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Abstract

This paper derives fundamental limits to identifying asset demand from
observational data. We establish a trilemma: it is impossible to maintain that
(i) prices satisfy no arbitrage, (ii) investors value assets for their payoffs, and
(iii) asset demand curves are invariant to exogenous asset supply shocks. That
is, one cannot use supply shocks to move along an asset demand curve with-
out shifting it. The only exception is the knife-edge case in which the asset
menu consists of Arrow securities. In realistic settings, demand elasticities

thus necessarily reflect theoretical assumptions rather than the data alone.
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1 Introduction

Estimating demand functions using supply shocks is a cornerstone of empirical
economics. Can this approach be fruitfully applied to financial assets? We show
that demand estimation in asset markets is highly constrained by two fundamental
principles of asset pricing: (i) prices admit no arbitrage, and (ii) asset demand
is, at least in part, instrumental: preferences are defined over assets’ payoffs, not
asset holdings directly. Under these principles, even perfectly exogenous asset
supply shocks generically induce shifts in the very demand curve that one wants to
analyze. This prevents the non-parametric estimation of asset demand elasticities.

The basic principle of demand estimation with supply shocks is to gener-
ate as-if-random variation in a given price, holding all other relevant variables
tixed. The central problem in financial markets is that assets are bundles of state-
contingent payoffs, and that these can be flexibly recombined and unbundled through
portfolio formation. This forces the price system to satisfy the consistency require-
ment of no arbitrage: to ensure well-defined asset demand functions, each asset’s
price must correspond to the value of its underlying payoffs. Any supply-induced
change in an asset price must therefore produce consistent changes in the prices of
the underlying payoffs as well. But if no arbitrage is to hold, the prices of all assets
which pay off in at least some overlapping states of the world must also change.
This is a failure of the ceteris paribus condition.

This failure alone need not threaten identification: if the demand system is
separable across assets, correlated price changes do not contaminate the demand
response. However, portfolio choice is known to feature endogenous demand com-
plementarities: the marginal value of any asset depends on its covariance with the
rest of the investors” portfolio. Asset demand functions thus generically depend
on the prices of all assetse in the choice set, and correlated price changes shift the
very demand curve one wanted to measure.

We summarize these concerns as a trilemma: one cannot maintain that (i)
prices satisfy no arbitrage, (ii) investors have preferences over payoffs, and (iii)

supply shocks can be used to move along a demand curve without shifting it.



These challenges are a distinct feature of financial markets. In conventional
goods markets, product characteristics are determined by suppliers and cannot be
autonomously reconfigured by buyers. Hence these markets thus feature no cross-
price restrictions akin to no arbitrage — the price of a car can deviate from the cost of
its components without inducing sudden trade in car parts. This permits a stable
dichotomy between supply and demand that is untenable in financial markets.

To see our result more formally, write asset prices in terms of the state prices.
Under preferences over payoffs, they measure what investors care about: the cost
of a unit state-contingent cash flow. Let p be the | x 1 vector of asset prices, Y the
] x Z payoff matrix summarizing the state-specific payoffs of | assets, and g the

Z x 1 vector of state prices. No arbitrage implies that asset prices satisfy

p=Yq.

The ideal experiment underlying demand estimation considers an exogenous
shock to a single asset price. This experiment can be stated in terms of state prices.
To allow incomplete markets, let Y denote the Moore-Penrose pseudo-inverse.

Then g = Y p and an asset price shock affects state prices according to

That is, the ideal experiment requires a specific change to the state price vector
which is fully determined by the inverse payoff matrix.

In contrast, the state price response to a supply shock reflects the change in
marginal value of state-contingent payoffs. Since this reflects the total supply of
state-contingent payoffs, the effects of the supply shock are thus proportional to
the payoff matrix Y itself, not its inverse. Since a matrix and its inverse generically
differ, a supply shock generically fails to reproduce the ideal experiment.

What is worse, the payoff matrix and its inverse generically have elements
of the opposite sign. This means that a supply shock makes certain payoffs cheaper

when the ideal experiment requires them to become more expensive. Such direc-



tional errors naturally create large biases when estimating substitution patterns.
The only exceptions to this result are knife edge. In complete markets, the
menu would need to consist of Arrow securities, so that the payoff matrix is di-
agonal. In incomplete markets, the analogous condition is that there are no assets
with overlapping payoffs: for each state, there is at most one asset with a positive payoff.
Real-world assets are far from satisfying these restrictions. While this is
intuitively clear, we further substantiate this fact in two ways. First, we study ran-
dom payoff matrices drawn from distributions with factor structures. We find that
approximately half of the elements of the inverse payoff matrix have the wrong
sign. More disconcertingly, the chance that any given element has the wrong sign
is a coin flip. This instability makes it difficult to systematically control for poten-
tial errors. Second, we randomly draw (subsets) of payoff matrices from stocks in
the S&P 500 and find the same broad patterns. Taken together, there is little reason
to suspect that the barriers to identification we derive are immaterial in practice.
Neither no arbitrage nor payoff-based preferences are easily discarded. Pref-
erences over payoffs form the basis of portfolio choice theory. Given such prefer-
ences, no arbitrage ensures the existence of smooth demand functions that do not
jump discontinuously in response to small price changes—as is required for consis-
tent demand estimation and counterfactuals. No arbitrage is also a weak equilib-
rium requirement which is likely to hold at least approximately in observational
data: even if trading is frictional and prices temporarily admit (near) arbitrage,
such frictions generally do not eliminate cross-asset price linkages and longer run
portfolio holdings naturally depend on some common pricing kernel. Thus, the
tendency for asset prices to reflect common state prices remains even in these set-
tings. Precisely for this reason, existing asset demand estimation approaches rely
on no arbitrage to derive tractable demand systems based on a small number of
characteristics and risk factors (Koijen and Yogo, 2019).
In principle, it is possible to overcome the identification issues we docu-
ment using sufficiently many independent shocks. This echoes classic work in
demand identification in Mas-Colell (1977). To investigate the necessary data re-

quirements, we consider an idealized setting where the econometrician observes N
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independent “experiments,” each of which generates price and quantity variation.
Can we reliably identify asset-level demand elasticities from this data? While as-
set demand curves are naturally non-linear, we consider the favorable benchmark
with linear demand curves. With | assets, each investor’s portfolio choice problem
is then characterized by a | X | cross-substitution matrix. Hence one can point-
identify the entire matrix of demand parameters only if N is no smaller than ], the
dimensionality of the asset span. With fewer than | experiments, identification
collapses to projections onto the subspace of observed price changes, and demand
parameters are arbitrarily unconstrained outside the span of observed shocks.

These data requirements are stringent. In many financial markets, the num-
ber of assets available to trade is very large—potentially in the hundreds or thou-
sands. However, even if one considers only a handful of aggregate portfolios such
as bond and stock portfolios, one needs a setting with multiple shocks that pro-
duce independent variation. Since many financial markets are connected (and thus
do not provide independent variation), a natural candidate is variation over time.
Here one faces the problem that the pricing kernel (i.e., the stochastic discount fac-
tor) has a permanent component (Alvarez and Jermann, 2005; Borovicka, Hansen,
and Scheinkman, 2016). Such lack of stationarity implies that observing shocks
over time is unlikely to provide the required independent variation.

Taken together, our results show that structural models or other theoretical
restrictions are necessary to recover demand elasticities from observational data
on portfolio holdings and prices. As such, estimated demand elasticities must be
understood, at least in part, as theoretical objects determined by a priori assump-
tions, not by empirical evidence. More constructively, we show that characteriz-
ing the divergence between ideal experiment and supply shocks in terms of state
prices provides insights into sources of misspecification, and how assumptions on

preferences and portfolio construction can be used to mitigate bias.

Related literature. Our paper relates to an important literature in finance and
economics studying demand effects in financial markets. Early work in this area

includes portfolio balance models (Tobin, 1969), and the price effects of index in-



clusions in equity markets (Shleifer, 1986; Harris and Gurel, 1986). More recently,
this broad mechanism has found applications in unconventional monetary policy,
foreign exchange markets, and fund flows in bond and equity markets.

This rightly influential literature shows that constraints on capital flows can
have important effects on asset prices. However, it stops short of systematically
establishing whether and when these price effects reveal structural aspects of in-
vestor and market behavior. This is important because critical aspects of asset price
determination and policy transmission tightly depend on the price responsiveness
of financial markets. We find that non-parametric approaches generically fail to
identify asset demand elasticities because they are contaminated by cross-price ef-
fects. This means that implicit or explicit theoretical restrictions play a central role
in determining the interpretation and policy relevance of the documented effects.

One consequence of our findings is structural methods are important tools
for understanding demand effects in asset markets, much like in many other set-
tings (Berry and Haile, 2021). However, asset markets present particular chal-
lenges: preferences are instrumental, investors can autonomously reconfigure “prod-
ucts,” and choice is continuous. This means that one cannot easily turn a decision
problem with complementarities into, e.g., a discrete-choice problem over bundles.
These differences clarify our relationship to recent work in industrial organization
which estimates demand systems with complementarities (e.g., laria and Wang,
2020; Wang, 2024; Fosgerau, Monardo, and de Palma, 2024; Ershov, Laliberté, Mar-
coux, and Orr, 2024). These approaches typically study settings in which con-
sumers make discrete choices over a limited number of bundles, or where substitu-
tion patterns are governed by exogenous functional-form parameters. As such, the
source of complementarities and the methods to deal with them are distinct from
no arbitrage and portfolio spillovers. The spirit of the exercise is also different.
While these papers develop tools for estimating demand with complementarities
under exogenous price variation, we asks whether such demand can be identified
from supply shocks under stringent cross-price restrictions.

To overcome these challenges, structural models of asset demand must ac-

count for the cross-asset linkages and price spillovers inherent to portfolio choice.
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Fuchs, Fukuda, and Neuhann (2025a) show that the prominent logit approach in
Koijen and Yogo (2019) generally fails to do so and that this can lead to large bi-
ases in estimated demand elasticities. While we focus on a static setting, the same
issues would also arise in a dynamic setting where investors can trade securities
referencing different states and dates, as these would also have to be priced by a
common pricing kernel and governed by no arbitrage. This broader view helps
connect our findings to those in Binsbergen, David, and Opp (2025) and He, Kon-
dor, and Li (2025). Allen, Kastl, and Wittwer (2025) propose a structural model to
estimate asset demand without reliance on price instruments. Consistent with our
results, this approach requires a-priori restrictions and uses data on bid schedules.
Another approach is to circumvent the issue of cross-asset spillovers by es-
timating differences in demand curves across similar assets subject to symmetric
spillovers (Haddad, He, Huebner, Kondor, and Loualiche, 2025). While this re-
stores identification under specific assumptions on the endogenous substitution
matrix, it comes at the cost of identifying individual demand curves. Haddad,
He, Huebner, Kondor, and Loualiche (2025) further argue that, under their strict
assumptions, one can identify the entire substitution matrix using time-series vari-
ation and shocks to factor portfolios. As Section 7 discusses, this requires as many
independent experiments as the dimensionality of the asset span. Such rich data is
difficult to obtain when the pricing kernel has a permanent component. Hence the
limits to non-parametric identification we derive also apply to this methodology.
An important special case is an asset menu with Arrow securities. While
typical assets are not Arrow securities, one can attempt to construct them from
other assets. Unfortunately, this requires knowing the unobserved payoff matrix.
An (2025) and An and Huber (2024) pursue a related approach by constructing
portfolios orthogonalized with respect to returns and flows to specific investors.
However, orthogonal payoffs are not sufficient to ensure no overlap in the payoff
distribution. Their approach thus requires additional assumptions, including that
demand for uncorrelated portfolios is independent of each other. Consistent with

our results, this is an a-priori restriction on substitution patterns.



