	the	ON	clause	is	optional.	However,	omitting	the	ON	clause	results	in	a	Cartesian	product	(every	row	of	object_ref1	paired	with	every	row	of	object_ref2).	A	Cartesian	product	can	produce	a	very	large	volume	of	output,	almost	all	of	which	consists	of	pairs
of	rows	that	aren’t	actually	related;	this	consumes	a	lot	of	resources	and	is	often	a	user	error.	USING()A	list	of	columns	in	common	between	the	two	tables	being	joined;	these	columns	are	used	as	the	join	columns.	

The	columns	must	have	the	same	name	and	meaning	in	each	of	the	tables	being	joined.	For	example,	suppose	that	the	SQL	statement	contains:	...	o1	JOIN	o2	USING	(key_column)	In	the	simple	case,	this	would	be	equivalent	to:	...	o1	JOIN	o2	ON	o2.key_column	=	o1.key_column	In	the	standard	JOIN	syntax,	the	projection	list	(the	list	of	columns	and
other	expressions	after	the	SELECT	keyword)	is	“*”.	This	causes	the	query	to	return	the	key_column	exactly	once.	For	examples	of	standard	and	non-standard	usage,	see	the	examples	below.	

The	following	restrictions	apply	to	table	functions	other	than	SQL	UDTFs:	You	cannot	specify	the	ON,	USING,	or	NATURAL	JOIN	clause	in	a	lateral	table	function	(other	than	a	SQL	UDTF).	For	example,	the	following	syntax	is	not	allowed:	SELECT	...	

FROM	my_table	JOIN	TABLE(FLATTEN(input=>[col_a]))	ON	...	
;	SELECT	...	FROM	my_table	INNER	JOIN	TABLE(FLATTEN(input=>[col_a]))	ON	...	;	SELECT	...	FROM	my_table	JOIN	TABLE(my_js_udtf(col_a))	ON	...	;	SELECT	...	FROM	my_table	INNER	JOIN	TABLE(my_js_udtf(col_a))	ON	...	;	You	cannot	specify	the	ON,	USING,	or	NATURAL	JOIN	clause	in	an	outer	lateral	join	to	a	table	function	(other	than	a	SQL
UDTF).	For	example,	the	following	syntax	is	not	allowed:	SELECT	...	FROM	my_table	LEFT	JOIN	TABLE(FLATTEN(input=>[a]))	ON	...	;	SELECT	...	FROM	my_table	FULL	JOIN	TABLE(FLATTEN(input=>[a]))	ON	...	;	SELECT	...	
FROM	my_table	LEFT	JOIN	TABLE(my_js_udtf(a))	ON	...	;	SELECT	...	FROM	my_table	FULL	JOIN	TABLE(my_js_udtf(a))	ON	...	;	Using	this	syntax	above	results	in	the	following	error:	000002	(0A000):	Unsupported	feature	'lateral	table	function	called	with	OUTER	JOIN	syntax	or	a	join	predicate	(ON	clause)'	These	restrictions	do	not	apply	if	you	are
using	a	comma,	rather	than	a	JOIN	keyword:	SELECT	...	FROM	my_table,	TABLE(FLATTEN(input=>[col_a]))	ON	...	;	Many	of	the	JOIN	examples	use	two	tables,	t1	and	t2.	The	tables	and	their	data	are	created	as	shown	below:	CREATE	TABLE	t1	(col1	INTEGER);	CREATE	TABLE	t2	(col1	INTEGER);	INSERT	INTO	t1	(col1)	VALUES	(2),	(3),	(4);	INSERT
INTO	t2	(col1)	VALUES	(1),	(2),	(2),	(3);	Inner	join:	SELECT	t1.col1,	t2.col1	FROM	t1	INNER	JOIN	t2	ON	t2.col1	=	t1.col1	ORDER	BY	1,2;	+------+------+	|	COL1	|	COL1	|	|------+------|	|	2	|	2	|	|	2	|	2	|	|	3	|	3	|	+------+------+	This	shows	a	left	outer	join.	Note	the	NULL	value	for	the	row	in	table	t1	that	doesn’t	have	a	matching	row	in	table	t2.	SELECT	t1.col1,
