
Investigating Instruments with Meta-Regressions∗

N. Aaron Pancost† and Garrett Schaller‡

This version: October 25, 2024

Abstract

Instrumental variable (IV) estimates are typically much larger than their ordinary

least squares (OLS) counterparts, often suggesting implausible values of the omitted

variable bias. A meta-regression of OLS on IV estimates can resolve this puzzle by

separating omitted variable bias from measurement error, detecting instrument inva-

lidity, and assessing the relevance of heterogeneous treatment effects. We apply the

meta-regression to three published papers. In the first two papers, omitted variable

bias is quantitatively less important than measurement error; in the third paper, the

instrument appears to be invalid. Our estimates imply that if heterogeneity is relevant,

the IV estimates are irrelevant.
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1 Introduction

Instrumental variable (IV) regressions are central to the “credibility revolution” in empirical

economics (Angrist and Pischke, 2009, 2010). In economics and finance, instruments are

primarily used to address omitted variable bias, which is often expected to inflate ordinary

least squares (OLS) estimates. Yet, OLS estimates are almost always smaller than their IV

counterparts (Jiang, 2017; Pancost and Schaller, 2022). Classical measurement error—which

was a central motivating factor in the development of IV methods (Wald, 1940; Reiersøl,

1941; Geary, 1943; Durbin, 1954)—can explain this discrepancy, but neither measurement

error nor omitted variable bias can be estimated directly from the difference between OLS

and IV coefficients.

In this paper, we derive a meta-regression estimator that separately identifies omitted

variable bias and measurement error using pairs of OLS and IV estimates. Given a single

OLS-IV pair, omitted variable bias and measurement error are indistinguishable. However,

researchers often estimate the causal effects of the same endogenous regressor on a variety

of dependent variables, which we can exploit to separately identify each bias, owing to the

fact that measurement error bias is multiplicative while omitted variable bias is additive. In

fact, our meta-regression is simply a regression of OLS coefficients on IV coefficients; the

estimated slope identifies the measurement error, and the estimated intercept identifies the

average omitted variable bias.

Identifying omitted variable bias and measurement error with our meta-regression is

subject to the same identification challenges faced by the underlying IV regressions, including

the possibility of instrument invalidity and heterogeneity in treatment effects. Correlation

between the instrument and measurement error, which we call measurement invalidity, will

be reflected in the meta-regression slope coefficient; correlation between the instrument and

omitted variables, which we call economic invalidity, will be reflected in the meta-regression

intercept. Heterogeneity in treatment effects drives an additional wedge between OLS and

IV estimates, which likewise affects the meta-regression estimates.

When instruments are subject to these identification issues, we can then use the meta-

regression to infer the extent of invalidity and heterogeneity. In particular, because the

variance of the measurement error is bounded by the variance of the endogenous regressor

itself, large or negative values of the meta-regression slope suggest that the instrument

is subject to measurement invalidity. In addition, when the sign of the omitted variable

bias is known, certain values of the meta-regression intercept term can indicate that the

instrument is subject to economic invalidity. We derive distinct monotonic relationships

between measurement error and measurement invalidity, and between omitted variable bias
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and economic invalidity, that are pinned down by the meta-regression slope and intercept

terms.

As with other tests of instrument validity, there remains the possibility that the instru-

ment is valid but treatment effects are heterogeneous. We provide a general characterization

of heterogeneity and instrument invalidity, and show that heterogeneity is only relevant

when heterogeneity in the first stage is related to heterogeneity in the second stage. We

then analyze a commonly-used case in which observations are grouped into compliers and

non-compliers. In this case, both the meta-regression slope and intercept can be informative

about the external validity of the IV estimates. Furthermore, information on the relationship

between complier and non-complier effects can imply bounds on the measurement error and

omitted variable bias.

We apply our meta-regression to three studies in which most of the IV estimates are larger

than the corresponding OLS estimates (Mian and Sufi, 2014; Adelino, Ma and Robinson,

2017; Duranton, Morrow and Turner, 2014). Our meta-regression estimates reveal that,

in the first two examples, measurement error offers a concise explanation of this disparity:

the measurement error bias dwarfs the omitted variable bias, despite the fact that omitted

variable bias motivated their use of instruments in the first place. On the other hand, if

the omitted variable bias is significant, then our meta-regression implies that either the

instrument are invalid, or heterogeneity renders the IV estimates irrelevant. In the third

paper, we find very little measurement error; however, the omitted variable bias is of the

wrong sign. The latter suggests that either the instrument is invalid, or that heterogeneity

renders the IV estimates irrelevant.

Our meta-regression only requires reported coefficients and standard errors. Because this

information is almost always reported in published work, this allows referees, discussants,

or even seminar participants to easily analyze measurement error, omitted variable bias,

instrument validity, and external validity in the underlying regressions, without needing

replication code or data.

A number of recent papers analyze popular econometric methods and practices with

fundamental insights from econometric theory (Borusyak, Hull and Jaravel, 2018; Grieser

and Hadlock, 2019; Oster, 2019; Goldsmith-Pinkham, Sorkin and Swift, 2020; Berg, Reisinger

and Streitz, 2021; Cohn, Liu and Wardlaw, 2022). DiTraglia and Garćıa-Jimeno (2021) show

how prior beliefs on measurement error, omitted variable bias, and instrument validity can

be incorporated into an IV estimation in a Bayesian framework. Our analysis of instrument

invalidity is similar in spirit to theirs, in that we show how differences between our baseline

meta-regression estimates and a researcher’s beliefs about measurement error and omitted

variable bias can indicate instrument invalidity.
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In the absence of omitted variable bias, higher-order moment and cumulant estimators

can be used to correct for measurement error (Erickson and Whited, 2000; Whited, 2001;

Erickson and Whited, 2002, 2012; Erickson, Jiang and Whited, 2014). These estimators also

deliver direct estimates of the extent of measurement error. For example, Erickson, Jiang

and Whited (2014) estimate that only 30%–35% of the variance of Tobin’s q comes from

variation in marginal q (Table 4). Our meta-regression requires a valid instrument instead of

higher-order moments, but also allows for the identification of the average omitted variable

bias in addition to the extent of measurement error.

There is a long tradition of using meta-regressions to infer publication bias across stud-

ies (Card and Krueger, 1995; Stanley, 2008; Doucouliagos and Stanley, 2009; Stanley and

Doucouliagos, 2014; Christensen and Miguel, 2018); see Roberts (2005) for a brief survey.

The first paper to advocate for the use of meta-regression as a tool is likely Stanley and

Jarrell (1989). Rather than focus on publication bias by looking at results across studies,

our meta-regression instead uses the multiple reported coefficients within a study—coming

from multiple dependent variables—to analyze measurement error, omitted variable bias,

instrument invalidity, and the importance of heterogeneous treatment effects.

2 Theory

In this section, we present the theory behind our meta-regression estimator. We describe the

underlying endogeneity problem in Section 2.1, analyze invalid instruments in Section 2.2,

and allow for heterogeneous treatment effects in Section 2.3. In each section, we derive

expressions for the meta-regression coefficients, which can be used to disentangle the un-

derlying endogeneity problems, detect violations of the exclusion restriction, and assess the

external validity of IV estimates. All proofs are in Appendix A.

2.1 Endogeneity

To start, we first describe the effects of endogeneity on OLS and IV estimates, then show

how pairs of OLS and IV estimates can be used to disentangle omitted variable bias from

measurement error. Assumption 1 details the baseline environment.

Assumption 1

(i) (yi, xi, zi) is a sequence of observable variables for i = 1, 2, ..., n.

(ii) (χi, ui, εi) is a mean-zero i.i.d. sequence of unobservable variables for i = 1, 2, ..., n.
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(iii) (yi, xi) and (χi, ui, εi) are related to each other as follows:

yi = χiβ + ui, (1)

xi = χi + εi. (2)

(iv) cov (χi, εi) = cov (ui, εi) = 0.

(v) cov (zi, ui) = cov (zi, εi) = 0.

(vi) cov (χi, zi) ̸= 0.

Equation (2) implies that xi is an observable proxy for the unobservable χi, where εi rep-

resents measurement error. We do not assume that cov (χi, ui) = 0; hence, ui in equation (1)

is an omitted variable. Plugging (2) into (1) yields

yi = xiβ + ui − εiβ,

where xi is correlated with the unobservable variables ui and εi. Consequently, an OLS

regression of yi on xi would fail to recover β, both because of the omitted variable ui and

because of the measurement error εi. Assumptions 1(v) and 1(vi) are the standard exclusion

restriction and relevance condition for a valid instrument, which we relax in Section 2.2. For

notational convenience, we assume that there is a single instrument zi; it is straightforward

to extend our results to accommodate a vector of instruments.