2 Setup

We consider a canonical model with a set I of potentially heterogeneous investors.
Eachinvestori € I must choose how much to consume at date 0 and across Z states
of the world at date 1. To acquire a desired state-contingent consumption profile,
the investor can invest in | assets. Our definition of assets is entirely generic and
covers “primitive” assets, such as stocks, and portfolios composed of other assets.

Investor i’s portfolio is a vector a' = (a;'-)]lzl
each element a; denotes the investor’s holdings of asset j. Asset j has payoff y; (z)in

state z. The probability of state z is 77, € (0,1). We denote by Y = (y;(z));. the | x

€ R/ of asset positions, where

Z matrix of cash flows. The payoff matrix is known to the investor but unobserved
by the econometrician. This is because payoffs reflect expected returns, which are
latent. Prices are observed by both the investor and the econometrician.

We treat time-zero consumption as the numeraire good (ot, equivalently, as
the outside asset) whose price is normalized to 1. Investor i is endowed with e;: >0
units of asset j and ej, > 0 units of the numeraire. Each investor also receives unob-

served non-traded endowments w), and w'(z) at date 0 and in state z, respectively.

Decision problem. Investor i has strictly increasing and strictly concave von-
Neumann Morgenstern utility function u' defined over state-contingent consump-
tion and discount factor &' € (0,1). Beyond the standard budget constraints, each
investor may face other constraints on portfolio formation. Let A’ denote the set
of feasible portfolios of investor i, and assume that A’ is a closed convex subset of

R/. The decision problem is
. . . . Z . .
sup (1—6")u'(cp) +0" Y mou'(cl) (1)
aleAl z=1

o d S ,
st cyp=¢ey— 2 pjla; —e€;) +wy and

j=1

- J . ‘
=Y yj(z)aj+ w'(z) forallz.
j=1



Solution and Demand System. We stress two properties of this decision prob-
lem. First, as the next section discusses in detail, the existence of a smooth, well-
defined solution to the portfolio problem generally requires the absence of arbi-
trage. In this sense, no arbitrage is a precondition for well-conditioned demand
analysis in asset markets. This is the first leg of the trilemma.

Second, when a solution exists, it generically consists of | asset-level de-
mand functions a;(p), each of which depends on the entire vector of asset prices
p. To see this explicitly, assume for now that an interior solution exists. Then the

asset-level demand functions are implicitly defined by the | first-order conditions

5 3 " (cl)y;(z)

. VRS _p forallj,
1—6 & wia) pi ToreR

where u"(-) indicates i’s marginal utility. The marginal value of each asset thus
depends on its contribution to total state-contingent consumption, which in turn is
jointly determined by the holdings of all assets. Altering either the price or quan-
tity of any asset thus typically changes the demand for other assets as well. At its
root, this structure obtains because investors ultimately care about state-contingent

payoffs, not asset holdings directly. This is the second leg of the trilemma.

Identification Problem and Demand Elasticities. The properties of the demand
system are jointly influenced by a number of latent variables: the payoff matrix Y,
preference parameters 1’ and ¢’ and latent non-traded endowments wj, and w'(z).
One goal of identification might therefore be to estimate each of these latent param-
eters. The literature thus far is instead mainly concerned with the identification of
demand functions themselves. In particular, asset-level demand functions can be
characterized by the price elasticity of demand, which is the partial derivative of
demand for asset j with respect to an asset price py, holding all other prices fixed,

i

k=

94;(p) Pk
Ipr a;(p)

We will be concerned with identifying this object. As indicated, the main
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difficulty is that each demand function depends on the entire vector of asset prices.
Hence identifying the demand elasticity requires exogenous variation in one asset

price while other asset prices remain fixed.

Remark 1 (Preferences over non-pecuniary characteristics) Some recent work in as-
set pricing emphasizes certain non-pecuniary motives for investing in specific assets (Starks,
2023). For example, socially responsible investors may hold a stock in part because they
believe that the company is a good steward of the environment. While such motivations
partially decouple asset valuations from cash flows, they generally do not do so entirely:

even socially responsible investors may care at least in part about financial returns.

Remark 2 (Dependence on multiple prices in special settings) The dependence of
demand functions on multiple asset prices exists even in settings that purportedly induce
asset demand functions that depend only on the asset’s own price. For example, Koijen and
Yogo (2025, Appendix A) study a model with CARA preferences, normally distributed
payoffs, a diagonal covariance matrix conditional on factors, and a risk-free asset with a
fixed interest rate normalized to zero. The first two features generate linear marginal util-
ity, and the combination with the third and fourth features yields separable asset demand
functions that depend only on the excess expected return and volatility of a given asset.
However, the independence of other prices is an illusion achieved by “normalizing” the
risk free rate to a fixed number. Yet in equilibrium, the risk-free rate is not a parameter,
it is the inverse sum of state prices and thus reflects all other asset prices. Separability of

demand functions is therefore achieved by a-priori restrictions on asset prices.

3 The Role of No Arbitrage for Demand Analysis

Demand analysis in financial markets faces two basic challenges. The first is that
demand functions must be sufficiently well-behaved. For example, demand elas-
ticities are partial derivatives of demand with respect to an asset price. Hence an
elasticity can be used to describe demand only if the underlying demand functions

are smooth functions of asset prices. The second is the large number of assets un-



der consideration. In US equities markets alone, investors can choose among many
thousands of assets, which creates a curse of dimensionality in demand estimation.

Both challenges can be addressed using the principle of no arbitrage. For ex-
ample, the influential approach in Koijen and Yogo (2019) implicitly relies on the
Ross (2004) arbitrage pricing theory to argue that asset demand can be summa-
rized by a small number of asset characteristics and risk factors, leading to a low-
dimensional representation. (We leave aside here the concern that several com-
mon characteristics, such as book-to-market ratios, are themselves endogenous to
demand.) Conversely, arbitrage opportunities can lead to discontinuous changes
in demand functions in response to arbitrarily small price changes. No arbitrage
rules out such discontinuities, thereby ensuring a well-behaved demand system.

To lend credence to these statements, we briefly recapitulate the link be-
tween demand functions and no arbitrage. Since the empirical literature often em-
phasizes constraints on portfolio formation, we account for such frictions as well.
We then establish the standard result that, under weak conditions, no arbitrage
allows for an analysis of asset prices (and thus demand) using state prices.

We begin by defining unbounded arbitrage opportunities as those that can be
exploited using arbitrarily large asset positions. Standard definitions of arbitrage
always consider unbounded arbitrage opportunities (Duffie, 2001). Our analysis

below differs only in that we also permit bounded arbitrages.

Definition 1 (No unbounded arbitrage for investor i) Investor i has an unbounded
arbitrage opportunity if, for any m > 0, there exists a portfolio a' € A’ such that either
(i) p- at <0,YY >0, and (YTai)z > m for some z or (ii) p - at < —mand YTa' > 0.

Otherwise, investor i has no unbounded arbitrage opportunity.

Proposition 1 shows that a well-defined decision problem requires the ab-
sence of unbounded arbitrage opportunities. The simple reason is that unbounded
arbitrage precludes the existence of a solution to the investor’s problem. This is a

well-known result based on textbook treatments (e.g, Duffie, 2001).!

ISince the material in this section is standard we relegate the proofs to the Online Appendix.
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Proposition 1 (Duffie (2001): No arbitrage and the investor’s problem) If there is
a solution to (1), investor i has no unbounded arbitrage opportunity. If U is continuous

and investor i has no unbounded arbitrage opportunity, then there is a solution to (1).

Asset prices and demand can then be analyzed using state prices, which
measure the marginal cost of a unit of state-contingent consumption. In partic-
ular, if the union of investors’ feasible sets covers the space of feasible portfolios
IR/, the absence of unbounded arbitrage implies the existence of state prices such

that asset prices are payoff-weighted sums of state prices.

Lemma 1 (Existence of state prices) If there exists a subset of investors Iy such that
every i € Iy does not have an unbounded arbitrage opportunity and R} = | Jjc I Al, there

exist state prices q € R%, such that asset prices are payoff-weighted sums of state prices:

p=1Yq. (2)

The same basic mechanism applies to bounded arbitrage as well, whereby
investors can only exploit mispricing up to an exogenous constraint on asset posi-
tions. In particular, it remains optimal to exploit the arbitrage to the extent possi-
ble, and this can lead to discontinuous changes in demand functions in response
to arbitrarily small price changes. As Example 2 in Appendix B.1.1 illustrates,
this remains the case even though unbounded arbitrages are ruled out by portfo-
lio constraints. Merely asserting the presence of portfolio constraints is thus not
sufficient to have a well-posed estimation problem. Since any infinitesimal price
change triggers an arbitrage for redundant assets, for the remainder we focus on

the more interesting case without redundant assets.

Assumption 1 (No redundant assets) Z > | and rank(Y) = J.

4 The Trilemma

We now turn to our main result, which is that one cannot jointly maintain that

(i) prices satisfy no arbitrage, (ii) investors have preferences over payoffs, and (iii)
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supply shocks can be used to move along a demand curve without shifting it. Since
Sections 2 and 3 already established the importance of the first two conditions,
here we focus on showing that supply shocks generically fail to produce the price
variation necessary to move along a stable demand curve.

We begin by defining the theoretical ideal of an experiment which allows
the econometrician to identify the slope of an asset-level demand curve. We then
compare this ideal experiment to the price variation by an exogenous supply shock,

and show that the two are generally misaligned.

4.1 Ideal experiment

As shown in Section 2, canonical portfolio choice exhibits demand complementar-
ities whereby the demand curve for any asset depends on the entire vector of asset
prices. Measuring an asset-level demand elasticity thus requires an ideal experi-
ment in which the investor faces ceteris paribus variation in a single asset price.

It is useful to describe the ideal experiment in terms of state prices, as these
ultimately determine optimal consumption plans through the cost of consumption.
The investor observes asset prices p and payoff matrix Y. Equation (2) allows the

investor to infer the vector of state prices implied by prevailing asset prices:
g=Y"p, 3)

where YT is the Moore-Penrose pseudo-inverse of Y. If Y is square, as when mar-
kets are complete, then YT = Y1 and there is a unique vector of state prices. If
markets are incomplete (] < Z), then there are many feasible state price vectors.
We focus on the minimum norm solution with pseudo-inverse Y™ = YT(YYT) 1.
The ideal experiment consists of a pure price shock to a single asset. Equa-
tion (3) shows that, under no arbitrage, such a shock asset j implies a specific

change to state prices which is fully determined by the inverse payoff matrix.

Lemma 2 (State price changes in the ideal experiment) Let v; denote the unit vec-

tor in R) with 1 in the j-th position and zeros elsewhere. Then the changes in state prices
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given the exogenous variation in a single price p; are

. aq
Aql-de"j‘1 =_L =YY"y,
j p; j
Proof. The assertion follows immediately from equation (3). m

Identifying asset demand thus requires shocks which generate the state

ideal

price variation Aqj associated with the ideal experiment.

