
A Trilemma for Asset Demand Estimation∗

Most recent version

William Fuchs† Satoshi Fukuda‡ Daniel Neuhann§

January 15, 2026

Abstract

This paper derives fundamental limits to identifying asset demand from

observational data. We establish a trilemma: it is impossible to maintain that

(i) prices satisfy no arbitrage, (ii) investors value assets for their payoffs, and

(iii) asset demand curves are invariant to exogenous asset supply shocks. That

is, one cannot use supply shocks to move along an asset demand curve with-

out shifting it. The only exception is the knife-edge case in which the asset

menu consists of Arrow securities. In realistic settings, demand elasticities

thus necessarily reflect theoretical assumptions rather than the data alone.
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1 Introduction

Estimating demand functions using supply shocks is a cornerstone of empirical

economics. Can this approach be fruitfully applied to financial assets? We show

that demand estimation in asset markets is highly constrained by two fundamental

principles of asset pricing: (i) prices admit no arbitrage, and (ii) asset demand

is, at least in part, instrumental: preferences are defined over assets’ payoffs, not

asset holdings directly. Under these principles, even perfectly exogenous asset

supply shocks generically induce shifts in the very demand curve that one wants to

analyze. This prevents the non-parametric estimation of asset demand elasticities.

The basic principle of demand estimation with supply shocks is to gener-

ate as-if-random variation in a given price, holding all other relevant variables

fixed. The central problem in financial markets is that assets are bundles of state-

contingent payoffs, and that these can be flexibly recombined and unbundled through

portfolio formation. This forces the price system to satisfy the consistency require-

ment of no arbitrage: to ensure well-defined asset demand functions, each asset’s

price must correspond to the value of its underlying payoffs. Any supply-induced

change in an asset price must therefore produce consistent changes in the prices of

the underlying payoffs as well. But if no arbitrage is to hold, the prices of all assets

which pay off in at least some overlapping states of the world must also change.

This is a failure of the ceteris paribus condition.

This failure alone need not threaten identification: if the demand system is

separable across assets, correlated price changes do not contaminate the demand

response. However, portfolio choice is known to feature endogenous demand com-

plementarities: the marginal value of any asset depends on its covariance with the

rest of the investors’ portfolio. Asset demand functions thus generically depend

on the prices of all assetse in the choice set, and correlated price changes shift the

very demand curve one wanted to measure.

We summarize these concerns as a trilemma: one cannot maintain that (i)

prices satisfy no arbitrage, (ii) investors have preferences over payoffs, and (iii)

supply shocks can be used to move along a demand curve without shifting it.
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These challenges are a distinct feature of financial markets. In conventional

goods markets, product characteristics are determined by suppliers and cannot be

autonomously reconfigured by buyers. Hence these markets thus feature no cross-

price restrictions akin to no arbitrage – the price of a car can deviate from the cost of

its components without inducing sudden trade in car parts. This permits a stable

dichotomy between supply and demand that is untenable in financial markets.

To see our result more formally, write asset prices in terms of the state prices.

Under preferences over payoffs, they measure what investors care about: the cost

of a unit state-contingent cash flow. Let p be the J × 1 vector of asset prices, Y the

J × Z payoff matrix summarizing the state-specific payoffs of J assets, and q the

Z× 1 vector of state prices. No arbitrage implies that asset prices satisfy

p = Yq.

The ideal experiment underlying demand estimation considers an exogenous

shock to a single asset price. This experiment can be stated in terms of state prices.

To allow incomplete markets, let Y+ denote the Moore-Penrose pseudo-inverse.

Then q = Y+p and an asset price shock affects state prices according to

∂q
∂pT = Y+.

That is, the ideal experiment requires a specific change to the state price vector

which is fully determined by the inverse payoff matrix.

In contrast, the state price response to a supply shock reflects the change in

marginal value of state-contingent payoffs. Since this reflects the total supply of

state-contingent payoffs, the effects of the supply shock are thus proportional to

the payoff matrix Y itself, not its inverse. Since a matrix and its inverse generically

differ, a supply shock generically fails to reproduce the ideal experiment.

What is worse, the payoff matrix and its inverse generically have elements

of the opposite sign. This means that a supply shock makes certain payoffs cheaper

when the ideal experiment requires them to become more expensive. Such direc-
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tional errors naturally create large biases when estimating substitution patterns.

The only exceptions to this result are knife edge. In complete markets, the

menu would need to consist of Arrow securities, so that the payoff matrix is di-

agonal. In incomplete markets, the analogous condition is that there are no assets

with overlapping payoffs: for each state, there is at most one asset with a positive payoff.

Real-world assets are far from satisfying these restrictions. While this is

intuitively clear, we further substantiate this fact in two ways. First, we study ran-

dom payoff matrices drawn from distributions with factor structures. We find that

approximately half of the elements of the inverse payoff matrix have the wrong

sign. More disconcertingly, the chance that any given element has the wrong sign

is a coin flip. This instability makes it difficult to systematically control for poten-

tial errors. Second, we randomly draw (subsets) of payoff matrices from stocks in

the S&P 500 and find the same broad patterns. Taken together, there is little reason

to suspect that the barriers to identification we derive are immaterial in practice.

Neither no arbitrage nor payoff-based preferences are easily discarded. Pref-

erences over payoffs form the basis of portfolio choice theory. Given such prefer-

ences, no arbitrage ensures the existence of smooth demand functions that do not

jump discontinuously in response to small price changes—as is required for consis-

tent demand estimation and counterfactuals. No arbitrage is also a weak equilib-

rium requirement which is likely to hold at least approximately in observational

data: even if trading is frictional and prices temporarily admit (near) arbitrage,

such frictions generally do not eliminate cross-asset price linkages and longer run

portfolio holdings naturally depend on some common pricing kernel. Thus, the

tendency for asset prices to reflect common state prices remains even in these set-

tings. Precisely for this reason, existing asset demand estimation approaches rely

on no arbitrage to derive tractable demand systems based on a small number of

characteristics and risk factors (Koijen and Yogo, 2019).

In principle, it is possible to overcome the identification issues we docu-

ment using sufficiently many independent shocks. This echoes classic work in

demand identification in Mas-Colell (1977). To investigate the necessary data re-

quirements, we consider an idealized setting where the econometrician observes N
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independent “experiments,” each of which generates price and quantity variation.

Can we reliably identify asset-level demand elasticities from this data? While as-

set demand curves are naturally non-linear, we consider the favorable benchmark

with linear demand curves. With J assets, each investor’s portfolio choice problem

is then characterized by a J × J cross-substitution matrix. Hence one can point-

identify the entire matrix of demand parameters only if N is no smaller than J, the

dimensionality of the asset span. With fewer than J experiments, identification

collapses to projections onto the subspace of observed price changes, and demand

parameters are arbitrarily unconstrained outside the span of observed shocks.

These data requirements are stringent. In many financial markets, the num-

ber of assets available to trade is very large—potentially in the hundreds or thou-

sands. However, even if one considers only a handful of aggregate portfolios such

as bond and stock portfolios, one needs a setting with multiple shocks that pro-

duce independent variation. Since many financial markets are connected (and thus

do not provide independent variation), a natural candidate is variation over time.

Here one faces the problem that the pricing kernel (i.e., the stochastic discount fac-

tor) has a permanent component (Alvarez and Jermann, 2005; Borovička, Hansen,

and Scheinkman, 2016). Such lack of stationarity implies that observing shocks

over time is unlikely to provide the required independent variation.

Taken together, our results show that structural models or other theoretical

restrictions are necessary to recover demand elasticities from observational data

on portfolio holdings and prices. As such, estimated demand elasticities must be

understood, at least in part, as theoretical objects determined by a priori assump-

tions, not by empirical evidence. More constructively, we show that characteriz-

ing the divergence between ideal experiment and supply shocks in terms of state

prices provides insights into sources of misspecification, and how assumptions on

preferences and portfolio construction can be used to mitigate bias.

Related literature. Our paper relates to an important literature in finance and

economics studying demand effects in financial markets. Early work in this area

includes portfolio balance models (Tobin, 1969), and the price effects of index in-
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clusions in equity markets (Shleifer, 1986; Harris and Gurel, 1986). More recently,

this broad mechanism has found applications in unconventional monetary policy,

foreign exchange markets, and fund flows in bond and equity markets.

This rightly influential literature shows that constraints on capital flows can

have important effects on asset prices. However, it stops short of systematically

establishing whether and when these price effects reveal structural aspects of in-

vestor and market behavior. This is important because critical aspects of asset price

determination and policy transmission tightly depend on the price responsiveness

of financial markets. We find that non-parametric approaches generically fail to

identify asset demand elasticities because they are contaminated by cross-price ef-

fects. This means that implicit or explicit theoretical restrictions play a central role

in determining the interpretation and policy relevance of the documented effects.

One consequence of our findings is structural methods are important tools

for understanding demand effects in asset markets, much like in many other set-

tings (Berry and Haile, 2021). However, asset markets present particular chal-

lenges: preferences are instrumental, investors can autonomously reconfigure “prod-

ucts,” and choice is continuous. This means that one cannot easily turn a decision

problem with complementarities into, e.g., a discrete-choice problem over bundles.

These differences clarify our relationship to recent work in industrial organization

which estimates demand systems with complementarities (e.g., Iaria and Wang,

2020; Wang, 2024; Fosgerau, Monardo, and de Palma, 2024; Ershov, Laliberté, Mar-

coux, and Orr, 2024). These approaches typically study settings in which con-

sumers make discrete choices over a limited number of bundles, or where substitu-

tion patterns are governed by exogenous functional-form parameters. As such, the

source of complementarities and the methods to deal with them are distinct from

no arbitrage and portfolio spillovers. The spirit of the exercise is also different.

While these papers develop tools for estimating demand with complementarities

under exogenous price variation, we asks whether such demand can be identified

from supply shocks under stringent cross-price restrictions.

To overcome these challenges, structural models of asset demand must ac-

count for the cross-asset linkages and price spillovers inherent to portfolio choice.
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Fuchs, Fukuda, and Neuhann (2025a) show that the prominent logit approach in

Koijen and Yogo (2019) generally fails to do so and that this can lead to large bi-

ases in estimated demand elasticities. While we focus on a static setting, the same

issues would also arise in a dynamic setting where investors can trade securities

referencing different states and dates, as these would also have to be priced by a

common pricing kernel and governed by no arbitrage. This broader view helps

connect our findings to those in Binsbergen, David, and Opp (2025) and He, Kon-

dor, and Li (2025). Allen, Kastl, and Wittwer (2025) propose a structural model to

estimate asset demand without reliance on price instruments. Consistent with our

results, this approach requires a-priori restrictions and uses data on bid schedules.

Another approach is to circumvent the issue of cross-asset spillovers by es-

timating differences in demand curves across similar assets subject to symmetric

spillovers (Haddad, He, Huebner, Kondor, and Loualiche, 2025). While this re-

stores identification under specific assumptions on the endogenous substitution

matrix, it comes at the cost of identifying individual demand curves. Haddad,

He, Huebner, Kondor, and Loualiche (2025) further argue that, under their strict

assumptions, one can identify the entire substitution matrix using time-series vari-

ation and shocks to factor portfolios. As Section 7 discusses, this requires as many

independent experiments as the dimensionality of the asset span. Such rich data is

difficult to obtain when the pricing kernel has a permanent component. Hence the

limits to non-parametric identification we derive also apply to this methodology.

An important special case is an asset menu with Arrow securities. While

typical assets are not Arrow securities, one can attempt to construct them from

other assets. Unfortunately, this requires knowing the unobserved payoff matrix.

An (2025) and An and Huber (2024) pursue a related approach by constructing

portfolios orthogonalized with respect to returns and flows to specific investors.

However, orthogonal payoffs are not sufficient to ensure no overlap in the payoff

distribution. Their approach thus requires additional assumptions, including that

demand for uncorrelated portfolios is independent of each other. Consistent with

our results, this is an a-priori restriction on substitution patterns.
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2 Setup

We consider a canonical model with a set I of potentially heterogeneous investors.

Each investor i ∈ I must choose how much to consume at date 0 and across Z states

of the world at date 1. To acquire a desired state-contingent consumption profile,

the investor can invest in J assets. Our definition of assets is entirely generic and

covers “primitive” assets, such as stocks, and portfolios composed of other assets.