Proposition 1. Given Assumption 1, we can consistently estimate β by using zi as an

instrument for xi:

βIV ≡ cov (yi, zi)

cov (xi, zi)
= β, (3)

where the covariance is computed over the joint distribution of (χi, zi, ui, εi). By contrast,

the OLS estimator converges to

βOLS ≡ cov (yi, xi)

var (xi)
= τ 2β + γ, (4)

where γ ≡ cov(χi,ui)
var(xi)

denotes omitted variable bias, and τ 2 is the R2 from a hypothetical

regression of xi on χi:

τ 2 ≡ var (χi)

var (xi)
= 1− var (εi)

var (xi)
.
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Proposition 1 defines a measure of proxy quality, τ 2. If τ 2 = 1, xi is a perfect proxy for

χi; if τ
2 = 0, xi is pure noise. The OLS-IV bias, which we define as the difference between (3)

and (4), depends on both proxy quality and omitted variable bias:

βOLS − βIV = −
(
1− τ 2

)
β + γ. (5)

In some settings, we can use economic intuition to infer the direction of the OLS-IV bias. To

borrow an example from Jiang (2017), suppose that yi is adulthood wages and xi is years of

education. The usual omitted variable in this regression is ability, which is unobservable and

has a positive effect on both wages and years of education. In this setting, β > 0 and γ > 0,

hence βOLS should be biased upwards; in other words, we should find that βOLS > βIV.

Despite this intuition, OLS estimates of returns to schooling tend to be biased downwards

(Card, 2001). One possibility is that some hitherto unknown effect overwhelms the ability

effect and results in γ < 0. Another explanation is measurement error: as equation (5) shows,

if returns to schooling are positive (β > 0) but subject to measurement error
(
τ 2 < 1

)
, then

βOLS can be biased downwards
(
βOLS − βIV < 0

)
even if education and ability are positively

correlated (γ > 0).

Note the OLS coefficient in equation (4) is a mixture of the true effect β and the omitted

variable bias γ, where the true effect is diluted by measurement error bias when τ 2 < 1. There

is a pernicious interaction between these biases: as proxy quality decreases, the observed OLS

coefficient will be less reflective of the true effect and more reflective of the omitted variable

bias. This is particularly concerning when the true effect and omitted variable bias have

opposite signs: if the measurement error is sufficiently severe, then the OLS coefficient will

take on the sign of the omitted variable bias instead of the true effect.

Substituting (3) into (4) yields

βOLS = τ 2βIV + γ. (6)

Given a single OLS estimate βOLS and a single IV estimate βIV, equation (6) is one equation

in two unknowns, τ 2 and γ. Observing a single pair of coefficients
(
βOLS, βIV

)
is therefore

insufficient to separately identify the proxy quality τ 2 and omitted variable bias γ.

On the other hand, if we observe multiple OLS and IV estimates, then we can separately

identify both the proxy quality and average omitted variable bias. In particular, suppose we

observe J pairs of OLS and IV coefficients
(
βOLS
j , βIV

j

)
, where each pair corresponds to a

different outcome variable (yi1, yi2, ..., yiJ). Assumption 2 then replaces Assumption 1.

Assumption 2
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(i) (yi1, yi2, ..., yiJ , xi, zi) is a sequence of observable variables for i = 1, 2, ..., n.

(ii) (χi, ui1, ui2, ..., uiJ , εi) is a mean-zero i.i.d. sequence of unobservable variables for i =

1, 2, ..., n.

(iii)
(
yij, xi

)
and

(
χi, uij, εi

)
are related to each other as follows:

yij = χiβj + uij, (7)

xi = χi + εi.

(iv) cov (χi, εi) = covj
(
uij, εi

)
= 0 for each j.

(v) covj
(
zi, uij

)
= cov (zi, εi) = 0 for each j.

(vi) cov (χi, zi) ̸= 0.

(vii) βj and γj are independent, where γj ≡
covj(xi,uij)

var(xi)
.

Note that the covariance operator covj (·) in 2(iv) and 2(v) is relative to the joint distri-

bution of (χi, zi, ui1, ui2, ...uiJ , εi) across i for a given j, whereas the independence in 2(vii)

is relative to the joint distribution of
(
βj, γj

)
across j.

Assumption 2 replaces the single equation (1) with J equations (7), each corresponding

to one of the J dependent variables (yi1, yi2, ..., yiJ) and coefficients (β1, β2, ..., βJ). We can

therefore write the following system of J equations, each resembling (6):

βOLS
1 = τ 2βIV

1 + γ1,

βOLS
2 = τ 2βIV

2 + γ2,

...

βOLS
J = τ 2βIV

J + γJ .

Following Assumption 2, we can estimate τ 2 by running an OLS regression of βOLS
j on βIV

j ,

where 2(vii) is analogous to the usual OLS assumption that the regressor βIV
j is uncorrelated

with the error term γj. Because the outcome and explanatory variables are themselves

regression coefficients, we call this a meta-regression. We formalize the meta-regression in

the proposition below.

Proposition 2. Given Assumption 2, we can consistently estimate τ 2 and E
[
γj
]
with the

following meta-regression of βOLS
j on βIV

j :

βOLS
j = a+ bβIV

j + vj, (8)
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where

b ≡
cov
(
βOLS
j , βIV

j

)
var
(
βIV
j

) = τ 2,

a ≡ E
[
βOLS
j

]
− bE

[
βIV
j

]
= E

[
γj
]
.

(9)

The slope coefficient b identifies proxy quality τ 2, while the intercept coefficient a identifies

the average omitted variable bias E
[
γj
]
across the J regressions. The meta-regression is

therefore particularly useful in cases where the OLS-IV bias is unexpectedly positive or

unexpectedly negative; by regressing OLS coefficients on IV coefficients, researchers can

effectively control for measurement error, and recover both the sign and magnitude of the

average omitted variable bias.

While Proposition 2 demonstrates the intuition behind our meta-regression estimator,

it assumes that we can observe βIV
j directly. In practice, however, we typically observe a

noisy estimate of βIV
j , which implies that the meta-regression is itself subject to sampling

variation. Define

β̂IV
j ≡ βIV

j + ς IVj εIVj , (10)

where ς IVj is the standard error of the estimate β̂IV
j , εIVj is an unobservable mean-zero ran-

dom variable with unit variance, and the individual elements of
(
βj, ε

IV
j , ς

IV
j

)
are mutually

independent of each other. Under Assumption 2, equation (10) implies that

β̂IV
j ∼ N

(
βj,
(
ς IVj

)2)
,

which captures the notion that the observed IV estimate β̂IV
j is asymptotically normally

distributed with mean βj.

Using β̂IV
j in lieu of βIV

j introduces noise into our meta-regression.1 Fortunately, given

the reported standard errors of β̂IV
j , we can correct for this bias following Proposition 3.

Proposition 3. Given Assumption 2, we can consistently estimate τ 2 and E
[
γj
]
with the

following meta-regression of β̂OLS
j on β̂IV

j :

β̂OLS
j = â+ b̂β̂IV

j + vj, (11)

1By contrast, we can use β̂OLS
j and βOLS

j interchangeably, since noise in β̂OLS
j will not affect the meta-

regression (Hausman, 2001).
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where

b̂ ≡
cov
(
β̂OLS
j , β̂IV

j

)
var
(
β̂IV
j

) = τ 2ρ̂2,

â ≡ E
[
β̂OLS
j

]
− b̂E

[
β̂IV
j

]
= E

[
γj
]
+ τ 2

(
1− ρ̂2

)
E
[
β̂IV
j

]
,

(12)

and ρ̂2 ≡ 1 −
E
[
(ςIVj )

2
]

var(β̂IV
j )

is the coefficient of determination from a hypothetical regression of

β̂IV
j on βj.

Intuitively, noise in β̂IV
j attenuates the meta-regression estimate of τ 2. However, we can

use the standard error of β̂IV
j to estimate ρ̂2 and correct for the sampling variation. In other

words, we can still use the meta-regression coefficients in (12) to recover τ 2 and E
[
γj
]
.

All of our results are robust to the inclusion of controls. Proposition 3’ in Appendix A

extends Proposition 3 to allow for perfectly measured control variables in the underlying J

regressions, which implies that we are measuring the measurement error of the proxy variable

xi after controlling for other factors.

2.2 Invalidity

Proposition 3 relies on the strong assumption that the instrument zi satisfies the exclusion

restriction in each regression j. In this section, we allow for violations of the exclusion re-

striction and show how that affects our interpretation of the meta-regression coefficients. We

then demonstrate that the meta-regression can be used to detect violations of the exclusion

restriction.

Assumption 3

(i) (yi1, yi2, ..., yiJ , xi, zi) is a sequence of observable variables for i = 1, 2, ..., n.

(ii) (χi, ui1, ui2, ..., uiJ , εi) is a mean-zero i.i.d. sequence of unobservable variables for i =

1, 2, ..., n.

(iii)
(
yij, xi

)
and

(
χi, uij, εi

)
are related to each other as follows:

yij = χiβj + uij,

xi = χi + εi.

(iv) cov (χi, εi) = covj
(
uij, εi

)
= 0 for each j.

(v) cov (χi, zi) ̸= 0.
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(vi) The individual elements of
(
βj, γj, δj0

)
are mutually independent, where

δj0 ≡
covj

(
zi, uij

)
cov (xi, zi)

.

Assumption 3 dispenses with the exclusion restriction from Assumption 2(v), thereby

allowing the instrument to be invalid for two reasons. First, the instrument may be invalid for

addressing omitted variable bias, covj
(
zi, uij

)
̸= 0, which we refer to as economic invalidity.