4.2 Measurement using supply shocks

In practice, one rarely observes direct shocks to prices themselves. Instead, one
may observe shocks to an economic environment that trigger equilibrium price
changes. As such, empirical approaches to estimating asset demand elasticities
typically rely on suitably exogenous variation in the (residual) asset supply curve
faced by a given investor. We will argue that this approach generally fails to gen-
erate the appropriate identifying variation in the context of asset markets.

To do so, we must describe how supply shocks affect state prices in a general
class of models. Given the standard assumption of risk-averse preferences with
decreasing marginal utility, we study settings in which a positive supply shock to
asset j must reduce state prices in all states where asset j has a strictly positive pay-

off. We say that these settings exhibit downward-sloping consumption demand.

Definition 2 (Downward-sloping consumption demand) Let E = (Ej)]]-:1 € IREr i
denote the vector of aggregate asset endowments. An economy has downward-sloping con-
sumption demand if there exists a Z x Z matrix V with strictly positive diagonal elements
such that
supply __ aq . T .
Aqg; = B_E] = —Vy; for all assets j,
where y].T is the transpose of the j-th row y; = (y;(z))%_, of Y.

In this definition, V captures the marginal change in the market-wide pricing ker-

nel, which is taken as given by each individual investors. That V has strictly pos-
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itive diagonal elements then captures our assumption that increases in the supply
of state-contingent payoffs reduce the marginal price of these payoffs.

Definition 2 imposes no assumptions on V’s off-diagonal entries. In eco-
nomic terms, these entries capture potential direct preference-based spillovers across
state prices in response to a supply shocks. Whether such spillovers exists depends
on the economic model. The canonical model with additive separable utility over
consumption in different states of the world (as in Section 2) has zero off-diagonal
elements. Example 1 illustrates this with a representative investor. Non-separable
models such as recursive utility (Epstein and Zin, 1989; Kreps and Porteus, 1978)
or general aggregators instead generally imply non-zero off-diagonal elements.

As we have argued, the central identification challenge for demand estima-
tion in asset markets is the threat of cross-asset spillovers. Therefore, the identi-
fication challenge is generically weaker when there are no direct, preference-based
spillovers in state prices. To provide favorable conditions for identification, we

thus assume that no such spillovers exist. This is Assumption 2.

Assumption 2 (No Direct Spillovers Across State Prices) The marginal pricing ker-

nel V is a diagonal matrix. Hence there are no direct state price spillovers.

The only case in which non-diagonal V' might help to identify demand is
the knife-edge case where the preference-based spillovers in V just so happen to
exactly offset the cross-asset restrictions implied by no arbitrage. However, V is
determined by preferences and the aggregate supply of state-contingent payoffs
while the no-arbitrage relation depends only on the payoff matrix Y. Hence there

is no economic reason for such an offset to occur.?

Example 1 (V in an additive separable representative-agent model) In a standard

representative-agent model with additive separable preferences over consumption, state

2Indeed, Section 5 uses random matrix theory to show that the sign of each element of Y7 is
close to a coin flip, with odds that depend only on the payoff matrix. Hence small perturbations to
the payoff matrix can flip the sign of an element in Y without much altering V.
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prices relate to marginal utility over aggregate consumption,

9z ¢ u’(Cy)
0E; 1-9¢

where Co and C, are aggregate consumption at date 0 and in state z. Thus the marginal
price kernel is a strictly positive diagonal matrix,
M”(Cl) M/I(CZ) M/I(CZ)>

V——Ldia T ——= T 7T
— 1_5 g 1u,(co)/-.-, Zu,(CO),-.., ZM/(CO)

4.3 Supply Shocks Do Not Generate the Ideal Experiment

We now show that supply shocks generically fail to produce the ideal experiment.

We study two definitions of alignment between supply shocks and the ideal
experiment. The first is that the supply shock generates exactly the required vari-
ation in state prices, up to a scalar multiple to adjust the magnitude of the shock.
This condition is necessary to ensure that supply shocks permit exact identification

of demand functions for financial assets.

Condition 1 (Identical variation) A supply shock to asset j generates the ideal state
price variation for asset j if there exists some scalar k; such that

A q}_deal — k] Aq;upply.

This condition holds for all assets if and only if
Yt = —VY'K, whereK = diag(ky,... k).

Even if Condition 1 fails, a supply shock may still provide useful variation
if it does not depart too much from the ideal experiment. Hence we also consider
a much weaker condition, namely the state price variation generated by a supply

shock has the same sign as the state price changes in the ideal experiment.

Condition 2 (Variation of the same sign) The supply shock generates state price vari-

upply

ation of the same sign if Aq}deal has the same sign as qus. element by element. Given
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that Y has only weakly positive entries, this condition holds for all assets if Y has only

weakly positive entries.

This condition is important because it ensures that the supply shock cor-
rectly induces the same directional pattern in state prices. If it fails, there are state-
contingent payoffs which should become more expensive in the ideal experiment
but actually become cheaper upon a supply shock. Such errors can naturally lead
to large biases when estimating substitution.

We can then state our main result, which states that Conditions 1 and 2
are satisfied only under highly restrictive, non-generic conditions on the payoff
matrix. In particular, for every state of the world there must exist a unique asset
which offers a positive payoff in the world. Strikingly, both conditions require the
same stringent restrictions. That is, as long as one wants to be sure to satisfy the
minimal requirement that the induced state price variation is of the same sign as

in the ideal experiment, then there must be no assets with overlapping payoffs.

Definition 3 (Overlapping payoffs) Assets j and j' have overlapping payoffs if there
exists at least one state of the world z such that y;(z) > 0and y;(z) > 0.

Theorem 1 (Trilemma) If Conditions 1 or 2 are satisfied, then YYT is diagonal, and:
(i) If YY1 is diagonal, then there are no assets with overlapping payoffs.

(ii) If markets are complete, then YYT is diagonal if and only if Y is diagonal up to

permutations.

Theorem 1 shows that there must be misalignment in magnitude and sign
between the supply shock and the ideal experiment for at least one asset (i.e., one
row of the payoff matrix). The next proposition strengthens this result by showing

that such errors are guaranteed to occur for every asset.

Proposition 2 If each column of Y has at least two strictly positive elements, then each
column of the Moore-Penrose inverse Y contains at least one negative element: for each

j€A{1,..., ]}, thereexists at least one z € {1,...,Z} such that (Y™),; < 0.
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These conditions in Theorem 1 are unrealistic for almost all standard finan-
cial assets, as they require that there are no states of the world in which any given
asset has positive payoffs while another asset also has positive payoffs. This is
plainly violated for generic payoff distributions. It is therefore striking that, out-
side of these knife-edge restrictions, supply shocks do not even guarantee direc-
tional alignment with the ideal experiment. In the next section, we further docu-

ment that directional errors are a pervasive problem for realistic payoff processes.

5 How Severe are these Problems?

The previous section established the generic misalignment between supply shocks
and the ideal experiment without imposing any structure on the payoff matrix.
We now characterize the severity of this misalignment for realistic pay-
off processes in two steps. First, we analyze the asymptotic properties of factor-
structured payoff processes. We find that approximately half of all entries in the
inverse payoff matrix have the wrong sign, and that chance that any given indi-
vidual entry is of the wrong sign is a coin flip. That is, small perturbations to
the payoff matrix can alter the sign of the state price changes induced by a supply
shock. Second, we conduct a simple empirical exercise using payoff data from S&P

500 stocks and show that it closely aligns with the theoretical findings.

5.1 Factor-structured Payoff Processes

We begin by studying theoretical properties of factor-structured payoff processes.
As we will see, the presence of a factor structure is not chosen to create sign re-
versals, and may actually serve to reduce their prevalence. Even so, we find that,
in the limit of many states and many assets, the share of sign reversals is well-
approximated by one half. Simulations show that this remains a good approxima-
tion under a wide range of parameter configurations even when Z and | are not

large. Hence sign reversals are a severe problem for realistic payoff processes.
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Problem Statement. Because true payoffs are latent, we study random draws of
Y generated from a factor structure. This allows us to characterize, in probability,
the expected sign structure of its pseudo-inverse. Specifically, let payoff matrix
Y € R/*Z with | < Z be defined by the following single factor structure, where

Y. represents the payoff of asset j in state z:

iz =0+ Bife+ € = aj+ Bif +Bi(f- — f) +¢jz where f=E[f].
=7;

The Appendix shows that the analysis can be extended to multi-factor processes.

We assume that the following conditions hold:

(A1) (aj, Bj); are i.i.d., independent of (f;). and (¢;.);., with finite second mo-

ments.

(A2) (fz— 7) » areii.d., withbounded, continuous, and symmetric densities around

0, with 02 = V|[f;] < co.

(A3) The idiosyncratic errors (g;); are i.i.d. across (j,z), with bounded, contin-
uous, and symmetric densities around 0, with ¢ = Ve jz) > 0. Also, factors

and errors are mutually independent.

While we are interested in non-negative payoff matrices, Yjz > 0, we do not
explicitly impose extra assumptions on (a;, B;)i>1, (fz — f)z, and (¢j2)j to force
Yjz 2 0. This is because Theorem 2 does not depend on this condition, and because
truncating distributions to satisfy this restriction does not alter our result.

Let Y* denote the Moore-Penrose pseudo-inverse of Y.> Given that Y is

random, we characterize the fraction of positive entries in Y for given (], Z),

1 J. Z
E—ZZZ (Y"),;>0). (4)

3The rank of Y is ] almost surely as long as the noise terms (e j,z) are drawn from a continuous
distribution (which we assume). This is because the set of ] x Z matrices with rank(Y) < J(< Z)
is of measure zero. Thus, Y* = YT(YYT)~! almost surely.
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If Y is weakly positive, p(]) measures the fraction of state-price changes whose
direction is correct under the ideal experiment. Hence it is a useful measure of the
degree of alignment between supply shocks and ideal experiment.

The properties of small random matrices are difficult to characterize with
any generality. Hence we study asymptotic properties of the share of positive en-

tries as the number of states becomes large: p(J) = plim p(J, Z). This aligns with
Z—0
empirical practice which often considers continuous payoff distributions. The exis-

tence of p(]) is guaranteed by the law of large numbers. We then study its behavior
as the number of assets grows large: | — co. Later, we use simulations to show

that our main results remain robust even away from these limits.

Result. We can then establish our main result in this section: the share of sign
mismatches is well-approximated by one half. That is, for realistic payoff processes,

directional errors are the norm, not an outlier.

Theorem 2 Under Assumptions (A1)-(A3), there exists a constant Cy such that, for al-
most every realization of (aj, Bj);, for sufficiently large ],

P =5+ +0 (172,

Consequently,

) 1
plim p(J) = 5.

J—o0

Sketch of Proof. We sketch the main arqument. The full proof is in the Appendix.
Theorem 2 states that the deviation of p(]) from § vanishes at a rate of O(]J 1), which
we show depends on the factor loadings («, B) and signal-to-noise ratio. The proof hinges
on decoupling the asymptotic limits Z — oo and | — oo. By letting the number of
observations Z tend to infinity, the sample Gram matrix >YYT converges almost surely
to the population second moment matrix ¥. (which is invertible). Thus, the pseudo-inverse
behaves as Y+ ~ ZYTE™Y, when Z is sufficiently large. Consequently, the sign of (Y1) 2]
is determined by the sign of (£~ 'y,);, where y, = (y;); is the z-th column of Y.
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The core of the arqument is the decomposition of the sign-determining variable
(X 1y,); into two components: (i) a small deterministic mean shift y = (p;); and (i) a
dominating symmetric stochastic fluctuation (W ;);. Letting v = (;);, B = (B;)j, and

ez = (gj2)j, the column vector y can be expressed as:

y:=7+(fz = f)B+ez

Operating ¥~ from the left, we can write, for each j, as:

E7ly:)i= (@) + (- HETP)+(E ) ®)
—— —~— /2
1 (deterministic) W, ; (stochastic)

Since the fluctuation (W, ), ; is symmetric around zero, the probability of a positive sign
is exactly % if the mean shift y is zero. The difficulty in the proof is to show that even when
u > 0 the distortion it creates is small and decreasing in |.