t2.col1	FROM	t1	LEFT	OUTER	JOIN	t2	ON	t2.col1	=	t1.col1	ORDER	BY	1,2;	+------+------+	|	COL1	|	COL1	|	|------+------|	|	2	|	2	|	|	2	|	2	|	|	3	|	3	|	|	4	|	NULL	|	+------+------+	This	shows	a	right	outer	join.	Note	the	NULL	value	for	the	row	in	table	t1	that	doesn’t	have	a	matching	row	in	table	t2.	SELECT	t1.col1,	t2.col1	FROM	t1	RIGHT	OUTER	JOIN	t2	ON
t2.col1	=	t1.col1	ORDER	BY	1,2;	+------+------+	|	COL1	|	COL1	|	|------+------|	|	2	|	2	|	|	2	|	2	|	|	3	|	3	|	|	NULL	|	1	|	+------+------+	This	shows	a	full	outer	join.	Note	that	because	each	table	has	a	row	that	doesn’t	have	a	matching	row	in	the	other	table,	the	output	contains	two	rows	with	NULL	values:	SELECT	t1.col1,	t2.col1	FROM	t1	FULL	OUTER	JOIN	t2
ON	t2.col1	=	t1.col1	ORDER	BY	1,2;	+------+------+	|	COL1	|	COL1	|	|------+------|	|	2	|	2	|	|	2	|	2	|	|	3	|	3	|	|	4	|	NULL	|	|	NULL	|	1	|	+------+------+	Here	is	an	example	of	a	cross	join,	which	produces	a	Cartesian	product.	Note	that	the	cross	join	does	not	have	an	ON	clause.	SELECT	t1.col1,	t2.col1	FROM	t1	CROSS	JOIN	t2	ORDER	BY	1,	2;	+------+------+	|	COL1
|	COL1	|	|------+------|	|	2	|	1	|	|	2	|	2	|	|	2	|	2	|	|	2	|	3	|	|	3	|	1	|	|	3	|	2	|	|	3	|	2	|	|	3	|	3	|	|	4	|	1	|	|	4	|	2	|	|	4	|	2	|	|	4	|	3	|	+------+------+	A	cross	join	can	be	filtered	by	a	WHERE	clause,	as	shown	in	the	example	below:	SELECT	t1.col1,	t2.col1	FROM	t1	CROSS	JOIN	t2	WHERE	t2.col1	=	t1.col1	ORDER	BY	1,	2;	+------+------+	|	COL1	|	COL1	|	|------+------|	|	2	|	2	|	|	2	|
2	|	|	3	|	3	|	+------+------+	This	is	an	example	of	a	natural	join.	This	produces	the	same	output	as	the	corresponding	inner	join,	except	that	the	output	doesn’t	include	a	second	copy	of	the	join	column:	CREATE	OR	REPLACE	TABLE	d1	(id	number,	name	string);	+--------------------------------+	|	status	|	|--------------------------------|	|	Table	D1	successfully	created.	|	+-
-------------------------------+	INSERT	INTO	d1	(id,	name)	VALUES	(1,'a'),	(2,'b'),	(4,'c');	+-------------------------+	|	number	of	rows	inserted	|	|-------------------------|	|	3	|	+-------------------------+	CREATE	OR	REPLACE	TABLE	d2	(id	number,	value	string);	+--------------------------------+	|	status	|	|--------------------------------|	|	Table	D2	successfully	created.	|	+--------------------------------+
INSERT	INTO	d2	(id,	value)	VALUES	(1,'xx'),	(2,'yy'),	(5,'zz');	+-------------------------+	|	number	of	rows	inserted	|	|-------------------------|	|	3	|	+-------------------------+	SELECT	*	FROM	d1	NATURAL	INNER	JOIN	d2	ORDER	BY	id;	+----+------+-------+	|	ID	|	NAME	|	VALUE	|	|----+------+-------|	|	1	|	a	|	xx	|	|	2	|	b	|	yy	|	+----+------+-------+	Natural	joins	can	be	combined	with