Investor i’s portfolio is a vector ai ≡ (ai
j)

J
j=1 ∈ RJ of asset positions, where

each element ai
j denotes the investor’s holdings of asset j. Asset j has payoff yj(z) in

state z. The probability of state z is πz ∈ (0, 1). We denote by Y ≡ (yj(z))j,z the J ×
Z matrix of cash flows. The payoff matrix is known to the investor but unobserved

by the econometrician. This is because payoffs reflect expected returns, which are

latent. Prices are observed by both the investor and the econometrician.

We treat time-zero consumption as the numeraire good (or, equivalently, as

the outside asset) whose price is normalized to 1. Investor i is endowed with ei
j ≥ 0

units of asset j and ei
0 ≥ 0 units of the numeraire. Each investor also receives unob-

served non-traded endowments wi
0 and wi(z) at date 0 and in state z, respectively.

Decision problem. Investor i has strictly increasing and strictly concave von-

Neumann Morgenstern utility function ui defined over state-contingent consump-

tion and discount factor δi ∈ (0, 1). Beyond the standard budget constraints, each

investor may face other constraints on portfolio formation. Let Ai denote the set

of feasible portfolios of investor i, and assume that Ai is a closed convex subset of

RJ . The decision problem is

sup
ai∈Ai

(1− δi)ui(ci
0) + δi

Z

∑
z=1

πzui(ci
z) (1)

s.t ci
0 = ei

0 −
J

∑
j=1

pj(ai
j − ei

j) + wi
0 and

ci
z =

J

∑
j=1

yj(z)ai
j + wi(z) for all z.
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Solution and Demand System. We stress two properties of this decision prob-

lem. First, as the next section discusses in detail, the existence of a smooth, well-

defined solution to the portfolio problem generally requires the absence of arbi-

trage. In this sense, no arbitrage is a precondition for well-conditioned demand

analysis in asset markets. This is the first leg of the trilemma.

Second, when a solution exists, it generically consists of J asset-level de-

mand functions ai
j(p), each of which depends on the entire vector of asset prices

p. To see this explicitly, assume for now that an interior solution exists. Then the

asset-level demand functions are implicitly defined by the J first-order conditions

δi

1− δi ∑
z

πzu′,i(ci
z)yj(z)

u′,i(ci
0)

= pj for all j,

where u′,i(·) indicates i’s marginal utility. The marginal value of each asset thus

depends on its contribution to total state-contingent consumption, which in turn is

jointly determined by the holdings of all assets. Altering either the price or quan-

tity of any asset thus typically changes the demand for other assets as well. At its

root, this structure obtains because investors ultimately care about state-contingent

payoffs, not asset holdings directly. This is the second leg of the trilemma.

Identification Problem and Demand Elasticities. The properties of the demand

system are jointly influenced by a number of latent variables: the payoff matrix Y,

preference parameters ui and δi and latent non-traded endowments wi
0 and wi(z).

One goal of identification might therefore be to estimate each of these latent param-

eters. The literature thus far is instead mainly concerned with the identification of

demand functions themselves. In particular, asset-level demand functions can be

characterized by the price elasticity of demand, which is the partial derivative of

demand for asset j with respect to an asset price pk, holding all other prices fixed,

E i
j,k ≡ −

∂ai
j(p)

∂pk

pk

ai
j(p)

.

We will be concerned with identifying this object. As indicated, the main

8



difficulty is that each demand function depends on the entire vector of asset prices.

Hence identifying the demand elasticity requires exogenous variation in one asset

price while other asset prices remain fixed.

Remark 1 (Preferences over non-pecuniary characteristics) Some recent work in as-

set pricing emphasizes certain non-pecuniary motives for investing in specific assets (Starks,

2023). For example, socially responsible investors may hold a stock in part because they

believe that the company is a good steward of the environment. While such motivations

partially decouple asset valuations from cash flows, they generally do not do so entirely:

even socially responsible investors may care at least in part about financial returns.

Remark 2 (Dependence on multiple prices in special settings) The dependence of

demand functions on multiple asset prices exists even in settings that purportedly induce

asset demand functions that depend only on the asset’s own price. For example, Koijen and

Yogo (2025, Appendix A) study a model with CARA preferences, normally distributed

payoffs, a diagonal covariance matrix conditional on factors, and a risk-free asset with a

fixed interest rate normalized to zero. The first two features generate linear marginal util-

ity, and the combination with the third and fourth features yields separable asset demand

functions that depend only on the excess expected return and volatility of a given asset.

However, the independence of other prices is an illusion achieved by “normalizing” the

risk free rate to a fixed number. Yet in equilibrium, the risk-free rate is not a parameter,

it is the inverse sum of state prices and thus reflects all other asset prices. Separability of

demand functions is therefore achieved by a-priori restrictions on asset prices.

3 The Role of No Arbitrage for Demand Analysis

Demand analysis in financial markets faces two basic challenges. The first is that

demand functions must be sufficiently well-behaved. For example, demand elas-

ticities are partial derivatives of demand with respect to an asset price. Hence an

elasticity can be used to describe demand only if the underlying demand functions

are smooth functions of asset prices. The second is the large number of assets un-
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der consideration. In US equities markets alone, investors can choose among many

thousands of assets, which creates a curse of dimensionality in demand estimation.

Both challenges can be addressed using the principle of no arbitrage. For ex-

ample, the influential approach in Koijen and Yogo (2019) implicitly relies on the

Ross (2004) arbitrage pricing theory to argue that asset demand can be summa-

rized by a small number of asset characteristics and risk factors, leading to a low-

dimensional representation. (We leave aside here the concern that several com-

mon characteristics, such as book-to-market ratios, are themselves endogenous to

demand.) Conversely, arbitrage opportunities can lead to discontinuous changes

in demand functions in response to arbitrarily small price changes. No arbitrage

rules out such discontinuities, thereby ensuring a well-behaved demand system.

To lend credence to these statements, we briefly recapitulate the link be-

tween demand functions and no arbitrage. Since the empirical literature often em-

phasizes constraints on portfolio formation, we account for such frictions as well.

We then establish the standard result that, under weak conditions, no arbitrage

allows for an analysis of asset prices (and thus demand) using state prices.

We begin by defining unbounded arbitrage opportunities as those that can be

exploited using arbitrarily large asset positions. Standard definitions of arbitrage

always consider unbounded arbitrage opportunities (Duffie, 2001). Our analysis

below differs only in that we also permit bounded arbitrages.

Definition 1 (No unbounded arbitrage for investor i) Investor i has an unbounded

arbitrage opportunity if, for any m > 0, there exists a portfolio ai ∈ Ai such that either

(i) p · ai ≤ 0, YTai ≥ 0, and (YTai)z ≥ m for some z or (ii) p · ai ≤ −m and YTai ≥ 0.

Otherwise, investor i has no unbounded arbitrage opportunity.

Proposition 1 shows that a well-defined decision problem requires the ab-

sence of unbounded arbitrage opportunities. The simple reason is that unbounded

arbitrage precludes the existence of a solution to the investor’s problem. This is a

well-known result based on textbook treatments (e.g, Duffie, 2001).1

1Since the material in this section is standard we relegate the proofs to the Online Appendix.
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Proposition 1 (Duffie (2001): No arbitrage and the investor’s problem) If there is

a solution to (1), investor i has no unbounded arbitrage opportunity. If Ui is continuous

and investor i has no unbounded arbitrage opportunity, then there is a solution to (1).

Asset prices and demand can then be analyzed using state prices, which

measure the marginal cost of a unit of state-contingent consumption. In partic-

ular, if the union of investors’ feasible sets covers the space of feasible portfolios

RJ , the absence of unbounded arbitrage implies the existence of state prices such

that asset prices are payoff-weighted sums of state prices.

Lemma 1 (Existence of state prices) If there exists a subset of investors I0 such that

every i ∈ I0 does not have an unbounded arbitrage opportunity and RJ =
⋃

i∈I0
Ai, there

exist state prices q ∈ RZ
++ such that asset prices are payoff-weighted sums of state prices:

p = Yq. (2)

The same basic mechanism applies to bounded arbitrage as well, whereby

investors can only exploit mispricing up to an exogenous constraint on asset posi-

tions. In particular, it remains optimal to exploit the arbitrage to the extent possi-

ble, and this can lead to discontinuous changes in demand functions in response

to arbitrarily small price changes. As Example 2 in Appendix B.1.1 illustrates,

this remains the case even though unbounded arbitrages are ruled out by portfo-

lio constraints. Merely asserting the presence of portfolio constraints is thus not

sufficient to have a well-posed estimation problem. Since any infinitesimal price

change triggers an arbitrage for redundant assets, for the remainder we focus on

the more interesting case without redundant assets.

Assumption 1 (No redundant assets) Z ≥ J and rank(Y) = J.

4 The Trilemma

We now turn to our main result, which is that one cannot jointly maintain that

(i) prices satisfy no arbitrage, (ii) investors have preferences over payoffs, and (iii)

11



supply shocks can be used to move along a demand curve without shifting it. Since

Sections 2 and 3 already established the importance of the first two conditions,

here we focus on showing that supply shocks generically fail to produce the price

variation necessary to move along a stable demand curve.

We begin by defining the theoretical ideal of an experiment which allows

the econometrician to identify the slope of an asset-level demand curve. We then

compare this ideal experiment to the price variation by an exogenous supply shock,

and show that the two are generally misaligned.

4.1 Ideal experiment

As shown in Section 2, canonical portfolio choice exhibits demand complementar-

ities whereby the demand curve for any asset depends on the entire vector of asset

prices. Measuring an asset-level demand elasticity thus requires an ideal experi-

ment in which the investor faces ceteris paribus variation in a single asset price.

It is useful to describe the ideal experiment in terms of state prices, as these

ultimately determine optimal consumption plans through the cost of consumption.

The investor observes asset prices p and payoff matrix Y. Equation (2) allows the

investor to infer the vector of state prices implied by prevailing asset prices:

q = Y+p, (3)

where Y+ is the Moore-Penrose pseudo-inverse of Y. If Y is square, as when mar-

kets are complete, then Y+ = Y−1 and there is a unique vector of state prices. If

markets are incomplete (J < Z), then there are many feasible state price vectors.

We focus on the minimum norm solution with pseudo-inverse Y+ = YT(YYT)−1.

The ideal experiment consists of a pure price shock to a single asset. Equa-

tion (3) shows that, under no arbitrage, such a shock asset j implies a specific

change to state prices which is fully determined by the inverse payoff matrix.

Lemma 2 (State price changes in the ideal experiment) Let vj denote the unit vec-

tor in RJ with 1 in the j-th position and zeros elsewhere. Then the changes in state prices
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given the exogenous variation in a single price pj are

∆qideal
j ≡ ∂q

∂pj
= Y+vj.

Proof. The assertion follows immediately from equation (3).

Identifying asset demand thus requires shocks which generate the state

price variation ∆qideal
j associated with the ideal experiment.

4.2 Measurement using supply shocks

In practice, one rarely observes direct shocks to prices themselves. Instead, one

may observe shocks to an economic environment that trigger equilibrium price

changes. As such, empirical approaches to estimating asset demand elasticities

typically rely on suitably exogenous variation in the (residual) asset supply curve

faced by a given investor. We will argue that this approach generally fails to gen-

erate the appropriate identifying variation in the context of asset markets.

To do so, we must describe how supply shocks affect state prices in a general

class of models. Given the standard assumption of risk-averse preferences with

decreasing marginal utility, we study settings in which a positive supply shock to

asset j must reduce state prices in all states where asset j has a strictly positive pay-

off. We say that these settings exhibit downward-sloping consumption demand.

Definition 2 (Downward-sloping consumption demand) Let E ≡ (Ej)
J
j=1 ∈ R

J
++

denote the vector of aggregate asset endowments. An economy has downward-sloping con-

sumption demand if there exists a Z× Z matrix V with strictly positive diagonal elements

such that

∆qsupply
j ≡ ∂q

∂Ej
= −VyT

j for all assets j,

where yT
j is the transpose of the j-th row yj ≡ (yj(z))Z

z=1 of Y.

In this definition, V captures the marginal change in the market-wide pricing ker-

nel, which is taken as given by each individual investors. That V has strictly pos-
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itive diagonal elements then captures our assumption that increases in the supply

of state-contingent payoffs reduce the marginal price of these payoffs.

Definition 2 imposes no assumptions on V’s off-diagonal entries. In eco-

nomic terms, these entries capture potential direct preference-based spillovers across

state prices in response to a supply shocks. Whether such spillovers exists depends

on the economic model. The canonical model with additive separable utility over

consumption in different states of the world (as in Section 2) has zero off-diagonal

elements. Example 1 illustrates this with a representative investor. Non-separable

models such as recursive utility (Epstein and Zin, 1989; Kreps and Porteus, 1978)

or general aggregators instead generally imply non-zero off-diagonal elements.