Economic invalidity includes cases in which zi has a direct effect on yij, which underpins the

discussion of weak instruments in Jiang (2017).

Second, the instrument may be invalid for addressing measurement error, cov (zi, εi) ̸=
0, which we refer to as measurement invalidity. As Roberts and Whited (2013) note, an

instrument that is chosen to deal with omitted variable bias need not also be valid for

measurement error. Given the paucity of finance papers that mention measurement error

as an identification issue (Erickson, Jiang and Whited, 2014), it seems plausible that some

published instruments suffer from measurement invalidity.

The following proposition shows that the meta-regression can be a useful tool for assessing

both types of invalidity.

Proposition 4. Suppose Assumption 3 holds. Following equation (10), we observe

β̂IV
j = (1− δ1) βj + δj0 + ςIVj εIVj , (13)

where

δ1 ≡
cov (zi, εi)

cov (xi, zi)
.

The meta-regression estimator from equation (11) converges to

b̂ =
τ 2

1− δ1

(
ρ̂2 − ϕ2

)
,

â = E
[
γj
]
+

τ 2

1− δ1

((
1− ρ̂2 + ϕ2

)
E
[
β̂IV
j

]
− E

[
δj0
])

,

(14)

where ϕ2 ≡ var(δj0)
var(β̂IV

j )
∈
[
0, ρ̂2

]
is the coefficient of determination from a hypothetical regres-

sion of δj0 on β̂IV
j .

In Proposition 4, we parameterize invalidity with δj0 and δ1. If δj0 ̸= 0 for any j, then

the instrument zi suffers from economic invalidity; if δ1 ̸= 0, then the instrument zi suffers
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0

ρ̂2

0

Measurement Invalidity

Economic Invalidity

Figure 1. Recognizing Instrument Invalidity
The figure plots the five regions in which the meta-regression implies instrument invalidity,

where the diagonal line is â = b̂E
[
β̂IV
j

] (
1
ρ̂2 − 1

)
. If b̂ < 0 or b̂ > ρ̂2, then the instrument

suffers from measurement invalidity. If E
[
γj
]
> 0 and â is to the left of the diagonal line

(pictured here), or if E
[
γj
]
< 0, and â is to the right of the diagonal line, then the instrument

suffers from economic invalidity.

from measurement invalidity.

The meta-regression can reveal invalidity for certain values of
(
â, b̂
)
. If we observe

b̂ /∈
[
0, ρ̂2

]
, then there must be measurement invalidity. It is worth noting that an instrument

cannot be invalid for addressing measurement error if there is no measurement error to begin

with; thus, measurement invalidity necessarily implies the existence of measurement error,

τ 2 < 1. In fact, we can use Proposition 4 to derive an upper bound on τ 2, as the following

corollary shows.

Corollary 4.1. Given the meta-regression slope b̂ and a value of ϕ2, the proxy quality τ 2

satisfies:

τ 2 ≤
−2kϕr

2
xz − 1 +

√
4kϕ

(
kϕ + 1

)
r2xz + 1

2k2ϕr
2
xz

(15)

where rxz ≡ corr (xi, zi) and kϕ ≡ ϕ2−ρ̂2

b̂
.

If ϕ2 = ρ̂2 − b̂, then kϕ = −1, and (15) reduces to τ 2 ≤ 1.

Likewise, if the average omitted variable bias is positive and we observe â < b̂E
[
β̂IV
j

] (
1
ρ̂2

− 1
)
,
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or if the average omitted variable bias is negative and we observe â > b̂E
[
β̂IV
j

] (
1
ρ̂2

− 1
)
, then

there must be economic invalidity. Figure 1 plots the values of
(
â, b̂
)
that imply violations

of the exclusion restriction.

Furthermore, we can rearrange the terms in Proposition 4 to obtain:

δ1 = 1− τ 2

(
ρ̂2 − ϕ2

b̂

)
,

E
[
δj0
]
=
(
E
[
γj
]
− â
)( ρ̂2 − ϕ2

b̂

)
+ E

[
β̂IV
j

] (
1− ρ̂2 + ϕ2

)
.

(16)

Once we condition on the meta-regression coefficients, the relationship between τ 2 and δ1

does not depend on
(
E
[
γj
]
,E
[
δj0
])

; likewise, the relationship between E
[
γj
]
and E

[
δj0
]

does not depend on
(
τ 2, δ1

)
. We can therefore use (16) to show how departures from the es-

timates of τ 2 and E
[
γj
]
in Proposition 3 translate into measurement invalidity and economic

invalidity, respectively.

While (16) conditions on the meta-regression coefficients to isolate τ 2 from E
[
γj
]
, we

can alternatively isolate the average causal effect from the terms governing invalidity:

E
[
βj
]
=

1

τ 2

(
â+ b̂E

[
β̂IV
j

]
− E

[
γj
])

. (17)

By the same token, we can use equation (17) to show how departures from the estimates of

τ 2 and E
[
γj
]
in Proposition 3 translate into the average causal effect E

[
βj
]
.

2.3 Heterogeneity

We now consider the impact of heterogeneous treatment effects. We derive an expression

for the meta-regression coefficients that allows for heterogeneity, invalidity, and endogeneity,

thereby nesting all previous expressions. We then show that heterogeneity is irrelevant to

the meta-regression if heterogeneity in the first stage is independent of heterogeneity in the

second stage. Finally, we show that the meta-regression can be used to analyze the external

validity of IV estimates that capture local average treatment effects.

Assumption 4

(i) (yi1, yi2, ..., yiJ , xi, zi) is a sequence of observable variables for i = 1, 2, ..., n.

(ii) (χi, ui1, ui2, ..., uiJ , εi) is a mean-zero i.i.d. sequence of unobservable variables for i =

1, 2, ..., n.
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(iii)
(
yij, xi

)
and

(
χi, uij, εi

)
are related to each other as follows:

yij = χiβij + uij,

xi = χi + εi.

(iv) cov (χi, εi) = covj
(
uij, εi

)
= 0 for each j.

(v) cov (χi, zi) ̸= 0.

(vi)
(
βχ
j , β

z
j

)
and

(
γj, δj0

)
are mutually independent, where

βm
j ≡ Ej

[
ωimβij

]
,

ωim ≡ χimi

E [χimi]
,

m ∈ {χ, z} .

Assumption 4(iii) allows for heterogeneous treatment effects: βij can vary across obser-

vations i for each regression j. Consequently, Assumption 4(vi) references weighted average

treatment effects βχ
j and βz

j , which are the weighted averages that appear in the OLS and

IV coefficients, respectively.2

It is worth emphasizing that “heterogeneous treatment effects” refers to variation in βij

across i for a given j; that is, heterogeneity across observations i in the effects of treatment

χi on a particular outcome variable yij. By contrast, the heterogeneity in βij across j, which

derives from the use of different outcome variables yij across j, is precisely the variation that

identifies the meta-regression coefficients.

The following proposition shows how the meta-regression captures heterogeneous treat-

ment effects, invalidity, and endogeneity.

Proposition 5. Suppose Assumption 4 holds. Then the OLS estimator converges to

βOLS
j = τ 2βχ

j + γj,

while the observed IV estimator is given by

β̂IV
j = (1− δ1) β

z
j + δj0 + ςIVj εIVj .

2By construction, E [ωim] = 1, and the weights are always non-negative when computing βχ
j . The weights

may be negative when computing βz
j , but are always non-negative if the following monotonicity condition is

satisfied for each j: either Ej

[
χizi|βij

]
≥ 0 for all i, or Ej

[
χizi|βij

]
≤ 0 for all i.
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The meta-regression estimator converges to:

b̂ =
τ 2

1− δ1

(
ρ̂2 − ϕ2

)
ψ1,

â = E
[
γj
]
+ τ 2

(
ψ0 +

ψ1

1− δ1

((
1− ρ̂2 + ϕ2

)
E
[
β̂IV
j

]
− E

[
δj0
]))

,

(18)

where (ψ1, ψ0) are the slope and intercept coefficients, respectively, from a hypothetical re-

gression of βχ
j on βz

j .

If treatment effects are not heterogeneous, then ψ1 = 1 and ψ0 = 0, hence (18) is

equivalent to (14). As the following corollary shows, even if there is heterogeneity, it may

still be irrelevant to the meta-regression.

Corollary 5.1. Suppose Assumption 4 holds and

covj
(
χ2
i , βij

)
= covj

(
χizi, βij

)
= 0 (19)

for all j. Then βχ
j = βz

j = Ej

[
βij
]
for all j, which implies that ψ0 = 0 and ψ1 = 1. The

meta-regression estimator is therefore unaffected by heterogeneity: (18) is equivalent to (14).

In a linear environment, equation (19) will hold if heterogeneity in the first-stage coeffi-

cient αi is independent of heterogeneity in the treatment effect βij for each j. This is trivially

satisfied if, for example, there is no heterogeneity in the first stage, so that αi = α for all

i. More generally, if heterogeneity in the first stage is independent of heterogeneity in the

second stage, then the weighted average treatment effects βχ
j and βz

j will both be equal to

the average treatment effect. For the meta-regression, this heterogeneity is then irrelevant.