outer	joins,	for	example:	SELECT	*	FROM	d1	NATURAL	FULL	OUTER	JOIN	d2	ORDER	BY	ID;	+----+------+-------+	|	ID	|	NAME	|	VALUE	|	|----+------+-------|	|	1	|	a	|	xx	|	|	2	|	b	|	yy	|	|	4	|	c	|	NULL	|	|	5	|	NULL	|	zz	|	+----+------+-------+	Joins	can	be	combined	in	the	FROM	clause.	The	following	code	creates	a	third	table,	then	chains	together	two	JOINs	in	the
FROM	clause:	CREATE	TABLE	t3	(col1	INTEGER);	INSERT	INTO	t3	(col1)	VALUES	(2),	(6);	SELECT	t1.*,	t2.*,	t3.*	FROM	t1	LEFT	OUTER	JOIN	t2	ON	(t1.col1	=	t2.col1)	RIGHT	OUTER	JOIN	t3	ON	(t3.col1	=	t2.col1)	ORDER	BY	t1.col1;	+------+------+------+	|	COL1	|	COL1	|	COL1	|	|------+------+------|	|	2	|	2	|	2	|	|	2	|	2	|	2	|	|	NULL	|	NULL	|	6	|	+------+------+--
----+	In	such	a	query,	the	results	are	determined	based	on	the	joins	taking	place	from	left	to	right	(though	the	optimizer	might	reorder	the	joins	if	a	different	join	order	will	produce	the	same	result).	If	the	right	outer	join	is	meant	to	take	place	before	the	left	outer	join,	then	the	query	can	be	written	as	follows:	SELECT	t1.*,	t2.*,	t3.*	FROM	t1	LEFT
OUTER	JOIN	(t2	RIGHT	OUTER	JOIN	t3	ON	(t3.col1	=	t2.col1))	ON	(t1.col1	=	t2.col1)	ORDER	BY	t1.col1;	+------+------+------+	|	COL1	|	COL1	|	COL1	|	|------+------+------|	|	2	|	2	|	2	|	|	2	|	2	|	2	|	|	3	|	NULL	|	NULL	|	|	4	|	NULL	|	NULL	|	+------+------+------+	The	two	examples	below	show	standard	(ISO	9075)	and	non-standard	usage	of	the	USING	clause.	Both
are	supported	by	Snowflake.	This	first	example	shows	standard	usage.	Specifically,	the	projection	list	contains	exactly	“*”.	Even	though	the	example	query	joins	two	tables,	and	each	table	has	one	column,	and	the	query	asks	for	all	columns,	the	output	contains	one	column,	not	two.	WITH	l	AS	(SELECT	'a'	AS	userid),	r	AS	(SELECT	'b'	AS	userid)
SELECT	*	FROM	l	LEFT	JOIN	r	USING(userid)	;	+--------+	|	USERID	|	|--------|	|	a	|	+--------+	The	following	example	shows	non-standard	usage.	The	projection	list	contains	something	other	than	“*”.	The	output	contains	two	columns,	and	the	second	column	contains	either	a	value	from	the	second	table	or	NULL.	WITH	l	AS	(SELECT	'a'	AS	userid),	r	AS	(
SELECT	'b'	AS	userid)	SELECT	l.userid	as	UI_L,	r.userid	as	UI_R	FROM	l	LEFT	JOIN	r	USING(userid)	;	+------+------+	|	UI_L	|	UI_R	|	|------+------|	|	a	|	NULL	|	+------+------+	Was	this	page	helpful?Privacy	NoticeSite	Terms©	2023	Snowflake,	Inc.	All	Rights	Reserved.SyntaxUsage	NotesExamples	GuidesQueriesJoins	Categories:Query	Syntax	A	join
combines	rows	from	two	tables	to	create	a	new	combined	row	that	can	be	used	in	the	query.	Joins	are	useful	when	the	data	in	the	tables	is	related.	For	example,	one	table	might	hold	information	about	projects,	and	one	table	might	hold	information	about	employees	working	on	those	projects.	