As we have argued, the central identification challenge for demand estima-

tion in asset markets is the threat of cross-asset spillovers. Therefore, the identi-

fication challenge is generically weaker when there are no direct, preference-based

spillovers in state prices. To provide favorable conditions for identification, we

thus assume that no such spillovers exist. This is Assumption 2.

Assumption 2 (No Direct Spillovers Across State Prices) The marginal pricing ker-

nel V is a diagonal matrix. Hence there are no direct state price spillovers.

The only case in which non-diagonal V might help to identify demand is

the knife-edge case where the preference-based spillovers in V just so happen to

exactly offset the cross-asset restrictions implied by no arbitrage. However, V is

determined by preferences and the aggregate supply of state-contingent payoffs

while the no-arbitrage relation depends only on the payoff matrix Y. Hence there

is no economic reason for such an offset to occur.2

Example 1 (V in an additive separable representative-agent model) In a standard

representative-agent model with additive separable preferences over consumption, state

2Indeed, Section 5 uses random matrix theory to show that the sign of each element of Y+ is
close to a coin flip, with odds that depend only on the payoff matrix. Hence small perturbations to
the payoff matrix can flip the sign of an element in Y+ without much altering V.
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prices relate to marginal utility over aggregate consumption,

∂qz

∂Ej
=

δ

1− δ
πz

u′′(Cz)

u′(C0)
yj(z) < 0,

where C0 and Cz are aggregate consumption at date 0 and in state z. Thus the marginal

price kernel is a strictly positive diagonal matrix,

V = − δ

1− δ
diag

(
π1

u′′(C1)

u′(C0)
, . . . , πz

u′′(Cz)

u′(C0)
, . . . , πZ

u′′(CZ)

u′(C0)

)
.

4.3 Supply Shocks Do Not Generate the Ideal Experiment

We now show that supply shocks generically fail to produce the ideal experiment.

We study two definitions of alignment between supply shocks and the ideal

experiment. The first is that the supply shock generates exactly the required vari-

ation in state prices, up to a scalar multiple to adjust the magnitude of the shock.

This condition is necessary to ensure that supply shocks permit exact identification

of demand functions for financial assets.

Condition 1 (Identical variation) A supply shock to asset j generates the ideal state

price variation for asset j if there exists some scalar k j such that

∆qideal
j = k j∆qsupply

j .

This condition holds for all assets if and only if

Y+ = −VYTK, where K ≡ diag(k1, . . . , k J).

Even if Condition 1 fails, a supply shock may still provide useful variation

if it does not depart too much from the ideal experiment. Hence we also consider

a much weaker condition, namely the state price variation generated by a supply

shock has the same sign as the state price changes in the ideal experiment.

Condition 2 (Variation of the same sign) The supply shock generates state price vari-

ation of the same sign if ∆qideal
j has the same sign as ∆qsupply

j element by element. Given
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that Y has only weakly positive entries, this condition holds for all assets if Y+ has only

weakly positive entries.

This condition is important because it ensures that the supply shock cor-

rectly induces the same directional pattern in state prices. If it fails, there are state-

contingent payoffs which should become more expensive in the ideal experiment

but actually become cheaper upon a supply shock. Such errors can naturally lead

to large biases when estimating substitution.

We can then state our main result, which states that Conditions 1 and 2

are satisfied only under highly restrictive, non-generic conditions on the payoff

matrix. In particular, for every state of the world there must exist a unique asset

which offers a positive payoff in the world. Strikingly, both conditions require the

same stringent restrictions. That is, as long as one wants to be sure to satisfy the

minimal requirement that the induced state price variation is of the same sign as

in the ideal experiment, then there must be no assets with overlapping payoffs.

Definition 3 (Overlapping payoffs) Assets j and j′ have overlapping payoffs if there

exists at least one state of the world z such that yj(z) > 0 and yj′(z) > 0.

Theorem 1 (Trilemma) If Conditions 1 or 2 are satisfied, then YYT is diagonal, and:

(i) If YYT is diagonal, then there are no assets with overlapping payoffs.

(ii) If markets are complete, then YYT is diagonal if and only if Y is diagonal up to

permutations.

Theorem 1 shows that there must be misalignment in magnitude and sign

between the supply shock and the ideal experiment for at least one asset (i.e., one

row of the payoff matrix). The next proposition strengthens this result by showing

that such errors are guaranteed to occur for every asset.

Proposition 2 If each column of Y has at least two strictly positive elements, then each

column of the Moore-Penrose inverse Y+ contains at least one negative element: for each

j ∈ {1, . . . , J}, there exists at least one z ∈ {1, . . . , Z} such that (Y+)z,j < 0.
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These conditions in Theorem 1 are unrealistic for almost all standard finan-

cial assets, as they require that there are no states of the world in which any given

asset has positive payoffs while another asset also has positive payoffs. This is

plainly violated for generic payoff distributions. It is therefore striking that, out-

side of these knife-edge restrictions, supply shocks do not even guarantee direc-

tional alignment with the ideal experiment. In the next section, we further docu-

ment that directional errors are a pervasive problem for realistic payoff processes.

5 How Severe are these Problems?

The previous section established the generic misalignment between supply shocks

and the ideal experiment without imposing any structure on the payoff matrix.

We now characterize the severity of this misalignment for realistic pay-

off processes in two steps. First, we analyze the asymptotic properties of factor-

structured payoff processes. We find that approximately half of all entries in the

inverse payoff matrix have the wrong sign, and that chance that any given indi-

vidual entry is of the wrong sign is a coin flip. That is, small perturbations to

the payoff matrix can alter the sign of the state price changes induced by a supply

shock. Second, we conduct a simple empirical exercise using payoff data from S&P

500 stocks and show that it closely aligns with the theoretical findings.

5.1 Factor-structured Payoff Processes

We begin by studying theoretical properties of factor-structured payoff processes.

As we will see, the presence of a factor structure is not chosen to create sign re-

versals, and may actually serve to reduce their prevalence. Even so, we find that,

in the limit of many states and many assets, the share of sign reversals is well-

approximated by one half. Simulations show that this remains a good approxima-

tion under a wide range of parameter configurations even when Z and J are not

large. Hence sign reversals are a severe problem for realistic payoff processes.

17



Problem Statement. Because true payoffs are latent, we study random draws of

Y generated from a factor structure. This allows us to characterize, in probability,

the expected sign structure of its pseudo-inverse. Specifically, let payoff matrix

Y ∈ RJ×Z with J ≤ Z be defined by the following single factor structure, where

yj,z represents the payoff of asset j in state z:

yj,z = αj + β j fz + ε j,z = αj + β j f︸ ︷︷ ︸
≡γj

+β j( fz − f ) + ε j,z, where f ≡ E[ fz].

The Appendix shows that the analysis can be extended to multi-factor processes.

We assume that the following conditions hold:

(A1) (αj, β j)j are i.i.d., independent of ( fz)z and (ε j,z)j,z, with finite second mo-

ments.

(A2) ( fz− f )z are i.i.d., with bounded, continuous, and symmetric densities around

0, with σ2
f ≡ V[ fz] < ∞.

(A3) The idiosyncratic errors (ε j,z)j,z are i.i.d. across (j, z), with bounded, contin-

uous, and symmetric densities around 0, with σ2
ε ≡ V[ε j,z] > 0. Also, factors

and errors are mutually independent.

While we are interested in non-negative payoff matrices, yj,z ≥ 0, we do not

explicitly impose extra assumptions on (αj, β j)j≥1, ( fz − f )z, and (ε j,z)j,z to force

yj,z ≥ 0. This is because Theorem 2 does not depend on this condition, and because

truncating distributions to satisfy this restriction does not alter our result.

Let Y+ denote the Moore-Penrose pseudo-inverse of Y.3 Given that Y is

random, we characterize the fraction of positive entries in Y+ for given (J, Z),

p(J, Z) ≡ 1
JZ

J

∑
j=1

Z

∑
z=1

I
(
(Y+)z,j > 0

)
. (4)

3The rank of Y is J almost surely as long as the noise terms (ε j,z) are drawn from a continuous
distribution (which we assume). This is because the set of J × Z matrices with rank(Y) < J(≤ Z)
is of measure zero. Thus, Y+ = YT(YYT)−1 almost surely.
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If Y is weakly positive, p(J) measures the fraction of state-price changes whose

direction is correct under the ideal experiment. Hence it is a useful measure of the

degree of alignment between supply shocks and ideal experiment.

The properties of small random matrices are difficult to characterize with

any generality. Hence we study asymptotic properties of the share of positive en-

tries as the number of states becomes large: p(J) = plim
Z→∞

p(J, Z). This aligns with

empirical practice which often considers continuous payoff distributions. The exis-

tence of p(J) is guaranteed by the law of large numbers. We then study its behavior

as the number of assets grows large: J → ∞. Later, we use simulations to show

that our main results remain robust even away from these limits.

Result. We can then establish our main result in this section: the share of sign

mismatches is well-approximated by one half. That is, for realistic payoff processes,

directional errors are the norm, not an outlier.

Theorem 2 Under Assumptions (A1)-(A3), there exists a constant C1 such that, for al-

most every realization of (αj, β j)j, for sufficiently large J,

p(J) =
1
2
+

C1

J
+ O

(
J−2
)

.

Consequently,

plim
J→∞

p(J) =
1
2

.

Sketch of Proof. We sketch the main argument. The full proof is in the Appendix.

Theorem 2 states that the deviation of p(J) from 1
2 vanishes at a rate of O(J−1), which

we show depends on the factor loadings (α, β) and signal-to-noise ratio. The proof hinges

on decoupling the asymptotic limits Z → ∞ and J → ∞. By letting the number of

observations Z tend to infinity, the sample Gram matrix 1
ZYYT converges almost surely

to the population second moment matrix Σ (which is invertible). Thus, the pseudo-inverse

behaves as Y+ ≈ 1
ZYTΣ−1, when Z is sufficiently large. Consequently, the sign of (Y+)z,j

is determined by the sign of (Σ−1yz)j, where yz ≡ (yj,z)j is the z-th column of Y.
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The core of the argument is the decomposition of the sign-determining variable

(Σ−1yz)j into two components: (i) a small deterministic mean shift µ ≡ (µj)j and (ii) a

dominating symmetric stochastic fluctuation (Wz,j)j. Letting γ ≡ (γj)j, β ≡ (β j)j, and

εz ≡ (ε j,z)j, the column vector yz can be expressed as:

yz = γ + ( fz − f̄ )β + εz.

Operating Σ−1 from the left, we can write, for each j, as:

(Σ−1yz)j = (Σ−1γ)j︸ ︷︷ ︸
µj (deterministic)

+ ( fz − f )(Σ−1β)j + (Σ−1εz)j︸ ︷︷ ︸
Wz,j (stochastic)

. (5)

Since the fluctuation (Wz,j)z,j is symmetric around zero, the probability of a positive sign

is exactly 1
2 if the mean shift µ is zero. The difficulty in the proof is to show that even when

µ > 0 the distortion it creates is small and decreasing in J.

The asymptotic constant C1 can be computed explicitly as:

C1 = fW(0) ·Θ1,

where (i) fW is the probability density function for the stochastic fluctuation (Wz,j)z,j and

(ii) a constant Θ1 is the sum of (µj)j = Σ−1γ (both of which are computed when J → ∞,

to obtain tractable expressions):4

Θ1 ≡ lim
J→∞

J

∑
j=1

(Σ−1γ)j =
E[γ]E[β2]−E[β]E[γβ]

E[γ2]E[β2]−E[γβ]2
. (6)

This shows that for given (but large) J the adjustment factor C1 is proportional on the

density around 0 since the higher the density the more distortion will be introduced from

µ > 0. Since the probability of µ ≤ 0 is 1
2 (given the symmetry of fW), the probability

p(J) is approximated by 1
2 +

C1
J when J is fixed but large.

Perhaps more disconcertingly, the proof shows that the sign of each element

4Note that Assumption (A3) implies that (Σ−1yz)j has a continuous density at zero, since it is the
sum of the deterministic term µj and the stochastic term Wz,j, where Wz,j has a continuous density
(being a linear combination of continuous random variables).
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of the inverse payoff matrix is also a coin flip. In particular, each entry of Y+

behaves asymptotically like a scaled draw from the symmetric random variable

(Σ−1yz)j, whose distribution is centered and continuous. Thus, the positive and

negative tails of (Σ−1yz)j are mirror images and of equal magnitudes. This severe

lack of stability makes it difficult to appropriately control for directional errors.