The asymptotic constant Cy can be computed explicitly as:
Ci1 = fw(0) - Oy,

where (i) fy is the probability density function for the stochastic fluctuation (W, ;), ; and
(ii) a constant O is the sum of (u;); = >~ Ly (both of which are computed when | — oo,

to obtain tractable expressions):*

E[y| E[*] — E[] E[14]

E[/2|E[f7] - B ]2 ©)

J
(Z71); =
j=1

o=
This shows that for given (but large) | the adjustment factor Cy is proportional on the
density around O since the higher the density the more distortion will be introduced from
u > 0. Since the probability of u < 0 is % (given the symmetry of fw), the probability
p(]) is approximated by % + % when | is fixed but large. m

Perhaps more disconcertingly, the proof shows that the sign of each element

“Note that Assumption (A3) implies that (X ~1y,) j has a continuous density at zero, since it is the
sum of the deterministic term y; and the stochastic term W, j, where W, ; has a continuous density
(being a linear combination of continuous random variables).
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of the inverse payoff matrix is also a coin flip. In particular, each entry of Y
behaves asymptotically like a scaled draw from the symmetric random variable
(Z1y,) j» whose distribution is centered and continuous. Thus, the positive and
negative tails of (£ 1y;) j are mirror images and of equal magnitudes. This severe
lack of stability makes it difficult to appropriately control for directional errors.
Note also that the specific distributions chosen for «, 8, f, and ¢ only affect
the magnitude of the constant C;, not the fundamental asymptotic behavior. Simi-
larly, in a setting with K factors, as long as properly extended versions of (A1)-(A3)

hold, all that changes is that there will be a more complex constant Ck.

Calibration and Numerical Exploration To illustrate the O(J~!) convergence
rate and estimate the proportionality constant C;, we performed Monte Carlo sim-

ulations using parameters that generate a share of idiosyncratic risk roughly con-

sistent with the empirical data. Concretely, we assume:”

1
2 : _
OC]' ~ Z/{[lO,ZO], fZ ~ N(l,(Tf) with Uf = E,
.~ UJ0.5,1.5], g, ~N(0,0%) with oo =1.
] 1r e

T

Van
tion (6) we have ®1 = 0.045. Thus, C; ~ 0.01795. Hence even if our choice of o

6

As shown in Lemma 4, under Gaussian (fz, ¢;.), fw(0) = From Equa-
were off by an order of magnitude, the result would be practically the same.

Figure 1, shows that the theoretical prediction for Z — oo and large | can
perform remarkably well even for moderate values of Z and small J.” Almost, half

the elements of Y have the wrong sign.

>The high values of a;(~ ¢[10,20]) effectively guarantee that all entries of Y are positive. Note,
however, that our theoretical results do not require that. Also, truncation of the normal distribu-
tions for f and ¢ (to force Y to be always non-negative) do not qualitatively alter our results.

®Details and an interactive version of the code are available online.

"We took Z = 1000 as we vary the number of assets | € {5,10,...,500}. For the empirical
frequency p(], Z), we took the average of 1000 runs (of the Monte Carlo simulations). While almost
invisible, Figure 1 also depicts the 95% confidence interval. .
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Figure 1: The Monte Carlo Simulation for the Sign Frequency of Y. The figure depicts
the empirical frequency of positive entries p(J, Z) (defined by (4)) and the theoretical ap-
proximation % + % when Z = 1000 for various J.

5.2 Empirical Validation

To further gauge the empirical relevance of our arguments, we conduct a simple
excercise using stocks in the S&P 500. This exercise is not intended to be exhaus-
tive, but rather a simple consistency check between our theory and the data.

Since the true payoff matrix is latent, we construct (subsets) of it by sam-
pling realized payoffs. The sample consists of 428 stocks that remained in the
S&P 500 from 2020 to 2024. The payoff for each stock is computed as the end-of-
quarter price plus the sum of dividends paid during that quarter. We construct
a 20 x 20 payoff matrix Y by randomly selecting 20 stocks (J). The columns (Z)
correspond to the 20 quarterly payoff observations from 2020Q1 to 2024Q4. This
yields a 20 x 20 payoff matrix with weakly positive entries. We then invert this
payoff matrix and compute the share of negative entries in Y as well as the rel-
ative magnitude of the negative and positive entries (in terms of the median and
the maximum). We then repeat this exercise ten times with replacement.

Table 1 shows that our theoretical predictions hold remarkably well: the
share of positive entries of Y is approximately one half, and the negative entries
are of equal magnitude. This again shows that the barriers to identification we

document are generic and pervasive.
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Metric (averaged over 10 iterations) Value

Percentage of positive entries in Y 50.58%
Ratio: (abs negative-entry median) / (positive-entry median)  1.030
Ratio: (absolute negative minimum) / (positive maximum) 1.078

Table 1: Results of our empirical exercise averaged over 10 iterations.

6 Illustration in a General Equilibrium Model

The previous sections have established the generic and pervasive mismatch be-
tween the ideal experiment and supply shocks. We now illustrate the implications
of this mismatch for errors in asset-level demand elasticity estimates. Since this
requires a fully specified model, we study a simple example economy with a log-

utility representative investor based on Fuchs, Fukuda, and Neuhann (2025a).8

Setup. Markets are complete. There are two assets and two states of the world,
both denoted by ¢ (green) and r (red). The probability of state z € {g,r} is 7, €
(0,1). The payoff profile of asset j € {g,r} is y; = (y;(g),y;(r)). The aggregate
endowments are given by (eg, e, ;) = (1,14 sg, 1), where s, is a supply shock to
the green asset. Table 2 depicts the payoff matrix.

Parameter € € (0,1) determines the degree of complementarity between
green and red assets. In the limit e — 0, green and red assets are perfect substitutes
with respect to their cash flows. The assets become more complementary as €
increases. In the limit € — 1, the green and red assets are Arrow securities paying

exactly one unit in one state of the world.

State ¢ (77¢) | State r (71r)
Assetg | 3(1+e) 1(1—¢)
Assetr | 5(1—¢) s(1+e)

Table 2: Payoff matrix.

8Log utility is convenient to obtain simpler expressions but not key to any of the results.
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State Prices and Demand. Since markets are complete, we can solve the deci-
sion problem in terms of state-contingent consumption. Let c; denote quantities
of Arrow securities and g, the associated state prices. The standard necessary and

sufficient optimality condition for Arrow security z € {g,r} is

()

Given the budget constraint, this condition determines optimal consumption as
a function of Arrow prices. Let W = (24 ¢,(2+4 (1 —€)sg) +q¢(2+ (14 €)sy))
denote the investor’s total wealth. Under log utility, optimal consumption is

1-6 OTtg _ 0Ty

Co=—F7—"W, Cg=-—W, ¢ W
2q
8

=25,

These optimal policies then uniquely determine the optimal asset positions.

Ideal experiment. Consider the ideal experiment where s, = 0 and the investor
faces an exogenous increase in the price of the green asset p, while p, remains

tixed. Consistently with Lemma 2, the induced change in state prices is

Aqideal _ i [‘13’] _ l I+e

_(1—e) (8)

A pure shock to pe thus raises the cost of consumption in state g, but lowers it in
state r. This decrease in g, is necessary to keep p, unchanged. Estimating the
demand elasticity associated with this experiment requires a shock that triggers

precisely this state price variation.

Supply shock. We now solve for the equilibrium prices after a supply shock and
show that they do align with the ideal experiment. Market clearing requires con-

sumption to equal available resources in every state:

¢z = Yg(z) (1 +sg) + yr(2).
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Hence equilibrium state prices as a function of supply shock s, are:

o =TT 0 ! and =T d !
e LS 1+ 13%sg

©)

In contrast to the ideal experiment, a negative supply shock to the green asset in-
creases both state prices whenever € < 1. The reason is that the green asset pays off
in both states of the world, so that the supply shock increases state-contingent con-
sumption in both states. As such, the supply shock generates a state price change
Agy that is of the wrong sign compared to the ideal experiment. The only exception
is when both assets are Arrow securities (¢ = 1). This is the only case when the
supply shock does not generate cross-asset spillovers. In particular, when € < 1,
even a clean shock to one asset will trigger concurrent changes in the price of the
other asset. Next, we show that this leads to a bias in asset-level demand elasticity

that is greater when the assets are more substitutable (i.e., when € is small).

Asset demand and implications for elasticity estimates. As we detail in Ap-

pendix B.4, the demand function for the green asset is

(1+ pg(1+sg) +pr) (1 —€?)pg — ((1+€)* — 4ep)py)
(pg — pr)? — (pg + pr)?e? .

ag(pg, pr) =0 (10)
In the ideal experiment, s, = 0 and we observe a pure price shock to ps.

This gives us the standard own price elasticity formula:
gideal — _ 9ag(pg, pr) pg
£ opg Ay

When the price change is instead due to an infinitesimal supply shock, the
resulting “elasticity” measure Egupply has an additional term which accounts for

the effect of sy on p;:

dag dpr
gsupply — _ dsg Ps (. dag _ 9ag ds; \ Pg
8 — dpg g, 0 ov, s/ a,’
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Substituting for the equilibrium prices, these two measures are equal to:

1—¢€)? +4em, (1 — be) + 46e* 1%
871, (1 — 71, )€? ’

2—-5(1+(1—2m)e)

(1+¢€)?—4der,

Eédeal =1+ (1-2m)e) (

EPPY — (14 (1-2m,)e)
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Figure 2: Ideal vs. supply-shock elasticities as a function of € for 6 = 2/3 and 77, = 1y =
1/2. The ideal elasticity (solid line) diverges as € — 0, while the supply-shock elasticity
(dashed line) remains bounded. Both elasticities converge to 1 — d7tg = 2/3 at the Arrow
security limit e = 1.

We plot both measures in Figure 2. The two differ by order of magnitude for
small €. In this range, the two assets are close substitutes. In the ideal experiment
without price spillovers, this leads to very high demand elasticities with respect to
a pure price shock. In the case of a supply shock, however, this very substitutability
creates strong price spillovers that deter quantity changes on the equilibrium path.
Hence, £l diverges to infinity as e — 0 while S;uPply remains small. In contrast,
when € — 1 and the assets approach Arrow securities the measures converge.
Thus, using supply shocks to estimate elasticities without properly accounting for
the spillover effects leads to systemic underestimation of the true elasticity. The
bias can be particularly significant in the presence of close substitutes. This can

rationalize the findings of low “elasticities” in the literature.
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There is no a priori reason to expect standard assets to correspond to the
case of high €. For example, our analysis in Section 5 suggests that positive and
negative entries in the inverse payoff matrix are of roughly equal magnitude. In

the context of our simple model here, this would indicate that € is relatively small.

7 Addressing the Trilemma

Our results thus far establish a fundamental disconnect between the state price
variation in the ideal experiment and the state price variation generated by asset-
level supply shocks. We now evaluate whether and how researchers might poten-

tially overcome these challenges using richer data or structural assumptions.

