

Sleep Disorders

Slides: B Chow

Edits: L Jia

Updated 2021

Sleep Disorders 1

- Introduction
- Insomnia Disorder
- Hypersomnolence Disorder
- Narcolepsy

Breathing-Related Sleep Disorders

- Obstructive Sleep Apnea Hypopnea
- Central Sleep Apnea
- Sleep-Related Hypoventilation

Sleep Disorders 2

Circadian Rhythm Sleep-Wake Disorders

- Delayed Sleep Phase Type
- Advanced Sleep Phase Type
- Irregular Sleep-Wake Type
- Non-24-Hour Sleep-Wake Type
- Shift Work Type

Parasomnias

- Non-REM Sleep Arousal Disorders
- Nightmare Disorder
- REM Sleep Behavior Disorder
- Restless Legs Syndrome
- <u>Substance/Medication-Induced Sleep Disorder</u>

Sleep-Wake Disorders – Introduction

- To clarify when referral to a sleep specialist is appropriate
- Persistent sleep disturbances
 - Often accompanied by depression, anxiety, cognitive changes
 - Established risk factor for mental illness, SUDs
 - May be prodromal expression of a mental illness
 - Possible opportunity for early intervention or to attenuate full episode
- Coexisting conditions are the rule
 - Breathing-related sleep disorders
 - Disorders of heart/lung (CHF, COPD)
 - Neurodegenerative disorders (Alzheimer's disease)
 - MSK disorders (osteoarthritis)
 - May not only disturb sleep, but may be worsened during sleep
- REM sleep behavior disorder
 - Early neurodegenerative (α -synucleinopathy, Parkinson's disease)

Insomnia Disorder

Insomnia Disorder – Diagnostic Criteria

- A. Dissatisfaction with sleep quality/quantity (1+/3):
 - 1. Difficulty initiating sleep
 - 2. Difficulty maintaining sleep
 - 3. Early-morning awakening + inability to return to sleep
- B. Significant distress or impairment
- c. Occurs 3+ nights per week
- D. Present for **3+ months**
- E. Occurs despite adequate opportunity for sleep
- F. Not better explained by another sleep-wake disorder
- G. Not due to substance
- H. Not better explained by coexisting AMD or AMC

Insomnia Disorder – Diagnostic Specifiers

- Specify if:
 - With non-sleep disorder mental comorbidity (incl SUD)
 - With other medical comorbidity
 - With other sleep disorder
- Specify if:
 - **Episodic:** Symptoms for 1-3 months
 - **Persistent:** Symptoms for 3+ months
 - Recurrent: 2+ episodes within 1 year

Insomnia Disorder – Diagnostic Features

- Different manifestations of insomnia at different sleep periods
 - Sleep-onset insomnia (initial insomnia)
 - Difficulty initiating sleep
 - Sleep-maintenance insomnia (middle insomnia)
 - Frequent or prolonged awakenings throughout night
 - Late insomnia
 - Early-morning awakenings + inability to return to sleep
 - Specific type often varies over time
- Most common SINGLE sx of insomnia → difficulty maintaining
 - 2nd most common = **difficulty falling asleep**
 - Most common OVERALL presentation = combination
- Quantification
 - Self-report, sleep diaries, other methods (actigraphy, PSG)

Insomnia Disorder – Diagnostic Features

- <u>Non-restorative sleep</u> → common complaint
 - Does not feel rested upon awakening, despite adequate duration
 - Usually assoc with initial or middle insomnia
 - Can occur in isolation → other/unspecified insomnia disorder
- Quantify insomnia severity (illustrative purposes only)
 - Difficulty initiating → subjective sleep latency >30 minutes
 - Difficulty maintaining → subjective time awake after onset >30 minutes
 - No standard definition of early morning awakening
 - Awakening >30 mins before scheduled time
 - Before total sleep time reaches 6.5 hours
- Age-dependent changes
 - Decr ability to sustain sleep
 - Shift in timing of main sleep period

Insomnia Disorder – Diagnostic Features

- May involve daytime impairments
 - Fatigue
 - **Daytime sleepiness** → less common generally
 - More common if elderly or if comorbid AMC/sleep disorder
 - Cognitive impairments
 - Attention, concentration, memory
 - Performing simple manual skills
 - Mood disturbances
 - Typically irritability, mood lability
 - Less commonly **depressive**, anxiety sx
- Not everyone has distress or impairment
 - **Healthy older adults** \rightarrow sleep continuity often interrupted
 - May still identify as good sleepers

Insomnia Disorder – Associated Features

- Often assoc with physiological, cognitive arousal/conditioning
 - Preoccupation with sleep/inability to sleep → may become vicious cycle
 - Can override normal sleep-onset mechanisms
 - Persistent insomnia → may acquire maladaptive sleep habits/cognitions
 - Excessive time in bed, erratic sleep schedule, napping
 - Fear of sleeplessness/daytime impairment, clock monitoring
 - May fall asleep more easily when NOT trying to do so
 - Away from own bedroom, usually routines
- Daytime complaints/symptoms
 - Fatigue, decr energy, mood disturbances (anxiety, depression)
 - Excessive focus on perceived effects of sleep loss

Insomnia Disorder – Associated Features

- High scores on self-report psychological/personality inventories
 - Mild depression/anxiety, worrisome cognitive style
 - Somatic focus
 - Emotion-focused/internalizing style of conflict resolution
- Cognitive impairment patterns → inconsistent
 - Tasks of higher complexity
 - Tasks requiring frequent changes in performance strategy
 - Require more effort to maintain cognitive performance

Insomnia Disorder – Prevalence

Adults

- 33% → report insomnia sx (10-20% of primary care)
 - More common among FEMALES (1.44x)
 - Can be symptom or independent disorder
 - Often comorbid with AMC or AMD (40-50%)
- 10-15% → daytime impairments
- 6-10% → insomnia disorder (MOST PREVALENT of all sleep disorders)

www.SimplePsych.ca

Insomnia Disorder – Development & Course

- Onset → any time during life
 - First episode most common during young adulthood
 - Less commonly begins in childhood or adolescence
 - Women → may onset during menopause + persist (after other sx resolve)
 - Late-life

 often assoc with other health-related conditions
- Situational (acute) → usually few days to weeks
 - Assoc with life events, rapid changes in sleep schedule/environment
 - Acute psychological stress or mental disorder e.g. MDD)
 - May be insidious without identifiable precipitating factor
 - May persist longer after triggering event (due to conditioned arousal)

Insomnia Disorder – Development & Course

- Episodic/recurrent (assoc with stressful events)
 - Chronicity → 45-75% (after 1-7 years)
 - May still have night-to-night variability (occasional restful nights)
 - May have history of "light sleeping"
- Insomnia sx change with age
 - More prevalent among middle-age + older adults
 - Young adults → more commonly difficulties initiating sleep
 - Older adults → more commonly maintaining sleep
 - Less data in children + adolescents
 - Conditioning factors, inconsistent sleep schedules/bedtime routines
 - Psychological + medical factors

Insomnia Disorder – Risk & Prognostic Factors

- More likely when predisposed exposed to precipitating events
 - Major life events, chronic daily stress
 - More likely to have persistent insomnia after initial trigger gone
 - Perpetuating factors → sleep habits, sleep schedule, fear of not sleeping
- Temperamental
 - Anxiety, worry-prone personality/cognitive styles
 - Incr arousal predisposition, tendency to repress emotions
- Environmental
 - Noise, light, temperature, high altitude

Insomnia Disorder – Risk & Prognostic Factors

- Genetic & physiological
 - FEMALE gender, advanced age
 - Familial disposition
 - Higher prevalence among monozygotic twins
 - Higher in 1° family members (vs gen pop)
 - Unclear mechanism
- Course modifiers
 - Poor sleep hygiene (caffeine, irregular sleep schedules)

Insomnia Disorder – Gender-Related Issues

- More prevalent among → FEMALES
 - First onset often with birth of new child, or with menopause
 - Higher prevalence among older females
 - But better preservation of sleep continuity + slow-wave sleep (vs males)

www.SimplePsych.ca

Insomnia Disorder – Diagnostic Markers

- Polysomnography → usually impaired sleep continuity
 - Incr sleep latency, time awake after sleep onset
 - Decr sleep efficiency (% time in bed asleep)
 - Incr stage 1 sleep
 - Decr stage 3 + 4 sleep
 - PSG does not always match clinical presentation
 - Individuals misestimate sleep duration, wakefulness
- Quantitative EEG
 - More high-frequency during sleep-onset period, non-REM sleep
 - Suggestive of incr cortical arousal
- Insomnia (on objective sleep measures)
 - Lower sleep propensity
 - Typically do NOT show incr daytime sleepiness

Insomnia Disorder – Diagnostic Markers

- Generalized activation of HPA axis (not consistent)
 - Incr cortisol levels, HR variability, reactivity to stress, metabolic rate
- No consistent or characteristic abnormalities on physical exam
 - May appear fatigued or haggard
 - May appear over-aroused or wired
 - May have more stress-related psychophysiological sx
 - Tension headache, muscle tension/pain, GI sx

Insomnia Disorder – Functional Consequences

- Interpersonal, social, occupation problems
 - Insomnia, excessive concern, daytime irritability, poor concentrations
- Decr attention/concentration → COMMON
 - May be related to higher rates of accidents
- Persistent insomnia
 - MDD, hypertension, MI
 - Work absenteeism, decr productivity
 - Decr quality of life
 - Incr economic burden

Insomnia Disorder – Differential Diagnosis (1)

Normal sleep variations

- "Short sleepers" → no difficulty falling/staying asleep
 - No characteristic daytime sx (fatigue, concentration, irritability)
 - May attempt to sleep longer → may create insomnia-like pattern
- Inadequate sleep opportunity
 - Emergency situations, professional/family obligations

Situational/acute insomnia

- Lasts few days to weeks (<3 mos) → may cause sig distress/impairment
- Delayed sleep phase and shift work types (CRSW disorder)
 - Difficulties only when trying to sleep at social normal times
 - No difficulty at delayed times, or with endogenous circadian rhythm
 - History of shift work

Insomnia Disorder – Differential Diagnosis (2)

Restless legs syndrome

- Urge to move legs, unpleasant leg sensation
- Often produces difficulties initiating/maintaining sleep

Breathing-related sleep disorders

- Loud snoring, breathing pauses, excessive daytime sleepiness
- 50% of sleep apnea → also report insomnia sx (females, older adults)

Narcolepsy

Predominant daytime sleepiness, cataplexy, sleep paralysis, hallucinations

Parasomnias

- Unusual behaviors/events during sleep -> predominate clinical picture
- Substance/medication-induced sleep disorder, insomnia type

Insomnia Disorder – Comorbidity

- Bidirectional risk relationship with many medical conditions
 - Diabetes, CAD, COPD, arthritis, fibromyalgia, chronic pain
 - Insomnia incr risk of medical conditions
 - Medical conditions incr risk of insomnia
 - Direction of relationship not always clear, may change
- Comorbid mental disorder common
 - May be risk factor or early symptom
 - Esp Bipolar, depressive, anxiety disorders
 - May progress to SUD
 - Medications/alcohol to help sleep
 - Anxiolytics for tension/anxiety
 - Caffeine/stimulants for excessive fatigues

www.SimplePsych.ca

Hypersomnolence Disorder

Hypersomnolence Disorder – Diagnostic Criteria

- A. Excessive sleepiness, despite >7 hours main sleep (1/3):
 - 1. Recurrent periods/lapses of sleep, within same day
 - 2. Non-restorative, prolonged main sleep episode (>9 hours) per day
 - 3. Difficulty being fully awake, after abrupt awakening
- B. Occurs 3+ times per week, for 3+ months
- c. Significant distress or impairment
- D. Not better explained by another sleep disorder
- E. Not due to substance
- F. Not better explained by AMD or AMC

Hypersomnolence Disorder – Diagnostic Specifiers

- Specify if:
 - With mental disorder (incl SUDs)
 - With medical condition
 - With another sleep disorder
- Specify if:
 - Acute: duration <1 month
 - Subacute: duration 1-3 months
 - **Persistent:** duration >3 months
- Specify current severity (frequency):
 - Mild: 1-2 days/week
 - Moderate: 3-4 days/week
 - **Severe:** 5-7 days/week