SELECT	*	FROM	projects	ORDER	BY	project_ID;	+------------+------------------+	|	PROJECT_ID	|	PROJECT_NAME	|	|------------+------------------|	|	1000	|	COVID-19	Vaccine	|	|	1001	|	Malaria	Vaccine	|	|	1002	|	NewProject	|	+------------+------------------+	SELECT	*	FROM	employees	ORDER	BY	employee_ID;	+-------------+-----------------+------------+	|	EMPLOYEE_ID	|
EMPLOYEE_NAME	|	PROJECT_ID	|	|-------------+-----------------+------------|	|	10000001	|	Terry	Smith	|	1000	|	|	10000002	|	Maria	Inverness	|	1000	|	|	10000003	|	Pat	Wang	|	1001	|	|	10000004	|	NewEmployee	|	NULL	|	+-------------+-----------------+------------+	The	two	joined	tables	usually	contain	one	or	more	columns	in	common	so	that	the	rows	in	one	table	can	be
associated	with	the	corresponding	rows	in	the	other	table.	For	example,	each	row	in	the	projects	table	might	have	a	unique	project	ID	number,	and	each	row	in	the	employees	table	might	include	the	ID	number	of	the	project	that	the	employee	is	currently	assigned	to.	The	join	operation	specifies	(explicitly	or	implicitly)	how	to	relate	rows	in	one	table
to	the	corresponding	rows	in	the	other	table,	typically	by	referencing	the	common	column(s),	such	as	project	ID.	For	example,	the	following	joins	the	project	and	employee	tables	shown	above:	SELECT	p.project_ID,	project_name,	employee_ID,	employee_name,	e.project_ID	FROM	projects	AS	p	JOIN	employees	AS	e	ON	e.project_ID	=	p.project_ID
ORDER	BY	p.project_ID,	e.employee_ID;	+------------+------------------+-------------+-----------------+------------+	|	PROJECT_ID	|	PROJECT_NAME	|	EMPLOYEE_ID	|	EMPLOYEE_NAME	|	PROJECT_ID	|	|------------+------------------+-------------+-----------------+------------|	|	1000	|	COVID-19	Vaccine	|	10000001	|	Terry	Smith	|	1000	|	|	1000	|	COVID-19	Vaccine	|	10000002	|	Maria
Inverness	|	1000	|	|	1001	|	Malaria	Vaccine	|	10000003	|	Pat	Wang	|	1001	|	+------------+------------------+-------------+-----------------+------------+	Although	a	single	join	operation	can	join	only	two	tables,	joins	can	be	chained	together.	
The	result	of	a	join	is	a	table-like	object,	and	that	table-like	object	can	then	be	joined	to	another	table-like	object.	Conceptually,	the	idea	is	similar	to	the	following	(this	is	not	the	actual	syntax):	table1	join	(table2	join	table	3)	In	this	pseudo-code,	table2	and	table3	are	joined	first.	The	table	that	results	from	that	join	is	then	joined	with	table1.	Joins	can
be	applied	not	only	to	tables,	but	also	to	other	table-like	objects.	You	can	join:	A	table.	A	view	(materialized	or	non-materialized).	A	table	literal.	An	expression	that	evaluates	to	the	equivalent	of	a	table	(containing	one	or	more	columns	and	zero	or	more	rows).	For	example:	The	result	set	returned	by	a	table	function.	The	result	set	returned	by	a
subquery	that	returns	a	table.	When	this	topic	refers	to	joining	a	table,	it	generally	means	joining	any	table-like	object.	Snowflake	supports	the	following	types	of	joins:	Inner	join.	