7.1 Multiple independent experiments

We begin by analyzing whether asset-level demand functions can be identified in
an idealized setting where the researcher has access to multiple, independent quasi-
experimental shocks to asset prices. To stack the deck in favor of identification, we
assume that demand functions are approximately linear, so that demand functions
can be described using a | x | substitution matrix. However, we caution that this
is a very strong restriction when close substitutes are available.

A first-order approximation of investor i’s demand system around p yields
a; =a; + Si(p —p) + &,

where a; € IR/ is the vector of portfolio holdings, p € R/ is the price vector, and ¢; is
the vector of residual demand shocks. The asset-level substitution matrix S; € R/>*J

is the object of interest. Row k of matrix S; collects the loadings of the demand for
aa,-,k Bai/k
apl 7y ap]

da;/dp;. Under the assumption of linear demand, this derivative determines how

asset k on all prices, (S;); = ( ), while column j captures the derivative

the vector of asset quantities responds to changes in price p;.
Suppose that the researcher has access to N distinct “experiments” indexed

by n. Each experiment consists of a purely exogenous shock to the supply of a
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given asset (or combination of assets) which creates exogenous price changes. This
generates a matrix of observable price changes G and that of quantity changes AA;

for each investor, defined as:

[apD),...,apN ] € RN,
(A, 8N ] e RIFN,

1

G
AA;

Stacking the data from all N quasi-experiments yields the matrix equation
AA; = 5;G + U (11)

relating the observed quantity changes to the observed price changes and matrix
of residual demand shocks U; € R/*N. Our assumptions imply that E[U; | G] = 0.

We begin by establishing a positive identification result. In the theoretical
ideal where the number of independent experiments equals the dimensionality of

the asset span, ordinary least squares identifies the investors’ substitution matrix.

Proposition 3 (Complete identification with | experiments) Let the number of in-
dependent experiments equal the dimensionality of the asset span, so that the matrix of
observed price changes is full row rank, rank(G) = J. Let G (= G~1) denote the Moore-

Penrose pseudo-inverse of G. Then the unique ordinary least-squares estimator of S; is
S;i = AA;GT(GGT)™! = AA;GT, (12)

where S; is an unbiased and consistent estimator of S;. When U; =0, S, =8,

Proposition 3 provides a constructive benchmark: with as many indepen-
dent shocks as the dimensionality of the asset span, demand functions are point-
identified under the (strong) assumption of linear demand. We refer to this re-
sult as complete identification because every element of S; is point-identified. This
provides one constructive method for asset demand estimation, which is to find
settings with sufficiently many shocks relative to the number of assets.

However, these data requirements are stringent. In many applications, re-

searchers observe far fewer than | independent experiments. For example, Koi-
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jen and Yogo (2019) rely on a single cross-section of prices and quantities, which
corresponds to a single independent experiment. Increasing the number of ex-
periment requires the existence of strongly segmented markets subject to market-
specific shocks, or time series variation under stationarity. But most financial mar-
kets are not strictly segmented, and the market-wide pricing kernel typically con-
tains a permanent component (Alvarez and Jermann, 2005; Borovicka, Hansen,
and Scheinkman, 2016). This lack of stationarity limits the scope of the time-series
methods proposed in, e.g., Haddad, He, Huebner, Kondor, and Loualiche (2025).
Another alternative is to combine structural models with data on bid schedules, not
just equilibrium holdings and prices (Allen, Kastl, and Wittwer, 2025).

Given these limitations, we must assess the identification of substitution
matrix S; in the empirically relevant case where N < J. The next result shows that
the substitution matrix is not point-identified if N < ], and indeed that demand

parameters are arbitrarily unconstrained beyond the span of observed shocks.

Proposition 4 (Incomplete identification with N < | experiments) Let P = GG™
be the orthogonal projector onto col(G), the column space of the matrix of observed price
changes G, where GT = (GTG)~'G". Then the general solution to the least-squares
problem is

Si = AA,G" + B;(I; — Pg),

where B; € RI*) is an arbitrary matrix that is entirely unrestricted by the data and Ij is

the identity matrix.

That is, any component of S; in the null space of G is not point-identified
and cannot be bounded without ex-ante theoretical restrictions which cannot be

rejected by the data. What is identified is the projection of S; onto observed shocks,
S:P; = AA;GTP; = AA,GT.

Our results show this projection does not identify the structural slope of any asset-

level demand function because it is contaminated by correlated price changes.
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Remark 3 (Relation to Collinearity and Weak Instruments) When asset prices sat-
isfy p = Yq, equilibrium price movements are confined to the low-dimensional space
spanned by the state prices q. As a result, the matrix of observed price changes G is
typically of rank deficient, implying that instruments constructed from asset-level sup-
ply shocks are highly collinear. In instrumental-variable terms, the first-stage regression
of individual prices on such instruments is likely weak once other prices are controlled for:
the conditional F-statistic is small even if unconditional correlations are large. However,
the absence of weak instruments—that is, a strong first stage—is not sufficient for credible
identification. Even when instruments generate large first-stage variation, they may still
induce the wrong direction of price movements relative to the ideal experiment that isolates
an own-price effect. In the terminology of Proposition 4, such instruments span an incor-
rect subspace of the price space, identifying only projections of demand elasticities rather
than structural slopes. Hence, strong instruments ensure relevance but not alignment:

they are necessary, but not sufficient, for consistent identification of asset-level demand.

7.2 Portfolio Aggregation and Alternative Estimands

Which objects of interest can be identified when the identification of asset-level
demand curves is infeasible?

One approach is to estimate elasticities over portfolios rather than individ-
ual assets. While our formal results apply equally to any asset or portfolio, there
are some potential benefits and costs of such aggregation. The main benefit is
a reduction in the dimensionality of the choice set. Following Section 7.1, this
means that one needs fewer independent shocks to identify a given substitution
matrix. A disadvantage is that aggregation into large portfolios (e.g., stocks and
bonds) may make it more difficult to find supply shocks that are suitably exoge-
nous to demand. Moreover, if shocks occur at the asset level, one must construct
a portfolio-level shock by combining different asset-level shocks. The appropriate
weighting depends on payoffs, and thus requires knowledge of the latent payoff
matrix. For example, Binsbergen, David, and Opp (2025) use a structural model to

reverse-engineer the set of shocks needed to generate a particular price change.
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Beyond simple aggregation, one might combine assets into portfolios which
resemble Arrow securities. As before, the main challenge is that this requires
knowledge of the latent payoff matrix. An (2025) and An and Huber (2024) pur-
sue a related approach by constructing portfolios orthogonalized with respect to
returns and flows to specific investors. However, orthogonal payoffs are not suffi-
cient to ensure no overlap in the payoff distribution. Their approach thus requires
additional assumptions to eliminate spillovers, such as asserting that uncorrelated
portfolios exhibit no spillovers and that the risk-free rate is exogenously fixed.
Consistent with our results, this is an a-priori restriction on substitution patterns.

Lastly, one may be content to identify objects other than the asset-level de-
mand elasticity. For example, Haddad, He, Huebner, Kondor, and Loualiche (2025)
propose a specific conditional homogeneity restrictions on the (endogenous) sub-
stitution matrix. Under this assumption, they show that asset supply shocks can
identify a “relative elasticity”—the difference between an asset’s own- and cross-
price elasticities relative to similar assets—but not the absolute elasticity. This cir-
cumvents the problem of cross-asset spillovers by estimating a different economic
object. Nevertheless, identification is contingent on a-priori assumptions on unob-

servables, and small misspecification can lead to large biases.”

7.3 Structural Assumptions

Our results show that supply shocks generically fail to produce the price variation
required to non-parametrically estimate asset demand functions. This suggests an
important role for structural models in asset demand estimation. These models
must be designed to account for the cross-asset interactions which underlie asset
pricing and portfolio choice. For example, Fuchs, Fukuda, and Neuhann (2025a)
shows that misspecification of substitution patterns can lead to large and system-
atic biases in the logit asset demand model proposed by Koijen and Yogo (2019).

Moreover, because (arbitrarily) many theoretical models may be consistent with

9See Fuchs, Fukuda, and Neuhann (2025b) for a discussion on robustness to small deviations
when assets are highly substitutable.
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the observed data, these models must be judged on ex-ante theoretical considera-

tions and plausibility, not on their empirical fit.

8 Conclusion

We provide a general analysis of the scope for demand estimation in asset markets.
Our main conclusion is that asset demand analysis is sharply constrained by two
foundational principles of asset pricing: investors ultimately care about asset pay-
offs; and asset prices should admit no arbitrage. These results are independent of
specific assumptions on preferences, payoffs, and the economic environment. Our
results highlight the importance of structural modeling in asset demand analysis,
but also caution that such models must be carefully designed to account for the

cross-asset interactions which lie at the heart of asset demand.
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A  Appendix

A.1 Section 4.3

Proof of Theorem 1. First, we show that Condition 1 implies that YYTis diagonal.
Suppose YT = —VYTK for some diagonal matrix K = diag(ky, ..., kj). Operating
Y on both sides from the left,

I = -YVY'K.

If kj = 0 for some j, then the j-th column of K is the zero vector, and so is the j-th
column of the right-hand side, which is impossible. Thus, k]- # 0 for all j. Then,

YVYT is a diagonal matrix:

2 yj(2)oyp () £0 ifj =
Y2 yi(@)oayy(z) =0 ifj £

Since y;(z),yy(z) > 0,and v; > 0, it follows that

T2y () A0 ifj =
T2 (2 (2) =0 ifj £ ]

Hence, YYT is diagonal.

Second, we show that, more generally, Condition 2 implies that YYT is di-
agonal. By Condition 2, the Moore-Penrose pseudo-inverse Y* = YT(YYT)~"1is
non-negative. By Plemmons and Cline (1972, Theorem 1), the pseudo-inverse Y+
is non-negative if and only if there exists a diagonal matrix with positive elements
D = diag(dy,...,dz) such that

Yt =DYT. (13)

Then, operating Y from the left,

I, = YDYT.
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Then, extracting the (j, k) element (with j # k) from each of both sides,

0= Zy] d2y(z

Since yj(z) > 0,d; > 0,and yx(z) > Oforall z € {1,...,Z}, it follows that

yi(z)yx(z) =0forallz € {1,...,Z}.

This implies that the (j, k) element (with j # k) of YYT is 0:

Z
0=Y yj(z)y(2). (14)
z=1

Thus, YYT is a diagonal matrix.

Third, we show that, given that YYT is diagonal, there are no assets with
overlapping payoffs. Since YYT is invertible, it is a diagonal matrix with positive
elements. Equation (14) implies that, for any z € {1,...,Z}, there exists at most
onej € {1,...,]} such that y;(z) > 0.

Fourth, we show that if markets are complete then YY' is diagonal if and
only if Y has exactly one non-zero element in each row and in each column (so that
Y is a diagonal matrix up a re-ordering of rows or columns). If YY7 is diagonal,

then its (j, k) element is:

T2 yj(2)yj(z) >0 ifj=k
Y2 yi(2)yk(z) =0 ifj £k

Hence, for each row j, there exists exactly one element z such that y;(z) > 0. Thus,
Y has ] non-zero elements. Since Y is square and invertible, for each column z,
there exists exactly one element j such that y;(z) > 0.
Conversely, if Y has exactly one non-zero element in each row and in each
column, then
{zz 1i(yj(z) > 0 ifj =k
Ly =0 ifj #k

36



Thus, YYT is diagonal. m

Remark 4 (Proof of Theorem 1) Two remarks on the proof of Theorem 1 are in order.
First, if YY" is diagonal, then since YY" is invertible under Assumption 1, (YYT)~1is
a diagonal matrix with positive entries. Since Y is non-negative, so is Y. Then, YT =
YT(YYT) "1 is non-negative.

