Restoring High-Quality Vision with Brain-Computer
Interfaces: Challenges and Opportunities

In the past few months, we've heard a lot of discussion around Neuralink
and its Blindsight project aimed at restoring vision for people affected by
blindness using BClIs.

Amina Kalandarova

But what does Neuralink really have to offer?

Although Neuralink is creating breakthrough interfaces, the quality of the vision
it provides is being questioned.

“I'm leery about the fact that they are very superficial in their description of the
devices, ...There’s no clear evaluation or pre-clinical work that has been
published, ...It’s all based on: “Trust us, we're Neuralink.”— said Gislin Dagnelie, a
vision scientist at Johns Hopkins University who has been involved in multiple
clinical trials for vision prosthetics.

Realistically, if you were to get any BCI vision implant right now, you would see
phosphenes. To gain a better understanding of what that means, rub your eyes —
you will see bursts of light, or phosphenes, randomly firing in your visual field.



an interpretation of seeing phosphenes

Evidently, this is not enough for, or nearly comparable to, the vision humans
need for everyday life.

Despite advances, current visual BCIs are limited, offering only rudimentary
vision. However, ongoing innovations could enhance these systems significantly.
While current BCIs cannot yet offer high-resolution, full-color vision, the
advancements being made show promise for future breakthroughs that could
meaningfully improve life for individuals with vision loss.

In this article, we will review the gaps in current cortical implants for vision
restoration to understand the challenges holding us back from replicating
high-resolution vision.



progression of vision quality

First, let’s recall how cortical BCI implants for vision restoration work...

brain activity: signals passing between neurons

When light enters a healthy eye, it is received by photoreceptors on our retina
(the back part of the eye) and is converted into electrical signals. These signals
travel through the optical nerve to the visual cortex and further parts of our
brain. At each visual area the signals travel to, they are mapped out according to



our visual field, but with alterations. For example, if we record the activity on our
primary visual cortex when it perceives an image, you will see that it represents
the same image, but distorted:

Retinotopic maps are used to visualize the spatial arrangement in the primary
visual cortex where each neuron represents a specific small region of the visual
field, forming a spatial map of the opposite half of the field of view.
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Cortical brain-computer interfaces for vision restoration work by stimulating
the visual cortex of our brain— using implanted electrodes. These electrodes
generate electrical pulses that mimic the natural signals produced by healthy
photoreceptors in response to light entering the eye. The brain interprets these
artificial signals as visual information, allowing the user to perceive basic shapes,
light, or movement. BCIs essentially ‘hack’ the visual system by bypassing
damaged areas and reintroducing visual signals directly into the brain.

While we have found out how to replicate signals, there are a few significant
aspects that we still have to figure out:

1. Low Resolution and Limited Field of View: the images generated are
highly pixelated, often equivalent to seeing a handful of light points
rather than a clear picture.



visual models of phosphenes

2. Lack of Color Perception: Current BClIs struggle with color encoding,
restricting the visual experience to shades of gray.

3. Limited Depth Perception and Object Recognition: Without depth and object
recognition, navigating real-world environments can be challenging for users.

4. High Cognitive Load: These systems require significant mental effort to
interpret the limited visual information, leading to fatigue and potential
cognitive strain.

So what are the challenges we face that restrict us from replicating high-quality
vision? There are several issues, mostly under two categories: technical and
biological.


https://www.sciencedirect.com/science/article/pii/S0042698909000467

Technical Challenges
1. Electrode Density and Biocompatibility: Higher electrode density

improves image resolution, but more electrodes increase complexity
and can cause inflammation, impacting long-term function.
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2. Signal Processing and Decoding Algorithms: Decoding visual data into
patterns that can be interpreted by the brain is difficult. Advanced algorithms
are needed to process these signals accurately and quickly.

3. Power Consumption and Wireless Transmission: Powering BCIs wirelessly
without bulky equipment is critical for user mobility but remains technically
difficult, especially considering the need for more electrodes and computation.


https://pubs.acs.org/doi/10.1021/acschemneuro.7b00403

inductive charging

4. Long-term Stability and Durability: Implants must withstand the body’s
natural immune response, which can degrade device effectiveness over time.

Biological Challenges

1. Understanding Visual Cortex Organization and Plasticity: Visual
areas of our brain are extremely complex and not yet fully understood
which makes it hard to replicate our visual system artificially.
Furthermore, variability in how visual areas of the brain are organized
across individuals makes it challenging to design BCIs that work
universally.



human brain connectivity

2. Interfacing with Different Levels of the Visual System: Stimulating different
levels of the visual pathway requires precise, tailored approaches to avoid
sensory mismatches. This also relates to the challenge of reaching the right
parts of the brain as the areas of the brain responsible for essential aspects of
vision such as depth perception and object recognition are located deeper in the
brain and are hard to reach.

e This is also a technical challenge, as we have to position electrodes
precisely enough to stimulate the particular neurons we need. This
poses yet another challenge: making sure the electrodes stay in place,
as any movement can cause misplacement of stimulation.
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As the biological challenges are more research-intensive and data-oriented,
today we are going to focus on technical obstacles. Among them, improving
signal processing and decoding algorithms stands out most.