Hypersomnolence Disorder – Diagnostic Features

- Hypersomnolence
 - Excessive sleep quantity \rightarrow nocturnal or daytime
 - **Decr wakefulness** \rightarrow sleep propensity, difficulty waking, staying awake
 - Sleep inertia → impaired performance, vigilance after waking
- Able to fall asleep quickly + good sleep efficiency (>90%)
- Sleep inertia ("sleep drunkenness")
 - Difficulty waking/transition → minutes to hours
 - May appear confused, disoriented, combative, ataxic
 - Affects motor dexterity, inappropriate behavior, memory deficits, groggy
 - May have automatic behaviors (without recall)

Hypersomnolence Disorder – Diagnostic Features

- Major sleep episode → 9+ hours, NON-restorative
 - Difficulty waking in morning
 - Some may have normal nocturnal sleep duration (6-9 hours)
- Unintentional daytime naps
 - Long (1+ hour), non-restorative, does not improve alertness
 - Nearly everyday (regardless of nocturnal sleep duration)
 - Sleepiness develops over time (not sudden sleep attack)
 - Typically in low-stimulation situations (lectures, reading, TV, driving)
 - May occur in high-attention situations (work, meetings, social)

Hypersomnolence Disorder – Associated Features

- Symptoms shared with other sleep disorders (e.g. narcolepsy)
 - Non-restorative sleep → 80% of hypersomnolence disorder
 - Difficulty waking → 80% of hypersomnolence disorder
 - Sleep inertia → 36-56% of hypersomnolence disorder, HIGHLY SPECIFIC
 - Automatic behaviors
 - Short naps unrefreshing, appear sleepy, falling asleep
- Subset with family history hypersomnolence
- Subset with sx of autonomic dysfunction
 - Recurrent vascular-type headaches
 - Reactivity of peripheral vascular system (Raynaud's phenomenon)
 - Fainting

Hypersomnolence Disorder – Prevalence

- In sleep disorders clinics, among pts c/o daytime sleepiness
 - 5 10% dx with hypersomnolence disorder
- In US/EU gen pop
 - 1% with episodes of sleep inertia
- Gender ratio → EQUAL (M=F)

Hypersomnolence Disorder – Development & Course

Onset

- Mean age at onset = age 17-24
- Fully manifest in late adolescence or early adulthood
- Pediatric cases RARE
- Dx usually made 10-15 years after first symptoms

Course → persistent, progressive

- Average nighttime sleep duration \rightarrow 9.5 hours (up to 20 hours)
- May be able to reduce sleep time during working days
 - Increased on weekends/holidays (+3 hours)
- Difficulty waking, sleep inebriate (40%)
- Sleepiness may be worsened by development of other sleep disorders
- Hyperactivity
 may be sign of daytime sleepiness in children
- Voluntary napping increases with age (NORMAL)

Hypersomnolence Disorder – Risk & Prognostic Factors

Environmental

- Hypersomnolence may be incr by psychological stress, alcohol use
- Viral infection → precede/accompany in 10% of cases
 - HIV pneumonia, infectious mononucleosis, GBS
- **Head trauma** \rightarrow hypersomnolence may appear 6-18 months after

Genetic & physiological

May be familial (? autosomal dominant inheritance)

Hypersomnolence Disorder – Diagnostic Markers

- Nocturnal polysomnography
 - Normal-prolonged sleep duration
 - Short sleep latency
 - Normal-increased sleep continuity
 - Normal REM sleep distribution
 - Sleep efficiency >90%
 - May have incr slow-wave sleep
- Multiple sleep latency test
 - (Sleep tendency = mean sleep latency <8 minutes)
 - In hypersomnolence disorder → high sleep tendency
 - Mean sleep latency → typically <10 minutes, frequently <8 minutes
 - Sleep-onset REM periods (within 20 minutes of sleep onset)
 - May be present (less than 40-50% of nap opportunities)

Hypersomnolence Disorder – Functional Consequences

- Low alertness while fighting need for sleep
 - Decr efficiency, concentration, memory
- Work + social relationships
 - Morning obligations
 - Daytime sleep episodes → embarrassing
 - Dangerous if driving, operating machinery

Hypersomnolence Disorder – Differential Diagnosis (1)

Normal variation in sleep

- "Long sleepers" → no excessive sleepiness, sleep inertia
 - No automatic behaviors, sleep is refreshing
 - If shorter nocturnal sleep (due to social/work demands) → daytime sx
- "Behaviorally induced insufficient sleep syndrome"
 - Inadequate nocturnal sleep (<7 hours), may have daytime sleepiness
 - Typically catch up with longer sleep when free
 - Unlikely to persist for decades
 - Do not dx hypersomnolence disorder if unsure of sleep duration
 - May trial sleep extension for 10-14 days

Poor sleep quality + fatigue

- Not necessarily relieved by increased sleep
- May be difficult to differentiate fatigue (vs excessive sleepiness)

Hypersomnolence Disorder – Differential Diagnosis (2)

- Breathing-related sleep disorders
 - May have similar patterns of excessive sleepiness
 - Loud snoring, pauses in breathing, brain injury
 - Cardiovascular disease, hypertension, heart failure
 - Obesity, oropharyngeal anatomical abnormalities
 - PSG \rightarrow can confirm **apneic events** (not in hypersomnolence disorder)
- Circadian rhythm sleep-wake disorders
 - Often daytime sleepiness
 - Hx abnormal sleep-wake schedule (shifted/irregular hours)
- Parasomnias
 - Rarely prolonged, undisturbed nocturnal sleep or daytime sleepiness
- Other mental disorders
 - Hypersomnolence may be essential/associated feature
 - MDE with atypical features, depressed phase of bipolar

Hypersomnolence Disorder – Comorbidity

Mood disorders

- Depressive disorders, MDD with seasonal pattern
- Depressive episodes in bipolar disorder
- May have depression sx → may be related to psychosocial consequences of persistent incr sleep need
- Risk of SUD → esp self-medication with stimulants
- Neurodegenerative conditions assoc with hypersomnolence
 - Alzheimer's disease, Parkinson's disease
 - Multiple system atrophy

Narcolepsy

Narcolepsy - Diagnostic Criteria

A. Recurrent irrepressible need to sleep, lapsing into sleep, or napping within same day \rightarrow 3x per week, for 3 months

B. 1/3 symptoms:

- 1. Cataplexy episodes, few times per month, either:
 - Brief episodes (seconds-minutes), sudden bilateral loss of muscle tone, maintained consciousness, precipitated by laughter/joking
 - In children or within 6 months onset, spontaneous grimaces or jaw-opening episodes with tongue thrusting or global hypotonia, without any obvious emotional triggers
- 2. <u>Hypocretin deficiency</u> → low CSF levels of hypocretin-1
- 3. Short REM sleep latency
 - **Nocturnal PSG** → REM sleep latency <15 mins
 - Multiple sleep latency test → mean sleep latency <8 mins + 2+ sleep-onset REM periods

Narcolepsy – Diagnostic Specifiers

- Specify subtype:
 - Narcolepsy without cataplexy, but with hypocretin deficiency
 - May have "cataplexy-like" symptoms
 - Narcolepsy with cataplexy, but without hypocretin deficiency
 - Rare subtype (<5%)
 - Autosomal dominant cerebellar ataxia, deafness, narcolepsy
 - Exon 21 DNA (cytosine-5)-methyltransferase-1 mutation
 - Late-onset (age 30-40)
 - Autosomal dominant narcolepsy, obesity, type 2 diabetes
 - Rare, assoc with mutation in myelin oligodendrocyte glycoprotein gene
 - Narcolepsy secondary to AMC
 - Destruction of hypocretin neurons
 - Infectious (Whipple's disease, sarcoidosis), trauma, tumors

Narcolepsy – Diagnostic Specifiers

- Specify current severity:
 - Mild: infrequent cataplexy (less than once per week), naps 1-2x per day, less disturbed nocturnal sleep
 - Moderate: cataplexy every 1-2 days, multiple naps per day, disturbed nocturnal sleep
 - Severe: drug-resistant cataplexy, multiple attacks daily, nearly constant sleepiness, disturbed nocturnal sleep

Narcolepsy – Subtypes

- Extremely rare to have low CSF + negative PSG/MSLT
 - Repeat testing advised
- Exclude \rightarrow seizures, other causes of falls, conversion disorder
- HLA DQB1*06:02
 - May be negative in narcolepsy with cataplexy, but without hypocretin deficiency
 - May be positive in narcolepsy secondary to AMC (?autoimmune)
- Head trauma/infections
 - Can cause transient decr in CSF hypocretin-1 levels
 - Without hypocretin cell loss

Narcolepsy – Diagnostic Features (1)

- Recurrent daytime naps or lapses into sleep
 - Typically occurs daily (minimum 3x per week, for 3 months)
- Generally produces cataplexy
 - Most commonly -> brief episodes of sudden bilateral loss of muscle tone
 - Precipitated by emotions (typically laughing/joking)
 - May affect neck, jaw, arms, legs, whole body
 - May result in head bobbing, jaw dropping, complete falls
 - Awake + aware during cataplexy
 - For criterion B1a → must be triggered by laughing/joking, few times/month
 - NOT weakness (after exercise or unusual emotional triggers)
 - UNLIKELY if lasting hours-days, or not triggered by emotions (NOT ROFL)
- In children, close to onset → may be atypical cataplexy
 - Primarily affecting face → grimaces, jaw opening + tongue thrusting
 - May present as low-grade continuous hypotonia, wobbling gait

Narcolepsy – Diagnostic Features (2)

- Loss of hypothalamic hypocretin (orexin)-producing cells
 - Hypocretin deficiency (<1/3 control values, >100 pg/mL)
 - CSF-hypocretin-1 = GOLD STANDARD
 - Rarely without cataplexy (still low CSF levels of hypocretin-1)
 - In youths who may develop cataplexy later
 - Likely autoimmune → 99% carry HLA-DQB1*06:02 (12-39% in controls)
 - May be helpful to check before LP for CSF hypocretin-1
- Nocturnal PSG, then MSLT → to confirm dx
 - Must stop all psychotropic medications, 2 weeks of adequate sleep
 - PSG → short REM latency (<15 mins)
 - MSLT → mean sleep latency <8 mins
 - Sleep-onset REM periods in 4-5 naps

Narcolepsy – Associated Features (1)

- Autonomic behaviors → if severe sleepiness
 - Semi-automatic, haze-like fashion, without memory/consciousness
- Hypnagogic/hypnopompic hallucinations → 20-60%
 - Hypnagogic → falling asleep, Hypnopompic → waking up
 - More vivid (than dreamlike mentation at sleep onset in normal sleepers)
- Nightmares, vivid dreams → common
 - Also in REM sleep behavior disorder
- <u>Sleep paralysis</u> (upon falling asleep/waking) → **20-60**%
 - Occurs in many normal sleepers, esp with stress/sleep deprivation

Narcolepsy – Associated Features (2)

- Nocturnal eating may occur → obesity common
- Nocturnal sleep disruption → COMMON, may be disabling
 - Freq long or short awakenings
- Daytime sleepiness
 - May fall asleep in waiting area or during clinical exam
- <u>During cataplexy</u> (attacks usually <10 seconds)
 - May slump in chair, have slurred speech, drooping eyelids
 - ABSENT REFLEXES during cataplexy (vs conversion disorder)

Narcolepsy – Prevalence

- Narcolepsy-cataplexy attacks → 0.02-0.04% of gen pop
 - May have **slight male** preponderance

Narcolepsy – Development & Course (1)

Onset

- Typically in children, adolescents, young adults (rarely older adults)
 - 2 PEAKS of onset → age 15-25 + age 30-35
- Onset may be abrupt or progressive
 - If abrupt onset in children → HIGHEST severity
 - Severity then decr with age/tx → cataplexy may disappear
 - May be assoc with obesity, premature puberty (if prepubescent)
 - Onset in adults often less clear → some report lifetime sleepiness

Course → PERSISTENT, lifelong

- Most common first sx (90%) = SLEEPINESS, incr need for sleep
- 2nd most common first sx = cataplexy (50% within 1 yr, 85% within 3 yrs)
- Other early sx → hypnagogic hallucs, vivid dreaming, REM SBD
- RAPID progression to inability to stay awake during day
 - Also inability to maintain good sleep at night (no incr in sleep needs)

Narcolepsy – Development & Course (2)

- Atypical cataplexy \rightarrow may be in first 3 months, esp in children
- <u>Sleep paralysis</u> → around puberty (if prepubertal onset)
- Exacerbation of sx
 - Non-adherence to medications
 - Development of concurrent sleep disorder (esp sleep apnea)
- In children & adolescents
 - Often develop aggression or behavioral problems
 - (secondary to sleepiness/nighttime sleep disruption)
 - Increasing workload, social pressure → less available sleep time
- Pregnancy → does NOT consistently modify sx
- After retirement → more opportunity for naps, less stimulants
- Maintaining REGULAR SCHEDULE → benefits all ages