For practical purposes, it is helpful to cast heterogeneity in a more familiar setting with

compliant and non-compliant subpopulations.3

Corollary 5.2. Suppose Assumption 5 holds and observation i’s type is indexed by the

unobservable variable πi ∈ {0, 1} such that

βij =

{
βj0 if πi = 0

βj1 if πi = 1.

Further suppose that

αi =

{
0 if πi = 0

α if πi = 1,

3We thank Andrew Y. Chen for this concise formulation of heterogeneous treatment effects.
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where αi ≡
cov(χi,zi|πi)
var(zi|πi)

. Then the observed IV estimator is given by

β̂IV
j = (1− δ1) βj1 + δj0 + ςIVj εIVj .

The meta-regression estimator converges to

b̂ =
τ 2

1− δ1

(
ρ̂2 − ϕ2

) (
λ+ (1− λ) θ1

)
,

â = E
[
γj
]
+ τ 2

[
(1− λ) θ0 +

λ+ (1− λ) θ1
1− δ1

((
1− ρ̂2 + ϕ2

)
E
[
β̂IV
j

]
− E

[
δj0
])]

,

(20)

where

λ ≡
P (πi = 1)E

[
χ2
i |πi = 1

]
E
[
χ2
i

] ,

and (θ1, θ0) are the slope and intercept coefficients, respectively, from a hypothetical regression

of βj0 on βj1.

Corollary 5.2 is a special case of Proposition 5 that allows us to discuss the arbitrary

heterogeneity in Assumptions 4 in terms of compliers and non-compliers (Angrist, Imbens

and Rubin, 1996). Assumption 4(v) implies that α ̸= 0, hence the treatment χi and instru-

ment zi are only correlated in the subpopulation for which πi = 1. We therefore refer to

observations of type πi = 1 as compliers, and observations of type πi = 0 as non-compliers.

The distinction between compliers and non-compliers is commonplace in discussions of

2SLS estimation (Angrist and Pischke, 2009; Mogstad, Torgovitsky andWalters, 2021; Bland-

hol et al., 2022); Jiang (2017) uses this terminology to explain why 2SLS estimates are often

larger than their OLS counterparts. If the instrument is valid, then the IV estimator iden-

tifies the treatment effect for compliers, i.e., the local average treatment effect βj1. The

parameter λ ∈ [0, 1] denotes the extent to which the compliant subpopulation drives varia-

tion in χi, hence it directly measures the external validity of the IV estimate. If λ is close to

zero, then the estimated causal effect, though well-identified, applies to an inconsequential

amount of variation in the data.

Following Section 2.2, we can condition on the meta-regression coefficients to infer the

relationship between external validity λ, proxy quality τ 2, and the average omitted variable
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bias E
[
γj
]
. If the instrument is valid, then Corollary 5.2 implies:

λ =
1

1− θ1

(
b̂

τ 2ρ̂2
− θ1

)
,

λ =

θ0b̂+ θ1

(
ρ̂2
(
E
[
γj
]
− â
)
+
(
1− ρ̂2

)
E
[
β̂IV
j

]
b̂

)
θ0b̂+ (θ1 − 1)

(
ρ̂2
(
E
[
γj
]
− â
)
+ (1− ρ̂2)E

[
β̂IV
j

]
b̂

) (21)

When θ1 = 1, θ0 indexes the average difference (across regressions) between complier and

non-complier effects. In this case, equation (21) reduces to

λ = 1 +
ρ̂2
(
E
[
γj
]
− â
)
+
(
1− ρ̂2

)
E
[
β̂IV
j

]
b̂

θ0b̂
.

After conditioning on the meta-regression estimates, the relationship between λ and τ 2

does not depend on E
[
γj
]
, and the relationship between λ and E

[
γj
]
does not depend on

τ 2, thereby allowing us to separately analyze the impact of each of the two fundamental

endogeneity problems on the external validity of local average treatment effects.

3 Meta-regression in practice

We now run the meta-regression on pairs of OLS and IV coefficients from three published

papers: Mian and Sufi (2014), Adelino, Ma and Robinson (2017), and Duranton, Morrow and

Turner (2014). In all three papers, the average magnitude of the IV coefficients vastly exceeds

the average magnitude of the OLS coefficients, which is surprising, since economic intuition

suggests that the omitted variable bias should be positive. Provided their instruments are

valid, Proposition 3 implies that the meta-regression coefficients separately identify proxy

quality τ 2 and the average omitted variable bias E
[
γj
]
for all three papers. Alternative values

of τ 2 and E
[
γj
]
directly imply invalidity and/or heterogeneity, using Propositions 4 and 5.

Figure 2 plots the implied measurement error and omitted variable bias for all three pa-

pers under the assumptions of Proposition 3. For the first two papers, the meta-regression

implies a value of τ 2 that is substantially less than one, which suggests that measurement

error is pervasive in their respective explanatory variables; by contrast, there seems to be

little measurement error in Duranton, Morrow and Turner (2014). Note that we use Fig-

ure 2 mainly as a convenient way to describe the meta-regression results of all three papers

together; because each paper’s value of E
[
β̂IV
j

] (
1
ρ̂2

− 1
)
is different, they cannot all be plot-
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Figure 2. Three meta-regressions
The figure plots the estimated values of τ2 and E

[
γj
]
from (12) in Proposition 3 using the

respective OLS and IV coefficients from Table IV in Mian and Sufi (2014), Tables III, V, and VI

in Adelino, Ma and Robinson (2017), and Table 7 in Duranton, Morrow and Turner (2014).

ted together in the
(
â, b̂
)
plane as in Figure 1. We discuss the possibility that each paper’s

estimates may be invalid, or subject to heterogeneity, in detail below.

The estimated meta-regression coefficients also imply that the average omitted variable

bias is positive for the first two papers, which resolves the puzzling direction of their OLS-IV

bias. Indeed, the severity of the measurement error problem is precisely what deflates the

OLS coefficients and therefore drives down the OLS-IV bias in both of these papers. On

the other hand, because we find little measurement error in Duranton, Morrow and Turner

(2014), the omitted variable bias still appears to be strongly negative, counter to economic

intuition. And, while the estimated omitted variable bias is the correct sign for the first

two papers, it seems quantitatively insignificant, which is surprising given the amount of

attention afforded to it by the authors.

The low, and in one case negative, average omitted variable bias implied by Proposition 3

suggest that the instruments may be invalid. Following Proposition 4, we show that reason-

able values of the average omitted variable bias, which differ from the estimates implied by

Proposition 3, imply that the OLS estimates for each paper are, on average, closer to the

truth than the IV estimates. In fact, the more omitted variable bias there is, the worse the

IV estimator performs.
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It may also be the case that the instruments are valid, but there is substantial heterogene-

ity in the underlying treatment effects for each regression. However, Corollary 5.2 applied to

our then implies that there may be limited external validity for the IV estimates. In partic-

ular, if the instruments are valid, then the local average treatment effects that they identify

may be substantially different from the average treatment effects across all observations.

3.1 Mian and Sufi (2014)

Mian and Sufi (2014) are interested in establishing a causal relationship between county-

level housing net worth and employment during the Great Recession from 2007 to 2009.

Our meta-regression offers the following interpretation of their results:

1. If the Saiz instrument is valid, then our meta-regression implies that measurement

error is substantial, while omitted variable bias is negligible.

2. If the omitted variable bias is not negligible, then either the Saiz instrument is invalid,

or heterogeneity of treatment effects is important.

(a) If the Saiz instrument is invalid, then our meta-regression implies that the OLS

estimates are less biased than the IV estimates.

(b) If treatment effects are heterogeneous, then our meta-regression implies that the

IV estimates apply to an irrelevant sub-population.

Mian & Sufi regress county-level employment growth on growth in housing net worth, though

they note that OLS estimates will likely be biased upwards due to omitted variables:

[Growth in housing net worth] may be spuriously correlated with supply-side

industry-specific shocks that impact both employment and housing net worth.

In particular, certain industries may be harder hit during the recession, and

counties with greater exposure to these industries may naturally experience both

a larger decline in housing net worth and larger fall in employment. (page 2207)

To combat this omitted variable bias, Mian and Sufi use the Saiz (2010) housing supply

elasticity as an instrument for growth in housing net worth. The regressions they run are of

the form:

∆ENT
i = α + β∆HNWi + εi, (22)

where ∆ENT
i is employment growth from 2006–2009 in non-tradable industries in county i

and ∆HNWi is their measured shock to housing net worth in county i over the same period,

18



defined as the change in house prices times the value of the housing stock, divided by total

net worth in 2006:

∆HNWi ≡
∆pH,i

2006−2009 ×H i
2006

Si
2006 +Bi

2006 +H i
2006 −Di

2006

,

where pH,i
2006−2009 is a measure of house price growth in county i, and Si

2006, B
i
2006, H

i
2006, and

Di
2006 are county-level stock, bond, house, and debt values in dollars. Mian and Sufi estimate

Si
2006 and B

i
2006 using IRS data on county-level dividend and interest income, assuming that

households in each county hold the market portfolios of stocks and bonds. Mian, Rao and

Sufi (2013) point out that any cross-sectional variation in portfolio holdings across counties

introduces measurement error into ∆HNWi. Moreover, ∆HNWi unavoidably picks up noise

from projecting house prices, population, and homeownership rates forward to 2006 and 2009

using the 2000 Decennial Census.