Note also that the specific distributions chosen for α, β, f , and ε only affect

the magnitude of the constant C1, not the fundamental asymptotic behavior. Simi-

larly, in a setting with K factors, as long as properly extended versions of (A1)-(A3)

hold, all that changes is that there will be a more complex constant CK.

Calibration and Numerical Exploration To illustrate the O(J−1) convergence

rate and estimate the proportionality constant C1, we performed Monte Carlo sim-

ulations using parameters that generate a share of idiosyncratic risk roughly con-

sistent with the empirical data. Concretely, we assume:5

αj ∼ U [10, 20], fz ∼ N (1, σ2
f ) with σf =

1
2

,

β j ∼ U [0.5, 1.5], ε j,z ∼ N (0, σ2
ε ) with σε = 1.

As shown in Lemma 4, under Gaussian ( fz, ε j,z), fW(0) = σε√
2π

. From Equa-

tion (6) we have Θ1 = 0.045. Thus, C1 ≈ 0.01795. Hence even if our choice of σε

were off by an order of magnitude, the result would be practically the same.6

Figure 1, shows that the theoretical prediction for Z → ∞ and large J can

perform remarkably well even for moderate values of Z and small J.7 Almost, half

the elements of Y+ have the wrong sign.

5The high values of αj(∼ U [10, 20]) effectively guarantee that all entries of Y are positive. Note,
however, that our theoretical results do not require that. Also, truncation of the normal distribu-
tions for f and ε (to force Y to be always non-negative) do not qualitatively alter our results.

6Details and an interactive version of the code are available online.
7We took Z = 1000 as we vary the number of assets J ∈ {5, 10, . . . , 500}. For the empirical

frequency p(J, Z), we took the average of 1000 runs (of the Monte Carlo simulations). While almost
invisible, Figure 1 also depicts the 95% confidence interval. .
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Figure 1: The Monte Carlo Simulation for the Sign Frequency of Y+. The figure depicts
the empirical frequency of positive entries p(J, Z) (defined by (4)) and the theoretical ap-
proximation 1

2 +
0.01795

J when Z = 1000 for various J.

5.2 Empirical Validation

To further gauge the empirical relevance of our arguments, we conduct a simple

excercise using stocks in the S&P 500. This exercise is not intended to be exhaus-

tive, but rather a simple consistency check between our theory and the data.

Since the true payoff matrix is latent, we construct (subsets) of it by sam-

pling realized payoffs. The sample consists of 428 stocks that remained in the

S&P 500 from 2020 to 2024. The payoff for each stock is computed as the end-of-

quarter price plus the sum of dividends paid during that quarter. We construct

a 20× 20 payoff matrix Y by randomly selecting 20 stocks (J). The columns (Z)

correspond to the 20 quarterly payoff observations from 2020Q1 to 2024Q4. This

yields a 20× 20 payoff matrix with weakly positive entries. We then invert this

payoff matrix and compute the share of negative entries in Y+ as well as the rel-

ative magnitude of the negative and positive entries (in terms of the median and

the maximum). We then repeat this exercise ten times with replacement.

Table 1 shows that our theoretical predictions hold remarkably well: the

share of positive entries of Y+ is approximately one half, and the negative entries

are of equal magnitude. This again shows that the barriers to identification we

document are generic and pervasive.
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Metric (averaged over 10 iterations) Value
Percentage of positive entries in Y+ 50.58%
Ratio: (abs negative-entry median) / (positive-entry median) 1.030
Ratio: (absolute negative minimum) / (positive maximum) 1.078

Table 1: Results of our empirical exercise averaged over 10 iterations.

6 Illustration in a General Equilibrium Model

The previous sections have established the generic and pervasive mismatch be-

tween the ideal experiment and supply shocks. We now illustrate the implications

of this mismatch for errors in asset-level demand elasticity estimates. Since this

requires a fully specified model, we study a simple example economy with a log-

utility representative investor based on Fuchs, Fukuda, and Neuhann (2025a).8

Setup. Markets are complete. There are two assets and two states of the world,

both denoted by g (green) and r (red). The probability of state z ∈ {g, r} is πz ∈
(0, 1). The payoff profile of asset j ∈ {g, r} is yj = (yj(g), yj(r)). The aggregate

endowments are given by (e0, eg, er) = (1, 1 + sg, 1), where sg is a supply shock to

the green asset. Table 2 depicts the payoff matrix.

Parameter ε ∈ (0, 1) determines the degree of complementarity between

green and red assets. In the limit ε→ 0, green and red assets are perfect substitutes

with respect to their cash flows. The assets become more complementary as ε

increases. In the limit ε → 1, the green and red assets are Arrow securities paying

exactly one unit in one state of the world.

State g (πg) State r (πr)
Asset g 1

2(1 + ε) 1
2(1− ε)

Asset r 1
2(1− ε) 1

2(1 + ε)

Table 2: Payoff matrix.

8Log utility is convenient to obtain simpler expressions but not key to any of the results.
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State Prices and Demand. Since markets are complete, we can solve the deci-

sion problem in terms of state-contingent consumption. Let cz denote quantities

of Arrow securities and qz the associated state prices. The standard necessary and

sufficient optimality condition for Arrow security z ∈ {g, r} is

qz = πz
δ

1− δ

u′(cz)

u′(c0)
. (7)

Given the budget constraint, this condition determines optimal consumption as

a function of Arrow prices. Let W ≡
(
2 + qr(2 + (1− ε)sg) + qg(2 + (1 + ε)sg)

)
denote the investor’s total wealth. Under log utility, optimal consumption is

c0 =
1− δ

2
W; cg =

δπg

2qg
W; cr =

δπr

2qr
W.

These optimal policies then uniquely determine the optimal asset positions.

Ideal experiment. Consider the ideal experiment where sg = 0 and the investor

faces an exogenous increase in the price of the green asset pg while pr remains

fixed. Consistently with Lemma 2, the induced change in state prices is

∆qideal
g =

∂

∂pg

[
qg

qr

]
=

1
2ε

[
1 + ε

−(1− ε)

]
. (8)

A pure shock to pg thus raises the cost of consumption in state g, but lowers it in

state r. This decrease in qr is necessary to keep pr unchanged. Estimating the

demand elasticity associated with this experiment requires a shock that triggers

precisely this state price variation.

Supply shock. We now solve for the equilibrium prices after a supply shock and

show that they do align with the ideal experiment. Market clearing requires con-

sumption to equal available resources in every state:

cz = yg(z)(1 + sg) + yr(z).
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Hence equilibrium state prices as a function of supply shock sg are:

qg = πg
δ

1− δ
· 1

1 + 1+ε
2 sg

and qr = πr
δ

1− δ
· 1

1 + 1−ε
2 sg

. (9)

In contrast to the ideal experiment, a negative supply shock to the green asset in-

creases both state prices whenever ε < 1. The reason is that the green asset pays off

in both states of the world, so that the supply shock increases state-contingent con-

sumption in both states. As such, the supply shock generates a state price change

∆qr that is of the wrong sign compared to the ideal experiment. The only exception

is when both assets are Arrow securities (ε = 1). This is the only case when the

supply shock does not generate cross-asset spillovers. In particular, when ε < 1,

even a clean shock to one asset will trigger concurrent changes in the price of the

other asset. Next, we show that this leads to a bias in asset-level demand elasticity

that is greater when the assets are more substitutable (i.e., when ε is small).

Asset demand and implications for elasticity estimates. As we detail in Ap-

pendix B.4, the demand function for the green asset is

ag(pg, pr) = δ
(1 + pg(1 + sg) + pr)

(
(1− ε2)pg − ((1 + ε)2 − 4ερ)pr

)
(pg − pr)2 − (pg + pr)2ε2 . (10)

In the ideal experiment, sg = 0 and we observe a pure price shock to pg.

This gives us the standard own price elasticity formula:

E ideal
g ≡ −

∂ag(pg, pr)

∂pg

pg

ag
.

When the price change is instead due to an infinitesimal supply shock, the

resulting “elasticity” measure E supply
g has an additional term which accounts for

the effect of sg on pr:

E supply
g ≡ −

dag
dsg

dpg
dsg

pg

ag
=
(
−

∂ag

∂pg
−

∂ag

∂pr

dpr
dsg

dpg
dsg

) pg

ag
.
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Substituting for the equilibrium prices, these two measures are equal to:

E ideal
g = (1 + (1− 2πr)ε)

(1− ε)2 + 4επr(1− δε) + 4δε2π2
r

8πr(1− πr)ε2 ;

E supply
g = (1 + (1− 2πr)ε)

2− δ(1 + (1− 2πr)ε)

(1 + ε)2 − 4επr
.
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Figure 2: Ideal vs. supply-shock elasticities as a function of ε for δ = 2/3 and πr = πg =
1/2. The ideal elasticity (solid line) diverges as ε → 0, while the supply-shock elasticity
(dashed line) remains bounded. Both elasticities converge to 1− δπg = 2/3 at the Arrow
security limit ε = 1.

We plot both measures in Figure 2. The two differ by order of magnitude for

small ε. In this range, the two assets are close substitutes. In the ideal experiment

without price spillovers, this leads to very high demand elasticities with respect to

a pure price shock. In the case of a supply shock, however, this very substitutability

creates strong price spillovers that deter quantity changes on the equilibrium path.

Hence, E ideal
g diverges to infinity as ε→ 0 while E supply

g remains small. In contrast,

when ε → 1 and the assets approach Arrow securities the measures converge.

Thus, using supply shocks to estimate elasticities without properly accounting for

the spillover effects leads to systemic underestimation of the true elasticity. The

bias can be particularly significant in the presence of close substitutes. This can

rationalize the findings of low “elasticities” in the literature.
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There is no a priori reason to expect standard assets to correspond to the

case of high ε. For example, our analysis in Section 5 suggests that positive and

negative entries in the inverse payoff matrix are of roughly equal magnitude. In

the context of our simple model here, this would indicate that ε is relatively small.

7 Addressing the Trilemma

Our results thus far establish a fundamental disconnect between the state price

variation in the ideal experiment and the state price variation generated by asset-

level supply shocks. We now evaluate whether and how researchers might poten-

tially overcome these challenges using richer data or structural assumptions.

7.1 Multiple independent experiments

We begin by analyzing whether asset-level demand functions can be identified in

an idealized setting where the researcher has access to multiple, independent quasi-

experimental shocks to asset prices. To stack the deck in favor of identification, we

assume that demand functions are approximately linear, so that demand functions

can be described using a J × J substitution matrix. However, we caution that this

is a very strong restriction when close substitutes are available.

A first-order approximation of investor i’s demand system around p yields

ai = ai + Si(p− p) + εi,

where ai ∈ RJ is the vector of portfolio holdings, p ∈ RJ is the price vector, and εi is

the vector of residual demand shocks. The asset-level substitution matrix Si ∈ RJ×J

is the object of interest. Row k of matrix Si collects the loadings of the demand for

asset k on all prices, (Si)k =
(

∂ai,k
∂p1

, . . . , ∂ai,k
∂pJ

)
, while column j captures the derivative

∂ai/∂pj. Under the assumption of linear demand, this derivative determines how

the vector of asset quantities responds to changes in price pj.

Suppose that the researcher has access to N distinct “experiments” indexed

by n. Each experiment consists of a purely exogenous shock to the supply of a
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given asset (or combination of assets) which creates exogenous price changes. This

generates a matrix of observable price changes G and that of quantity changes ∆Ai

for each investor, defined as:

G ≡
[

∆p(1), . . . , ∆p(N)
]
∈ RJ×N;

∆Ai ≡
[

∆a(1)i , . . . , ∆a(N)
i
]
∈ RJ×N.

Stacking the data from all N quasi-experiments yields the matrix equation

∆Ai = Si G + Ui, (11)

relating the observed quantity changes to the observed price changes and matrix

of residual demand shocks Ui ∈ RJ×N. Our assumptions imply that E[Ui | G] = 0.

We begin by establishing a positive identification result. In the theoretical

ideal where the number of independent experiments equals the dimensionality of

the asset span, ordinary least squares identifies the investors’ substitution matrix.

Proposition 3 (Complete identification with J experiments) Let the number of in-

dependent experiments equal the dimensionality of the asset span, so that the matrix of

observed price changes is full row rank, rank(G) = J. Let G+(= G−1) denote the Moore-

Penrose pseudo-inverse of G. Then the unique ordinary least-squares estimator of Si is

Ŝi = ∆Ai GT (G GT)−1 = ∆Ai G+, (12)

where Ŝi is an unbiased and consistent estimator of Si. When Ui = 0, Ŝi = Si.