Narcolepsy – Risk & Prognostic Factors

Temperamental

- Parasomnias more common (sleepwalking, bruxism, REM SBD, enuresis)
- Report need more sleep (than other family members)

Environmental

- Infections likely triggers of autoimmune process
 - Group A strep throat infection, influenza, winter infections
- Head trauma, abrupt changes in sleep-wake pattern (job, stress)

Genetic & Physiological

- Monozygotic twin concordance = 25-32%
- 10-40x risk in 1° degree relatives (prevalence 1-2%)
- Strong assoc with HLA DQB1*06:02 (99%)
 - Slight modification from other polymorphisms

Narcolepsy – Culture-Related Issues

- Described in ALL ethnic groups, many cultures
- Among African Americans
 - More cases without cataplexy, or with atypical cataplexy
 - May complicated dx (esp if obesity, OSA)

Narcolepsy - Diagnostic Markers (1)

- Functional imaging
 - Impaired hypothalamic responses to humorous stimuli
- Nocturnal PSG followed by MSLT → confirms dx
 - Esp if initial dx, before dx, hypocretin not documented yet
 - Should stop all psychotropic drugs, normalize sleep-wake patterns
 - PSG → short REM sleep latency (<15 mins)
 - **HIGHLY specific** (only 1% in control), moderately sensitive (50%)
 - May also see freq arousals, decr sleep efficiency, incr stage 1 sleep
 - Periodic limb movements (40%), sleep apnea
 - MSLT → short mean sleep latency (<8 mins)
 - AND sleep-onset REM periods (in 2 of 4-5 nap test)
 - Positive in 90-95% narcolepsy (2-4% controls)

www.SimplePsych.ca

Narcolepsy – Diagnostic Markers (2)

- Hypocretin deficiency → CSF hypocretin-1 immunoreactivity
 - Useful if suspected conversion disorder, atypical cataplexy, tx-refractory
 - CANNOT interpret if severely ill (infection, head trauma, comatose)
 - NOT affected by medications, sleep deprivation, circadian time
 - Other CSF results normal (cytology, protein, glucose)

Narcolepsy – Functional Consequences

- Impaired DRIVING + WORKING
 - Should avoid working with machinery, bus driver, pilot
 - If untreated → risk of social isolation, accident injury
 - If controlled with tx, may drive (but not long distances alone)

Narcolepsy – Differential Diagnosis (1)

Narcolepsy	Hypersomnolence Disorder
More discrete "sleep attacks"	Longer, less disrupted nocturnal sleep
Cataplexy	Greater difficulty waking
Intrusion elements of REM sleep	More persistent daytime sleepiness
during transitions between sleep +	 Longer, less refreshing daytime naps
awake (sleep-related hallucs, sleep	Minimal dreaming during daytime naps
paralysis)	
 MSLT → shorter sleep latency, 	
multiple SOREMPs	
BOTH have daytime sleepiness, similar age at onset, stable course	

Narcolepsy - Differential Diagnosis (2)

- Sleep deprivation, insufficient nocturnal sleep
 - Common in adolescents, shift workers
 - May have positive MSLT if sleep deprived or delayed sleep phase
- Sleep apnea syndromes
 - Obstructive sleep apnea more common (esp if obesity)
 - Cataplexy may be overlooked, assumed to be unresponsive OSA
- Major depressive disorder
 - NO cataplexy, MSLT normal (different subjective vs objective sleepiness)
- Conversion disorder
 - Atypical features (long-lasting cataplexy, unusual triggers)
 - MSLT normal (no SOREMPs)
 - Reflexes NORMAL

Narcolepsy – Differential Diagnosis (3)

ADHD

- Sleepiness can cause behavioral problems (aggression, inattention)
- Seizures → may be confused with cataplexy in young children
 - Not usually triggered by emotions or laughing/joking
 - More likely to hurt themselves when falling
 - Rarely isolated atonia, positive EEG findings
- Chorea, movement disorders
 - May be confused with cataplexy in young children
 - **PANDAS** \rightarrow strep throat infection, high antistreptolysin O antibodies
 - Overlapping movement disorder around onset of cataplexy
- Schizophrenia
 - Sleep-related hallucinations, delusions from stimulant tx
 - If also cataplexy, should assume due to narcolepsy first

Narcolepsy – Comorbidity

- May co-occur with → bipolar, depressive, anxiety disorders
 - More rare with schizophrenia
- Assoc with incr BMI/obesity (esp if untreated narcolepsy)
 - Rapid weight gain common in sudden onset in young children
- If sudden aggravation of pre-existing narcolepsy
 - Consider OSA

Breathing-Related Sleep Disorders OSA Hypopnea Central Sleep Apnea Sleep-Related Hypoventilation

Obstructive Sleep Apnea Hypopnea

OSA Hypopnea – Diagnostic Criteria

A. Either:

- 1. 5+ obstructive apneas/hypopneas PER HOUR (on PSG) + either:
 - Nocturnal breathing disturbance (snoring, snorting, gasping, pauses)
 - Daytime sleepiness, fatigue, unrefreshing sleep
 - Despite adequate sleep opportunities
 - Not better explained by AMD or AMC
- 2. <u>15+ obstructive apneas/hypopneas PER HOUR</u> (regardless of other sx)

OSA Hypopnea – Diagnostic Specifiers

- Specify current severity:
 - Mild: apnea hypopnea index <15
 - Moderate: apnea hypopnea index 15-30
 - **Severe:** apnea hypopnea index >30
- Apnea hypopnea index → count per hour
- Overall disease severity
 - Level of nocturnal desaturation (sig if >10% sleep time at SaO2 <90%)
 - Sleep fragmentation (arousal index >30, or stage N3 sleep <5%)
 - Associated symptoms
 - Day time impairment

OSA Hypopnea – Diagnostic Features

- MOST COMMON breathing-related sleep disorder
 - Repeated upper airway (pharyngeal) obstructions
 - Apnea = total absence of airflow
 - Hypopnea = reduction in airflow
 - In adults → reduction in breathing for >10 seconds
 - In children → 2 missed breaths
 - Typically assoc with drops in SaO2 >3% ± EEG arousal
 - Cardinal symptoms → SNORING + DAYTIME SLEEPINESS
- Diagnosis based on → PSG + symptoms
 - Assoc findings -> central obesity, crowded pharyngeal airway, incr BP

OSA Hypopnea – Associated Features

Freq nocturnal awakenings → may report INSOMNIA sx

- Other common sx (non-specific)
 - Heartburn, nocturia, morning headaches, dry mouth
 - Erectile dysfunction, decr libido
 - More rare → difficulty breathing lying supine/sleeping
- Hypertension COMMON → >60%

OSA Hypopnea – Prevalence

- Very common disorder
 - Children → **1-2**%
 - Middle-age adults → 2-15%
 - Older adults → >20% (may have high rates of undiagnosed)
- Higher prevalence groups
 - Obesity, older adults, certain racial/ethnic groups
 - MALES (2-4x)
 - Gender difference declines in older age (higher in menopause)
 - NO gender difference in prepubertal children

OSA Hypopnea – Development & Course (1)

- "J-shaped distribution"
 - Peak age 3-8 → compromised nasopharynx by large tonsillar tissue
 - Declines with growth of airway, regression of lymphoid tissue
 - Increases in midlife + menopause
 - Course in older age unclear → may level off or increase with age
- Insidious onset, gradual progression, persistent course
 - Loud snoring often present for many years (since childhood)
 - Weight gain → may exacerbate sx
 - Most commonly manifests age 40-60 (but can occur any age)
 - In adults, apneas/hypopneas incr by 2 over 4-5 years
 - Higher apnea/hypopnea index if older, male, incr BMI
- May spontaneously improve
 - With weight loss (esp after bariatric surgery)
 - In children → seasonal variation, overall growth

OSA Hypopnea – Development & Course (2)

- Young children → more subtle sx, difficult dx
 - **PSG useful** to confirm $dx \rightarrow sleep$ fragmentation not as apparent
 - Reports of snoring less sensitive (parent-reported)
 - Agitated arousals, unusual sleep postures (on hands, knees)
 - Nocturnal enuresis → suspicion if previous dry at night
 - Daytime sleepiness (not as common/pronounced as adults)
 - Daytime mouth breathing, swallowing difficulty, poor speech articulation
 - May present with failure to thrive, developmental/growth delays
 - Obesity less common risk factor
- Younger than age $5 \rightarrow$ more often present with **nighttime sx**
 - Observed apneas, labored breathing (vs behavioral)
- Older than age 5 → more often daytime sx
 - Sleepiness, impulsivity, hyperactivity, learning difficulties, morning H/A

OSA Hypopnea – Risk & Prognostic Factors

Genetic & Physiological

- MAJOR risk factors → obesity, male gender (vs premenopausal females)
 - Gender differences in airway structure
- Maxillary-mandibular retrognathia or micrognathia
- Family history of sleep apnea
- Genetic syndrome reducing upper airway patency
 - Down's syndrome, Treacher Collin's syndrome
- Adenotonsillar hypertrophy (esp young children)
- Menopause (influence of sex hormones on ventilatory control, body fat)
- Certain endocrine syndromes (acromegaly)
- Sedating medications → may worsen course

Strong genetic basis

2x risk among 1° relatives

OSA Hypopnea – Culture-Related Issues

- Potential for sleepiness/fatigue → reported differently by culture
 - Snoring may be considered sign of health, not concerning
- Asian ancestry
 - May be at incr risk of OSA → despite low BMI
 - May be due to craniofacial risk factors, narrowing nasopharynx

OSA Hypopnea – Gender-Related Issues

Females

- May more commonly report **fatigue** (vs sleepiness)
- May underreport snoring

OSA Hypopnea – Diagnostic Markers

- Polysomnography
 - Sleep-related respiratory disturbances, sleep continuity
 - Associated changes in oxygen saturation
 - PSG in children
 - Labored breathing, paradoxical movements, hypercapnia
 - Partial obstructive hypoventilation with cyclical desaturations
 - Apnea hypopnea index threshold as low as 2
- Validated sleep measures (MSLT, maintenance of wakefulness)
 - May identify sleepiness
- Other investigations
 - Arterial blood gas
 - May have waking hypoxemia/hypercapnia

 otherwise normal awake
 - Possible co-existing lung disease or hypoventilation
 - Imaging → may show narrowing of upper airway
 - Cardiac testing → may show impaired ventricular function
 - Bloodwork → incr Hb or Hct (severe nocturnal O2 desaturation)

OSA Hypopnea – Functional Consequences

- If mod-severe OSAH → 50% report daytime sleepiness
- If snoring/sleepiness → 2x risk of occupational accidents
- Incr AH index → 7x risk of MVA
 - Government reporting requirements
- Measures of health-related quality of life → REDUCED
 - Esp physical + vitality subscales

OSA Hypopnea – Differential Diagnosis (1)

- Primary snoring → otherwise asymptomatic, no abn PSG
 - OSAH → may also report nocturnal gasping, choking
- Other sleep disorders → ddx requires PSG
 - Hypersomnia, central sleep apnea, sleep-related hypoventilation
- Narcolepsy → can dx both
 - Daytime naps → shorter, more refreshing, more dreams
 - PSG, MSLT → shorter REM sleep latency
 - Both assoc with obesity
- Insomnia disorder → can dx both
 - Difficulty initiating/maintaining sleep, early-morning awakenings
 - No snoring

OSA Hypopnea – Differential Diagnosis (2)

Panic attacks

- Nocturnal panic attacks → may have gasping, choking
 - But lower freq, intense autonomic arousal, no excessive sleepiness
 - PSG → no apneas, no O2 desaturation
- OSAH → no daytime panic attacks
- ADHD → can co-occur (watch for OSAH risk factors)
 - Both have inattention, hyperactivity, internalizing, academic impairment
- Substance/medication-induced insomnia/hypersomnia
 - Certain substances exacerbate OSAH
 - Alcohol, barbiturates, benzos, tobacco

OSA Hypopnea – Comorbidity

- Associated medical conditions
 - Systemic hypertension, CAD, heart failure, stroke, DM, incr mortality
 - If mod-severe OSAH → 30-300% risk
 - Rarely → pulmonary HTN, right heart failure
 - Very severe disease, hypoventilation, cardiopulmonary disease
 - May co-occur with cerebrovascular disease, Parkinson's disease
- Depressive symptoms → 1/3 of those referred for OSAH
 - 10% → severe depression scores
 - AH index correlated with severity of depression sx
 - May be stronger assoc in males