The quote above suggests that the authors are worried about positive omitted variable

bias: γ > 0. Absent measurement error, Proposition 1 implies that we should then observe

IV estimates that are smaller than their OLS counterparts. Yet, among the pairs of OLS

and IV estimates that we observe, seven of the ten IV estimates are larger than their OLS

counterparts. Measurement error can explain this discrepancy. If ∆HNWi is subject to

measurement error, then Proposition 2 implies that the average omitted variable bias is

identified by the intercept of the meta-regression; crucially, this meta-regression intercept,

and therefore the average omitted variable bias, is not equal to the average difference between

the OLS and IV coefficients.

While many of the IV estimates are larger than their OLS counterparts, the meta-

regression indicates that the average omitted variable bias is indeed positive. In Figure 3,

we plot the six OLS-IV regression pairs reported in Table IV of Mian and Sufi (2014) which

differ only in the outcome variable of interest; we omit the OLS-IV pairs reported in Ta-

bles III and IV that include different control variables or are run on different samples.4 We

find â = 0.057, b̂ = 0.44, and ρ̂2 = 0.79; accounting for sampling variation in the reported

coefficients, Proposition 3 then suggests that τ 2 = 0.56 and E
[
γj
]
= 0.034. In other words,

it does appear that the OLS estimates are biased upward due to omitted variable bias,

consistent with the authors’ economic intuition.

Yet, omitted variable bias is quantitatively less important than measurement error bias.

For example, the estimated elasticity of employment growth to housing net worth at large

4The IV regressions Mian & Sufi report in Table IV are run on slightly smaller samples than their OLS
counterparts due to missing values of the Saiz instrument; our results are nearly identical if we re-estimate
the OLS regressions on the same sample as the IV estimates.
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Figure 3. Meta-regression for Mian and Sufi (2014)
The figure plots β̂OLS

j against β̂IV
j for six regressions reported in Table IV of Mian and Sufi

(2014), where xi is a proxy for county-level growth in housing net worth and each yij is a measure

of county-level employment growth. The dashed line corresponds to the meta-regression, which

has an intercept of â = 0.057 and a slope of b̂ = 0.44. The dotted line has a slope of ρ̂2 = 0.79.

firms is 0.770 (Table IV, column 6). The corresponding OLS estimate of 0.434 is about

half that, almost entirely due to measurement error: 0.770 × 0.56 = 0.43. Were the proxy

perfectly measured, the meta-regression estimates suggest that the OLS estimate would

have been 0.770 + 0.034 = 0.804. If their instrument is valid, then it is mainly addressing a

substantial measurement error problem, while the omitted variable bias is insubstantial.

It may also be the case that the average omitted variable bias is a substantive problem,

but the instrument is invalid. Following Proposition 4, if the average omitted variable bias

differs from 0.034, then it must be the case that the instrument suffers from economic inva-

lidity; likewise, if the measurement error differs from 0.56, then it must be the case that the

instrument suffers from measurement invalidity. While Saiz (2010) and Davidoff (2016) ar-

gue that the Saiz instrument suffers from economic invalidity due to omitted demand factors,

we are the first to highlight the potential for measurement invalidity in this instrument.

The left panel of Figure 4 plots the relationship between economic invalidity E
[
δj0
]
and

omitted variable bias E
[
γj
]
; the right panel plots the relationship between measurement

invalidity δ1 and proxy quality τ 2. Relative to the baseline estimates, the higher the proxy

quality, the worse the measurement invalidity; the higher the omitted variable bias, the worse

the economic invalidity. In both cases, the IV estimates are on average biased upwards. If

the omitted variable bias or proxy quality is lower than the values implied by Proposition 3,

then this again implies instrument invalidity, but the resulting IV estimates will instead be
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Figure 4. Instrument Invalidity in Mian and Sufi (2014)
The figure plots (16) for Mian and Sufi (2014). The left panel plots E

[
δj0
]
as a function of

E
[
γj
]
, and the right panel plots the value of δ1 as a function of τ2. The vertical dashed lines

correspond to the baseline estimates from Proposition 3. In the right panel, each line ends at

the maximum value of τ2 implied by equation (15).

biased downwards.

Reasonable values of the average omitted variable bias or proxy quality imply that, on

average, the OLS estimates outperform the IV estimates. Figure 5 plots the average causal

effect E
[
βj
]
as a function of both omitted variable bias E

[
γj
]
and proxy quality τ 2. The

OLS estimates are closer to the true causal effect even for a minuscule amount of omitted

variable bias, as low as 0.05 at our baseline estimates of τ 2. Likewise, if the proxy quality

is higher than 0.56, then at our baseline estimates of the omitted variable bias, the OLS

estimates are closer to the truth than the IV estimates.

It is also possible that the instrument is valid, but proxy quality and omitted variable

bias depart from Proposition 3 due to heterogeneous treatment effects in equation (22),

which has implications for the external validity of the IV estimates. Following Corollary 5.2,

complier counties are those in which the Saiz instrument correlates with housing net worth

shocks, while non-complier counties are those in which the Saiz instrument does not correlate

with housing net worth shocks. For example, if the treatment effects for complier and non-

complier counties are uncorrelated with each other across regressions (θ1 = 0), and there is

no measurement error (τ 2 = 1), then our meta-regression estimates imply that λ = 0.56.

In other words, the IV estimates are identified based on a compliant subpopulation that

accounts for 56% of the variation in housing net worth shocks.

Figure 6 plots the implied value of λ as a function of average omitted variable bias in the

21



0.4 0.5 0.56 0.6 0.7 0.8 0.9 1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 5. Average Causal Effect in Mian and Sufi (2014)
The figures plots equation (17) for Mian and Sufi (2014). The left panel plots the value of E

[
βj

]
as a function of E

[
γj
]
given τ2, and the right panel plots the value of E

[
βj

]
as a function of

τ2 given E
[
γj
]
. The pair of horizontal dashed lines report the average values of β̂IV

j and β̂OLS
j ,

respectively. The vertical dashed lines correspond to the baseline estimates from Proposition 3.

left panel, and proxy quality in the right panel. In both panels, greater departures from the

proxy quality and average omitted variable bias implied by Proposition 3 suggest that the

IV is identified by an increasingly irrelevant compliant subpopulation. Values of θ1 closer

to 1, or θ0 closer to 0, amplify the impact of these departures on λ. Intuitively, if θ1 = 1

and θ0 = 0, then the treatment effects for compliers are, on average, equal to the treatment

effects for non-compliers; as θ1 and θ0 depart from 1 and 0, respectively, the complier effects

become less representative of the non-complier effects, hence the IV estimate of the local

average treatment effect becomes less representative of the entire population.

It is difficult to increase the average omitted variable bias without making the IV esti-

mates irrelevant. In the left panel of Figure 6, we assume that θ1 = 1, so that θ0 indexes the

average difference between complier and non-complier effects. Moreover, because λ ∈ [0, 1],

the value of θ0 imposes an upper bound on E
[
γj
]
. For example, if θ0 = −0.05, which implies

that on average the complier effects exceed non-complier effects by 0.05, then the omitted

variable bias cannot exceed 0.065; if θ0 = −0.1, then the omitted variable bias cannot be

more than 0.09. As the omitted variable bias approaches these bounds, λ approaches 0, and

the IV estimates approach irrelevance. If θ0 is instead positive, such that complier effects are

lower than non-complier effects, then the omitted variable bias is bounded above by 0.034.

Similarly, as can be seen in the right panel of Figure 6, θ1 imposes bounds on τ 2: θ1 < 1

implies that τ 2 > 0.56, and as proxy quality increases, λ decreases.
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Figure 6. Estimated λ for Mian and Sufi (2014)
The figures plots (21) for Mian and Sufi (2014). The left panel plots λ as a function of E

[
γj
]

given θ0 for θ1 = 1, and the right panel plots λ as a function of τ2 given θ1. The vertical dashed

lines correspond to the baseline estimates from Proposition 3.

3.2 Adelino, Ma and Robinson (2017)

Applying the meta-regression to 20 reported OLS-iV pairs in Adelino, Ma and Robinson

(2017) leads to broadly similar conclusions as Mian and Sufi (2014): if the instruments are

valid and treatment effects are homogeneous, then the quantitative effect of omitted variable

bias is small, while measurement error leads to a severe bias in the OLS estimates. On the

other hand, increasing the implied omitted variable bias by invoking instrument invalidity

quickly makes the IV more biased than the OLS (Proposition 4), while invoking heterogeneity

implies that the reported IV estimates are largely irrelevant (Corollary 5.2).