Second, when each column of Y is not a zero vectot, i.e., foreachz € {1,...,7Z},
there exists at least one j € {1,...,]} such that Y;, = y;(z) > 0, it can be shown that

the diagonal matrix D in expression (13) is unique.

Proof of Proposition 2. Let y; denote the j-th row of Y. Let ;" denote the k-th

column of Y. It follows from YY* = I; that:

Z

Y. yk(z)Y;,rk =1 forall ke {1,...,]}; (15)
z=1

Z

Y y()Y =0 if jAk (16)
z=1

Suppose to the contrary that there exists a column k in Y such that y;7 > 0
element-by-element.

Consider the orthogonality condition (16) for some j # k. Since Y is non-
negative, y; > 0. We assumed y; = (Y_}): > 0. Thus, if y;(z) > 0 then Y| = 0.
This must hold for all j # k. Therefore, y;” must be zero at any index z where any
other row of Y is positive.

Now consider the normalization condition (15). For the sum to be strictly

positive, there must exist at least one index z* such that:

yi(z) >0 and YL >0. (17)

_|_

However, we know that Y1, > 0 is only possible if yi(z*) = 0 for all j # k.

4
Combining this with expression (17), we see that index z* represents a column in
Y where: the entry in row k is positive: yx(z*) > 0; and the entries in all other

rows i are zero: y;(z*) = 0 for i # k. This implies that column z* of matrix Y has
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exactly one strictly positive element, which is a contradiction to the assumption of

the statement. m

A.2 Section 5: Proof of Theorem 2

Proof Overview. The proof consists of four steps. The first step establishes the
asymptotic limit (i.e., the population covariance matrix) ¥ of the Gram matrix
%YTY as Z — oo. This allows the pseudo-inverse Y© = YT(YYT)~! to be ap-
proximated by %YTZ_l. The second step shows that each column of YTE~! can
be decomposed into the deterministic shift (i.e., (;); in the main text) and the
stochastic component centered around 0 (i.e., (WZ,]')Z,]' in the main text). The third
step establishes the sense in which the deterministic shift is small compared to the
stochastic component (W, ;). ; when ] is large by applying the Woodbury identity
to X. The fourth step computes the closed-form formula for the constant C; so that

p(]) is approximated by % + % when ] is large.

Step 1. In the first step, we replace the sample Gram matrix Gz = %YYT with
the population covariance matrix X by the law of large numbers. Namely, as Z —
oo with | fixed, the sample covariance matrix Gz converges almost surely to the

population second moment matrix 2 (conditional on « and p), where
="+ oPppT+ 0Pl = P+ UUT with U= |y opp| € RI*

is a rank-two perturbation of a scaled identity matrix. Note that X is positive defi-
nite so that it is invertible. This allows the pseudo-inverse Y™ to be approximated
by 2YTE"1 = 12-1yT. Lemma 3 in the second step formally shows that the
sign of (YT), j is determined by the sign of the variable (£~ 'y;);. To that end, the
second step starts by decomposing (X~ 'y.); into the deterministic shift and the

stochastic part symmetric around 0.
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Step 2. Writing y. = v + B(f: — f) + €. as in the main text, one can express

(Z7hy2)j = (&) + (f: = ETB); + (B 1),
——

Hj Wz,j

\—

Conditional on the loadings («, 8), the term y; is a deterministic shift and the term
W, j is symmetric around zero.
Let Fy ; be the CDF of W, ; conditional on loadings («, 8). Then,

P((z—lyz)j >0) =P(u;+W,; >0)

1
=1—=Fy(—p) = 5+ fw,j(O); + O(f), (18)

where the last equality follows from the Taylor approximation of 1 — Fyy ;(-) and
Fi j(0) = 5 (which follows because W, j is symmetric around zero).

With these in mind, we now establish Lemma 3, which guarantees that the
replacement of Y = %YTGE1 with Z71YT does not change the limiting sign fre-
quency: since G,* — X! with ||G,1 — 71| = O(Z~1/2), the difference between
the two matrices vanishes in operator norm, and any potential sign disagreement
occurs only when an entry of (X7 1y,) j lies in a vanishing neighborhood of zero.
Since replacing Ggl by 7! changes each entry by at most O(Z~1/2), a sign dis-
agreement can occur only with probability o(1). This ensures that the asymptotic

sign frequency is unaffected by the finite-Z approximation. Formally:

Lemma 3 (Population Replacement) Fix J and («,B). Then,

T _ -1 _
Zh_r)r(}o 1r£1]a<x] Z ]I( ZG P> 0) ]P((Z yz)]. > O> 0 as.
Consequently, conditional on («, B), the probability p(]) satisfies:
1¢ )
p() = 7 LP((="y2); > 0). (19)

j=1

Proof of Lemma 3. By the law of large numbers, G; — X a.s. Hence, Gz is
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positive definite for large Z and ||G,' —Z71|| — O a.s. Let

D, = (%yEGgl)J, - (%Z‘lyz>], = %yE(Gzl -2 o,

where v; is the unit vector in the j-th coordinate.
For any 77 > 0 and all large Z, ||G,* —Z7 | < 7 as., so 1D,j| < AL
A sign can flip only if [(ZX7'yl);| < |D,;|. Since (£7'y); = pj+ W, has a

continuous density at around 0 with value fy ;(0), we have:

P (|(=7'y2))| <6) < 2fw;(0)5+0(8) (610).

Since the inequality holds uniformly across j € {1,..., ]}, the sign disagreement
probability vanishes uniformly across the entire cross-section j € {1,...,]}. Tak-
ing 6 = Z||y:|| and averaging over z (using Z7'Y_, |ly:|| — E|y:| a.s.) shows
the empirical fraction of sign disagreements is O(#) a.s. Letting # | 0 proves the
lemma. m

So far, expressions (18) and (19) imply that

1 /1
WDZT;(Efm%®W+WﬁO

1 1¢ 1 .,
=5+ fw;(0)7 Y oui+ 7Y O®).
=R

As a preview, the third step shows that y1j = O(J!) and fw j(0) — fw(0) uni-

formly so that one can write

J
p) = 5 + w07 X1+ 007, (20)
j=1

J
The fourth step find the closed-form expression for (6), i.e.,, @1 = ]lim Z Hj, to
—00 .
j=1

obtain

pI) = 5+ Fn(0)-©1 5 +0(2).
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Step 3. In the third step, we determine the magnitude of the mean-shift term

pj = (£~ 1v);. To that end, we apply the Woodbury matrix identity to obtain:
7= (@ +uu) ! = o2 (p - u(b+eutn) Uty e
Since the 2 x 2 matrix UTU satisfies

Ej[v?] ofE[vB

Ti1
R P T

7

where [E; denotes the empirical mean over j € {1,...,]}, each entry is of order
O(J). Thus, 0, 2UTU = O(]), which implies that the dominant term in the matrix
I + 0,7 2U™U is the O(]) contribution from ¢, 2UTU. Thus, when ] is large, the
2 x 2 matrix (L + 02U " U) ~!is of order O(J~1) = O(1) - O(J~1) - O(1). Con-
sequently, each entry in the matrix U (L + o; 2U " U) 102U is of order O(J 1),
meaning that ¥ ! is asymptotically diagonal with off-diagonal entries that vanish
at the same rate. Economically, the pseudo-inverse suppresses variation along the
factor directions while leaving idiosyncratic risk largely unaffected. With this in

mind, we establish:
Lemma 4 (Small Deterministic Shift) The following hold uniformly in j:
@) =007, Ep)=007), E)oet
Consequently,
O'%V/]- = (T]% [(Z_lﬁ)]']z + (73‘(2_2)]-,]- — 0.2 uniformly in |
If (fz,€j2) are Gaussian case, then

fw,j(0) — uniformly in  j.

O¢
V27T

Proof of Lemma 4. Since we have established (I, + o, 2UTU)~! = O(J~1), sub-
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stituting this back into Woodbury identity (21) and noting that v = Uwv; yields
=y = 072y — 02U (L + 0 2U™U) o 2UTy.

The first term o; 27 is O(1) in each component. However, since 1 lies in the column

space of U, we have Uy = UTUv;, which is O(]). Thus, the second term equals
074U (L + 0, 2U™U) U U0y = 072U -O(J 1) - O()) = 072U - O(1).

Each component of this correction term is O(1), and it precisely cancels the leading
O(1) term o, 27. What remains is a residual of order O(J~!): each component
B = (=7 1) j satisfies |p;| = O(J~') uniformly in j. The same reasoning applies to
B, giving (X7'B); = O(J 7).

Next, squaring expression (21) gives
2= ag4<1] —2UA oAU + UA;1054(uTu)A]—1uT) , with A; = L+ 2UTU.
Since A]_1 = O(J Y and UTU = O(J), the corrections are O(J~!). Thus,
(272)]-,]- = H{1+0(J Y} =0 * uniformlyin j.
Substituting these orders into
oh; = oF[(Z7B))]) " + o2(Z 72

yields (T%V/j = 0,2+ O(J~1) uniformly in ;.
If (f2,€;.) are Gaussian, then W, ; ~ N'(0, O'%V,]-) and

1 O

fW,](O) = mo_W,j — m

uniformly in j.
The proof of the lemma is complete. m

This result formalizes the intuition that as the cross-section expands, the

factor-induced corrections to £~ become negligible: the pseudo-inverse behaves
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almost like a scaled identity, and fyy(0)—the density at zero governing the lin-

earization of the sign probability—is determined primarily by the idiosyncratic

variance o7.

J
Step 4. Letting ©; = ]hm Z yj as in (the first part of) expression (6), what is
%

=
left to show is to establish (the second part of) expression (6) using population

moments of (7, B). Then, we can write expression (20) as

pI) =5+ +007) with C1 = fn(0)-©;

To find the closed-form expression for @, we define

1
—utu =
J

Ej[v?] ofE[vBl

1
=1 = Eil7) ofEjlp)] and S = ofEj[vB] oFE) (B

By the law of large numbers, S; 2% Sand r i s r, with

E[y?]  ofE[yB]

r=[El o/E[p)] and S= o/E[vB] o2E[p?)

Then, ®; admits the following expression.

Lemma 5 (Constant ®1) The constant © satisfies:

o — T 1, _ EMER] — E[BE[1p]
' ' EME[F - E[MBR2

Proof of Lemma 5. Observe that we have:
U= (2 +uut)tu = Ut +utu) !

Since v = Uy,

J

_ -1 _ _ .S. _
Youp=1"S7ly = 1] (2L +JS;) o1 =[S o1 + O(J 1) 2% TS0y
-~
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Since det(S) = J% (E[v?*]E[B?] — E[yB]?) # 0holds (as (7]% > 0 and B and vy are not

colinear), we have:

o1 1 o7E[?]  —ofE[vf]
det(S) —ofElyB]  E[v?]