Central Sleep Apnea

Central Sleep Apnea – Diagnostic Specifiers

A. PSG \rightarrow 5+ central apneas per hour of sleep

B. Not better explained by another current sleep disorder

Central Sleep Apnea – Diagnostic Specifiers

Specify whether:

- Idiopathic central sleep apnea: caused by variability in respiratory effort, without evidence of airway obstruction
- Cheyne-Stoke breathing: periodic crescendo-decrescendo variation in tidal volume -> results in 5+ apneas/hypopneas per hour, frequent arousal
 - May also be observed during resting wakefulness
 poor prognosis for mortality
- Central sleep apnea comorbid with opioid use: effect of opioids on respiratory rhythm generators in the medulla, differential effects on hypoxic vs hypercapnic respiratory drive

• Specify current severity:

- Based on frequency of breathing disturbances
- Associated O2 desaturations, sleep fragmentation
- Sleep continuity + quality may be markedly impaired
 - Reductions in restorative stages of non-REM sleep (i.e. stage N3)

Central Sleep Apnea – Subtypes

- Idiopathic central sleep apnea, Cheyne-Stoke breathing
 - Increased gain of ventilatory control system → "high loop gain"
 - Leads to instability of ventilation + PaCO2 levels
 - **Periodic breathing** \rightarrow hyperventilation alternating with hypoventilation
 - Typically slightly hypocapneic or normocapneic
- May manifest during initiation of treatment of OSAH
 - May occur in assoc with OSAH (complex sleep apnea)
 - Ratio of central to obstructive → predominant condition
 - Due to "high loop gain"
- CSA comorbid with opioid use
 - Effects on respiratory rhythm generators in medulla
 - Differential effects on hypoxic vs hypercapneic respiratory drive
 - May have elevated pCO2 levels while awake
 - Chronic MMT → incr somnolence, depression

Central Sleep Apnea – Diagnostic Features (1)

- Repeated episodes of apneas/hypopneas during sleep
 - Cause by variability in respiratory effort
 - Periodic or intermittent pattern
- Idiopathic central sleep apnea
 - Sleepiness, insomnia, awakenings due to dyspnea
 - 5+ central apneas per hour of sleep
- Cheyne-Stokes breathing
 - Occurs in heart failure, stroke, renal failure
 - Periodic crescendo-decrescendo variation in tidal volume
 - 5+ central apneas per hour → with frequent arousals

Central Sleep Apnea – Diagnostic Features (2)

- Medications/substances used in mental health conditions
 - Can alter neuromuscular control of breathing
 - May exacerbate impairments of respiratory rhythm + ventilation
 - May contribute to sleepiness, confusion, depression
- Chronic use of long-acting opioids
 - Often assoc with impairment of respiratory control
 - May lead to central sleep apnea

Central Sleep Apnea – Associated Features

- Symptoms can vary
 - Sleepiness, insomnia
 - Sleep fragmentation, awakening with dyspnea
 - Some are asymptomatic
- OSAH can co-exist with Cheyne-Stokes breathing
 - Snoring + abruptly terminating apneas may be observed

Central Sleep Apnea – Prevalence

Idiopathic CSA

Prevalence = UNKNOWN (thought to be rare)

Cheyne-Stokes breathing

- High if depressed ventricular ejection fraction
 - If EF $<45\% \rightarrow 20\%$ or higher
 - If acute stroke \rightarrow 20%
- Even more skewed to MALES (vs OSAH)

Opioid CSA

Prevalence = 30% if on chronic opioids for non-malignant pain or MMT

Central Sleep Apnea – Development & Course

- Cheyne-Stokes breathing
 - Onset assoc with development of heart failure
 - Assoc with oscillations in HR, BP, SaO2
 - Incr SNS activity → may promote progression of heart failure
 - Significance in acute stroke not known (may be transient finding)
- Opioid CSA
 - Assoc with chronic use (several months)

Central Sleep Apnea – Risk & Prognostic Factors

- Genetic & Physiological
 - Cheyne-Stokes frequently presents in HEART FAILURE
 - Incr ventilatory chemosensitivity, hyperventilation
 - Due to pulmonary vascular congestion, circulatory delay
 - Further risk with atrial fibrillation, older age, male gender
 - Also seen in acute stroke, possibly renal failure

Central Sleep Apnea – Diagnostic Markers

- Cheyne-Stokes → heart failure findings
 - JVP distension, S3 heart sound, lung crackles, lower extremity edema
- Polysomnography
 - Central sleep apneas → breathing cessation >10 seconds
 - Cheyne-stokes → crescendo-decrescendo variation in tidal volume
 - Result in central apneas/hypopneas → 5+ per hour
 - Cycle length = 60 seconds (between end of apneas)

Central Sleep Apnea – Functional Consequences

Idiopathic CSA

Disrupted sleep, sleepiness, insomnia

Cheyne-Stokes breathing

- If comorbid heart failure → sleepiness, fatigue, insomnia
 - May be asymptomatic
 - Increased cardiac arrhythmias, mortality, cardiac transplantation

Opioid CSA

• Sleepiness, insomnia

Central Sleep Apnea – Differential Diagnosis

- Other breathing-related sleep disorders, other sleep disorders
 - Differentiate with polysomnography
 - Predominant CSA vs OSAH → >50% central sleep apneas
 - Cheyne-Stokes → predisposing condition + PSG evidence
 - (vs insomnia due to other medical conditions)
 - High-altitude periodic breathing similar pattern
 - But shorter cycle time, only at high altitude, not assoc with HF
 - Opioid CSA → PSG evidence (vs insomnia)

www.SimplePsych.ca

Central Sleep Apnea – Comorbidity

- Use of long-acting opioids (methadone)
 - May observe central apneas, periodic apneas, ataxic breathing
- Cheyne-Stokes
 - Heart failure, stroke, renal failure
 - More frequent if atrial fibrillation
 - More likely if older, male, lower weight (vs OSAH)

Sleep-Related Hypoventilation

Sleep-Related Hypoventilation – Diagnostic Criteria

- A. PSG \rightarrow decr respiration + elevated CO2 levels
 - 1. If no CO2 measurement \rightarrow low Hb O2 saturation without apneic events
- B. Not better explained by another current sleep disorder

www.SimplePsych.ca

Sleep-Related Hypoventilation – Diagnostic Specifiers

- Specify whether
 - Idiopathic hypoventilation
 - Congenital central alveolar hypoventilation: rare congenital disorder, present in perinatal period with shallow breathing, cyanosis or apnea
 - Comorbid sleep-related hypoventilation: due to medication condition
 - Pulmonary → ILD, COPD
 - Neuromuscular/chest west → muscular dystrophies, post-polio, cervical spinal cord injury, kyphoscoliosis
 - Medications → benzos, opiates
 - Obesity \rightarrow decr chest wall compliance, ventilation-perfusion mismatch, decr ventilatory drive (BMI >30, hypercapnia during wakefulness)
- Specify current severity
 - Based on degree of hypoxemia/hypercarbia during sleep
 - Evidence of end organ impairment (right heart failure)
 - Blood gas abnormalities during wakefulness → greater severity

Sleep-Related Hypoventilation – Diagnostic Features

- More frequently occurs secondary (can be independent)
 - Medical + neurological disorders, medications, substances
- Often report (but not necessary for dx)
 - Excessive daytime sleepiness
 - Frequent arousals + awakenings during sleep
 - Morning headaches
 - Insomnia complaints

www.SimplePsych.ca

Sleep-Related Hypoventilation – Associated Features

- Sleep-related complaints
 - Insomnia, sleepiness, morning headaches
 - Orthopnea (if diaphragm weakness)
- During sleep → may have shallow breathing
 - May have co-existing OSAH or CSA
 - May be assoc with frequent arousals, bradytachycardia
- Consequences of ventilatory insufficiency
 - Pulmonary hypertension
 - Cor pulmonale (right heart failure)
 - Polycythemia
 - Neurocognitive dysfunction
 - If severe → blood gas abnormalities during wakefulness

Sleep-Related Hypoventilation – Prevalence

<u>Idiopathic</u> → very uncommon

Congenital central alveolar hypoventilation → rare

• Comorbid sleep-related hypoventilation → more common

Sleep-Related Hypoventilation – Development & Course

Idiopathic

Thought to be slowly progressive disorder of respiratory impairment

Congenital central alveolar hypoventilation

- Usually manifests at birth → shallow, erratic or absent breathing
- Can manifest during infancy, childhood, adulthood
 - Due to variable penetrance of *PHOX2B* mutation
- Children → more likely to have ANS disorders, Hirschsprung's disease, neural crest tumors,
 characteristic box-shaped face

Comorbid sleep-related hypoventilation

- Severity reflects underlying condition → progresses with condition
- Complications → pulmonary hypertension, cor pulmonale, cardiac dysrhythmias, polycythemia, neurocognitive dysfunction, worsening respiratory failure

Sleep-Related Hypoventilation – Risk & Prognostic Factors

• Environmental → CNS depressants (benzos, opiates, alcohol)

- Genetic & Physiological
 - **Idiopathic** → blunted chemoresponsiveness to CO2
 - Reflects underlying neurological deficits in ventilation centers
 - Comorbid -> pulmonary, neuromuscular, chest wall, hypothyroidism, meds
 - May be consequence of incr WOB, impaired respiratory muscles, or decr respiratory drive
 - Neuromuscular disorders → impaired innervation or muscle function
 - Amyotrophic lateral sclerosis, spinal cord injury, diaphragmatic paralysis, myasthenia gravis, Lambert-Eaton syndrome, toxic/metabolic myopathies, post-polio syndrome, Charcot-Marie-Tooth syndrome
 - Congenital → PHOX2B gene, crucial for development of embryonic ANS + neural crest derivatives
 - Blunted response to hypercapnia (esp during non-REM sleep)

Sleep-Related Hypoventilation – Gender-Related Issues

- Reflects gender distribution of underlying condition
 - E.g. COPD more common in males, incr age

Sleep-Related Hypoventilation – Diagnostic Markers

- Polysomnography
 - Sleep-related hypoxemia + hypercapnia (not better explained)
 - High paCO2 (>55) or increase in pCO2 (>10 to >50) during sleep
 - Arterial blood gas during sleep may be impractical
 - O2 desaturations (<90% for 5 mins to at least 85%, or <90% for 30 mins)
 - No evidence of upper airway obstruction
 - Not as specific (other causes of hypoxemia)

Sleep-Related Hypoventilation – Functional Consequences

- Effects of chronic exposure to hypercapnia + hypoxemia
 - Vasoconstriction of pulmonary vasculature -> pulmonary hypertension
 - If severe → right heart failure (cor pulmonale)
 - Dysfunction of organs (brain, blood heart)
 - Cognitive dysfunction, polycythemia, cardiac arrhythmias
 - Hypercapnia → can depress respiratory drive (progressive resp failure)

Sleep-Related Hypoventilation – Differential Diagnosis

- Other medical conditions affecting ventilation
 - Idiopathic sleep-related hypoventilation → very uncommon
 - Excludes lung, MSK, neuromuscular, other medical causes
 - Differentiate from sleep-related hypoxemia (lung disease)
- Other breathing-related sleep disorders
 - Ddx with polysomnography
 - SRH → longer periods of O2 desaturation (vs OSAH/CSA)
 - No discrete episodes or airflow decreases

Sleep-Related Hypoventilation – Comorbidity

- Often occurs with medical condition/medication
 - Pulmonary (ILD, COPD)
 - Neuromuscular (muscular dystrophies, post-polio, cervical SCI)
 - Chest wall (obesity, kyphoscoliosis)
 - Medications (benzos, opiates)
- Congenital central alveolar hypoventilation
 - Often with autonomic dysfunction → Hirschsprung's disease
 - ?late-onset congenital central alveolar hypoventilation → ?idiopathic
- Co-existing OSAH → may exacerbate hypoxemia/hypercapnia

Circadian Rhythm Sleep-Wake Disorders

CRSW Disorders – Diagnostic Criteria

A. Sleep disruption due to alteration/misalignment of circadian system

B. Excessive sleepiness or insomnia

c. Significant distress or impairment

www.SimplePsych.ca

CRSW Disorders – Diagnostic Specifiers

- Specify whether:
 - Delayed sleep phase type
 - Familial
 - Overlapping with non-24-hour sleep-wake type
 - Advanced sleep phase type
 - Familial
 - Irregular sleep-wake type
 - Non-24-hour sleep-wake type
 - Shift work type
 - Unspecified type
- Specify if:
 - **Episodic:** symptoms for 1-3 months
 - **Persistent:** symptoms for >3 months
 - Recurrent: 2+ episodes within 1 year