Improving Processing and Decoding Algorithms

Developing better algorithms for cortical BCI implants could be considered the
most critical challenge in visual BCIs because these aspects are responsible for
translating raw data from our visual field into a format the brain can interpret as
meaningful vision, which is the essence of the application of BCIs as a way of
vision restoration.

Vision isn't just a matter of light and dark — it involves layers of detail like depth,
color, motion, and object recognition. To restore vision that feels natural, BCIs



must process this complex information and break it down into signals that
mimic the way a healthy eye would send data to the brain.
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Additionally, our brains don’t interpret each pixel individually; they recognize
patterns, faces, and objects almost instantly. Decoding algorithms need to adapt
and simplify vast amounts of raw data into patterns that mimic this high-level
interpretation.

Lastly, every individual’s brain structure is unique, which affects how visual
information is processed. Algorithms that can learn from and adjust to each
user’s specific brain responses would make the BCI's output more effective, but
this requires advanced, flexible decoding approaches.

The multi-layer nature of our vision, its pattern recognition, and variability of
brain structure among individuals must be considered when improving
processing and decoding algorithms.


https://www.youtube.com/watch?v=14FJU1kP6-M

Decoding Algorithms: Status Quo

Traditional Machine Learning: Support Vector Machines (SVM), Linear
Discriminant Analysis (LDA), and Random Forests are often used in many BCIs.

Deep Learning: Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNSs) are increasingly being applied to BCI decoding tasks.
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Processing and Decoding Algorithms: Future

What technologies are scientists and engineers working on to improve the
algorithms? Here are some technologies that the BCI field seems to be moving
towards:

Hybrid BCIs: Combining multiple brain signals and modalities for improved
performance.

Personalized Models: Developing subject-specific decoders to address
inter-individual differences[3].

Unsupervised and Self-Supervised Learning: Reducing the need for labeled
training data[l].


https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Integration with Computer Vision: Leveraging advancements in computer
vision to enhance BCI visual decoding capabilities[1].

Improved Temporal Resolution: Developing algorithms that can better utilize
the high temporal resolution of EEG for real-time applications[4].

Recent innovations in decoding algorithms for visual BCIs show promising
advancements that could significantly improve the quality of vision offered by
BCI implants. Here are some key innovations and their potential impact:

Adaptive Thinking Mapper (ATM)

A novel EEG encoder that can be used in a plug-and-play manner to extract
representations in real-time for both EEG and MEG data[2]. This innovation has
several potential benefits for visual BCIs:

Improved Signal Processing: ATM’s ability to handle different types of neural
signals could lead to more robust and versatile visual decoding.

Real-time Capabilities: The real-time processing feature of ATM could enable
more responsive and dynamic visual feedback in BCI implants.

Cross-modal Adaptability: Its ability to work with both EEG and MEG suggests
it might be adaptable to various types of neural interfaces, including invasive
BClIs.

Two-Stage Image Generation



I: Hand Generation

an application of Two-Stage Image Generation in art

This approach first transforms EEG features into image priors and then
reconstructs visual stimuli using a pre-trained image generator[2][3]. This
innovation could improve visual BCIs in several ways:

Enhanced Visual Reconstruction: By using a two-stage process, this method
could potentially produce more detailed and accurate visual reconstructions.

Improved Generalization: The use of pre-trained image generators might allow
the system to reconstruct a wider range of visual stimuli, even those not seen
during training,.

Faster Processing: Separating the process into two stages might allow for more
efficient computation, potentially leading to faster visual feedback.


https://www.aimodels.fyi/papers/arxiv/giving-hand-to-diffusion-models-two-stage
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CLIP pre-trains an image encoder and a text encoder to predict which images were
paired with which texts in our dataset. We then use this behavior to turn CLIP into a
zero-shot classifier. We convert all of a dataset’s classes into captions such as “a
photo of a dog” and predict the class of the caption CLIP estimates best pairs with a
given image.

CLIP: Contrastive Language-Image Pretraining

Adapting techniques like CLIP (Contrastive Language-Image Pre-training) for
BCI applications could improve image embedding and alignment with neural
signals[1][2]. This could benefit visual BCIs through:

Better Feature Extraction: Improved alignment between neural signals and
visual features could lead to more accurate decoding of visual information.