Adelino, Ma and Robinson (2017) estimate the causal impact of shocks to investment

opportunities on employment growth by regressing various measures of commuting zone

(CZ) non-tradable employment growth, including net job creation, gross job creation, and

gross job destruction, both in the aggregate and for firms of various age classes, on CZ-

level income growth. They note that regressing measures of employment growth on income

growth is problematic because any omitted variable that affects local income growth would

also mechanically affect non-tradable employment growth. Therefore, they instrument for

income growth using a Bartik (1991) instrument that interacts a CZ’s pre-existing exposure

to the manufacturing sector with national trends in manufacturing employment.

Adelino, Ma and Robinson are concerned that their OLS estimates will be too large; a

positive correlation between employment growth and income growth might primarily reflect

omitted variable bias rather than the causal effect of income on employment. And yet, 14 of

23



-0.2 0 0.2 0.4 0.6 0.8 1 1.2

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 7. Meta-regression for Adelino, Ma and Robinson (2017)
The figure plots β̂OLS

j against β̂IV
j for 20 regressions reported in Adelino, Ma and Robinson

(2017), where xi is CZ-level wage growth and each yij is a measure of CZ-level job creation

and destruction. The dashed line corresponds to the meta-regression, which has an intercept of

â = 0.03 and a slope of b̂ = 0.38. The dotted line has slope of ρ̂2 = 0.93.

the 20 IV estimates reported in the paper are larger than their OLS counterparts.5 Moreover,

this difference is substantial: on average, each IV estimate is two and a half times larger than

the corresponding OLS estimate. Once again, the meta-regression can resolve this puzzle;

Proposition 3 implies that the average variable bias is indeed positive, E
[
γj
]
= 0.030, but

their regressor is subject to substantial measurement error, τ 2 = 0.40. Figure 7 plots these

results.

However, as in Mian and Sufi (2014), the average omitted variable bias implied by Propo-

sition 3 is negligible. For example, consider the IV estimate reported in column 5 of Table III,

which reports the key estimate of the paper: the elasticity of the net change in employment

in new firms to investment opportunities. The reported IV estimate is 0.274; omitted vari-

able bias alone would imply a corresponding OLS estimate of 0.304 = 0.274+0.030, whereas

measurement error alone would imply a corresponding OLS estimate of 0.11 = 0.274× 0.40.

The actual OLS estimate is 0.119—approximately equal to what measurement error alone

would predict.

Following Proposition 4, the true τ 2 and E
[
γj
]
can differ from the estimates implied

by Proposition 3 provided the instrument is invalid; Figure 8 plots the implications for

5There are 28 pairs of OLS and IV coefficients reported in Adelino, Ma and Robinson (2017), across
Tables III–VI. We omit the three OLS-IV pairs in Table IV because they are estimated on a much smaller
sample than the others; we omit the five OLS-IV pairs in Panel C of Table V because the dependent variable
is the difference between the dependent variables in panels A and B. Results are nearly identical if we include
these observations.
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Figure 8. Average Causal Effect in Adelino, Ma and Robinson (2017)
The figures plots equation (17) for Adelino, Ma and Robinson (2017). The left panel plots the

value of E
[
βj

]
as a function of E

[
γj
]
given τ2, and the right panel plots the value of E

[
βj

]
as a function of τ2 given E

[
γj
]
. The pair of horizontal dashed lines report the average values

of β̂IV
j and β̂OLS

j , respectively. The vertical dashed lines correspond to the baseline estimates

from Proposition 3.

the average causal effect E
[
βj
]
. Starting with the left panel, if τ 2 = 0.40, then the IV

estimates outperform their OLS counterparts on average only if the omitted variables bias is

less than about 0.06. Furthermore, if proxy quality is actually higher than the 0.40 implied

by Proposition 3, then the OLS estimates are closer to unbiased even for other values of

the omitted variable bias (right panel, and dotted lines in the left panel). Of course, if

the true proxy quality is lower than 0.40, the reverse could be true; using an instrument

that addresses a severe measurement error bias might be worth failing to address or even

aggravating the omitted variable bias in that case.

Following Proposition 5, it is also possible that the average omitted variable bias is higher

than 0.030, but the meta-regression is confounded by heterogeneity, as opposed to invalidity;

however, as in Mian and Sufi (2014), our estimates then imply that the IV estimates have

limited external validity. For example, the left panel of Figure 9 shows that if the average

difference between complier and non-complier effects is 0.10, then the average omitted vari-

able bias could at most be about 0.07. While this is substantially higher than the omitted

variable bias of 0.030 implied by Proposition 3, it is still small compared to the reported IV

estimates. Moreover, even this modest amount of heterogeneity would imply that many of

the reported IV estimates are irrelevant: if θ0 = −0.10, then the non-complier effect on net

job creation for entering firms (Table V, column 5, panel C) is close to zero, and the positive
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Figure 9. Estimated λ for Adelino, Ma and Robinson (2017)
The figures plots equation (21) for Adelino, Ma and Robinson (2017). The left panel plots λ as

a function of E
[
γj
]
given θ0 for θ1 = 1, and the right panel plots λ as a function of τ2 given

θ1. The vertical dashed lines correspond to the baseline estimates from Proposition 3.

IV coefficient applies to a compliant subpopulation that accounts for almost none of the

variation in income growth. Likewise, it is possible that τ 2 differs from the estimates implied

by Proposition 3, but this again implies that the IV estimates are increasingly irrelevant, as

shown in the right panel of Figure 9.

3.3 Duranton, Morrow and Turner (2014)

Duranton, Morrow and Turner (2014) estimate the causal impact of interstate highways on

trade between US cities, using instruments to address the fact that omitted variables that

increase trade are also likely to affect the construction of highways. Applying Proposition 3 to

six OLS-IV pairs reported in their Table 7, we estimate that τ 2 = 0.96 and E
[
γj
]
= −0.068;

Figure 10 plots these results.6 Unlike the previous two examples, Proposition 3 therefore

implies that the regressor is well-measured.

But Proposition 3 also implies that the average omitted variable bias is negative, which

suggests that the relevant omitted variables either reduce highway construction at the same

time that they increase trade, or increase highway construction at the same time that they

reduce trade. However, in Duranton, Morrow and Turner’s model, the propensity to trade

directly depends on city productivity, which is an omitted variable. If highway construction

6In fact, there are two sets of six OLS-IV pairs in Table 7 of Duranton, Morrow and Turner (2014),
depending on whether or not manufacturing employment is included as a control variable. In Figure 10, we
use the six pairs that do not include the control; however, the meta-regression results are nearly identical if
we use the other six pairs.
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Figure 10. Meta-regression for Duranton, Morrow and Turner (2014)
The figure plots β̂OLS

j against β̂IV
j for six regressions reported in Table 7 of Duranton, Morrow

and Turner (2014), where xi is the log of within-city highway kilometers and each yij is a

measure of trade. The dashed line corresponds to the meta-regression, which has an intercept

of â = −0.038 and a slope of b̂ = 0.79. The dotted line has a slope of ρ̂2 = 0.82.

is positively correlated with city productivity, then the omitted variable bias ought to be

positive. Thus, Proposition 4 suggests that we are in the left shaded portion of Figure 1; the

instruments may be invalid.

The left panel of Figure 11 explores how the average causal effect changes as a function

of the omitted variable bias and proxy quality. If the true average omitted variable bias is

zero, then the OLS estimates are close to unbiased when τ 2 = 0.96; the IV estimates only

outperform the OLS estimates once τ 2 < 0.6, roughly in line with the proxy quality in Mian

and Sufi (2014). On the other hand, if the average omitted variable bias is positive, even as

low as 0.05, then the OLS estimates outperform the IV estimates regardless of proxy quality.

In this case, the meta-regression reveals that if the omitted variable bias is positive, then

the researchers are better off without the instrument.

The right panel of Figure 11 shows that, absent invalidity, the omitted variable bias can

only be positive if there are heterogeneous treatment effects which make the IV estimates

irrelevant. A positive omitted variable bias requires a sufficiently negative value of θ0, which

implies that the treatment effects for compliers are, on average, larger than the treatment

effect for non-compliers. However, it would take an implausibly large spread θ0 between

these treatment effects—almost as large as the average IV coefficient itself—to obtain both

a positive omitted variable bias and a reasonably large value of λ. As in Adelino, Ma

and Robinson (2017), such a value of θ0 implies that the average non-complier effect is
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Figure 11. Invalidity or Heterogeneity for Duranton, Morrow and Turner (2014)
The figure plots E

[
βj

]
and λ for Duranton, Morrow and Turner (2014). The left panel plots

equation (17), and the right panel plots the second equation in (21) for θ1 = 1. The pair of

horizontal dashed lines in the left panel report the average values of β̂IV
j and β̂OLS

j , respectively.

The vertical dashed lines in both panels correspond to the baseline estimates from Proposition 3.

roughly zero, at the same time that non-compliers account for most of the variation in the

endogeneous regressor.

4 Conclusion

We derive a meta-regression estimator that separates measurement error from the average

omitted variable bias, assuming instrument validity and homogeneous treatment effects. This

estimator can be used whenever different dependent variables are regressed on the same

endogenous regressor with the same instrument. When instruments are invalid or treatment

effects are heterogeneous, the estimated slope and intercept terms from the meta-regression

reveal information about the extent of heterogeneity or invalidity. Thus, our meta-regression

is a useful diagnostic tool for interpreting IV estimates.