Outer	join.	Cross	join.	Natural	join.	An	inner	join	pairs	each	row	in	one	table	with	the	matching	row(s)	in	the	other	table.	The	example	below	uses	an	inner	join:	SELECT	p.project_ID,	project_name,	employee_ID,	employee_name,	e.project_ID	FROM	projects	AS	p	INNER	JOIN	employees	AS	e	ON	e.project_id	=	p.project_id	ORDER	BY	p.project_ID,
e.employee_ID;	+------------+------------------+-------------+-----------------+------------+	|	PROJECT_ID	|	PROJECT_NAME	|	EMPLOYEE_ID	|	EMPLOYEE_NAME	|	PROJECT_ID	|	|------------+------------------+-------------+-----------------+------------|	|	1000	|	COVID-19	Vaccine	|	10000001	|	Terry	Smith	|	1000	|	|	1000	|	COVID-19	Vaccine	|	10000002	|	Maria	Inverness	|	1000	|	|	1001
|	Malaria	Vaccine	|	10000003	|	Pat	Wang	|	1001	|	+------------+------------------+-------------+-----------------+------------+	In	this	example,	the	output	table	contains	two	columns	named	“Project_ID”.	
One	Project_ID	column	is	from	the	projects	table,	and	one	is	from	the	employees	table.	For	each	row	in	the	output	table,	the	values	in	the	two	Project_ID	columns	match	because	the	query	specified	e.project_id	=	p.project_id.	The	output	includes	only	valid	pairs	(i.e.	rows	that	match	the	join	condition).	In	this	example	there	is	no	row	for	the	project
named	“NewProject”	(which	has	no	employees	assigned	yet)	or	the	employee	named	“NewEmployee”	(who	hasn’t	been	assigned	to	any	projects	yet).	An	outer	join	lists	all	rows	in	the	specified	table,	even	if	those	rows	have	no	match	in	the	other	table.	
For	example,	a	left	outer	join	between	projects	and	employees	lists	all	projects,	including	projects	that	do	not	yet	have	any	employee	assigned.	SELECT	p.project_name,	e.employee_name	FROM	projects	AS	p	LEFT	OUTER	JOIN	employees	AS	e	ON	e.project_ID	=	p.project_ID	ORDER	BY	p.project_name,	e.employee_name;	+------------------+-----------------+
|	PROJECT_NAME	|	EMPLOYEE_NAME	|	|------------------+-----------------|	|	COVID-19	Vaccine	|	Maria	Inverness	|	|	COVID-19	Vaccine	|	Terry	Smith	|	|	Malaria	Vaccine	|	Pat	Wang	|	|	NewProject	|	NULL	|	+------------------+-----------------+	The	project	named	“NewProject”	is	included	in	this	output	even	though	there	is	no	matching	row	in	the	employees	table.
Because	there	are	no	matching	employee	names	for	the	project	named	“NewProject”,	the	employee	name	is	set	to	NULL.	