Delayed Sleep Phase Type

Delayed Sleep Phase Type – Diagnostic Features

- Delayed timing of major sleep period
 - Usually >2 hours → in relation to desired sleep/wake time
 - Prominent initial insomnia, difficult AM waking, excessive sleepiness
 - Normalizes if able to set own schedule (sleep quality + duration)

Delayed Sleep Phase Type – Associated Features

- Common associated features
 - Mental disorder (previous/concurrent)
 - Extreme/prolonged difficult waking
 - Morning confusion
- Psychophysiological insomnia
 - May develop as result of maladaptive behaviors
 - Repeated attempts to fall asleep earlier
 - Impair sleep + increase arousal

Delayed Sleep Phase Type – Prevalence

- Prevalence
 - General population = **0.17**%
 - Adolescents = >7%
- Prevalence NOT established for familial type
 - But family hx of delayed sleep phase is common

Delayed Sleep Phase Type – Development & Course

- Onset → variable
 - Typically in adolescence + early adulthood
 - May be due to both physiological (hormones) + behavioral factors
 - Delayed sleep phase assoc with onset of puberty
 - May persist for months to years → before dx established
- Course → persistent (>3 months)
 - Intermittent exacerbations throughout adulthood
 - Usually triggered by work/school schedule changes (earlier rise)
 - If able to alter work schedule → may have remission
 - Relapse of symptoms COMMON
 - Severity may decrease with age (may not in familial form)

Delayed Sleep Phase Type – Risk & Prognostic Factors

Physiological

- Predisposing factors
 - Longer than average circadian period
 - Changes in light sensitivity
 - Impaired homeostatic sleep drive
- Some may be hypersensitive to evening light (delays circadian clock)
- Some may be hyposensitive to morning light (prevents phase advance)

Genetic

- May play role in familial + sporadic forms
 - Circadian gene mutations (PER3, CKIe)

Delayed Sleep Phase Type – Diagnostic Markers

- Compete history + sleep diary/actigraphy
 - Should include weekends (less strict work/social obligations)
 - Ensure consistently delayed sleep-wake pattern
- Biomarkers
 - e.g. salivary dim light melatonin
 - Only use if dx unclear

Delayed Sleep Phase Type – Functional Consequences

- Severity of insomnia + excessive sleepiness varies
 - Largely depends on work/social demands

Delayed Sleep Phase Type – Differential Diagnosis

Normal variations in sleep

- Late schedule that does NOT cause distress
- Common in adolescents + young adults

Other sleep disorders

- Ddx → insomnia disorder, other CRSW disorders
- Excessive sleepiness → other sleep disturbances
 - Breathing-related sleep disorders, insomnia
 - Sleep-related movement disorders
 - Medical, neurological, mental disorders
- Overnight PSG → ?sleep apnea
- Circadian nature!

www.SimplePsych.ca

Delayed Sleep Phase Type – Comorbidity

- Strong association with:
 - Depression, somatic symptom disorder, IAD, personality disorder
- Comorbid conditions may exacerbate insomnia + sleepiness
 - Comorbid sleep disorders (insomnia disorder, RLS, sleep apnea)
 - Depression, bipolar, anxiety disorders
- Non-24-hour sleep-wake type → may overlap
 - Commonly have hx of delayed circadian sleep phase

Advanced Sleep Phase Type

Advanced Sleep Phase Type – Diagnostic Features

- Earlier (advanced) timing of major sleep period
 - Usually >2 hours → in relation to desired sleep/wake time
 - Prominent early morning insomnia, excessive daytime sleepiness
 - Normalizes if able to set own schedule (sleep quality + duration)
- "Familial" specifier
 - Family hx often present → but prevalence NOT established
 - Specific mutations -> autosomal dominant inheritance
 - Onset of symptoms EARLIER (childhood, early adulthood)
 - Course PERSISTENT → severity may INCREASE with age

Advanced Sleep Phase Type – Associated Features

- <u>"Morning types"</u> → earlier sleep-wake times
 - Circadian biomarkers (melatonin, core body temp) → 2-4 hours earlier
- If delayed bedtime required \rightarrow will continue early rise time
 - Leads to persistent sleep deprivation + daytime sleepiness
- May develop substance abuse
 - **Hypnotics/alcohol** → combat sleep-maintenance insomnia
 - **Stimulants** → reduce daytime sleepiness

Advanced Sleep Phase Type – Prevalence

- Prevalence in middle-age adults = 1%
- Increased prevalence in OLDER individuals
 - Probably due to sleep-wake time + circadian phase advance

Advanced Sleep Phase Type – Development & Course

Onset

- Usually in LATE adulthood → familial form may be earlier
- Course → persistent (>3 months)
 - Severity may INCREASE (depending on work/social schedules)
 - Clinical expression may vary (depending on obligations)
 - If able to alter work schedules → may have remission
 - Increasing age → tends to advance sleep phase
 - Unclear whether due to circadian timing or homeostatic sleep regulation
- Behavioral/environmental treatments
 - Designed to control sleep-wake structure, light exposure
 - Lack of adherence → relapse, incr severity

Advanced Sleep Phase Type – Risk & Prognostic Factors

Environmental

- Altered timing of light exposure → may advance circadian rhythm
 - Decreased in late afternoon/early afternoon
 - Increased in early morning (due to early waking)
 - May incr risk of advanced sleep phase type
 - Not exposed to light during phase-delay region of curve
 - Perpetuates advanced phase
- Familial advanced sleep phase type
 - Shortening of endogenous circadian rhythm → advanced sleep phase
 - (does not systematically shorten with age)

Genetic

- Autosomal dominant inheritance
 - *PER2, CKI* gene mutations

Advanced Sleep Phase Type – Culture-Related Issues

African Americans

- May have shorter circadian period
- May have larger phase advances to light (vs Caucasians)
- May incr risk of developing advanced sleep phase type

Advanced Sleep Phase Type – Diagnostic Markers

• Sleep diary + actigraphy (similar to delayed sleep phase type)

www.SimplePsych.ca

Advanced Sleep Phase Type – Functional Consequences

- Excessive sleepiness → negative effects
 - Cognitive performance, social interaction, safety
- May develop substance abuse
 - Hypnotics/alcohol → combat sleep-maintenance insomnia
 - **Stimulants** → reduce daytime sleepiness

Advanced Sleep Phase Type – Differential Diagnosis

- Other sleep disorders
 - Consider behavioral factors (esp in older adults)
 - Irregular sleep schedules, voluntary early waking
 - Early morning light exposure
 - Rule out other sleep-wake disorders, AMD, AMC (that cause early waking)
- Depressive, bipolar disorders
 - Early morning waking, fatigue, sleepiness → prominent in MDD

Advanced Sleep Phase Type – Comorbidity

- May co-occur with
 - Medical conditions, mental disorders assoc with early morning waking
 - (e.g. insomnia disorder)

Irregular Sleep-Wake Type

Irregular Sleep-Wake Type – Diagnostic Features

- No discernable sleep-wake circadian rhythm
 - No major sleep period
 - Sleep fragmented into 3+ periods (during 24-hour day)

Irregular Sleep-Wake Type – Associated Features

- Typical presenting symptoms
 - Insomnia at night
 - Excessive daytime sleepiness (+ napping)
- Fragmented sleep periods
 - Longest sleep period typically → between 2 6 AM (usually <4 hours)
- May be assoc with → isolation or reclusion
 - May lead to lack of external stimuli (does not entrain normal pattern)
- Most COMMONLY assoc with neurocognitive disorders
 - Also many neurodevelopmental disorders

Irregular Sleep-Wake Type – Prevalence

UNKNOWN

www.SimplePsych.ca

Irregular Sleep-Wake Type – Development & Course

- Onset → variable
 - More common in OLDER adults
- <u>Course</u> → persistent

Irregular Sleep-Wake Type – Risk & Prognostic Factors

Temperamental

- Neurodegenerative disorders
 - Alzheimer's, Parkinson's, Huntington's
- Neurodevelopmental disorders

Environmental

- Low-amplitude circadian rhythm
 - Decr exposure to environmental light
 - Decr structured daytime activity
 - Esp hospitalized individuals → weak external entraining stimuli
- Individuals with dementia exposed to sig less bright light

Irregular Sleep-Wake Type – Diagnostic Markers

• Sleep history, sleep diary (by caregiver), actigraphy

www.SimplePsych.ca

Irregular Sleep-Wake Type – Functional Consequences

- Often results in **insomnia + excessive sleepiness**
 - May also disrupt caregiver's sleep

Irregular Sleep-Wake Type – Differential Diagnosis

- Normal variations in sleep
 - Voluntary irregular sleep-wake schedule, poor sleep hygiene
 - May result in insomnia + excessive sleepiness
- Other medical conditions, mental disorders, medication

Irregular Sleep-Wake Type – Comorbidity

- Often comorbid with:
 - Neurodegenerative disorders (major NCD)
 - Neurodevelopmental disorders (IDD)
 - Traumatic brain injury
- May be comorbid with:
 - AMC/AMD with social isolation, lack of light + structured activities

Non-24-Hour Sleep-Wake Type

Non-24-Hour Sleep-Wake Type – Diagnostic Features

- Abnormal synchronization
 - Between 24-hour light-dark cycle and endogenous circadian rhythm
- Typically presents with:
 - Insomnia, excessive sleepiness, or both
 - Alternates with short asymptomatic periods
- Symptoms depends
 - When trying to sleep vs circadian rhythm sleep propensity
 - Begins with aligned sleep phase (during asymptomatic period)
 - Gradual increase in sleep latency (initial insomnia)
 - Continual drift of sleep phase
 - Sleep time into daytime (sleepiness)

www.SimplePsych.ca

Non-24-Hour Sleep-Wake Type – Associated Features

- Most common among → blind or visually impaired
 - Due to decreased light perception
- If not visually impaired
 - Often delayed sleep phase
 - Decr light exposure
 - Decr structured social/physical activity
 - Increased sleep duration

Non-24-Hour Sleep-Wake Type – Prevalence

Prevalence

- General population → unclear
- Sighted individuals → RARE
- Blind individuals → 50%

www.SimplePsych.ca

Non-24-Hour Sleep-Wake Type – Development & Course

- Onset → variable
 - Blind → depends on onset of visual impairment
 - Sighted → may develop in adolescence/early adulthood
 - (overlap with delayed sleep phase type)
- <u>Course</u> → persistent
 - Clinical expression may vary across lifespan → due to schedule changes
 - Intermittent remission + exacerbations
 - Relapses due to non-adherence to treatments
 - Exacerbating factors → sleep loss, circadian entrainment disruption
 - Irregular sleep-wake schedules
 - Degree of light exposure at critical times of day
 - Insomnia, daytime sleepiness, function worsen

Non-24-Hour Sleep-Wake Type – Risk & Prognostic Factors

Environmental

- If sighted → behavioral factors + physiological tendency
 - Decr exposure/sensitivity to light, activity cues
 - Social isolation (often in mental disorder)
 - Change in sleep habits (night shift work, job loss)
- Hospitalized individuals (with neurological/psychiatric disorders)
 - Become insensitive to social cues (predisposing)

Genetic & Physiological

- **Blindness** = risk factor
- Associated with traumatic brain injury

Non-24-Hour Sleep-Wake Type – Diagnostic Markers

History, sleep diary, actigraphy

- Phase markers (e.g. melatonin)
 - Can help determine circadian phase in sighted/blind individuals

www.SimplePsych.ca

Non-24-Hour Sleep-Wake Type – Functional Consequences

- Prominent complaints
 - Initial + middle insomnia
 - Excessive sleepiness
 - Both
- Unpredictability of sleep-wake times
 - Typically daily delay drift
 - May result in inability to attend school, maintain steady job
 - May increase potential for social isolation

Non-24-Hour Sleep-Wake Type – Differential Diagnosis

- Circadian rhythm sleep-wake disorders
 - **Delayed sleep phase type** \rightarrow may have similar progressive delay for days
- Depressive disorders
 - May result in similar circadian dysregulation + symptoms