We apply our meta-regression to three published papers and find that measurement error

is quantitatively more important than omitted variable bias in two out of three cases; in these

two papers, measurement error explains why the IV estimates are, on average, so much larger

than their OLS counterparts. Moreover, if the average omitted variable bias is larger than our

baseline estimates, then the IV estimates are even more biased than the OLS estimates. In

the third paper, we find very little measurement error, though the meta-regression intercept

suggests that the instruments suffer from economic invalidity.
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In all three papers, we use the meta-regression estimates to analyze heterogeneous treat-

ment effects and the external relevance of the instrument. In particular, we find that reason-

able departures from our baseline estimates of the measurement error and omitted variable

bias imply that the IV estimates apply to an irrelevant subpopulation, even if the instruments

themselves are valid.
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A Proofs

Proof of Proposition 1

We can relax equation (1) by only requiring it to hold in expectation:

E
[
yi|χi

]
= χiβ + E

[
ui|χi

]
.

Following Assumptions 1(i)-1(iv), an OLS regression of yi on xi yields

βOLS ≡ cov (yi, xi)

var (xi)

=
cov (χiβ + ui, χi + εi)

var (xi)

=
var (χi) β + cov (χi, ui)

var (xi)

= τ 2β + γ,

where τ 2 ≡ var(χi)
var(xi)

and γ ≡ cov(xi,ui)
var(xi)

.

The corresponding IV estimator converges to

βIV ≡ cov (yi, zi)

cov (xi, zi)

=
cov (χiβ + ui, zi)

cov (χi + εi, zi)

=
cov (χi, zi)

cov (χi, zi)
β

= β,

which follows from Assumptions 1(v) and 1(vi). □
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Proof of Proposition 2

Given Assumptions 2(i)-2(iv), we can run an OLS regression of yij on xi for j = 1, 2, ..., J .

For each j, the OLS estimator converges to

βOLS
j ≡

covj
(
yij, xi

)
var (xi)

=
covj

(
χiβj + uij, χi + εi

)
var (xi)

=
var (χi) βj + covj

(
χi, uij

)
var (xi)

= τ 2βj + γj,

where γj ≡
covj(xi,uij)

var(xi)
and the covariance operator covj (·) is relative to the joint distribution

of
(
χi, zi, uij, εi

)
across i for a given j.

For each j, the corresponding IV estimator converges to

βIV
j ≡

covj
(
yij, zi

)
cov (xi, zi)

=
covj

(
χiβj + uij, zi

)
cov (χi + εi, zi)

=
cov (χi, zi)

cov (χi, zi)
βj

= βj,

which follows from Assumptions 2(v) and 2(vi).

Thus, under Assumption 2(vii), the slope of the meta-regression converges to

b ≡
cov
(
βOLS
j , βIV

j

)
var
(
βIV
j

)
=

cov
(
τ 2βj + γj, βj

)
var
(
βj
)

= τ 2
var
(
βj
)

var
(
βj
) + cov

(
γj, βj

)
var
(
βj
)

= τ 2.
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The intercept of the meta-regression converges to

a ≡ E
[
βOLS
j

]
− E

[
βIV
j

]
b

= τ 2E
[
βj
]
+ E

[
γj
]
− τ 2E

[
βj
]

= E
[
γj
]
.

□

Proof of Proposition 3

Following equation (10), we can write the variance of observed β̂IV
j across j as

var
(
β̂IV
j

)
= var

(
βj
)
+ var

(
ς IVj εIVj

)
= var

(
βj
)
+ E

[(
ς IVj

)2]
,

where the first line follows from the mutual independence among
(
βj, ε

IV
j , ς

IV
j

)
, and the

second follows from both mutual independence and the fact that εIVj is mean-zero with unit

variance.

Consequently, the slope of the meta-regression converges to

b̂ ≡
cov
(
β̂OLS
j , β̂IV

j

)
var
(
β̂IV
j

)
=

cov
(
τ 2βj + γj, βj + ς IVj εIVj

)
var
(
β̂IV
j

)
= τ 2

var
(
βj
)

var
(
β̂IV
j

)
= τ 2ρ̂2,

where ρ̂2 ≡
var(β̂IV

j )−E
[
(ςIVj )

2
]

var(β̂IV
j )

.
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The intercept of the meta-regression converges to

â ≡ E
[
β̂OLS
j

]
− E

[
β̂IV
j

]
b̂

= τ 2E
[
βj
]
+ E

[
γj
]
− τ 2E

[
β̂IV
j

]
ρ̂2

= τ 2
(
E
[
βj
]
− E

[
β̂IV
j

])
+ E

[
γj
]
+ τ 2


E
[
β̂IV
j

]
E
[(
ς IVj

)2]
var
(
β̂IV
j

)


= E
[
γj
]
+ τ 2


E
[
β̂IV
j

]
E
[(
ς IVj

)2]
var
(
β̂IV
j

)


= E
[
γj
]
+ τ 2

(
1− ρ̂2

)
E
[
β̂IV
j

]
.

□

Statement and Proof of Proposition 3’

We now extend Assumption 2 and Proposition 3 to allow for a vector of perfectly measured

control variables
⇀
wi, which we assume includes an intercept. In this case, we will be refer-

encing the measurement error in the proxy variable after controlling for other factors. It is

therefore helpful to define

τ̇ 2 ≡ var (χ̇i)

var (ẋi)
,

where χ̇i denotes the residual from a hypothetical regression of χi on
⇀
wi, and ẋi denotes the

residual from a regression of xi on
⇀
wi.

Assumption 2’

(i)
(
yij, xi, zi,

⇀
wi

)
is a sequence of observable variables

(
yij, xi, zi

)
and 1 ×W vectors

⇀
wi

for i = 1, 2, ..., n.

(ii) (χi, ui1, ..., uiJ , εi) is a mean-zero i.i.d. sequence of unobservable variables for i =

1, 2, ..., n.
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(iii)
(
yij, xi,

⇀
wi

)
and

(
χi, uij, εi

)
are related to each other as follows:

yij = χiβj +
⇀
wiκj + uij, (23)

xi = χi + εi. (24)

(iv) E [χiεi] = Ej

[
uijεi

]
= 0 and Ej

[
uij

⇀
wi

]
= E

[
εi

⇀
wi

]
=

⇀

0 for each j.

(v) Ej

[
ziuij

]
= E [ziεi] = 0 for each j.

(vi) E [χ̇izi] ̸= 0.

(vii) βj and γ̇j are independent, where γ̇j ≡
covj(ẋi,uij)

var(ẋi)
.

Note that Assumptions 2’(i)-2’(iv) imply that we can rewrite equations (23) and (24) as:

ẏij = χ̇iβj + uij,

ẋi = χ̇i + εi,

where E [χ̇iεi] = 0 and ẏij is the residual from a regression of yij on
⇀
wi for a given j. For

each j, we therefore have a familiar representation. Let βOLS
j denote the OLS estimator

from regressing yij on xi after controlling for
⇀
wi, and let βIV

j denote the corresponding IV

estimator using zi as an instrument for xi.

Proposition 3’. Given Assumption 2’, the meta-regression estimates converge to

b̂ = τ̇ 2ρ̂2,

â = E
[
γ̇j
]
+ τ̇ 2

(
1− ρ̂2

)
E
[
β̂IV
j

]
.

Proof. The proof is analogous to the proofs of Propositions 2 and 3, but in this case, each

OLS coefficient is given by

βOLS
j ≡

covj
(
ẏij, ẋi

)
var (ẋi)

=
covj

(
χ̇iβj + uij, χ̇i + εi

)
var (ẋi)

= τ̇ 2j βj + γ̇j,
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while the corresponding IV coefficient converges to

βIV
j ≡

covj
(
ẏij, zi

)
cov (ẋi, zi)

=
covj

(
ẋiβj + uij, zi

)
cov (ẋi, zi)

= τ̇ 2.

The slope of the meta-regression estimator therefore converges to

b̂ ≡
cov
(
β̂OLS
j , β̂IV

j

)
var
(
β̂IV
j

)
=

cov
(
τ̇ 2βj + γ̇j, βj + ς IVj εIVj

)
var
(
β̂IV
j

)
= τ̇ 2

var
(
βj
)

var
(
β̂IV
j

)
= τ 2ρ̂2.

The intercept of the meta-regression converges to

â ≡ E
[
β̂OLS
j

]
− E

[
β̂IV
j

]
b̂

= τ̇ 2E
[
βj
]
+ E

[
γ̇j
]
− τ̇ 2E

[
β̂IV
j

]
ρ̂2

= τ̇ 2
(
E
[
βj
]
− E

[
β̂IV
j

])
+ E

[
γ̇j
]
+ τ̇ 2


E
[
β̂IV
j

]
E
[(
ς IVj

)2]
var
(
β̂IV
j

)


= E
[
γ̇j
]
+ τ̇ 2


E
[
β̂IV
j

]
E
[(
ς IVj

)2]
var
(
β̂IV
j

)


= E
[
γ̇j
]
+ τ̇ 2

(
1− ρ̂2

)
E
[
β̂IV
j

]
.