Proposition 3 provides a constructive benchmark: with as many indepen-

dent shocks as the dimensionality of the asset span, demand functions are point-

identified under the (strong) assumption of linear demand. We refer to this re-

sult as complete identification because every element of Si is point-identified. This

provides one constructive method for asset demand estimation, which is to find

settings with sufficiently many shocks relative to the number of assets.

However, these data requirements are stringent. In many applications, re-

searchers observe far fewer than J independent experiments. For example, Koi-
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jen and Yogo (2019) rely on a single cross-section of prices and quantities, which

corresponds to a single independent experiment. Increasing the number of ex-

periment requires the existence of strongly segmented markets subject to market-

specific shocks, or time series variation under stationarity. But most financial mar-

kets are not strictly segmented, and the market-wide pricing kernel typically con-

tains a permanent component (Alvarez and Jermann, 2005; Borovička, Hansen,

and Scheinkman, 2016). This lack of stationarity limits the scope of the time-series

methods proposed in, e.g., Haddad, He, Huebner, Kondor, and Loualiche (2025).

Another alternative is to combine structural models with data on bid schedules, not

just equilibrium holdings and prices (Allen, Kastl, and Wittwer, 2025).

Given these limitations, we must assess the identification of substitution

matrix Si in the empirically relevant case where N < J. The next result shows that

the substitution matrix is not point-identified if N < J, and indeed that demand

parameters are arbitrarily unconstrained beyond the span of observed shocks.

Proposition 4 (Incomplete identification with N < J experiments) Let PG ≡ GG+

be the orthogonal projector onto col(G), the column space of the matrix of observed price

changes G, where G+ ≡ (GTG)−1GT. Then the general solution to the least-squares

problem is

Si = ∆AiG+ + Bi(IJ − PG),

where Bi ∈ RJ×J is an arbitrary matrix that is entirely unrestricted by the data and IJ is

the identity matrix.

That is, any component of Si in the null space of G is not point-identified

and cannot be bounded without ex-ante theoretical restrictions which cannot be

rejected by the data. What is identified is the projection of Si onto observed shocks,

SiPG = ∆AiG+PG = ∆AiG+.

Our results show this projection does not identify the structural slope of any asset-

level demand function because it is contaminated by correlated price changes.
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Remark 3 (Relation to Collinearity and Weak Instruments) When asset prices sat-

isfy p = Yq, equilibrium price movements are confined to the low-dimensional space

spanned by the state prices q. As a result, the matrix of observed price changes G is

typically of rank deficient, implying that instruments constructed from asset-level sup-

ply shocks are highly collinear. In instrumental-variable terms, the first-stage regression

of individual prices on such instruments is likely weak once other prices are controlled for:

the conditional F-statistic is small even if unconditional correlations are large. However,

the absence of weak instruments—that is, a strong first stage—is not sufficient for credible

identification. Even when instruments generate large first-stage variation, they may still

induce the wrong direction of price movements relative to the ideal experiment that isolates

an own-price effect. In the terminology of Proposition 4, such instruments span an incor-

rect subspace of the price space, identifying only projections of demand elasticities rather

than structural slopes. Hence, strong instruments ensure relevance but not alignment:

they are necessary, but not sufficient, for consistent identification of asset-level demand.

7.2 Portfolio Aggregation and Alternative Estimands

Which objects of interest can be identified when the identification of asset-level

demand curves is infeasible?

One approach is to estimate elasticities over portfolios rather than individ-

ual assets. While our formal results apply equally to any asset or portfolio, there

are some potential benefits and costs of such aggregation. The main benefit is

a reduction in the dimensionality of the choice set. Following Section 7.1, this

means that one needs fewer independent shocks to identify a given substitution

matrix. A disadvantage is that aggregation into large portfolios (e.g., stocks and

bonds) may make it more difficult to find supply shocks that are suitably exoge-

nous to demand. Moreover, if shocks occur at the asset level, one must construct

a portfolio-level shock by combining different asset-level shocks. The appropriate

weighting depends on payoffs, and thus requires knowledge of the latent payoff

matrix. For example, Binsbergen, David, and Opp (2025) use a structural model to

reverse-engineer the set of shocks needed to generate a particular price change.
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Beyond simple aggregation, one might combine assets into portfolios which

resemble Arrow securities. As before, the main challenge is that this requires

knowledge of the latent payoff matrix. An (2025) and An and Huber (2024) pur-

sue a related approach by constructing portfolios orthogonalized with respect to

returns and flows to specific investors. However, orthogonal payoffs are not suffi-

cient to ensure no overlap in the payoff distribution. Their approach thus requires

additional assumptions to eliminate spillovers, such as asserting that uncorrelated

portfolios exhibit no spillovers and that the risk-free rate is exogenously fixed.

Consistent with our results, this is an a-priori restriction on substitution patterns.

Lastly, one may be content to identify objects other than the asset-level de-

mand elasticity. For example, Haddad, He, Huebner, Kondor, and Loualiche (2025)

propose a specific conditional homogeneity restrictions on the (endogenous) sub-

stitution matrix. Under this assumption, they show that asset supply shocks can

identify a “relative elasticity”—the difference between an asset’s own- and cross-

price elasticities relative to similar assets—but not the absolute elasticity. This cir-

cumvents the problem of cross-asset spillovers by estimating a different economic

object. Nevertheless, identification is contingent on a-priori assumptions on unob-

servables, and small misspecification can lead to large biases.9

7.3 Structural Assumptions

Our results show that supply shocks generically fail to produce the price variation

required to non-parametrically estimate asset demand functions. This suggests an

important role for structural models in asset demand estimation. These models

must be designed to account for the cross-asset interactions which underlie asset

pricing and portfolio choice. For example, Fuchs, Fukuda, and Neuhann (2025a)

shows that misspecification of substitution patterns can lead to large and system-

atic biases in the logit asset demand model proposed by Koijen and Yogo (2019).

Moreover, because (arbitrarily) many theoretical models may be consistent with

9See Fuchs, Fukuda, and Neuhann (2025b) for a discussion on robustness to small deviations
when assets are highly substitutable.
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the observed data, these models must be judged on ex-ante theoretical considera-

tions and plausibility, not on their empirical fit.

8 Conclusion

We provide a general analysis of the scope for demand estimation in asset markets.

Our main conclusion is that asset demand analysis is sharply constrained by two

foundational principles of asset pricing: investors ultimately care about asset pay-

offs; and asset prices should admit no arbitrage. These results are independent of

specific assumptions on preferences, payoffs, and the economic environment. Our

results highlight the importance of structural modeling in asset demand analysis,

but also caution that such models must be carefully designed to account for the

cross-asset interactions which lie at the heart of asset demand.
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BOROVIČKA, J., L. P. HANSEN, AND J. A. SCHEINKMAN (2016): “Misspecified

Recovery,” Journal of Finance, 71(6), 2493–2544. [Cited on pages 4 and 29.]

DUFFIE, D. (2001): Dynamic Asset Pricing Theory. Princeton University Press,

third edn. [Cited on pages 10, 11, and 3.]

EPSTEIN, L. G., AND S. E. ZIN (1989): “Substitution, Risk Aversion, and the Tem-

poral Behavior of Consumption and Asset Returns: A Theoretical Framework,”

Econometrica, 57(4), 937–969. [Cited on page 14.]
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A Appendix

A.1 Section 4.3

Proof of Theorem 1. First, we show that Condition 1 implies that YYT is diagonal.

Suppose Y+ = −VYTK for some diagonal matrix K ≡ diag(k1, . . . , k J). Operating

Y on both sides from the left,

IJ = −YVYTK.

If k j = 0 for some j, then the j-th column of K is the zero vector, and so is the j-th

column of the right-hand side, which is impossible. Thus, k j 6= 0 for all j. Then,

YVYT is a diagonal matrix:∑Z
z=1 yj(z)vzyj′(z) 6= 0 if j = j′

∑Z
z=1 yj(z)vzyj′(z) = 0 if j 6= j′

.

Since yj(z), yj′(z) ≥ 0, and vz > 0, it follows that∑Z
z=1 yj(z)yj′(z) 6= 0 if j = j′

∑Z
z=1 yj(z)yj′(z) = 0 if j 6= j′

.

Hence, YYT is diagonal.

Second, we show that, more generally, Condition 2 implies that YYT is di-

agonal. By Condition 2, the Moore-Penrose pseudo-inverse Y+ = YT(YYT)−1 is

non-negative. By Plemmons and Cline (1972, Theorem 1), the pseudo-inverse Y+

is non-negative if and only if there exists a diagonal matrix with positive elements

D ≡ diag(d1, . . . , dZ) such that

Y+ = DYT. (13)

Then, operating Y from the left,

IJ = YDYT.
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Then, extracting the (j, k) element (with j 6= k) from each of both sides,

0 =
Z

∑
z=1

yj(z)dzyk(z).

Since yj(z) ≥ 0, dz > 0, and yk(z) ≥ 0 for all z ∈ {1, . . . , Z}, it follows that

yj(z)yk(z) = 0 for all z ∈ {1, . . . , Z}.

This implies that the (j, k) element (with j 6= k) of YYT is 0:

0 =
Z

∑
z=1

yj(z)yk(z). (14)

Thus, YYT is a diagonal matrix.

Third, we show that, given that YYT is diagonal, there are no assets with

overlapping payoffs. Since YYT is invertible, it is a diagonal matrix with positive

elements. Equation (14) implies that, for any z ∈ {1, . . . , Z}, there exists at most

one j ∈ {1, . . . , J} such that yj(z) > 0.

Fourth, we show that if markets are complete then YYT is diagonal if and

only if Y has exactly one non-zero element in each row and in each column (so that

Y is a diagonal matrix up a re-ordering of rows or columns). If YYT is diagonal,

then its (j, k) element is: ∑Z
z=1 yj(z)yj(z) > 0 if j = k

∑Z
z=1 yj(z)yk(z) = 0 if j 6= k

.

Hence, for each row j, there exists exactly one element z such that yj(z) > 0. Thus,

Y has J non-zero elements. Since Y is square and invertible, for each column z,

there exists exactly one element j such that yj(z) > 0.

Conversely, if Y has exactly one non-zero element in each row and in each

column, then ∑Z
z=1 yj(z)yj(z) > 0 if j = k

∑Z
z=1 yj(z)yk(z) = 0 if j 6= k

.
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Thus, YYT is diagonal.

Remark 4 (Proof of Theorem 1) Two remarks on the proof of Theorem 1 are in order.

First, if YYT is diagonal, then since YYT is invertible under Assumption 1, (YYT)−1 is

a diagonal matrix with positive entries. Since Y is non-negative, so is YT. Then, Y+ =

YT(YYT)−1 is non-negative.

Second, when each column of Y is not a zero vector, i.e., for each z ∈ {1, . . . , Z},
there exists at least one j ∈ {1, . . . , J} such that Yj,z = yj(z) > 0, it can be shown that

the diagonal matrix D in expression (13) is unique.

Proof of Proposition 2. Let yj denote the j-th row of Y. Let y+k denote the k-th

column of Y+. It follows from YY+ = IJ that:

Z

∑
z=1

yk(z)Y+
z,k = 1 for all k ∈ {1, . . . , J}; (15)

Z

∑
z=1

yj(z)Y+
z,k = 0 if j 6= k. (16)

Suppose to the contrary that there exists a column k in Y+ such that y+k ≥ 0

element-by-element.

Consider the orthogonality condition (16) for some j 6= k. Since Y is non-

negative, yk ≥ 0. We assumed y+k = (Y+
z,k)z ≥ 0. Thus, if yj(z) > 0 then Y+

z,k = 0.

This must hold for all j 6= k. Therefore, y+k must be zero at any index z where any

other row of Y is positive.

Now consider the normalization condition (15). For the sum to be strictly

positive, there must exist at least one index z∗ such that:

yk(z∗) > 0 and Y+
z∗,k > 0. (17)

However, we know that Y+
z∗,k > 0 is only possible if yj(z∗) = 0 for all j 6= k.

Combining this with expression (17), we see that index z∗ represents a column in

Y where: the entry in row k is positive: yk(z∗) > 0; and the entries in all other

rows i are zero: yi(z∗) = 0 for i 6= k. This implies that column z∗ of matrix Y has
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exactly one strictly positive element, which is a contradiction to the assumption of

the statement.