Non-24-Hour Sleep-Wake Type – Comorbidity

- Common comorbidities
 - BLINDNESS
 - Depressive, bipolar disorders

Shift Work Type

Shift Work Type – Diagnostic Features

- Working outside of normal 8AM-6PM daytime window
 - Regularly scheduled basis (esp at night)
 - Persistent sleep symptoms → both required
 - Excessive sleepiness at work
 - Impaired sleep at home
 - Reversion to daytime work routine → symptoms resolve
- Frequent travel across time zones → similar effects

Shift Work Type – Prevalence

- <u>Prevalence</u> = UNCLEAR
 - Night worker population → 5-10%
 - (16-20% of workforce)
 - Incr prevalence into middle-age + beyond

Shift Work Type – Development & Course

Onset

- Can appear at any age
- More prevalent if age >50
 - May show similar rates of circadian phase adjustment (vs younger)
 - But significant more **sleep disruption** as consequence

Course

Typically worsens with time (if disruptive work hours persists)

Shift Work Type – Risk & Prognostic Factors

Temperamental

- Predisposing factors
 - Morning-type disposition
 - Need for longer sleep duration (>8 hours)
 - Strong competing social/domestic needs (parents of young children)
- Protective (lowers risk)
 - Ability to commit to nocturnal lifestyle
 - Few competing day-oriented demands

Genetic & Physiological

- Shift works more likely to be **obese**
 - Incr risk of OSA → may exacerbate symptoms

Shift Work Type – Diagnostic Markers

Sleep history, sleep diary, actigraphy

Shift Work Type – Functional Consequences

- May perform poorly at work
 - Risk for accidents → at work, on drive home
- Risk for poor health
 - Mental health → AUD, SUD, depression
 - Physical health → GI disorders, CV disease, diabetes, cancer
- If hx bipolar disorder \rightarrow risk of manic episodes
- Interpersonal problems

Shift Work Type – Differential Diagnosis

- Normal variations in sleep with shift work
 - Depends on extent of symptom severity, distress level
- Other sleep disorders
 - Consider if persistence of work-type symptoms even when on day-oriented routine for several weeks

Shift Work Type – Comorbidity

- Shift work type associated with
 - Incr AUD, SUD, depression
- Shift work associated with
 - GI disorders, CV disease, diabetes, cancer

Parasomnias

Parasomnias - Introduction

- Abnormal, experiential, physiological events
 - Occur with sleep, specific sleep stages, sleep-wake transitions
- Most common parasomnias
 - Non-REM sleep arousal disorders
 - REM sleep behavior disorders
- Sleep + wakefulness NOT mutually exclusive
 - Sleep NOT necessarily global, whole-brain phenomenon

Non-REM Sleep Arousal Disorders

Non-REM Sleep Arousal Disorders – Diagnostic Criteria

- A. Recurrent incomplete awakenings from sleep, usually during first third of major sleep episode and either:
 - 1. Sleepwalking: walking about, with blank/staring face, difficult to wake
 - Relatively unresponsive to efforts to communicate
 - 2. Sleep terrors: abrupt terror arousals from sleep
 - Often begin with panicky scream
 - Intense fear + autonomic arousal (mydriasis, tachycardia, rapid breathing, sweating)
 - Relatively unresponsive to comfort
- **B.** Minimal dream imagery recalled
- c. Amnesia of episode
- D. Significant distress or impairment
- E. Not due to substance
- F. Not better explained by co-existing AMD/AMC

Non-REM Sleep Arousal Disorders – Diagnostic Specifiers

- Specify whether:
 - Sleepwalking type
 - With sleep-related eating
 - With sleep-related sexual behavior (sexsomnia)
 - Sleep terror type

Non-REM Sleep Arousal Disorders - Diagnostic Features

A) Recurrent incomplete arousals

- Usually beginning during first third of major sleep episode
 - Typically **brief (1-10 mins)** \rightarrow up to 1 hour (max duration unknown)
 - Eyes typically OPEN
- Many exhibit BOTH arousal subtypes (sleepwalking + sleep terrors)
 - Unitary underlying pathophysiology

 complex behaviors
 - Reflect varying degrees of wakefulness + NREM sleep
 - Conscious awareness, motor activity, autonomic activation

A1) Sleepwalking

- May begin during ANY stage of NREM sleep
 - Most COMMONLY during slow-wave sleep (first third of sleep)
- Reduced alertness + responsiveness → if awakened:
 - Limited recall of episode (or next morning)
 - May be brief period of confusion, difficulty orienting
 - Followed by full recovery of cognitive function + appropriate behavior

Non-REM Sleep Arousal Disorders – Diagnostic Features

- A2) Sleep terrors ("night terrors", "pavor nocturnus")
 - Abrupt awakening, usually with panicky scream/cry
 - Usually begin during first third of major sleep episode
 - Typically lasts 1-10 mins (may be much longer, esp children)
 - Abruptly sits up → intense autonomic arousal + fear behaviors
 - Pupillary dilation, tachycardia, rapid breathing, sweating
 - Difficult to wake/comfort
 - If awakened → minimal/fragmented recall of dream
 - Inconsolable, unresponsive to efforts

Non-REM Sleep Arousal Disorders – Associated Features

- Sleepwalking → wide variety of behaviors
 - May begin with confusion, simple behaviors (sitting up, looking around)
 - Progressively complex (but still usually routine, low complexity)
 - Walking about, out of room/building, running from apparent threat
 - May use bathroom, eat, talk, more complex behaviors
 - Reports of unlocking doors, operating machinery, driving car
 - May include inappropriate behavior
 - Most commonly → urinating in closet/wastebasket
 - May last few to 30 minutes (or longer)
 - State of relative analgesia
 painful injuries not appreciated until awake
 - Sleep-related eating → varying degrees of amnesia/awareness
 - Inappropriate foods may be ingested, only find evidence next morning
 - Sleep-related sexual behavior → varying degrees of sexual activity
 - More common in MALES
 - May lead to serious interpersonal relationship or medicolegal problems

Non-REM Sleep Arousal Disorders – Associated Features

Sleep terrors

- Overwhelming sense of dread + compulsion to escape
- May have fragmented dream images
 - No story-like dream sequence (like nightmares)
- Usually does NOT awaken fully → usually returns to sleep
 - Amnesia of episode next morning
- Usually only one episode per night
- Rarely during daytime naps

NREM Sleep Arousal Disorders – Prevalence

Isolated/infrequent NREM sleep arousal → VERY COMMON

Sleepwalking episodes

- Children → 10-30% with at least 1 episode, 2-3% sleepwalk often
 - Prevalence of sleepwalking DISORDER much lower (1-5%)
- Adults \rightarrow 1-7%, 0.5-0.7% weekly to monthly episodes
 - Lifetime prevalence = 29%
 - 12-month prevalence = 3.6%

Sleep terrors

- Prevalence in general population = UNKNOWN
- Sleep terror episodes
 - Age 18 months = 37%
 - Age 30 months = 20%
 - Adults = 2.2%

NREM Sleep Arousal Disorders – Development & Course

Onset

- Most commonly in childhood
- Decreasing frequency with age
- Onset in adults (with no prior history) → search for specific etiology
 - OSA, nocturnal seizures, medication effects

NREM Sleep Arousal Disorders - Risk & Prognostic Factors

Environmental

- Incr likelihood of EPISODES
 - Sleep deprivation, sleep-wake schedule disruptions, fatigue
 - Physical/emotional stress, sedative use
- Incr likelihood of DISORDERS
 - Sleep deprivation, fever

Genetic & Physiological

- Sleepwalking → 80% have family hx of sleepwalking/sleep terrors
 - If both parents have hx → 60% of offspring
- Sleep terrors → freq positive family hx of sleepwalking/sleep terrors
 - 10x increase prevalence among 1° relatives
 - Much more common in monozygotic twins (vs dizygotic)
- Exact mode of inheritance unknown

NREM Sleep Arousal Disorders – Gender-Related Issues

	Sleepwalking	Sleep terrors
Females	CHILDHOOD more femalesMore eating during sleepwalking	
Males	ADULTHOOD more males	CHILDHOOD more males
Children	More often FEMALE	 More often MALE More likely complete amnesia or vague sense of fear
Adults	More often MALEMore likely violent or sexual activity	 EQUAL gender ratio More detailed recollection of fearful images

NREM Sleep Arousal Disorders - Diagnostic Markers

- Can arise from ANY stage of NREM sleep
 - Most commonly deep NREM (slow-wave) sleep
 - Most likely in first third of night

 uncommon during daytime naps
 - PSG EEG → theta/alpha frequencies during episode (partial arousal)
 - May be obscured by motion artifact
- PSG + audiovisual monitoring → to document sleepwalking
 - No PSG features specific for sleepwalking (if episode not captured)
 - Sleep deprivation may incr likelihood of capturing event
 - Instability of deep NREM sleep → but not specific/diagnostic
 - No PSG features specific for sleep terrors (if episode not captured)
 - No ANTICIPATORY autonomic changes (vs nightmares: HR, RR)
 - Intense autonomic activity (2-3x HR) assoc with AROUSALS

NREM Sleep Arousal Disorders – Functional Consequences

- Clinically significant distress or impairment → diagnosis
 - Frequency of events
 - Potential for violence or injurious behavior → uncommon
 - Those in close proximity, not "sought out"
 - Rarely forensic implications
 - **Embarrassment** → social relationships, isolation, occupation
 - Disruption/distress of others (household members)
- Typically NOT assoc with significant mental disorders
- Sleep-related eating behaviors
 - Poor diabetes control, weight gain
 - Accidental self-injury, dangerous/toxic inedibles

NREM Sleep Arousal Disorders - Differential Diagnosis (1)

- Nightmare disorder → during REM sleep
 - Awaken easily, report vivid + story-like dreams, occur LATER in night
- REM sleep behavior disorder → during REM sleep
 - Prominent, complex movements → often personal injury
 - Awaken easily, report vivid + detailed dreams, "act out dreams"
- Parasomnia overlap syndrome
 - Features of BOTH sleepwalking + REM sleep behavior disorder
- Breathing-related sleep disorders
 - May also have confusional arousal, subsequent amnesia
 - Characteristic snoring, breathing pauses, daytime sleepiness

NREM Sleep Arousal Disorders - Differential Diagnosis (2)

- <u>Sleep-related seizures</u> → can have both
 - Form of epilepsy → Predominantly/exclusively during sleep
 - More stereotypic, multiple times per night, during daytime naps
- Alcohol-induced blackouts → NO LOSS OF CONSCIOUSNESS
 - Reflect isolated disruption of memory during drinking episode
 - May have extremely complex behaviors

 no other signs of intoxication
 - May be indistinguishable from NREM sleep arousal disorders
- Dissociative amnesia, with dissociative fugue (nocturnal)
 - Arises from period of wakefulness during sleep
 - (vs precipitously from sleep, without intervening wakefulness)
 - Often history of childhood physical/sexual abuse
 - May be very difficult to distinguish from sleep walking

NREM Sleep Arousal Disorders - Differential Diagnosis (3)

Malingering, other voluntary behavior during wakefulness

Panic disorder

- May also cause abrupt waking from deep NREM sleep with fearfulness
- But produce rapid + complete awakening
- WITHOUT confusion, amnesia, motor activity (of NREM sleep arousal)
- Substance/medication-induced complex behaviors
 - Benzos, sedative-hypnotics, opiates, cocaine, nicotine
 - Antipsychotics, TCAs, chloral hydrate
 - May arise from sleep period, maybe extremely complex
 - Underlying isolated amnesia
- Night eating syndrome
 - Delay in circadian rhythm of food ingestion
 - Assoc with insomnia, depression

NREM Sleep Arousal Disorders – Comorbidity

Sleepwalking

In adults → assoc with major depressive episodes, OCD

Sleep terrors

 In children/adults → may have elevated scores for depression/anxiety on personality inventories

Nightmare Disorder

Nightmare Disorder – Diagnostic Criteria

A. Extremely dysphoric + well-remembered dreams

- 1. Usually involving **efforts to avoid threats** (to survival/security/integrity)
- 2. Generally during **second half** of major sleep episode
- B. On waking → rapid oriented + alert
- C. Significant distress or impairment
- D. Not due to substance
- E. Not better explained by co-existing AMC/AMD

Nightmare Disorder – Diagnostic Specifiers

- Specify if:
 - During sleep onset
- Specify if:
 - With associated non-sleep disorder (incl SUDs)
 - With associated other sleep disorder
 - With associated other medical condition
- Specify if:
 - Acute: duration <1 month
 - Subacute: duration 1-6 months
 - **Persistent:** duration >6 months
- Specify current severity:
 - Mild: <1 episode per week
 - Moderate: >1 episode per week, not nightly
 - Severe: nightly episodes