A	right	outer	join	lists	all	employees	(regardless	of	project).	SELECT	p.project_name,	e.employee_name	FROM	projects	AS	p	RIGHT	OUTER	JOIN	employees	AS	e	ON	e.project_ID	=	p.project_ID	ORDER	BY	p.project_name,	e.employee_name;	+------------------+-----------------+	|	PROJECT_NAME	|	EMPLOYEE_NAME	|	|------------------+-----------------|	|	COVID-19
Vaccine	|	Maria	Inverness	|	|	COVID-19	Vaccine	|	Terry	Smith	|	|	Malaria	Vaccine	|	Pat	Wang	|	|	NULL	|	NewEmployee	|	+------------------+-----------------+	A	full	outer	join	lists	all	projects	and	all	employees.	SELECT	p.project_name,	e.employee_name	FROM	projects	AS	p	FULL	OUTER	JOIN	employees	AS	e	ON	e.project_ID	=	p.project_ID	ORDER	BY
p.project_name,	e.employee_name;	+------------------+-----------------+	|	PROJECT_NAME	|	EMPLOYEE_NAME	|	|------------------+-----------------|	|	COVID-19	Vaccine	|	Maria	Inverness	|	|	COVID-19	Vaccine	|	Terry	Smith	|	|	Malaria	Vaccine	|	Pat	Wang	|	|	NewProject	|	NULL	|	|	NULL	|	NewEmployee	|	+------------------+-----------------+	A	cross	join	combines	each	row	in
the	first	table	with	each	row	in	the	second	table,	creating	every	possible	combination	of	rows	(called	a	“Cartesian	product”).	Because	most	of	the	result	rows	contain	parts	of	rows	that	are	not	actually	related,	a	cross	join	is	rarely	useful	by	itself.	In	fact,	cross	joins	are	usually	the	result	of	accidentally	omitting	the	join	condition.	The	result	of	a	cross
join	can	be	very	large	(and	expensive).	If	the	first	table	has	N	rows	and	the	second	table	has	M	rows,	then	the	result	is	N	x	M	rows.	For	example,	if	the	first	table	has	100	rows	and	the	second	table	has	1000	rows,	then	the	result	set	contains	100,000	rows.	The	following	query	shows	a	cross	join:	SELECT	p.project_name,	e.employee_name	FROM
projects	AS	p	CROSS	JOIN	employees	AS	e	ORDER	BY	p.project_ID,	e.employee_ID;	+------------------+-----------------+	|	PROJECT_NAME	|	EMPLOYEE_NAME	|	|------------------+-----------------|	|	COVID-19	Vaccine	|	Terry	Smith	|	|	COVID-19	Vaccine	|	Maria	Inverness	|	|	COVID-19	Vaccine	|	Pat	Wang	|	|	COVID-19	Vaccine	|	NewEmployee	|	|	Malaria	Vaccine	|
Terry	Smith	|	|	Malaria	Vaccine	|	Maria	Inverness	|	|	Malaria	Vaccine	|	Pat	Wang	|	|	Malaria	Vaccine	|	NewEmployee	|	|	NewProject	|	Terry	Smith	|	|	NewProject	|	Maria	Inverness	|	|	NewProject	|	Pat	Wang	|	|	NewProject	|	NewEmployee	|	+------------------+-----------------+	Note	that	this	query	contains	no	ON	clause	and	no	filter.	The	output	of	a	cross	join
can	be	made	more	useful	by	applying	a	filter	in	the	WHERE	clause:	SELECT	p.project_name,	e.employee_name	FROM	projects	AS	p	CROSS	JOIN	employees	AS	e	WHERE	e.project_ID	=	p.project_ID	ORDER	BY	p.project_ID,	e.employee_ID;	+------------------+-----------------+	|	PROJECT_NAME	|	EMPLOYEE_NAME	|	|------------------+-----------------|	|	COVID-19
Vaccine	|	Terry	Smith	|	|	COVID-19	Vaccine	|	Maria	Inverness	|	|	Malaria	Vaccine	|	Pat	Wang	|	+------------------+-----------------+	The	result	of	this	cross	join	and	filter	is	the	same	as	the	result	of	the	following	inner	join:	SELECT	p.project_name,	e.employee_name	FROM	projects	AS	p	INNER	JOIN	employees	AS	e	ON	e.project_ID	=	p.project_ID	ORDER	BY

p.project_ID,	e.employee_ID;	+------------------+-----------------+	|	PROJECT_NAME	|	EMPLOYEE_NAME	|	|------------------+-----------------|	|	COVID-19	Vaccine	|	Terry	Smith	|	|	COVID-19	Vaccine	|	Maria	Inverness	|	|	Malaria	Vaccine	|	Pat	Wang	|	+------------------+-----------------+	Important	Although	the	two	queries	in	this	example	produce	the	same	output	when	they
use	the	same	condition	(e.project_id	=	p.project_id)	in	different	clauses	(WHERE	vs.	FROM	...	ON	...),	it	is	possible	to	construct	pairs	of	queries	that	use	the	same	condition	but	that	do	not	produce	the	same	output.	The	most	common	examples	involve	outer	joins.	If	you	execute	table1	LEFT	OUTER	JOIN	table2,	then	for	rows	in	table1	that	have	no
match,	the	columns	that	would	have	come	from	table2	contain	NULL.	