Then, we obtain:

o _ g1, _ B0 BB+ ofElp] - (—ofE[Bl) _ E[y]E[8 — E[BJE[Yf]
e det(S) ~ EWEF - EDBE

as desired. m

This completes the proof of Theorem 2. Summarizing, the pseudo-inverse
YT acts asymptotically like a symmetric linear transformation applied to the noise
and factor components, perturbed by a small deterministic mean shift of order
1/]. The symmetry of the dominant stochastic term drives the limiting fraction
of positive entries to one-half, while the deterministic correction produces the ]!

deviation summarized by the constant C;.

A.3 Section 7

Proof of Proposition 3. The least-squares objective is
Q(S) = lla4; - G|
Differentiating with respect to S and setting the first-order condition to zero gives
—2(AA; —SG)GT =0, thatis, AA;GT =S(GGY).
If G has full row rank, then GG is invertible. Thus, the unique solution is
Si = AA;GT(GGT) L.

Since Gt = GT(GGT)~! when G has full row rank, we have $; = AA,G.
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Unbiasedness follows from assumed exogeneity of supply shocks,

E[S; | G] = E[(S;G + U;)GT(GGN) 1| G
= 5,GGT(GGH 1+ E[Uu,GT (GG | G]
=S,

For consistency, assume %GGT — Q > 0 for some positive definite Q.
Further let E[||U;]|?] < o0, and E[U; | G] = 0. Then

§— 8 = U,GT(GGT) ! = (%LLGT> (%GGT> Y

by the law of large numbers for the cross-experiment averages. Thus S; is consis-
tent. m

Proof of Proposition 4. Similarly to the proof of Proposition 4, the first-order
condition is S;(GGT) = AA;G", from which we obtain S;G = AA;. Multiplying
G™ from the right, we obtain S;P; = AA;G™ as in the main text. Since this is a

particular solution, the general solution can be written as
S, = AAI'G+ + Bi(l] — PG)/

where B; € R/*/ is an arbitrary matrix and Ij is the identity matrix. m
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B Online Appendix

The Online Appendix is structured as follows. Appendix B.1 contains proofs for
Section 3 and an example where redundant assets cause discontinuous demand.
Appendix B.2 complements Section 4.3 by providing conditions under which Y
has the wrong sign for each state (Proposition 5), analogous to the asset-specific
conditions in Proposition 2. Appendix B.3 extends Theorem 2 to a multifactor
setting and offers further technical intuition on the constant ®;. Appendix B.4
supplements Section 6 by deriving asset demands and elasticities, illustrating state
price variations, and discussing consumption implications. Finally, Appendix B.5
applies the incomplete identification result (Proposition 4) to green asset supply

shocks in our illustrative example economy.

B.1 Section 3

Proof of Proposition 1. For the first statement, let a*’ € A’ be a solution to (1).
For ease of exposition, we allow 0 to be in the domain of u' (this is not essential).
Suppose to the contrary that there is an unbounded arbitrage opportunity. Since

u' is strictly increasing, there exists m > 0 such that
U'(a*) < (1—08")u'(e) + p-e') + 8 mou'(m) + 6 (1 — 7r,)u' (0) for some z
and

u'(a*) < (1 - (Si)ui(eé +p- el +m) + 8'u'(0),

J
j=1°

where ¢ = (et
]

m > 0, there exists a' € A’ such that either (i) p-a’ <0, YTa’ > 0,and (Y'a'), > m,

Since there is an unbounded arbitrage opportunity, for this

in which case

U (a*) < (1= 8 u'(el + p-e) + 6 mu' (m) + 6'(1 — 7,)u' (0) < U'(a')



or (ii) p - at < —mand YTa' > 0, in which case
U'(a*) < (1—8")u'(e) +p-e +m)+u'(0) < U (a).

In either way, a* i ¢ A" does not solve (1), a contradiction.
For the second statement, since there is no unbounded arbitrage opportu-

nity, there exists m > 0 such that, for any a’ € A’,
U'(a') < (1 -8 ul(eh +p-e +m)+du(m).
Thus, we obtain:

sup U'(a') < (1 — 8 ul(eh +p-e +m) 4+ 6'u'(m) < oo.
ate Al

Then, there exists a sequence (a"),cn from A’ such that

| o o
sup U'(a') — = < U'(a™) < sup U'(a') < oo forall n € IN.
ate Al n ate Al

Since sup,i 4 U'(a") < oo, it follows that

n,i

]

sup |a;"| < oo forallje {1,...,]}.

nelN

Since A’ is closed, it follows that there exists a convergent subsequence (™) cn

of (a"),en such that a™' — a* ¢ A'. Since U’ is continuous, it follows that
U'(a*') = sup U'(a’),
ate Al

as desired. m
Proof of Lemma 1. Suppose the conditions in the statement of the lemma. The

proof consists of seven steps. First, for each i € Iy, we define a subset M’ of R%*1:

M = {(—p-a,YTd) e R | 4’ € AP},



Then, for each i € Iy, since investor i does not have an unbounded arbitrage op-
portunity, it follows that
] Z+1 _
M'NRE™ = {0}.

Note that ]RJZFJrl is a closed convex cone in R%*! and does not contain any linear
subspace other than {0}.

Second, let

M = U M.
i€l
It follows from the assumption
R/ = A
icly

that
M={(-p-d,YTa') e R**! | d ¢ R}

is a linear subspace.
Third, since
MNR%M = {0},

it follows from the separating hyperplane theorem (which is referred to as “Linear

separation of Cones” in Duffie (2001)), there exists 7 € R%*1 \ {0} such that
g-t<g-xforallte Mandx & ]Ri“.
Fourth, we show that g € lRif. Since 0 € M, it follows that
0=7-0<7g-xforallx € RZ.

Taking x as standard unit vectors in R ! yields g, > 0 for all z.

Fifth, we show that

0=7g-tforallt € M.



Suppose to the contrary that 0 # g - t for some t € M. Since M is a linear subspace,

we can assume, without loss, that
g-t>0.

However, this leads to a contradiction because, for any given x € ]Rif, there
exists A € R such that At € M and

q-x<Mg-t)=7q- (M)

Sixth, we show that

It follows from the fifth step that

_ T .
g’ I; a=0forallac RN = [ ] A"
Y i€l
0
If
T
T |—P
[ YT ] 40,
then letting
T T .
a= (ﬁT[YT]> E]R]:U.AZ
1
yields
|7 ' a>0
q YT ,
a contradiction.
Seventh, then, denoting by
g = (q0,9-0),



we have

0

Letting g = qq;oo € R%, we finally obtain
p=7Yq,
as desired. m

B.1.1 Arbitrage and Discountinuous Demands

This example illustrates an example in which an asset demand function exhibits

discontinuity in the presence of redundant assets.

Example 2 (Discontinuous demand functions) Suppose there are two states of the

world at date 1, and three assets. Given some € € (0,1), let a cash flow matrix Y be

given by
(1+e¢) L(1-e)
3(1—¢) 3(1+e)
1 1

Now consider the demand functions for some investor i with continuous utility function
u'.

(i) Suppose A' = R3. The absence of unbounded arbitrage requires that p3 = p1 + pa.
Given this restriction on prices, well-defined demand functions exist for all three
assets, with the investor taking weakly positive quantities in all three assets. Now
suppose that, starting from an initial benchmark where no arbitrage pricing holds,
p3 increases slightly. Then, investor i’s problem (1) is no longer well-defined, and

well-defined demand functions no longer exist.

(ii) Suppose instead that investor i faces the short-sale constraint a;- > —x for some
X > 0. Given p3 = py + pa, well-defined demand functions still exist for all three
assets, with the investor taking weakly positive quantities in all three assets. Now

suppose that ps increases slightly. Then it is optimal for the investor to jump to



a portfolio allocation where ai = —x. This can trigger discontinuities in optimal

demand.

B.2 Section 4.3

We remark that we can also provide conditions under which Yt has a wrong sign

for each state (i.e., row).

Proposition 5 Under the following two properties, each row of Y™ contains at least one
negative element: for each z € {1,...,Z}, there exists at least one j € {1,...,]} such
that (Y*),; < 0.

(i) Each row of Y has at least two strictly positive elements.

(ii) Conical Independence: no column vector y(z) of Y can be written as a non-negative
linear combination of the other column vectors of Y: forany z € {1,...,Z}, there

exists 10 ()12, € 1R<Z[1 such that

y(z) = ) ayy(2).
7zl #z

Before proving Proposition 5, we discuss its assumptions. Property (i) states
that assets typically pay off in multiple states, ruling out only the knife-edge case
of Arrow securities. Property (ii) is a weak linear independence requirement: it
rules out perfectly redundant states whose payoffs can be exactly replicated by
combinations of other states. In the special case in which | = Z, property (ii)
is automatically satisfied because the assumption that rank(Y) = ] implies that
the columns of Y are linearly independent. These properties hold in virtually all
realistic asset markets.

Proof of Proposition 5. Let y(z) be the z-th column of Y. Let y; be the k-th row
of Y. Suppose to the contradiction that there exists a row k such that y;” > 0

element-by-element.



Consider the projection matrix P = Y1Y. The entries are given by P, =
v - y(z). It follows from y;” > 0 and y(z) > 0 that

P, >0 forall ze({1,...,Z}.

The columns of Y span the range of Y. The projection matrix P acts as the identity
on the row space of YT, which implies YP = Y. Writing this column-wise for vector
y(z), foreach z € {1,...,Z}, it follows from y(z) = YP.; that

Z
y(z) = ) Pey(k), thatis, (1-Pz)y(z) =) Puy(k).
k=1 k#z
Since P is a projection matrix, P,, < 1.

If P,, < 1, then we have

y(e) = 1 osyh),
e 2z
which is a contradiction to property (ii).
Thus, suppose that P,; = 1. Then, ) Pzzk = P, implies P, = 0 for all k # z.
This implies
Py =y -y(k)=0 forall k#z.

Since y > 0and y(k) > 0, let

S={me{l,....]}| (yHm >0}, where (y)m=")zm

The set S is not empty because y; - y(z) = Pz = 1. Forall k # z,and forall m € S,
we must have 0 = v, (k)(= Y, ). Take any index m € S. The row m of matrix
Y has a value of 0 in every column k # z. Therefore, row m contains at most one

strictly positive element (potentially at column z). This contradicts property (i). =



B.3 Section 5 (Theorem 2)

B.3.1 Multifactor Extension of Theorem 2

The structure of the proof for a finite number of factors K is identical to the one-

factor argument. Consider the K-factor model

k=1

K K
_oc]+2ﬁ +e]2:(aj+k;ﬁ](k> )+Zﬁ" — 70 teg,

v
where f) = | fz(k)]. Assumptions (A1)-(A3) are naturally extended to K factors:
that is, the vectors (ﬁ](.k))k , replace B; and the factors ( fZ )k | replace f; all fac-
tors are mutually independent and independent of errors.

Each factor adds an additional “spike” to the covariance matrix,

=y —|-Zc7f BOBIT 42l = 2+ UUT with U= [y opap®) - opepl],
k=

but the key asymptotic properties remain unchanged. The deterministic mean shift

pi = (X 1), is still of order ]!, and the random fluctuation

K
EZ J(ET ,3 ) (Z 152)]'

remains symmetric around zero. Consequently, the linear expansion of the sign
probability and the O(J~!) convergence rate carry over verbatim. The only new
element is the form of the constant @k, which now depends on the (K4 1) x (K +
1) population moment matrix of vectors U.

In general, letting S = E[UUT] and

r=E[U] = [E[] opEY] - opE[pX]],

we have

@K = rTS_lvl.



When K = 1, this expression reduces to the right-most side of expression (6). We

summarize the K-factor extension as follows.