A.2 Section 5: Proof of Theorem 2

Proof Overview. The proof consists of four steps. The first step establishes the

asymptotic limit (i.e., the population covariance matrix) Σ of the Gram matrix
1
ZYTY as Z → ∞. This allows the pseudo-inverse Y+ = YT(YYT)−1 to be ap-

proximated by 1
ZYTΣ−1. The second step shows that each column of YTΣ−1 can

be decomposed into the deterministic shift (i.e., (µj)j in the main text) and the

stochastic component centered around 0 (i.e., (Wz,j)z,j in the main text). The third

step establishes the sense in which the deterministic shift is small compared to the

stochastic component (Wz,j)z,j when J is large by applying the Woodbury identity

to Σ. The fourth step computes the closed-form formula for the constant C1 so that

p(J) is approximated by 1
2 +

C1
J when J is large.

Step 1. In the first step, we replace the sample Gram matrix GZ ≡ 1
ZYYT with

the population covariance matrix Σ by the law of large numbers. Namely, as Z →
∞ with J fixed, the sample covariance matrix GZ converges almost surely to the

population second moment matrix Σ (conditional on α and β), where

Σ = γγT + σ2
f ββT + σ2

ε IJ = σ2
ε IJ + UUT with U ≡

[
γ σf β

]
∈ RJ×2

is a rank-two perturbation of a scaled identity matrix. Note that Σ is positive defi-

nite so that it is invertible. This allows the pseudo-inverse Y+ to be approximated

by 1
ZYTΣ−1 = 1

Z Σ−1YT. Lemma 3 in the second step formally shows that the

sign of (Y+)z,j is determined by the sign of the variable (Σ−1yz)j. To that end, the

second step starts by decomposing (Σ−1yz)j into the deterministic shift and the

stochastic part symmetric around 0.
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Step 2. Writing yz = γ + β( fz − f̄ ) + εz as in the main text, one can express

(Σ−1yz)j = (Σ−1γ)j︸ ︷︷ ︸
µj

+ ( fz − f )(Σ−1β)j + (Σ−1εz)j︸ ︷︷ ︸
Wz,j

.

Conditional on the loadings (α, β), the term µj is a deterministic shift and the term

Wz,j is symmetric around zero.

Let FW,j be the CDF of Wz,j conditional on loadings (α, β). Then,

P((Σ−1yz)j > 0) = P(µj + Wz,j > 0)

= 1− FW,j(−µj) =
1
2
+ fW,j(0)µj + O(µ2

j ), (18)

where the last equality follows from the Taylor approximation of 1− FW,j(·) and

FW,j(0) = 1
2 (which follows because Wz,j is symmetric around zero).

With these in mind, we now establish Lemma 3, which guarantees that the

replacement of Y+ = 1
ZYTG−1

Z with Σ−1YT does not change the limiting sign fre-

quency: since G−1
Z → Σ−1 with ‖G−1

Z − Σ−1‖ = O(Z−1/2), the difference between

the two matrices vanishes in operator norm, and any potential sign disagreement

occurs only when an entry of (Σ−1yz)j lies in a vanishing neighborhood of zero.

Since replacing G−1
Z by Σ−1 changes each entry by at most O(Z−1/2), a sign dis-

agreement can occur only with probability o(1). This ensures that the asymptotic

sign frequency is unaffected by the finite-Z approximation. Formally:

Lemma 3 (Population Replacement) Fix J and (α, β). Then,

lim
Z→∞

max
1≤j≤J

∣∣∣∣∣ 1
Z

Z

∑
z=1

I
(( 1

Z
yT

z G−1
Z
)

j > 0
)
−P

((
Σ−1yz

)
j > 0

)∣∣∣∣∣ = 0 a.s.

Consequently, conditional on (α, β), the probability p(J) satisfies:

p(J) =
1
J

J

∑
j=1

P
(
(Σ−1yz)j > 0

)
. (19)

Proof of Lemma 3. By the law of large numbers, GZ → Σ a.s. Hence, GZ is
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positive definite for large Z and ‖G−1
Z − Σ−1‖ → 0 a.s. Let

Dz,j ≡
( 1

Z
yT

z G−1
Z

)
j
−
( 1

Z
Σ−1yz

)
j
=

1
Z

yT
z (G

−1
Z − Σ−1)vj,

where vj is the unit vector in the j-th coordinate.

For any η > 0 and all large Z, ‖G−1
Z − Σ−1‖F ≤ η a.s., so |Dz,j| ≤ η

Z‖yz‖.
A sign can flip only if |( 1

Z Σ−1yT
z )j| ≤ |Dz,j|. Since (Σ−1yz)j = µj + Wz,j has a

continuous density at around 0 with value fW,j(0), we have:

P
(∣∣(Σ−1yz)j

∣∣ ≤ δ
)
≤ 2 fW,j(0)δ + o(δ) (δ ↓ 0).

Since the inequality holds uniformly across j ∈ {1, . . . , J}, the sign disagreement

probability vanishes uniformly across the entire cross-section j ∈ {1, . . . , J}. Tak-

ing δ = η
Z‖yz‖ and averaging over z (using Z−1 ∑z ‖yz‖ → E‖yz‖ a.s.) shows

the empirical fraction of sign disagreements is O(η) a.s. Letting η ↓ 0 proves the

lemma.

So far, expressions (18) and (19) imply that

p(J) =
1
J

J

∑
j=1

(
1
2
+ fW,j(0)µj + O(µ2

j )

)

=
1
2
+ fW,j(0)

1
J

J

∑
j=1

µj +
1
J

J

∑
j=1

O(µ2
j ).

As a preview, the third step shows that µj = O(J−1) and fW,j(0) → fW(0) uni-

formly so that one can write

p(J) =
1
2
+ fW(0)

1
J

J

∑
j=1

µj + O(J−2). (20)

The fourth step find the closed-form expression for (6), i.e., Θ1 ≡ lim
J→∞

J

∑
j=1

µj, to

obtain

p(J) =
1
2
+ fW(0) ·Θ1 ·

1
J
+ O(J−2).
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Step 3. In the third step, we determine the magnitude of the mean-shift term

µj = (Σ−1γ)j. To that end, we apply the Woodbury matrix identity to obtain:

Σ−1 = (σ2
ε IJ + UUT)−1 = σ−2

ε

(
IJ −U

(
I2 + σ−2

ε UTU
)−1

σ−2
ε UT

)
. (21)

Since the 2× 2 matrix UTU satisfies

UTU = J

[
EJ [γ

2] σf EJ [γβ]

σf EJ [γβ] σ2
f EJ [β

2]

]
,

where EJ denotes the empirical mean over j ∈ {1, . . . , J}, each entry is of order

O(J). Thus, σ−2
ε UTU = O(J), which implies that the dominant term in the matrix

I2 + σ−2
ε UTU is the O(J) contribution from σ−2

ε UTU. Thus, when J is large, the

2× 2 matrix
(

I2 + σ−2
ε U>U

)−1 is of order O(J−1) = O(1) ·O(J−1) ·O(1). Con-

sequently, each entry in the matrix U
(

I2 + σ−2
ε U>U

)−1
σ−2

ε UT is of order O(J−1),

meaning that Σ−1 is asymptotically diagonal with off-diagonal entries that vanish

at the same rate. Economically, the pseudo-inverse suppresses variation along the

factor directions while leaving idiosyncratic risk largely unaffected. With this in

mind, we establish:

Lemma 4 (Small Deterministic Shift) The following hold uniformly in j:

(Σ−1γ)j = O(J−1), (Σ−1β)j = O(J−1), (Σ−2)j,j → σ−4
ε .

Consequently,

σ2
W,j = σ2

f
[
(Σ−1β)j

]2
+ σ2

ε (Σ
−2)j,j −→ σ−2

ε uniformly in j.

If ( fz, ε j,z) are Gaussian case, then

fW,j(0) −→
σε√
2π

uniformly in j.

Proof of Lemma 4. Since we have established (I2 + σ−2
ε UTU)−1 = O(J−1), sub-
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stituting this back into Woodbury identity (21) and noting that γ = Uv1 yields

Σ−1γ = σ−2
ε γ− σ−2

ε U
(

I2 + σ−2
ε UTU

)−1
σ−2

ε UTγ.

The first term σ−2
ε γ is O(1) in each component. However, since γ lies in the column

space of U, we have UTγ = UTUv1, which is O(J). Thus, the second term equals

σ−4
ε U

(
I2 + σ−2

ε UTU
)−1UTUv1 = σ−2

ε U ·O(J−1) ·O(J) = σ−2
ε U ·O(1).

Each component of this correction term is O(1), and it precisely cancels the leading

O(1) term σ−2
ε γ. What remains is a residual of order O(J−1): each component

µj = (Σ−1γ)j satisfies |µj| = O(J−1) uniformly in j. The same reasoning applies to

β, giving (Σ−1β)j = O(J−1).

Next, squaring expression (21) gives

Σ−2 = σ−4
ε

(
IJ − 2UA−1

J σ−2
ε UT + UA−1

J σ−4
ε (UTU)A−1

J UT
)

, with AJ ≡ I2 +σ−2
ε UTU.

Since A−1
J = O(J−1) and UTU = O(J), the corrections are O(J−1). Thus,

(Σ−2)j,j = σ−4
ε {1 + O(J−1)} → σ−4

ε uniformly in j.

Substituting these orders into

σ2
W,j = σ2

f
[
(Σ−1β)j

]2
+ σ2

ε (Σ
−2)j,j

yields σ2
W,j = σ−2

ε + O(J−1) uniformly in j.

If ( fz, ε j,z) are Gaussian, then Wz,j ∼ N (0, σ2
W,j) and

fW,j(0) =
1√

2πσW,j
→ σε√

2π
uniformly in j.

The proof of the lemma is complete.

This result formalizes the intuition that as the cross-section expands, the

factor-induced corrections to Σ−1 become negligible: the pseudo-inverse behaves
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almost like a scaled identity, and fW(0)—the density at zero governing the lin-

earization of the sign probability—is determined primarily by the idiosyncratic

variance σ2
ε .

Step 4. Letting Θ1 ≡ lim
J→∞

J

∑
j=1

µj as in (the first part of) expression (6), what is

left to show is to establish (the second part of) expression (6) using population

moments of (γ, β). Then, we can write expression (20) as

p(J) =
1
2
+

C1

J
+ O(J−2) with C1 = fW(0) ·Θ1.

To find the closed-form expression for Θ1, we define

rJ ≡
1
J

1TU =
[
EJ [γ] σf EJ [β]

]
and SJ ≡

1
J

UTU =

[
EJ [γ

2] σf EJ [γβ]

σf EJ [γβ] σ2
f EJ [β

2]

]
.

By the law of large numbers, SJ
a.s.−→ S and rJ

a.s.−→ r, with

r ≡
[
E[γ] σf E[β]

]
and S ≡

[
E[γ2] σf E[γβ]

σf E[γβ] σ2
f E[β2]

]
.

Then, Θ1 admits the following expression.

Lemma 5 (Constant Θ1) The constant Θ satisfies:

Θ1 = rTS−1e1 =
E[γ]E[β2]−E[β]E[γβ]

E[γ2]E[β2]−E[γβ]2
.

Proof of Lemma 5. Observe that we have:

Σ−1U = (σ2
ε IJ + UUT)−1U = U(σ2

ε I2 + UTU)−1.

Since γ = Uv1,

J

∑
j=1

µj = 1TΣ−1γ = JrT
J
(
σ2

ε I2 + JSJ
)−1v1 = rT

J S−1
J v1 + O(J−1)

a.s.−→ rTS−1v1.
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Since det(S) = σ2
f
(
E[γ2]E[β2]−E[γβ]2

)
6= 0 holds (as σ2

f > 0 and β and γ are not

colinear), we have:

S−1 =
1

det(S)

[
σ2

f E[β2] −σf E[γβ]

−σf E[γβ] E[γ2]

]
.

Then, we obtain:

Θ1 = rTS−1v1 =
E[γ] · σ2

f E[β2] + σf E[β] · (−σf E[γβ])

det(S)
=

E[γ]E[β2]−E[β]E[γβ]

E[γ2]E[β2]−E[γβ]2
,

as desired.

This completes the proof of Theorem 2. Summarizing, the pseudo-inverse

Y+ acts asymptotically like a symmetric linear transformation applied to the noise

and factor components, perturbed by a small deterministic mean shift of order

1/J. The symmetry of the dominant stochastic term drives the limiting fraction

of positive entries to one-half, while the deterministic correction produces the J−1

deviation summarized by the constant C1.

A.3 Section 7

Proof of Proposition 3. The least-squares objective is

Q(S) = ‖∆Ai − SG‖2.