A	filter	like	WHERE	table2.ID	=	table1.ID	filters	out	rows	in	which	either	table2.id	or	table1.id	contains	a	NULL,	while	an	explicit	outer	join	in	the	FROM	...	
ON	...	clause	does	not	filter	out	rows	with	NULL	values.	In	other	words,	an	outer	join	with	a	filter	might	not	actually	act	like	an	outer	join.	A	natural	join	is	used	when	two	tables	contain	columns	that	have	the	same	name	and	in	which	the	data	in	those	columns	corresponds.	In	the	employees	and	projects	tables	shown	above,	both	tables	have	columns
named	“project_ID”.	
A	natural	join	implicitly	constructs	the	ON	clause:	ON	projects.project_ID	=	employees.project_ID.	If	two	tables	have	multiple	columns	in	common,	then	all	the	common	columns	are	used	in	the	ON	clause.	For	example,	if	you	had	two	tables	that	each	had	columns	named	“city”	and	“province”,	then	a	natural	join	would	construct	the	following	ON
clause:	ON	table2.city	=	table1.city	AND	table2.province	=	table1.province.	The	output	of	a	natural	join	includes	only	one	copy	of	each	of	the	shared	columns.	For	example,	the	following	query	produces	a	natural	join	containing	all	columns	in	the	two	tables,	except	that	it	omits	all	but	one	copy	of	the	redundant	project_ID	column:	SELECT	*	FROM
projects	NATURAL	JOIN	employees	ORDER	BY	employee_ID;	+------------+------------------+-------------+-----------------+	|	PROJECT_ID	|	PROJECT_NAME	|	EMPLOYEE_ID	|	EMPLOYEE_NAME	|	|------------+------------------+-------------+-----------------|	|	1000	|	COVID-19	Vaccine	|	10000001	|	Terry	Smith	|	|	1000	|	COVID-19	Vaccine	|	10000002	|	Maria	Inverness	|	|	1001	|
Malaria	Vaccine	|	10000003	|	Pat	Wang	|	+------------+------------------+-------------+-----------------+	A	natural	join	can	be	combined	with	an	outer	join.	A	natural	join	cannot	be	combined	with	an	ON	clause	because	the	join	condition	is	already	implied.	However,	you	can	use	a	WHERE	clause	to	filter	the	results	of	a	natural	join.	Syntactically,	there	are	two	ways
to	join	tables:	Use	the	JOIN	operator	in	the	ON	sub-clause	of	the	FROM	clause.	Use	the	WHERE	with	the	FROM	clause.	Snowflake	recommends	using	the	ON	sub-clause	in	the	FROM	clause.	The	syntax	is	more	flexible.	And	specifying	the	predicate	in	the	ON	clause	avoids	the	problem	of	accidentally	filtering	rows	with	NULLs	when	using	a	WHERE
clause	to	specify	the	join	condition	for	an	outer	join.	Was	this	page	helpful?Privacy	NoticeSite	Terms©	2023	Snowflake,	Inc.	All	Rights	Reserved.IntroductionTypes	of	JoinsImplementing	JoinsJOINFROMWHERELateral	Join