Nightmare Disorder – Diagnostic Features (1)

Nightmares

- Length, elaborate, story-like sequences of dream imagery
 - Seem real → incite anxiety, fear, other dysphoric emotions
- Arise almost exclusively during REM sleep → can throughout sleep
 - More likely in second half → when dreaming longer + more intense
 - Factors facilitating earlier nightmares (incl at sleep onset)
 - Sleep fragmentation/deprivation, jet lag, REM-sensitive meds

Nightmare content

- Attempts to avoid/cope with imminent danger, negative emotions
- After traumatic experience → "replicative nightmares" (most do not)
- On awakening → well-remembered, described in detail

Nightmare Disorder – Diagnostic Features (2)

- Usually terminate with → awakening + rapid full alertness
 - Dysphoric emotions may persist into wakefulness
 - May cause difficulty returning to sleep + lasting daytime distress
- <u>"Bad dreams"</u> → may not induce awakening, only recalled later
- Hypnagogic nightmares → during sleep-onset REM periods
 - Often accompanied with isolated sleep paralysis
 - Sense of being both awake + unable to move voluntarily

Nightmare Disorder – Associated Features

- Mild autonomic arousal
 - Sweating, tachycardia, tachypnea
- Not usually body movements or vocalizations
 - Due to REM-sleep related loss of skeletal muscle tone
 - May occur if emotional stress, sleep fragmentation, PTSD
 - If talking/emoting → typically brief event terminating nightmare
- Sig GREATER RISK for suicidal ideation + suicide attempts
 - Even if gender + mental illness taken into account

Nightmare Disorder – Prevalence

- Prevalence INCREASES through childhood into adolescence
 - Preschool children (per parents) \rightarrow 1.3 3.9% (often or always)
 - Age 10-13 → increases for both males + females
 - Age 20-29 → increases for females (up to 2x males, males decrease)
 - After 30 → steady decreases for both (gender difference remains)
- Nightmares among adults
 - At least monthly \rightarrow 6%
 - Frequently \rightarrow 1-2%
 - (but idiopathic + PTSD nightmares combined indiscriminately)

Nightmare Disorder – Development & Course

Onset

- Often between age 3-6
- Peak prevalence/severity → late adolescence/early adulthood
- Most likely in children exposed to acute/chronic psychosocial stressors
 - May not resolve spontaneously

Course

- Minority persist into adulthood → virtually lifelong
- Essential features same across age groups
 - Specific content may reflect individual's age

Nightmare Disorder – Risk & Prognostic Factors

Temperamental

- More frequent past adverse events (not necessarily trauma)
- Often personality disturbances + psychiatric diagnosis

Environmental

- Sleep deprivation/fragmentation, irregular sleep-wake schedules
 - May alter timing, intensity, quantity of REM sleep → risk of nightmares

Genetic & Physiological

Genetic effects → disposition to nightmares, co-occurring parasomnias

Course modifiers

- Adaptive parental bedside behaviors → may be PROTECTIVE
 - E.g. soothing child after nightmares

Nightmare Disorder – Culture-Related Issues

- Significance of nightmares may vary by cultures
 - May affect disclosure

Nightmare Disorder – Gender-Related Issues

- Nightmares more frequent in → ADULT FEMALES
- Content differs by sex
 - Adult females → sexual harassment, loved ones disappearing/dying
 - Adult males → physical aggression, war/terror

Nightmare Disorder – Diagnostic Markers

Polysomnography

- Abrupt awakenings from REM sleep → usually second half of night
 - May arise during NREM sleep (esp stage 2)
- Before waking → HR, RR, eye movements may quicken/incr variability

Mildly impaired sleep

- Decr efficiency, less slow-wave sleep, more awakenings
- More freq periodic leg movements
- More SNS activation after REM sleep deprivation

Nightmare Disorder – Functional Consequences

- More sig SUBJECTIVE distress
 - (vs demonstrable social/occupational impairment)
- If frequent awakenings or sleep avoidance
 - May have excessive daytime sleepiness, poor concentration
 - May have depression, anxiety, irritability
- Frequent childhood nightmares
 - May cause sig distress to parents/child

Nightmare Disorder – Differential Diagnosis (1)

Nightmare Disorder	Sleep Terror Disorder
Second half in night	First third of night
During REM sleep	• NREM sleep (stage 3 or 4)
 Clear dream recall, vivid, story-like 	• Limited dream recall, not elaborate
 Mild autonomic arousal 	Significant autonomic arousal
 Complete awakenings with full 	• Partial awakenings with confusion,
alertness	disorientation, partially responsive

- REM sleep behavior disorder
 - Complex motor activity + frightening dreams
 - Often violent dream enactments + hx nocturnal injuries
 - More common among late middle-age males
 - Often described as nightmares → controlled with medications

Nightmare Disorder - Differential Diagnosis (2)

• Bereavement

- Dysphoric dreams, involving loss + sadness
- With self-reflection + insight on awakening (vs distress)

Narcolepsy

Nightmares common → but also excessive sleepiness + cataplexy

Nocturnal seizures

- Use PSG + continuous video EEG
- Usually stereotypical motor activity
- Nightmares often repetitive, reflect epileptogenic features
 - Diurnal auras (dread), phosphenes, ictal imagery
- May also have disorders of arousal (esp confusional)

Breathing-related sleep disorders

- May have awakening with autonomic arousal
- Usually NO recall of nightmares

Nightmare Disorder - Differential Diagnosis (3)

Panic disorder

- May produce abrupt awakenings with autonomic arousal, fear
- Nightmares NOT typically reported + daytime panic attack sx

Sleep-related dissociative disorders

May recall actual physical/emotional trauma as "dream" during EEG

Medication/substance use

- Precipitating substances
 - Dopaminergics, beta-adrenergic antagonists, other antihypertensives
 - Amphetamine, cocaine, other stimulants
 - Antidepressants, smoking cessation aids, melatonin
- Withdrawal of REM-sleep suppressants (antidepressants, alcohol)
 - May produce REM sleep rebound + nightmares

Nightmare Disorder – Comorbidity

- Comorbid medical conditions
 - Coronary heart disease, cancer, pain, parkinsonism
- Medical treatments
 - Hemodialysis, med/substance withdrawal
- Mental disorders
 - PTSD, insomnia disorder, schizophrenia, psychosis
 - Mood, anxiety, adjustment, personality disorders
 - Grief during bereavement
 - May dx both if independent clinical attention warranted
 - Or if nightmares not temporally related to AMD

REM Sleep Behavior Disorder

REM Sleep Behavior Disorder – Diagnostic Criteria

- A. Arousal during sleep, complex motor behavior ± vocalization
- B. Arise during REM sleep
 - 1. 90 mins after sleep onset, more often later in sleep, uncommon in naps
- C. On waking → complete awake + alert (not confused)
- D. Either:
 - 1. REM sleep without atonia (on PSG)
 - 2. Hix suggestive of REM sleep behavior + established synucleinopathy dx (Parkinson's disease, MSA)
- E. Significant distress or impairment
- F. Not due to substance or AMC
- G. Not better explained by co-existing AMD or AMC

REM Sleep Behavior Disorder – Diagnostic Features

- Repeated episodes arousal from REM sleep
 - Often with complex motor behaviors ± vocalizations
 - Reflect motor response to content → "dream enacting behavior"
 - Action-filled or violent dreams, being attacked or trying to escape
 - Vocalizations → loud, emotion-filled, profane
 - Eyes remain closed
 - May be very bothersome \rightarrow individual, bed partner
 - May result in significant injury → falling, jumping, running, hitting, etc.
- Upon awakening → immediately awake, alert, oriented
 - Often able to **recall dream mentation** \rightarrow closely correlated with behavior

REM Sleep Behavior Disorder – Associated Features

- Behaviors typically → prominent + violent
 - Less behaviors may also occur
- Severity
 - Based on nature/consequences of behavior (vs just frequency)
 - Potential for harm, embarrassment, distress in others

REM Sleep Behavior Disorder – Prevalence

- <u>Prevalence</u> = **0.4 0.5**% (gen pop)
 - May be higher in psychiatric disorders (? due to medications)
- Overwhelmingly affects → MALES age >50
 - Increasingly identified in females, younger pts

REM Sleep Behavior Disorder – Development & Course

- Onset → may be gradual or rapid
- Course → usually progressive
- High assoc with underlying neurodegenerative disorder
 - Esp synucleinopathies (Parkinson's, Lewy body, MSA)
 - May appear LATER
 - REM sleep behavior disorder may IMPROVE with progression

REM Sleep Behavior Disorder – Risk & Prognostic Factors

- Genetic & Physiological
 - Medications
 - TCA, SSRIs, SNRIs, beta-blockers
 - May result in REM sleep without atonia
 - Unclear if CAUSE or UNMASK

REM Sleep Behavior Disorder – Diagnostic Markers

- Polysomnography → REM sleep without atonia
 - EMG activity during REM sleep (normally assoc with muscle atonia)
 - Tonic or phasic, affects different muscle groups
 - Submentalis, extensor digitorum, anterior tibialis
 - Requires more extensive EMG + continuous video monitoring
 - May also find EMG activity during NREM sleep
- REM sleep without atonia → in virtually all cases of REM SBD
 - Accompanying dream-enacting behavior necessary for dx
 - If no clinical history → simply asymptomatic REM sleep without atonia

REM Sleep Behavior Disorder – Functional Consequences

May occur on isolated occasions

- Embarrassment
 - May impair social relationships, occupation
 - Avoidance \rightarrow friends over night, bed partners
- Risk of serious injury → to victim or bed partner

REM Sleep Behavior Disorder – Differential Diagnosis

- NREM sleep arousal disorders → sleepwalking, sleep terrors
 - Generally occurs in younger individuals
 - Arise from deep NREM sleep, usually early portion of sleep period
 - On awakening → confusion, disorientation, incomplete dream recall
 - Differentiate with PSG

Nocturnal seizures

- Generally more stereotyped → but may perfectly mimic
- Differentiate with PSG EEG → no REM sleep without atonia

OSA

- Behaviors may indistinguishable → resolve with effective OSA tx
- Differentiate with PSG → no REM sleep without atonia

REM Sleep Behavior Disorder – Differential Diagnosis

- Other specified dissociative disorder
 - "Sleep-related psychogenic dissociative disorder"
 - Arises from period of well-defined wakefulness during sleep period
 - More prevalent in YOUNG FEMALES
- Malingering
 - May perfectly mimic clinical features
 - Differentiate with PSG

REM Sleep Behavior Disorder – Comorbidity

- Comorbid with 30% of narcolepsy patients
 - Affects younger range of narcolepsy
 - Equal frequency in males + females
- >50% of idiopathic REM SBD \rightarrow eventually neurodegenerative
 - Often synucleinopathy (Parkinson's, LBD, MSA)
 - Often predates any other sign by decades

Restless Legs Syndrome

Restless Legs Syndrome – Diagnostic Criteria

- A. Urge to move legs, related uncomfortable sensation (3/3):
 - 1. Begins or worsens during periods of rest or inactivity
 - 2. Partially or totally relieved by movement
 - 3. Worse or exclusively in evening or night
- B. Occurs **3+ per week,** for **3+ months**
- c. Significant distress or impairment
- D. Not better explained by AMD, AMC, behavioral condition
- E. Not due to substance or medication

Restless Legs Syndrome – Diagnostic Features

- A) Sensorimotor, neurological sleep disorder
 - Desire to move legs/arms, assoc with uncomfortable sensations
 - Creeping, crawling, tingling, burning, itching
 - Worse at rest → movements of legs to relieve discomfort
 - Worse in evening/night → independent of activities
 - Mainly based on self-report + history
- Not due to positional discomfort or leg cramps
- Sleep symptoms
 - Delay sleep onset, awaken from sleep, sleep fragmentation
 - Daytime sleepiness
 - If severe → may no longer obtain relief from moving legs

Restless Legs Syndrome – Associated Features

- Periodic leg movements in sleep (PLMS)
 - 90% of RLS → demonstrate PLMS
 - **PLM during wakefulness** → supportive of RLS dx
- Other supportive features
 - Difficulty initiating + maintain sleep
 - Excessive daytime sleepiness
 - Reduction in sx with dopaminergic treatment
- Family hx of RLS among 1º relatives

Restless Legs Syndrome – Prevalence

- <u>Prevalence</u> = **2 7**%
 - If 3x per week with mod-severe distress → 1.6%
 - If minimum once per week → 4.5%
- More likely in FEMALES (1.5-2x)
- Prevalence increases with AGE (until age 60)
- Prevalence lower in Asian populations