Differentiating with respect to S and setting the first-order condition to zero gives

−2(∆Ai − SG)GT = 0, that is, ∆AiGT = S(GGT).

If G has full row rank, then GGT is invertible. Thus, the unique solution is

Ŝi = ∆AiGT(GGT)−1.

Since G+ = GT(GGT)−1 when G has full row rank, we have Ŝi = ∆AiG+.
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Unbiasedness follows from assumed exogeneity of supply shocks,

E[Ŝi | G] = E[(SiG + Ui)GT(GGT)−1 | G]

= SiGGT(GGT)−1 + E[UiGT(GGT)−1 | G]

= Si.

For consistency, assume 1
N GGT → Q � 0 for some positive definite Q.

Further let E[‖Ui‖2] < ∞, and E[Ui | G] = 0. Then

Ŝi − Si = UiGT(GGT)−1 =
(

1
N UiGT

)(
1
N GGT

)−1 p−→ 0,

by the law of large numbers for the cross-experiment averages. Thus Ŝi is consis-

tent.

Proof of Proposition 4. Similarly to the proof of Proposition 4, the first-order

condition is Si(GGT) = ∆AiGT, from which we obtain SiG = ∆Ai. Multiplying

G+ from the right, we obtain SiPG = ∆AiG+ as in the main text. Since this is a

particular solution, the general solution can be written as

Si = ∆AiG+ + Bi(IJ − PG),

where Bi ∈ RJ×J is an arbitrary matrix and IJ is the identity matrix.
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B Online Appendix

The Online Appendix is structured as follows. Appendix B.1 contains proofs for

Section 3 and an example where redundant assets cause discontinuous demand.

Appendix B.2 complements Section 4.3 by providing conditions under which Y+

has the wrong sign for each state (Proposition 5), analogous to the asset-specific

conditions in Proposition 2. Appendix B.3 extends Theorem 2 to a multifactor

setting and offers further technical intuition on the constant Θ1. Appendix B.4

supplements Section 6 by deriving asset demands and elasticities, illustrating state

price variations, and discussing consumption implications. Finally, Appendix B.5

applies the incomplete identification result (Proposition 4) to green asset supply

shocks in our illustrative example economy.

B.1 Section 3

Proof of Proposition 1. For the first statement, let a∗i ∈ Ai be a solution to (1).

For ease of exposition, we allow 0 to be in the domain of ui (this is not essential).

Suppose to the contrary that there is an unbounded arbitrage opportunity. Since

ui is strictly increasing, there exists m > 0 such that

Ui(a∗i) < (1− δi)ui(ei
0 + p · ei) + δiπzui(m) + δi(1− πz)ui(0) for some z

and

Ui(a∗i) < (1− δi)ui(ei
0 + p · ei + m) + δiui(0),

where ei ≡ (ei
j)

J
j=1. Since there is an unbounded arbitrage opportunity, for this

m > 0, there exists ai ∈ Ai such that either (i) p · ai ≤ 0, YTai ≥ 0, and (YTai)z ≥ m,

in which case

Ui(a∗i) < (1− δi)ui(ei
0 + p · ei) + δiπzui(m) + δi(1− πz)ui(0) ≤ Ui(ai)
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or (ii) p · ai ≤ −m and YTai ≥ 0, in which case

Ui(a∗i) < (1− δi)ui(ei
0 + p · ei + m) + δiui(0) ≤ Ui(ai).

In either way, a∗i ∈ Ai does not solve (1), a contradiction.

For the second statement, since there is no unbounded arbitrage opportu-

nity, there exists m > 0 such that, for any ai ∈ Ai,

Ui(ai) < (1− δi)ui(ei
0 + p · ei + m) + δiui(m).

Thus, we obtain:

sup
ai∈Ai

Ui(ai) ≤ (1− δi)ui(ei
0 + p · ei + m) + δiui(m) < ∞.

Then, there exists a sequence (an,i)n∈N from Ai such that

sup
ai∈Ai

Ui(ai)− 1
n
< Ui(an,i) ≤ sup

ai∈Ai
Ui(ai) < ∞ for all n ∈N.

Since supai∈Ai Ui(ai) < ∞, it follows that

sup
n∈N

|an,i
j | < ∞ for all j ∈ {1, . . . , J}.

Since Ai is closed, it follows that there exists a convergent subsequence (ank,i)k∈N

of (an,i)n∈N such that ank,i → a∗i ∈ Ai. Since Ui is continuous, it follows that

Ui(a∗i) = sup
ai∈Ai

Ui(ai),

as desired.

Proof of Lemma 1. Suppose the conditions in the statement of the lemma. The

proof consists of seven steps. First, for each i ∈ I0, we define a subset Mi of RZ+1:

Mi ≡ {(−p · ai, YTai) ∈ RZ+1 | ai ∈ Ai}.
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Then, for each i ∈ I0, since investor i does not have an unbounded arbitrage op-

portunity, it follows that

Mi ∩RZ+1
+ = {0}.

Note that RZ+1
+ is a closed convex cone in RZ+1 and does not contain any linear

subspace other than {0}.
Second, let

M ≡
⋃

i∈I0

Mi.

It follows from the assumption

RJ =
⋃

i∈I0

Ai

that

M = {(−p · ai, YTai) ∈ RZ+1 | ai ∈ RJ}

is a linear subspace.

Third, since

M ∩RZ+1
+ = {0},

it follows from the separating hyperplane theorem (which is referred to as “Linear

separation of Cones” in Duffie (2001)), there exists q ∈ RZ+1 \ {0} such that

q · t < q · x for all t ∈ M and x ∈ RZ+1
+ .

Fourth, we show that q ∈ RZ+1
++ . Since 0 ∈ M, it follows that

0 = q · 0 < q · x for all x ∈ RZ+1
+ .

Taking x as standard unit vectors in RZ+1
++ yields qz > 0 for all z.

Fifth, we show that

0 = q · t for all t ∈ M.
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Suppose to the contrary that 0 6= q · t for some t ∈ M. Since M is a linear subspace,

we can assume, without loss, that

q · t > 0.

However, this leads to a contradiction because, for any given x ∈ RZ+1
++ , there

exists λ ∈ R such that λt ∈ M and

q · x ≤ λ(q · t) = q · (λt).

Sixth, we show that

qT

[
−pT

YT

]
= 0.

It follows from the fifth step that

qT

[
−pT

YT

]
a = 0 for all a ∈ RJ =

⋃
i∈I0

Ai.

If

qT

[
−pT

YT

]
6= 0,

then letting

a =

(
qT

[
−pT

YT

])T

∈ RJ =
⋃

i

Ai

yields

qT

[
−pT

YT

]
a > 0,

a contradiction.

Seventh, then, denoting by

q = (q0, q−0),
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we have

q0pT = qT
−0YT, that is, p = Y

q−0

q0
.

Letting q = q−0
q0
∈ RZ

++, we finally obtain

p = Yq,

as desired.

B.1.1 Arbitrage and Discountinuous Demands

This example illustrates an example in which an asset demand function exhibits

discontinuity in the presence of redundant assets.

Example 2 (Discontinuous demand functions) Suppose there are two states of the

world at date 1, and three assets. Given some ε ∈ (0, 1), let a cash flow matrix Y be

given by 
1
2(1 + ε) 1

2(1− ε)
1
2(1− ε) 1

2(1 + ε)

1 1

 .

Now consider the demand functions for some investor i with continuous utility function

Ui.

(i) Suppose Ai = R3. The absence of unbounded arbitrage requires that p3 = p1 + p2.

Given this restriction on prices, well-defined demand functions exist for all three

assets, with the investor taking weakly positive quantities in all three assets. Now

suppose that, starting from an initial benchmark where no arbitrage pricing holds,

p3 increases slightly. Then, investor i’s problem (1) is no longer well-defined, and

well-defined demand functions no longer exist.

(ii) Suppose instead that investor i faces the short-sale constraint ai
j ≥ −χ for some

χ > 0. Given p3 = p1 + p2, well-defined demand functions still exist for all three

assets, with the investor taking weakly positive quantities in all three assets. Now

suppose that p3 increases slightly. Then it is optimal for the investor to jump to

5



a portfolio allocation where ai
3 = −χ. This can trigger discontinuities in optimal

demand.

B.2 Section 4.3

We remark that we can also provide conditions under which Y+ has a wrong sign

for each state (i.e., row).

Proposition 5 Under the following two properties, each row of Y+ contains at least one

negative element: for each z ∈ {1, . . . , Z}, there exists at least one j ∈ {1, . . . , J} such

that (Y+)z,j < 0.

(i) Each row of Y has at least two strictly positive elements.

(ii) Conical Independence: no column vector y(z) of Y can be written as a non-negative

linear combination of the other column vectors of Y: for any z ∈ {1, . . . , Z}, there

exists no (αz′)z′ 6=z ∈ RZ−1
+ such that

y(z) = ∑
z′ 6=z

αz′y(z′).

Before proving Proposition 5, we discuss its assumptions. Property (i) states

that assets typically pay off in multiple states, ruling out only the knife-edge case

of Arrow securities. Property (ii) is a weak linear independence requirement: it

rules out perfectly redundant states whose payoffs can be exactly replicated by

combinations of other states. In the special case in which J = Z, property (ii)

is automatically satisfied because the assumption that rank(Y) = J implies that

the columns of Y are linearly independent. These properties hold in virtually all

realistic asset markets.

Proof of Proposition 5. Let y(z) be the z-th column of Y. Let y+k be the k-th row

of Y+. Suppose to the contradiction that there exists a row k such that y+k ≥ 0

element-by-element.
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Consider the projection matrix P = Y+Y. The entries are given by Pkz =

y+k · y(z). It follows from y+k ≥ 0 and y(z) ≥ 0 that

Pkz ≥ 0 for all z ∈ {1, . . . , Z}.

The columns of Y span the range of Y. The projection matrix P acts as the identity

on the row space of YT, which implies YP = Y. Writing this column-wise for vector

y(z), for each z ∈ {1, . . . , Z}, it follows from y(z) = YP·,z that

y(z) =
Z

∑
k=1

Pkzy(k), that is, (1− Pzz)y(z) = ∑
k 6=z

Pkzy(k).

Since P is a projection matrix, Pzz ≤ 1.

If Pzz < 1, then we have

y(z) = ∑
k 6=z

Pkz
1− Pzz

y(k),

which is a contradiction to property (ii).

Thus, suppose that Pzz = 1. Then, ∑k P2
zk = Pzz implies Pzk = 0 for all k 6= z.

This implies

Pzk = y+z · y(k) = 0 for all k 6= z.

Since y+z ≥ 0 and y(k) ≥ 0, let

S = {m ∈ {1, . . . , J} | (y+z )m > 0}, where (y+z )m = (Y+)z,m.

The set S is not empty because y+z · y(z) = Pzz = 1. For all k 6= z, and for all m ∈ S,

we must have 0 = ym(k)(= Ym,k). Take any index m ∈ S. The row m of matrix

Y has a value of 0 in every column k 6= z. Therefore, row m contains at most one

strictly positive element (potentially at column z). This contradicts property (i).
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B.3 Section 5 (Theorem 2)

B.3.1 Multifactor Extension of Theorem 2

The structure of the proof for a finite number of factors K is identical to the one-

factor argument. Consider the K-factor model

yj,z = αj +
K

∑
k=1

β
(k)
j f (k)z + ε j,z =

(
αj +

K

∑
k=1

β
(k)
j f̄ (k)

)
︸ ︷︷ ︸

γj

+
K

∑
k=1

β
(k)
j
(

f (k)z − f̄ (k)
)
+ ε j,z,

where f̄ (k) = E[ f (k)z ]. Assumptions (A1)-(A3) are naturally extended to K factors:

that is, the vectors (β
(k)
j )K

k=1 replace β j and the factors ( f (k)z )K
k=1 replace fz; all fac-

tors are mutually independent and independent of errors.

Each factor adds an additional “spike” to the covariance matrix,

Σ = γγT +
K

∑
k=1

σ2
f ,k β(k)β(k)T +σ2

ε IJ = σ2
ε IJ +UUT with U ≡

[
γ σf ,1β(1) · · · σf ,Kβ(K)

]
,

but the key asymptotic properties remain unchanged. The deterministic mean shift

µj ≡ (Σ−1γ)j is still of order J−1, and the random fluctuation

Wz,j ≡
K

∑
k=1

( f (k)z − f̄ (k))(Σ−1β(k))j + (Σ−1εz)j

remains symmetric around zero. Consequently, the linear expansion of the sign

probability and the O(J−1) convergence rate carry over verbatim. The only new

element is the form of the constant ΘK, which now depends on the (K + 1)× (K +

1) population moment matrix of vectors U.