Reduced Training Requirements: Contrastive learning techniques might reduce
the amount of subject-specific training data needed, making BCIs more practical
for widespread use.

Improved Generalization: These techniques could help BCIs better interpret
novel visual stimuli, expanding the range of visual experiences they can provide.


https://medium.com/@abdullahsamilguser/clip-contrastive-language-image-pretraining-83b8913cb7eb
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This technique is being explored to reduce the amount of training data needed
and to address inter-subject variability. The exploration of transfer learning
techniques and the development of subject-specific models[1] could significantly
enhance visual BCIs by:

Reduced Calibration Time: Transfer learning could shorten the initial setup time
for individual users, making BCIs more practical for daily use.

Improved Accuracy: Personalized models could better account for individual
differences in brain structure and function, leading to more accurate visual
decoding.


https://encord.com/blog/transfer-learning/

Adaptive Performance: These techniques could allow BCIs to continuously
improve their performance for individual users over time.

Predictive Decoding Algorithms Using Generative Al

Keith Haring, Unfinished Painting, 1989. Private collection Al Generated Attempt to Finish ‘Unfinished Painting”.

Another Al-heavy idea is to apply generative AI models like the ones used in
image generation to predict and “fill in” missing visual details based on limited
inputs. Generative Al could be used to reconstruct high-quality images from
partial or low-resolution data, using predictive algorithms to provide enhanced
detail. For example, if only basic shape information is available, the Al could
“imagine” a likely detailed scene based on patterns in similar situations. This
technique could deliver more detailed and contextually accurate visual
experiences, significantly improving the quality of artificial sight even when the
input data is sparse.

These innovations collectively have the potential to significantly enhance the
quality of vision offered by BCI implants. They could lead to higher resolution
visual reconstructions, more accurate interpretation of complex visual scenes,
faster processing times, and more personalized experiences.

...s0 what'’s the plan?



Next Steps for Developing Decoding Algorithms and Signal Processing
for High-Quality Vision

Step 1: Expand Neuroscientific Understanding of Visual Processing

To map how the brain processes different aspects of vision (color, depth, motion,
etc.), we need to conduct detailed studies using advanced imaging techniques
(e.g., fMR], electrophysiology) to understand neural responses to visual stimuli.
This foundational knowledge will guide how we design algorithms to replicate
natural visual processing.

Step 2: Create Large Datasets of Visual-Neural Response Data

To build comprehensive datasets capturing how neural circuits respond to visual
inputs, we can use both human and animal models to collect visual stimulus data
alongside corresponding brain responses. These datasets will provide the
training material needed for machine learning algorithms to “learn” how to
translate visual information into neural signals effectively.

Step 3: Develop and Train Machine Learning Models on Visual-Neural Data

Next, we would need to use Al and deep learning to recognize patterns and
structures in visual data that correspond to brain responses. For that, we have to
train models on large datasets to decode complex visual information, such as
faces, objects, and movement, into neural patterns. We can do that by utilizing
techniques like supervised learning to associate visual stimuli with specific
neural activation patterns. These trained models will enable more sophisticated
decoding, moving from basic light patterns to meaningful visual experiences.

Step 4: Implement Real-Time, Adaptive Algorithms

This step involves making decoding algorithms adaptable and responsive to
individual brain differences. It requires developing algorithms that adjust in real
time based on each user’s unique neural responses. Utilizing reinforcement
learning will allow algorithms to improve with continued user feedback. This
personalization will make BCIs more intuitive and reduce the cognitive load,
allowing users to interpret visual information more naturally.



Step 5: Enhance Hardware to Support Faster Processing and Higher Resolution
Then, we'll need to integrate more efficient and powerful processing units within
the BCI system to handle high data loads. This will involve designing low-latency
processing chips optimized for neural signal decoding and implementing parallel
processing architectures to handle complex visual information in real-time.
Improved hardware will reduce lag and support more detailed image
transmission, allowing for a clearer, more stable visual experience.

These are the steps that the industry is predicted to take to move
Brain-Computer Interfaces towards higher-quality vision restoration, making
artificial sight more effective and practical for daily life.

The plan above did not go too far from what companies like Neuralink are
implementing right now. Here are some cutting-edge, innovative ideas that go
far beyond current approaches:

Closed-Loop, Multisensory BCIs with AI-Driven Contextual Awareness
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https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2023.1085173/full

This implies integrating a closed-loop system where visual BCI algorithms are
combined with inputs from other senses, such as auditory, haptic, and spatial
data, to provide context and improve interpretation. The BCI would not only
process visual data but also predict what the user should be seeing based on
other sensory information and the immediate environment, using
context-aware Al For instance, if a user hears footsteps, the system can
anticipate and highlight the visual of a moving person. By combining sensory
inputs with Al-based context prediction, BCIs could provide a richer, more
immersive experience that helps the brain “fill in the gaps” for a fuller visual
interpretation.