□
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Proof of Proposition 4

Given Assumptions 3(i)-3(iv), we can run an OLS regression of yij on xi for j = 1, 2, ..., J .

For each j, the OLS estimator converges to

βOLS
j ≡

covj
(
yij, xi

)
var (xi)

=
covj

(
χiβj + uij, χi + εi

)
var (xi)

=
var (χi) βj + cov

(
uij, χi + εi

)
var (xi)

= τ 2βj + γj.

For each j, Assumption 3(v) implies that the corresponding IV estimator converges to

β̂IV
j ≡

covj
(
yij, zi

)
cov (xi, zi)

=
covj

(
χiβj + uij, zi

)
cov (χi + εi, zi)

=
cov (χi, zi) βj + covj

(
zi, uij

)
cov (χi, zi) + cov (zi, εi)

= (1− δ1) βj + δj0,

where δ1 ≡ cov(zi,εi)
cov(xi,zi)

and δj0 ≡
covj(zi,uij)
cov(xi,zi)

.

Thus, under Assumption 3(vi), the slope of the meta-regression converges to

b̂ ≡
cov
(
β̂OLS
j , β̂IV

j

)
var
(
β̂IV
j

)
=

cov
(
τ 2βj + γj, (1− δ1) βj + δj0 + ς IVj εIVj

)
var
(
βIV
j

)
− var

(
δj0
)

var
(
βIV
j

)
− var

(
δj0
)

var
(
β̂IV
j

)


=
τ 2 (1− δ1) var

(
βj
)

(1− δ1)
2 var

(
βj
)

var
(
β̂IV
j

)
− E

[(
ς IVj

)2]
− var

(
δj0
)

var
(
β̂IV
j

)


=
τ 2

1− δ1

(
ρ̂2 − ϕ2

)
,
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where ϕ2 ≡ var(δj0)
var(β̂IV

j )
.

The intercept of the meta-regression converges to

â ≡ E
[
β̂OLS
j

]
− E

[
β̂IV
j

]
b̂

= τ 2E
[
βj
]
+ E

[
γj
]
− E

[
β̂IV
j

]
b̂

=
τ 2

1− δ1

(
E
[
β̂IV
j

]
− E

[
δj0
])

+ E
[
γj
]
− τ 2

1− δ1
E
[
β̂IV
j

] (
ρ̂2 − ϕ2

)
= E

[
γj
]
+

τ 2

1− δ1

((
1− ρ̂2 + ϕ2

)
E
[
β̂IV
j

]
− E

[
δj0
])

.

□

Proof of Corollary 4.1

The Cauchy-Schwarz inequality implies

|δ1| ≤
√
1− τ 2

|rxz|
,

where rxz ≡ corr (xi, zi). By conditioning on the value of b̂, we can write this inequality as

∣∣1 + τ 2kϕ
∣∣ ≤ √

1− τ 2

|rxz|
,

where kϕ ≡ ϕ2−ρ̂2

b̂
. Since τ 2 ≥ 0, the above inequality is equivalent to (15).

□
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Proof of Proposition 5

Given Assumptions 4(i)-4(iv), we can run an OLS regression of yij on xi for j = 1, 2, ..., J .

For each j, the OLS estimator converges to

βOLS
j ≡

covj
(
yij, xi

)
var (xi)

=
covj

(
χiβij + uij, χi + εi

)
var (xi)

=
Ej

[
χ2
iβij
]
+ Ej

[
xiuij

]
Ej

[
x2i
]

= τ 2βχ
j + γj.

For each j, Assumption 4(v) implies that the corresponding IV estimator converges to

βIV
j ≡

covj
(
yij, zi

)
cov (xi, zi)

=
covj

(
χiβij + uij, zi

)
cov (χi + εi, zi)

=
Ej

[
χiziβij

]
+ Ej

[
ziuij

]
E [χizi] + E [ziεi]

= (1− δ1) β
z
j + δj0.

Thus, under Assumption 4(vi), the slope of the meta-regression converges to

b̂ ≡
cov
(
β̂OLS
j , β̂IV

j

)
var
(
β̂IV
j

)
=

cov
(
τ 2βχ

j + γj, (1− δ1) β
z
j + δj0 + ς IVj εIVj

)
var
(
βIV
j

)
− var

(
δj0
)

var
(
βIV
j

)
− var

(
δj0
)

var
(
β̂IV
j

)


=
τ 2 (1− δ1) cov

(
βχ
j , β

z
j

)
(1− δ1)

2 var
(
βz
j

)

var
(
β̂IV
j

)
− E

[(
ς IVj

)2]
− var

(
δj0
)

var
(
β̂IV
j

)


=
τ 2

1− δ1

(
ρ̂2 − ϕ2

)
ψ1,
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where ψ1 ≡
cov(βχ

j ,β
z
j )

var(βz
j )

is the slope coefficient from a hypothetical regression of βχ
j on βz

j :

βχ
j = ψ0 + βz

jψ1 + vj.

The intercept of the meta-regression converges to

â ≡ E
[
β̂OLS
j

]
− E

[
β̂IV
j

]
b̂

= τ 2E
[
βχ
j

]
+ E

[
γj
]
− τ 2

1− δ1

(
ρ̂2 − ϕ2

)
ψ1E

[
β̂IV
j

]
= E

[
γj
]
+ τ 2ψ0 + τ 2ψ1E

[
βz
j

]
− τ 2

1− δ1

(
ρ̂2 − ϕ2

)
ψ1E

[
β̂IV
j

]
= E

[
γj
]
+ τ 2ψ0 +

τ 2

1− δ1
ψ1

(
E
[
β̂IV
j

]
− E

[
δj0
])

− τ 2

1− δ1

(
ρ̂2 − ϕ2

)
ψ1E

[
β̂IV
j

]
= E

[
γj
]
+ τ 2ψ0 +

τ 2

1− δ1
ψ1

((
1− ρ̂2 + ϕ2

)
E
[
β̂IV
j

]
− E

[
δj0
])

= E
[
γj
]
+ τ 2

(
ψ0 +

ψ1

1− δ1

((
1− ρ̂2 + ϕ2

)
E
[
β̂IV
j

]
− E

[
δj0
]))

.

□

Proof of Corollary 5.1

If covj
(
χ2
i , βij

)
= 0, then the weighted average treatment effect βχ

j is given by

βχ
j =

Ej

[
χ2
iβij
]

E
[
χ2
i

]
= Ej

[
βij
]
.

If covj
(
χizi, βij

)
= 0, then the weighted average treatment effect βz

j is given by

βz
j =

Ej

[
χiziβij

]
E [χizi]

= Ej

[
βij
]

= βχ
j .

Thus, ψ1 = 1, ψ0 = 0, and (18) is equivalent to (14).

□
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Proof of Corollary 5.2

In this setting, the weighted average treatment effect βχ
j is equal to

βχ
j ≡

Ej

[
χ2
iβij
]

E
[
χ2
i

]
=

P (πi = 1)E
[
χ2
i |πi = 1

]
βj1 +

(
1− P (πi = 1)

)
E
[
χ2
i |πi = 0

]
βj0

E
[
χ2
i

]
= λβj1 + (1− λ) βj0,

where λ ≡ P(πi=1)E[χ2
i |πi=1]

E[χ2
i ]

. Therefore, following Proposition 5, the OLS estimator converges

to

βOLS
j = τ 2

(
λβj1 + (1− λ) βj0

)
+ γj.

Similarly, the weighted average treatment effect βz
j is given by

βz
j ≡

Ej

[
χiziβij

]
E [χizi]

=
P (πi = 1)E

[
χizi|πi = 1

]
βj1 +

(
1− P (πi = 1)

)
E
[
χizi|πi = 0

]
βj0

P (πi = 1)E
[
χizi|πi = 1

]
+
(
1− P (πi = 1)

)
E
[
χizi|πi = 0

]
=

P (πi = 1) var
(
zi|π1 = 1

)
αβj1

P (πi = 1) var
(
zi|π1 = 1

)
α

= βj1.

Therefore, following Proposition 5, the corresponding IV estimator converges to

βIV
j = (1− δ1) βj1 + δj0.

Finally, note that

ψ1 ≡
cov
(
βχ
j , β

z
j

)
var
(
βz
j

)
=

cov
(
λβj1 + (1− λ) βj0, βj1

)
var
(
βj1
)

= λ+ (1− λ) θ1,
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and

ψ0 ≡ E
[
βχ
j

]
− E

[
βz
j

]
ψ1

= λE
[
βj1
]
+ (1− λ)E

[
βj0
]
− E

[
βj1
] (
λ+ (1− λ) θ1

)
= (1− λ) θ0,

where θ1 and θ0 are the slope and intercept coefficients, respectively, from a hypothetical

regression of βj0 on βj1.

Thus, following Proposition 5, the meta-regression estimator converges to

b̂ =
τ 2

1− δ1

(
ρ̂2 − ϕ2

) (
λ+ (1− λ) θ1

)
,

â = E
[
γj
]
+ τ 2

(
(1− λ) θ0 +

λ+ (1− λ) θ1
1− δ1

((
1− ρ̂2 + ϕ2

)
E
[
β̂IV
j

]
− E

[
δj0
]))

.

□
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