In general, letting S = E[UUT] and

r = E[U] =
[
E[γ] σf ,1E[β(1)] · · · σf ,KE[β(K)]

]
,

we have

ΘK = rTS−1v1.
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When K = 1, this expression reduces to the right-most side of expression (6). We

summarize the K-factor extension as follows.

Corollary 1 (K-Factor Extension) In the K-factor model, the same asymptotic result

holds:

p(J) =
1
2
+

CK

J
+ O(J−2) a.s., with CK = fW(0) ·ΘK and ΘK = rTS−1v1.

Consequently,

plim
J→∞

p(J) =
1
2

.

B.3.2 Remark on the Constant Θ1

When σ2
f ‖β‖2 � ‖γ‖2, or equivalently, when σ2

f E[β2] � E[γ2] in the limit as

J → ∞, we can circumvent arguments in Step 3.10 Indeed, Σ admits the following

simpler approximation:

Σ ≈ γγT + σ2
ε IJ .

Applying the Woodbury identity, we obtain:

Σ−1 ≈ 1
σ2

ε

(
IJ −

γγT

σ2
ε + ‖γ‖2

)
. (22)

Then, operating γ on expression (22) from the right, we obtain:

Σ−1γ ≈ γ

σ2
ε + ‖γ‖2 .

When J is large, since

µj = (Σ−1γ)j ≈
γj

σ2
ε + ‖γ‖2 ≈

γj

J ·E[γ2]
,

it follows that

Θ1 ≈
E[γ]

E[γ2]
.

10For the K-factor case, σ2
f ,k‖β

(k)‖2 � ‖γ‖2 for all k.
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Similarly, operating a scalar σ2
ε on expression (22) from the right, the vari-

ance of the stochastic term is dominated by

(Σ−1)j,jσ
2
ε ≈ σ−2

ε · σ2
ε = 1,

yielding

σW ≈
1
σε

.

B.4 Section 6

Equation (10). For ease of presentation, we derive the demand functions ag and
ar directly from the representative agent’s portfolio choice problem:11

max
ag,ar

(1− δ)u(E0 − pg(ag − Eg)− pr(ar − Er)) + δπgu(yg(g)ag + yr(g)ar) + δπru(yg(r)ag + yr(r)ar).

After substituting the payoff matrix Y into the utility function, the first-order con-
ditions are:

(1− δ)
pg

E0 − pg(ag − Eg)− pr(ar − Er)
= δπg

1 + ε

(1 + ε)ag + (1− ε)ar
+ δπr

1− ε

(1− ε)ag + (1 + ε)ar
;

(23)

(1− δ)
pr

E0 − pg(ag − Eg)− pr(ar − Er)
= δπg

1− ε

(1 + ε)ag + (1− ε)ar
+ δπr

1 + ε

(1− ε)ag + (1 + ε)ar
.

(24)

Then, since πg = 1− πr, the representative agent’s demand functions are:

ag(pg, pr) = δ
(E0 + pgEg + prEr)

(
(1− ε2)pg − ((1 + ε)2 − 4επr)pr

)
(pg − pr)2 − (pg + pr)2ε2 ;

ar(pg, pr) = δ
(E0 + pgEg + prEr)

(
(1− ε2)pr − ((1− ε)2 + 4επr)pg

)
(pg − pr)2 − (pg + pr)2ε2 .

11Alternatively, one can derive the demand functions ag and ar from the consumption functions
cg and cr.
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Figure 3: State Price Variations ∆qideal
g and ∆qsupply

g . Parameters: πg = πr =
1
2 .

Elasticities. On the one hand,

E ideal ≡ −
∂ag(pg, pr)

∂pg

pg

ag

= (1 + (1− 2πr)ε)
(1− ε)2 + 4επr(1− δε) + 4δε2π2

r
8πr(1− πr)ε2 .

On the other hand, since

−
dag
dsg

dpg
dsg

= −
∂ag

∂pg
−

∂ag

∂pr

dpr
dsg

dpg
dsg

=
1− δ

δ

(1− ε)2 + 4επr (1− δε) + 4δε2π2
r

4ε2πr(1− πr)
− 1− δ

δ

(1− ε2) + 4δε2πr(1− πr)

4ε2πr(1− πr)

1− ε2

(1 + ε)2 − 4επr

= 2
1− δ

δ

2− δ(1 + (1− 2πr)ε)

(1 + ε)2 − 4επr
,

it follows that

E supply ≡ −
dag
dsg

dpg
dsg

pg

ag

= (1 + (1− 2πr)ε)
2− δ(1 + (1− 2πr)ε)

(1 + ε)2 − 4επr
.
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B.4.1 State Price Variations in the General Equilibrium Example

Figure 3 compare the state price variations ∆qideal
g and ∆qsupply

g in our illustrative

example. Note that while the state price variation ∆qideal
g is given by (8) , the state

price variation ∆qsupply
g is given by:

∆qsupply
g =

∂

∂sg

[
qg

qr

]∣∣∣∣∣
sg→0

= − δ

1− δ

[
πg

1+ε
2

πr
1−ε

2

]
(< 0).

The left and central panels depict the state price variations for a fixed ε. The right

panel depicts the cosine similarity between ∆qideal
g and ∆qsupply

g .

B.4.2 Implications for Demand

The fact that the supply shock generates the wrong type of state price variation

dramatically affects the observed demand response. We illustrate this effect by

computing the response of the consumption ratio cg/cr to both the ideal experi-

ment and the supply shock. Given log utility, it follows from the first-order condi-

tions (7) that the relative consumption process satisfies:

cg

cr
=

πg

πr

qr

qg
. (25)

Relative consumption in turn determines the desired holdings of green and red

assets.

Consider first the ideal experiment with a pure price shock. Differentiating

the relative consumption with respect to pg and evaluating in the limit sg → 0

yields:

− ∂

∂pg

(
cg

cr

)∣∣∣∣
sg→0

=
1− δ

δ

(1− ε)πg + (1 + ε)πr

2πgπrε
. (26)

This derivative diverges to infinity as ε → 0. As the two assets are perfect substi-

tutes in this limit, a small price shock triggers a rapid reallocation from green to red

assets.
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Next, consider the response to the supply shock. In the limit as sg → 0,

∂

∂sg

(
cg

cr

)∣∣∣∣
sg→0

= ε. (27)

which converges to zero in the limiting case of perfect substitutes as ε → 0. When

the two assets are perfect substitutes, a supply shock has identical effects in both

states. As such, it results in zero difference in the optimal consumption ratio across

the two states.

Figure 4 depicts the optimal investor-level response to the hypothetical price

shock (26) and the response to the supply shock (27) on log scale (Appendix B.4.3

provides the derivations of these expressions). The difference in responses di-

verges to infinity as ε → 0. The only point of overlap occurs when the two assets

are both Arrow securities. In line with our theory, this is the case where there can

be no spillovers across assets.
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B.4.3 Derivations for Appendix B.4.2

Equation (26). Since the Arrow prices q can be expressed as a function of the asset

prices p through p = Yq, the consumption ratio (25) can be written as:

cg

cr
=

πg

πr

(1 + ε)pr − (1− ε)pg

(1 + ε)pg − (1− ε)pr
.

Thus, differentiating it with respect to the price pg, we have:

∂

∂pg

(
cg

cr

)
= −

πg

πr

4εpr

((1 + ε)pg − (1− ε)pr)2 . (28)

In contrast, substituting the Arrow prices (9) into p = Yq, we obtain:

pg =
1 + ε

2
πg

δ

1− δ

1
1 + 1+ε

2 sg
+

1− ε

2
πr

δ

1− δ

1
1 + 1−ε

2 sg
; (29)

pr =
1− ε

2
πg

δ

1− δ

1
1 + 1+ε

2 sg
+

1 + ε

2
πr

δ

1− δ

1
1 + 1−ε

2 sg
. (30)

Substituting the asset prices p at sg = 0 into equation (28), we obtain equation (26).

When δ = 2
3 and πg = πr =

1
2 , equation (26) reduces to:

− ∂

∂pg

(
cg

cr

)∣∣∣∣
p
=

1
ε

.

Equation (27). Substituting the Arrow prices (9) into the consumption ratio (25)

yields
cg

cr
=

1 + 1+ε
2 sg

1 + 1−ε
2 sg

.

Thus, differentiating it with respect to the supply shock sg, we obtain

∂

∂sg

(
cg

cr

)
=

ε(
1 + 1−ε

2 sg

)2 .

In the limit as sg → 0, we get equation (27).
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Figure 5: Price Changes ∆pg and ∆pr. Parameters: πg = πr =
1
2 , δ = 2

3 , and sg = 0.01.

B.5 Section 7.1

We now illustrate the incomplete identification result in the context of our example

economy where the supply shock to the green asset is a single experiment. This

creates a vector of observable price changes G and that of quantity changes ∆A for

the representative investor:

G =

[
∆pg

∆pr

]
and ∆A =

[
∆ag

∆ar

]
=

[
sg

0

]
.

Figure 5 illustrates the price changes G for varying complementarity ε. In the limit

as ε→ 1, the vector G reduces to the pure price change of the green asset.

We compare the theoretical asset-level substitution matrix

S =

 ∂ag
∂pg

∂ag
∂pr

∂ar
∂pg

∂ar
∂pr

 (31)

and its least-square identification

∆AG+ =
sg

‖∆p‖2

[
∆pg ∆pr

0 0

]
. (32)
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Figure 6: Comparison of S and ∆AG+. Parameters: πg = πr =
1
2 and δ = 2

3 .

The left panel of Figure 6 compares the (1, 1) element of S and ∆AG+ on the sym-

metric log scale, while the right panel of Figure 6 does the (1, 2) element of S and

∆AG+.12 The right panel suggests that the signs are opposite.

B.5.1 Derivations

Equation (31). The first-order conditions (23) and (24) yield the equilibrium prices

pg and pr. When (E0, Eg, Er) = (1, 1+ sg, 1), pg and pr coincide with equations (29)

and (30). We denote by p the initial equilibrium price vector (precisely, equations

(29) and (30) with sg = 0):

pg =
1
2

δ

1− δ
(1 + (1− 2πr)ε) and pr =

1
2

δ

1− δ
(1− (1− 2πr)ε) .

Then, the matrix

S =

 ∂ag(p)
∂pg

∂ag(p)
∂pr

∂ar(p)
∂pg

∂ar(p)
∂pr


12The symmetric log scale transforms any x into sign(x) log10(1 + loge(10)|x|). Thus, it respects

the sign of x, it is close to x when x is small, and it is an approximate logarithmic scale when x is
large.
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is given by:

∂ag(p)
∂pg

= −1− δ

δ

(1− ε)2 + 4επr (1− δε) + 4δε2π2
r

4ε2πr(1− πr)
;

∂ag(p)
∂pr

=
1− δ

δ

(1− ε2) + 4δε2πr(1− πr)

4ε2πr(1− πr)
;

∂ar(p)
∂pg

=
1− δ

δ

(1− ε2) + 4δε2πr(1− πr)

4ε2πr(1− πr)

(
=

∂ag(p)
pr

)
;

∂ar(p)
∂pr

= −1− δ

δ

(1 + ε)2 − 4επr(1 + δε) + 4δε2π2
r

4ε2πr(1− πr)
.

Equation (32). Since the vector of price changes is given by

G ≡
[

∆pg

∆pr

]
=

[
pg − pg

pr − pr

]
,

its Moore-Penrose inverse is a 1× 2 matrix G+ = (GTG)−1GT, that is,

G+ =

[
pg−pg

(pg−pg)
2+(pr−pr)

2
pr−pr

(pg−pg)
2+(pr−pr)

2

]
=

(∆p)T

‖∆p‖2 ,

where

‖∆p‖2 = s2
gδ2 (1 + ε)2(2 + (1− ε)sg)2(1 + ε2)− 4επr(1 + ε)2(2 + sg(1− ε))(2 + sg(1− ε)ε) + 4ε2π2

r
(
sg
(
4 + sg − 2(2 + sg)ε2 + sgε4))

2(1− δ)2
(
4 + sg(4 + (1− ε2)sg)

)2 .

Then, the least-square solution ∆AG+ is:

∆AG+ =
1

‖∆p‖2

[
sg

0

] [
∆pg ∆pr

]
=

sg

‖∆p‖2

[
∆pg ∆pr

0 0

]
.
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