Corollary 1 (K-Factor Extension) In the K-factor model, the same asymptotic result
holds:

1 C _ B
P(]) = > + TK + O(]*Z) a.s., with Cg = fW(O) @ and Ok = Ts 101.

Consequently,
, 1
plim p(J) = 5.

J—o0
B.3.2 Remark on the Constant ©;

When UJ%H,BH2 < |lvlI?, or equivalently, when UJ%IE [B%] < E[?] in the limit as
] — o0, we can circumvent arguments in Step 3.1 Indeed, £ admits the following
simpler approximation:

DS ,),,YT + U'EZI].

Applying the Woodbury identity, we obtain:

1 vyt )
21%—(1——. 22
2\ e 22)

Then, operating «y on expression (22) from the right, we obtain:

2—1,), I~ _r .
o2 + [lv[?

When ] is large, since

B i i
1) PR |
K= BT~ T E Y TR
it follows that [ ]
Ely
O ~ .
"TEM

10For the K-factor case, U%’k 18912 < ||]|? for all k.



Similarly, operating a scalar 02 on expression (22) from the right, the vari-

ance of the stochastic term is dominated by
-1 2 2 2
(Z‘ )j/jae ~Oe 0 = 1,

yielding

ow ~ —.
Oe

B.4 Section 6

Equation (10). For ease of presentation, we derive the demand functions 2, and
a, directly from the representative agent’s portfolio choice problem:!!

max (1 —0)u(Eyg — pg(ag — Eg) — pr(ar — Er)) + 0mqu(yg(g)ag + yr(g)ar) + 6mmu(yg(r)ag + yr(r)ay).

ag,ar

After substituting the payoff matrix Y into the utility function, the first-order con-
ditions are:

pg 1"‘6 1—c¢
1-96 =0 + o, ;
( )Eo—pg(ag—Eg) — py(a, — E) g(1+€)ag+(1—e)ar (1—e€)ag+ (1+e€)a,
(23)
(1-0) Pr - 1-¢ +om, Lte

= .
Eo — pg(ag — Eg) — pr(a, — E;) Tt (1+e€)ag+ (1 —€)a, (1—€)ag+ (1+€)a,

(24)

Then, since 71¢ = 1 — 71, the representative agent’s demand functions are:

E E E) (1 —€2)p, — (14 €)% —4dem,)py
ﬂg(Pg,Pr):5( 0+ pgkg+p ) (( ng (1+e) )P)

(Pg —pr)?— pg + pr)?e? ’
(Eo + pgEg + prEr) ((1 —€? pr—((1— 5)2 + 4€7T7)Pg)
(Pg — pr)? — (pg + pr)?e?

11Alterna’rively, one can derive the demand functions a4 and 4, from the consumption functions
¢, and ¢;.
g T

ar(pg, pr) =0

10



Aqi and Ag)™PY: e =0.01 Aqi and Ag)PPV: e =1 C%sine Similarity between Aqi® and Aqj"P¥

1 1
08 L A 08 . Aqe 04
= B = Taa
0.6 0.6 -0.2
Ag Ag
04 —> g 04 —
‘; 0.2 *§ 0.2
2] Yosi ~ ] S _ =
< Cosine ~ 0 2 Cosine=—-1__ 2 05
/~ 02 N, ~ 02 5 06
N, 8
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Green Asset Green Asset Complementarity e

Figure 3: State Price Variations Aqi'® and Aqg ™" Y Parameters: Mg = 1 = 3.

Elasticities. On the one hand,

gideal _ _a”g(Pg/ p”) &
dpg g

= (1+(1-2m)e)

(1 —€)? +4em, (1 — d¢) + 45€*m?
871, (1 — 71,)€2 '

On the other hand, since

da dp,
& dag  oag %
Cdps T 9p,  Op, Ps
Ty dpg  Ipr T,
_1-6(1—e)?+4em, (1 —Je) +46e’m;  1-6(1—€) +46em,(1 - 1, 1—¢€?
6 4e?m, (1 — 71y) 6 4e?mt, (1 — 71y) (14 €)% —4em,
_21—52—5(1—|— (1—2m,)e)
s (1+¢€)2—4demr, '
it follows that
dag
gsupply — _ 95 P
g aq
dsg

2—5(1+ (1-2m)e)

= (I (1 =2m)e) =2 4o,

11



B.4.1 State Price Variations in the General Equilibrium Example

ideal

ly . . .
¢ and quupp Y in our illustrative

Figure 3 compare the state price variations Aq

example. Note that while the state price variation Aqig‘jleal is given by (8) , the state
price variation qu,upply is given by:
1 0 |g o |m lEe
Aq;uppyzglg] :_m[ $2 | (<0
& L] 15,0 Tr 7

The left and central panels depict the state price variations for a fixed €. The right

ideal supply
g .

¢ and Aq

panel depicts the cosine similarity between Aq

B.4.2 Implications for Demand

The fact that the supply shock generates the wrong type of state price variation
dramatically affects the observed demand response. We illustrate this effect by
computing the response of the consumption ratio c¢/c, to both the ideal experi-
ment and the supply shock. Given log utility, it follows from the first-order condi-

tions (7) that the relative consumption process satisfies:

Cg _ Tgqr (25)

¢ T qg

Relative consumption in turn determines the desired holdings of green and red
assets.
Consider first the ideal experiment with a pure price shock. Differentiating

the relative consumption with respect to p, and evaluating in the limit s, — 0

9 (ig)
apg Cr

This derivative diverges to infinity as € — 0. As the two assets are perfect substi-

yields:
1-6(1—-e)mg+ (1+€)m

) 27tg7TrE (26)

s¢—0

tutes in this limit, a small price shock triggers a rapid reallocation from green to red

assets.

12



Supply vs Hypothetical Shocks

10° F
Supply Shock
L[ — — Hypothetical
10 Ey
\
\
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N 10
Z
I
101k
102
10—3 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Complementarity e

Figure 4: Optimal change in consumption ratio ¢y /¢, on log scale. Parameters: 7y = 7, =

1 _2
jandé—g.

Next, consider the response to the supply shock. In the limit as s, — 0,

9 (%
dsg \ Cr

which converges to zero in the limiting case of perfect substitutes as € — 0. When

= €. (27)

sg—0

the two assets are perfect substitutes, a supply shock has identical effects in both
states. As such, it results in zero difference in the optimal consumption ratio across
the two states.

Figure 4 depicts the optimal investor-level response to the hypothetical price
shock (26) and the response to the supply shock (27) on log scale (Appendix B.4.3
provides the derivations of these expressions). The difference in responses di-
verges to infinity as € — 0. The only point of overlap occurs when the two assets
are both Arrow securities. In line with our theory, this is the case where there can

be no spillovers across assets.

13



B.4.3 Derivations for Appendix B.4.2

Equation (26). Since the Arrow prices g can be expressed as a function of the asset

prices p through p = Yg, the consumption ratio (25) can be written as:

S _ g (L+e)pr—(1—¢€)pg
o 1 (l+e)ps—(1—e€)pr

Thus, differentiating it with respect to the price p,, we have:

i C_g>:_k 4epr 28
apg(cr % (Tt eps— A—p)? @)

In contrast, substituting the Arrow prices (9) into p = Yg, we obtain:

_l4e 61 l-e 6 1
eT 2 1-014 158, 2 T1-014 155y
Jl-e 6 1 l4e o1
T 81_51+12i5g 2 r1_51+%5g.

(29)

(30)

Substituting the asset prices p at s; = 0 into equation (28), we obtain equation (26).

When 6 = % and 71¢ = 71, = %, equation (26) reduces to:

9 (%
dpg \ Cr

Equation (27). Substituting the Arrow prices (9) into the consumption ratio (25)

1
-

p

yields
cg _ 1455
Cr 1 + %Sg .
Thus, differentiating it with respect to the supply shock s,, we obtain

9 (C_g) __ €
dsg \ cr (1 2"

+ %Sg>

In the limit as s, — 0, we get equation (27).

14



Price Variations Ap, and Ap,
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Figure 5: Price Changes Ap, and Ap,. Parameters: 7y = 71, = %, o= %, and s = 0.01.

B.5 Section 7.1

We now illustrate the incomplete identification result in the context of our example
economy where the supply shock to the green asset is a single experiment. This

creates a vector of observable price changes G and that of quantity changes AA for

Aag_sg
Aa, o’

Figure 5 illustrates the price changes G for varying complementarity €. In the limit

the representative investor:

as € — 1, the vector G reduces to the pure price change of the green asset.

We compare the theoretical asset-level substitution matrix

dag  dag
dpg  Ipr
S = aZf aZ, (31)
g Ipr
and its least-square identification
AAGH = 8 |APg BpPrl (32)
lapl o o

15



9 and (AAGT )1y

Ipy

% and (AAG™ )12
5. Dy

)
Ipy
o

" and (AAGT)1y

Oay
,

Symmetric Log Scale for (AAG™);; and day

Symmetric Log Scale for

. . . . . . . . . . . . . . . . . .
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WIN

Figure 6: Comparison of S and AAG*. Parameters: 77, = 71, = 3 and 6 =

The left panel of Figure 6 compares the (1,1) element of S and AAG™ on the sym-
metric log scale, while the right panel of Figure 6 does the (1,2) element of S and
AAG™.12 The right panel suggests that the signs are opposite.

B.5.1 Derivations

Equation (31). The first-order conditions (23) and (24) yield the equilibrium prices
pg and pr. When (Eg, Eg, E;) = (1,14 5,1), pg and p, coincide with equations (29)
and (30). We denote by p the initial equilibrium price vector (precisely, equations
(29) and (30) with s¢ = 0):

1 6 1

- N — 5 _ —

Then, the matrix
aag(f) a“g(?)

— Bpg dpr
5= lowlp) o)
Bpg opr

12The symmetric log scale transforms any x into sign(x) log;,(1 + log,(10)|x|). Thus, it respects
the sign of x, it is close to x when x is small, and it is an approximate logarithmic scale when x is
large.



is given by:

dag(p) 1-46(1- €)? +4em, (1 — Se) + 46€>m?

Ipg 4 4e2m, (1 — ) ’
dag(p) 1—6(1—€?) +46e*m(1—my)

p, ) 427, (1 — 71) !
da,(p)  1—6(1—€?) +46e*m, (1 — my) <_ aag(ﬁ)> .

Ipg ) 427, (1 — 1) pr !
0a,(p)  1—6(1+4€)® —dem (1 + de) + 46€>m?

Iy ) 4e27, (1 — 1) :

Equation (32). Since the vector of price changes is given by

Apg
Ap,

pg_?g
p”_ﬁr

G =

4

its Moore-Penrose inverse is a 1 x 2 matrix G = (GTG)~1GT, that is,

Gt — Ps—Pg Pr—Py _ (AP)T
(Ps=P)*+(pr=P,)*  (pg—Pg)*+(pr—P,)? [Ap|?’
where
I1Ap|? = s25 (1+€)2(2+ (1—€)sg)?(1+€?) —demr(1+€)2(2+5¢(1 — €))(2+ 5¢(1 — €)€) + 46?72 (s (44 5¢ — 2(2 + 5¢)€2 + 54€%))
=s2 )

2(1-6)2 (4 +s5(4+ (1 - €2)s,))?
Then, the least-square solution AAG™ is:

1 55 |Apg Apy
a5 9] = HAszl |

1Ap?

S¢
0

AAGT =

0 0

17
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