Restless Legs Syndrome – Development & Course

Onset

- Typically occurs in age 20-30s
 - Many experience sx before dx (40% before age 20, 20% before age 10)
- Prevalence increases steadily with age until age 60
 - Symptoms then stable or decreases slightly (sx similar across lifespan)
- Familial RLS (vs non-familial)
 - Younger age at onset, slower progressive course
- Course → differs by age at onset
 - Onset before age 45 → slow progression of sx
 - Late-onset → rapid progression with aggravating factors

Restless Legs Syndrome – Development & Course

RLS in children

- Dx may be difficult due to self-report (can't be by parents)
 - "Urge to move" → "have to" or "got to" move
- 66% of C&A → report daytime leg sensations
 - Compare day vs night duration of sitting/lying down
- Nocturnal worsening → tends to persist
- Similar impairment → more in behavioral + educational domains

Restless Legs Syndrome – Risk & Prognostic Factors

Genetic & Physiological

- Predisposing: female gender, advancing age, family hx of RLS
 - Genetic risk variants → may be 2° to other disorders (uremia)
 - Those with genetic susceptibility develop RLS if further risk factors
- Precipitating: often time-limited → resolve after trigger disappeared
 - E.g. iron deficiency

Defined pathophysiological pathways

- Common genetic variants → MEIS1 (2p), BTBD9 (6p), MAP2K5 (15q)
 - BTBD9 (6q) → very large excessive risk (80%), PAR 50%
 - MEIS1 (2p), BTBD9 (6p) \rightarrow less common in African/Asian, ?lower risk
- Disturbances in central dopaminergic system, iron metabolism
 - May also involve endogenous opiate system
 - **Dopaminergic drugs** (D2/D2 non-ergot agonists) effective
 - But serotonergic antidepressants → may induce/worsen RLS

Restless Legs Syndrome – Gender-Related Issues

- More prevalent in FEMALES
 - But no diagnostic differences by gender
- Pregnancy → prevalence increased (2-3x gen pop)
 - Peaks during third trimester
 - Typically improves/resolves soon after delivery
 - Explains part of gender difference in prevalence
 - Nulliparous females = same risk as age-matched males

Restless Legs Syndrome – Diagnostic Markers

- Polysomnography → significant abnormalities in RLS
 - Increased sleep latency
 - Higher arousal index
 - May have periodic limb movements (during sleep or quiet resting)

Restless Legs Syndrome – Functional Consequences

- <u>Severe RLS</u> → **2-3**%
 - Significant impairment, assoc mental disorders (depression, anxiety)
- Milder RLS → less well characterized
 - Disruption of at least one activity of daily live
 - 50% negative impact on mood
 - 48% lack of energy
- Most common consequences
 - Sleep disturbance → decr sleep time, sleep fragmentation, overall
 - Daytime sleepiness, fatigue
 - Depression, GAD, panic disorder, PTSD
 - Quality of life impairments

Restless Legs Syndrome – Differential Diagnosis

- Leg cramps, positional discomfort, habitual foot tapping
- Arthralgias, arthritis, myalgias
- Positional ischemia (numbness)
- Peripheral neuropathy, radiculopathy
- Uncharacteristic findings (unlikely RLS)
 - Knotting of muscle cramps, relief with single postural shift
 - Limitation to joints, soreness to palpitation
- Less common differential
 - Neuroleptic-induced akathisia, anxiety-induced restlessness, myelopathy,
 - Symptomatic venous insufficiency, peripheral artery disease, eczema
- These conditions could occur in RLS
 - Consider supportive features, family history, response to dopaminergics

Restless Legs Syndrome – Comorbidity

- Common psychiatric comorbidities
 - Depressive, anxiety, attentional disorders
- Main medical comorbidity → cardiovascular disease
 - Common → iron deficiency, pregnancy, chronic renal failure
 - Other
 - Hypertension, diabetes, obesity, thyroid disease
 - Narcolepsy, OSA, migraine, fibromyalgia, peripheral neuropathy
 - Parkinson' disease, multiple sclerosis, osteoporosis, cancer

Substance/Medication-Induced Sleep Disorder

Sub/Med-Induced Sleep Disorder – Diagnostic Criteria

- A. Prominent + severe disturbance in sleep
- B. History, physical exam, lab findings of:
 - 1. Symptom onset during/soon after \rightarrow intoxication, withdrawal, exposure
 - 2. Substance/medication capable of producing symptoms
- c. Not non-substance/medication-induced
 - 1. Symptom onset preceding sub/med use
 - 2. Symptom persistence after cessation of sub/med use/intox/withdrawal
 - 3. Other evidence (previous non-sub/med-induced episodes)
- D. Not exclusively during delirium
- E. Significant distress or impairment

Sub/Med-Induced Sleep Disorder – Diagnostic Specifiers

- Specify whether:
 - **Insomnia type:** difficulty falling/maintaining sleep, freq nocturnal awakenings, non-restorative sleep
 - Daytime sleepiness type: excessive sleepiness/fatigue during waking hours, or a long sleep period
 - Parasomnia type: abnormal behavioral events during sleep
 - Mixed type: multiple types, no clearly predominant symptom
- Specify if:
 - With onset during intoxication
 - With onset during discontinuation/withdrawal

Sub/Med-Induced Sleep Disorder – Diagnostic Specifiers

- Specify substance:
 - Alcohol
 - Caffeine
 - Cannabis
 - Opioid
 - Sedative, hypnotic, or anxiolytic
 - Amphetamine (or other stimulant)
 - Cocaine
 - Tobacco
 - Other (or unknown) substance

Sub/Med-Induced Sleep Disorder – Diagnostic Features

- Prominent sleep disturbance
 - Sufficiently severe to warrant independent clinical attention
 - Primarily assoc with pharmacological effects of a substance
- 4 types
 - Most common → insomnia type, daytime sleepiness type
 - Least common → parasomnia type
- Distinguish from another sleep disorder
 - Atypical age at onset or course

Intoxication	Withdrawal	Medications
 Alcohol Caffeine Cannabis Opioids Sedatives Hypnotics Anxiolytics Stimulants (cocaine) Other 	 Alcohol Caffeine Cannabis Opioids Sedatives Hypnotics Anxiolytics Stimulants (cocaine) Other Tobacco 	 Adrenergic ant/agonists Dopamine ant/agonists Cholinergic ant/agonists Serotonergic ant/agonists Antihistamines Corticosteroids

- Alcohol → typically INSOMNIA type
 - Acute intoxication \rightarrow immediate sedative effect
 - Incr stage 3 + 4 NREM sleep, decr REM sleep
 - After initial effect → incr wakefulness, restless sleep, vivid/anxious dreams
 - Decr stage 3 + 4 sleep, incr REM sleep
 - May aggravate breathing-related sleep disorders
- Alcohol withdrawal
 - Extremely disrupted sleep continuity
 - Incr REM sleep (amount + intensity) → freq vivid dreaming
- Habitual alcohol use
 - 1st half of night → short-lived sedative effect
 - 2nd half of night → disrupted sleep continuity
 - Chronic users → light, fragmented sleep for weeks-years
 - Persistent deficit in slow-wave sleep

- Caffeine → INSOMNIA (dose-dependent)
 - May present with daytime sleepiness, related to withdrawal

Cannabis

- Acute → may shorten sleep latency (but may incr sleep latency too)
 - Incr slow-wave sleep, decr REM sleep
- Chronic → tolerance to sleep effects develop
- Withdrawal → sleep difficulties, unpleasant dreams for weeks
 - PSG → decr slow-wave sleep, incr REM sleep

Opioids

- Acute → may incr sleepiness + subjective depth, decr REM sleep
- Chronic → tolerance to sedative effects develop, complaints of insomnia
 - Exacerbate sleep apnea (due to respiratory depressant effects)

www.SimplePsych.ca

- Sedative, hypnotic, or anxiolytic substances
 - Barbiturates, benzo receptor agonists (benzos, Z-drugs)
 - Meprobamate, glutethimide, methyprylon
 - Acute → incr sleepiness + decr wakefulness
 - Chronic → tolerance may develop + subsequent return of insomnia
 - Daytime sleepiness may occur
 - Exacerbate obstructive sleep apnea
 - Parasomnias → assoc with benzo receptor agonists
 - Esp if taken at higher doses or combined with other sedatives
 - Abrupt discontinuation → exacerbation of insomnia
 - Short-acting → most likely rebound insomnia
 - Long-acting → more often daytime sleepiness

Stimulants

- Acute → decr total sleep, incr sleep latency, disturbed sleep continuity
 - Decr REM sleep, decr slow-wave sleep
 - MDMA → restless + disturbed sleep within 48 hours of intake
- Withdrawal → prolonged nocturnal sleep, excessive daytime sleepiness
 - MSLT → incr daytime sleepiness
 - Chronic → persisting anxiety, depression, sleep disturbances
 - (even if longer-term abstinence)

Tobacco

- Chronic → insomnia, decr sleep efficiency, incr daytime sleepiness
 - Decr slow-wave sleep
- Withdrawal → impaired sleep
- If heavy smoker → may have nocturnal awakenings from tobacco craving

Sub/Med-Induced Sleep Disorder – Development & Course

- In children → parents may observe with start of medication
- In adolescents + early adulthood → consider substances
 - Limited help-seeking, need collateral
- In older adults
 - More medications, higher risk of developing
 - May interpret sleep disturbance as part of normal aging
 - Higher risk in major NCD

Sub/Med-Induced Sleep Disorder – Risk Factors

Relevant to type of sleep disturbance

- Temperamental
 - Presence of insomnia in response to stress or change in sleep
 - Substance use generally precipitates/accompanies insomnia if vulnerable
 - Similar risk for other sleep disorders

Sub/Med-Induced Sleep Disorder – Culture-Related Issues

• May depend on cultural background + local regulations

Sub/Med-Induced Sleep Disorder – Gender-Related Issues

More prevalent in alcohol-consuming FEMALES (2x)

www.SimplePsych.ca

Sub/Med-Induced Sleep Disorder – Diagnostic Markers

- EEG patterns NOT diagnostic
 - Depends on stage of use, intake/intoxication, chronic, withdrawal
 - All-night PSG → severity of insomnia
 - MSLT → severity of daytime sleepiness
 - Monitor nocturnal respiration, periodic limb movements
- Sleep diaries + actigraphy (for 2 weeks)
- Drug screening

Sub/Med-Induced Sleep Disorder – Functional Consequence

- Only unique consequence
 - Increase risk for relapse (substance)
 - Degree of sleep disturbance during alcohol withdrawal
 - REM sleep rebound predicts risk of relapse of drinking
 - Monitor sleep quality + daytime sleepiness around withdrawal

Sub/Med-Induced Sleep Disorder – Differential Diagnosis

- Substance intoxication/withdrawal (whether predominant sleep)
- <u>Delirium</u>
- Other sleep disorders, sleep disorders due to AMC
 - Etiologically + temporally related
 - Can dx both

Sub/Med-Induced Sleep Disorder – Comorbidity

See other sections

- Insomnia, hypersomnolence, central sleep apnea
- Sleep-related hypoventilation
- Circadian rhythm sleep-wake disorders, shift work type

Other Specified Insomnia Disorder

Other Specified Insomnia Disorder

- Does not meet any full criteria
- Clinician chooses to specify
- Brief insomnia disorder
 - Duration <3 months
- Restricted to non-restorative sleep
 - Predominantly non-restorative sleep
 - No other sleep sx (initial or middle insomnia)

Unspecified Insomnia Disorder

Unspecified Insomnia Disorder

- Does not meet any full criteria
- Clinician chooses NOT to specify

Other Specified Hypersomnolence Disorder

Other Specified Hypersomnolence Disorder

- Does not meet any full criteria
- Clinician chooses to specify
- Brief-duration hypersomnolence
 - Seen in Kleine-Levin syndrome

Unspecified Hypersomnolence Disorder

Unspecified Hypersomnolence Disorder

- Does not meet any full criteria
- Clinician chooses NOT to specify

Other Specified Sleep-Wake Disorder

Other Specified Sleep-Wake Disorder

- Does not meet any full criteria
- Clinician chooses to specify
- Repeated arousals during REM sleep without polysomnography or history of Parkinson's disease or other synucleinopathy

Unspecified Sleep-Wake Disorder

Unspecified Sleep-Wake Disorder

- Does not meet any full criteria
- Clinician chooses NOT to specify