On-Chip Al Processing for Real-Time Image Reconstruction

Al Chips

Another thing we could do is implement on-chip Al processing right at the
implant site for near-instantaneous image reconstruction. Instead of sending
raw data to an external processor, the implant would perform real-time,
high-level decoding and reconstruction of visual scenes directly on the chip.
This would allow more complex computations (like high-resolution image
decoding) to happen right at the source, reducing latency and power demands.


https://builtin.com/articles/ai-chip

This approach could allow for detailed, real-time images that feel more like
natural vision, significantly enhancing the quality of artificial sight for users.

Neural Networks That Mimic Brain’s Visual Hierarchy
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Deep Convolutional Neural Networks as Models of the Visual System

A more advanced idea would be to create a neural network architecture that
mirrors the hierarchical processing seen in the brain’s visual cortex, from basic
edge detection to high-level object recognition. By modeling neural networks to
follow the brain’s visual hierarchy, BCIs can decode visual information in a way
that feels more natural to the user, processing simple elements first and then
building up to complex scenes. This hierarchy could lead to a smoother, more
naturalistic vision, where users experience refined details and object recognition
without cognitive strain.

However, this idea requires loads of research on the organization and
functioning of our brain as well as structuring this data and retrieving actionable
information, which makes it a particularly challenging idea to undertake.


https://gracewlindsay.com/2018/05/17/deep-convolutional-neural-networks-as-models-of-the-visual-system-qa/

Optogenetic Stimulation for Precise Visual Information
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Optogenetics could be used to stimulate individual neurons in the visual cortex
with precise patterns of light, allowing for finely tuned visual representation.
Optogenetics offer a level of precision that electrode-based systems struggle
with. By genetically modifying neurons to respond to light, optogenetics could
stimulate specific cells with high precision, potentially allowing for
high-definition “pixels” and improved control over color and intensity. This
could create much more detailed and color-sensitive visual representations,
bringing BClIs closer to natural vision.


https://kids.frontiersin.org/articles/10.3389/frym.2017.00051

Hybrid BCIs with Brain-to-Brain Interfaces

This is one of the most interesting ideas — combining traditional BCI approaches
with brain-to-brain interface technology to create a shared, “networked” visual
experience. In cases where one user’s neural responses to visual stimuli are
robust, this data could be transferred to another user in real time. For example, a
caregiver or companion with sight could send certain visual information directly
to a user’s BCI, enriching their experience in specific contexts like navigating a
new environment. This innovation would enable a unique type of sensory
support, allowing users to share and gain from others’ visual perspectives, which
could be especially valuable in complex environments.



High-Bandwidth Wireless Transmission Using Quantum
Communication

quantum communication

As an experiment, we could use quantum communication for faster and more
secure transmission of visual data from external sensors to implants. Quantum
technology, though experimental, could offer much higher data rates and
eliminate delays associated with traditional wireless communication. If
implemented, this could facilitate rapid and detailed image streaming directly to
the BCI. Such a high-speed system would support high-resolution, lag-free
vision, making BCIs more effective for navigating dynamic, real-world
environments.

Direct Cortical Mapping via Electrophysiological “Fingerprints”

To further personalize the implants, we could develop individualized cortical
maps that capture each user’s unique brain patterns to tailor decoding
algorithms specifically to their neural “fingerprint” By mapping each person’s
cortex in detail, we could create a customized BCI configuration that decodes
signals in a way that optimally matches the user’s brain patterns, ensuring
maximum compatibility and efficacy. This tailored approach could greatly


https://www.technologyreview.com/2019/02/14/103409/what-is-quantum-communications/

improve the natural feel of artificial vision, making it easier for users to interpret
visual data intuitively.
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Incorporating these strategies would push beyond current BCI limitations,
opening up new dimensions for vision restoration and making artificial sight
more natural, reliable, and adaptive for users. By tackling these novel challenges,
researchers can create transformative advancements in the BCI landscape.

...so0 what’s next?

While significant progress has been made in processing and decoding algorithms
for visual BClIs, there is still a considerable gap between current capabilities and
the goal of high-quality visual reconstruction.



We have yet to find out the real impact these technologies can make on visual
BCIs. Of course, high-quality vision will require more than changing algorithms,
but improving this aspect will be a huge step towards offering a vision quality
that is enough for everyday life and improving the lives of millions. All we have to
do now is to continue building and coming up with novel solutions to complex
challenges posed by visual BCls.

If you want to stay updated about the latest developments in neurotech, follow
me here and on LinkedIn. See you there!
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