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Abstract

We propose a protocol for testing cross-sectional return predictors and de-
scribe turn-key tools for automatically implementing them. Our free-to-use
web application generates text, tables, and figures analyzing candidate predic-
tor performance, going far beyond direct inferences available from standard
factor models. The protocol uncovers issues that commonly arise when testing
equity strategies, paying particular attention to arbitrage limits that can make
strategies look good on paper even when they cannot be profitably traded in
practice. The protocol also identifies similar anomalies and places a proposed
predictor in the context of the extensive “factor zoo.” Using a case study, we
document a new signal, taxes-to-debt, and demonstrate the protocol’s ability
to unmask novel, seemingly robust predictors as disguised versions of known
factors. Using only two of the protocol’s most stringent criteria eliminates
over 98% of potential spurious and untradable signals from among more than
17,000 signals mined from firms’ accounting data.
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assay (as rsay) Verb • To analyze

(something, such as an ore) for one

or more specific components. • To

judge the worth of.

Merriam-Webster Dictionary

1 Introduction

This paper describes a protocol, and easily-accessible, easily-implementable tools, for

dissecting and understanding newly proposed cross-sectional equity return predictors.

While simple tools cannot be completely exhaustive, they should identify the most

important issues that arise in common tests of asset pricing strategies, while going

far beyond the direct inferences available from the simple tests commonly employed

using standard linear factor models. The tools described here automatically generate

a complete paper, providing a transparent analysis along the lines of a thorough

referee report, with little more effort than pushing a button.

After its introduction, the Fama and French (1993) three-factor model quickly

became the dominant asset pricing model. It was swiftly adopted not only because

it allowed researchers to quickly diagnose hidden tilts to the most common empirical

phenomena of the day, but also because of the simplicity with which it could be

operationalized.

The model’s dominance has, however, created its own set of problems. Broad

professional agreement on a standard model created a widely accepted, simple def-

inition of an “anomaly,” as any strategy that has abnormally high returns relative

to the model. Anomalous returns became an almost necessary condition for pub-

lishing asset pricing papers. This created tremendous incentives for researchers to

find these anomalies, often without any grounding in underlying economic theory,
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at a time when the profession was experiencing explosive growth, and technological

innovation had lowered the bar on testing. The result is our current “factor zoo”

(Cochrane, 2011), with hundreds of documented cross-section predictors of stock

returns (Harvey et al., 2016).

The large, growing number of known predictors has itself also made it increasingly

challenging to evaluate the contribution and robustness of newly proposed candidates

for the factor zoo. The simple diagnostic tests allowed by the original Fama and

French (1993) model and its extensions are now nowhere near as informative as

they were upon its introduction. With the large number of known anomalies it is

impossible for a three-factor model, or even a five- or six-factor model, to uncover

all the potential tilts to known phenomena.

Perhaps more importantly, the profession has uncovered many techniques that

appear to increase the magnitude of anomalous returns, but do so in ways that are

economically uninteresting and can be difficult to detect. These are mostly driven by

implementation issues, which limit the forces of arbitrage. The most obvious of these

involve over-weighting small cap stocks. Anomalies almost always appear stronger,

often far stronger, among small stocks, at least when one ignores transaction costs.

While these strategies are more expensive to trade, and consequently don’t represent

a more attractive trading opportunity or attract significant arbitrage capital (e.g.,

Novy-Marx and Velikov, 2016), they generate large gross alphas, allowing researchers

to report high statistical significance. Portfolio weighting schemes that overweight

smaller stocks in non-obvious ways consequently gain popularity, because they con-

tribute to impressive paper performance (see, e.g., Velikov and Novy-Marx, 2022).

Similarly, more frequent trading can improve the paper performance of anomalies,

but also entails significant, largely ignored costs. The tools presented here explicitly

account for implementation costs and should consequently be of interest to practi-

tioners as well as academics.
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Increased computing power has enabled more sophisticated methods for sum-

marizing and evaluating data. These machine learning techniques are especially

important in the presence of the factor zoo, as they offer tools for imposing sparsity.

They can help researchers select only an important subset of many potential factors

under consideration to use in their analysis, or reduce dimensionality by coming up

with particularly important combinations of factors. These techniques, while becom-

ing more popular in finance, are still not a part of most researchers toolbox. While

not our main focus, our protocol incorporates tests employing some of the machine

learning techniques into our analysis.

The tools that run all these tests and automatically generate a report are available

in two forms: a free web application, and a public github repository.1 The web

application allows users to test the robustness of a new predictive signal by uploading

a .csv file with three columns: firm identifier, date, and signal. The application then

generates a self-contained report testing the new anomaly, and emails the submitter

latex files and .pdf documents for this report. This referee-style report includes

extensive diagnostic and robustness results, as well as an estimation of a taxonomic

rank that places the proposed anomaly in context in the factor zoo, described in

our protocol. The advantage of this modality is its ease of use. It is accessible to

everyone, and does not require any coding skills or the use of a particular platform.

The public github repository contains an extensive library of MATLAB code that

implements the tests from scratch with just a couple of mouse clicks. While these

tools are based on a specific platform, and using them requires a little more skill

and subscriptions to the usual data vendors, this modality has several advantages.2

These tools are more flexible. They can be modified and adapted by individual users

1A fully operational preliminary version of the web application, tutorials on the github
repository, and additional samples of the automatically generated reports are available at
http://assayinganomalies.com/. The github repository is available at https://github.com/velikov-
mihail/AssayingAnomalies.

2Python implementation of the code will be available soon.
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for their specific needs. This also allows for the tools’ open-source evolution over

time. Moreover, the github repository contains a far broader set of tools, offering

functionality that goes far beyond the actual testing protocol proposed here. It

includes tools for accessing and downloading data from common sources, organizing

this data, and running common tests in the asset pricing literature. These are all

well-documented, and designed so that their basic functionality requires minimal

coding skill. This dramatically lowers the bar for researchers wanting to start serious

empirical work, offering an easy on-ramp for those beginning their careers. Finally,

the tools interface with related public github repositories, giving access to a growing

library of replications of important (and not so important) papers in the literature,

and code for running empirically driven finance classes.

In this paper, we provide a walk-through of the protocol which showcases its

ability to find related signals and we demonstrate the protocol’s ability to uncover

the lack of robust predictability in a large set of 17,000+ COMPUSTAT signals com-

monly employed in the recent literature on data mining. We start by documenting

a new signal, the ratio of Income Taxes (COMPUSTAT item TXC) to Total Debt

(COMPUSTAT item DLTT), that initially appears as a robust predictor of returns,

achieving impressive gross (net) Sharpe ratios of 0.36 (0.32) over the period from

1963 to 2023. At first glance, a researcher might plausibly hypothesize that this

ratio represents a form of risk, with higher corporate tax burdens relative to debt

leading to increased expected returns. However, the strength of our protocol lies in

its ability to go beyond surface-level analysis. By systematically applying a series of

rigorous tests, including the identification of closely related anomalies, our protocol

reveals that the ”taxes-to-debt” signal, despite its apparent robustness, is essentially

a profitability-based signal in disguise. The protocol’s comprehensive nature shows

that this tax-to-debt signal is spanned by several previously published profitability-

based signals, a crucial insight that might have been overlooked in less thorough
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analyses. This case study not only showcases the protocol’s power in uncovering new

potential predictors but also its critical role in preventing the proliferation of redun-

dant or disguised anomalies in the literature. Furthermore, it demonstrates how our

protocol ensures that essential tests, such as examining related anomalies—which

might otherwise be conducted only at a referee’s request—are systematically applied

to all signals under evaluation. This approach significantly enhances the rigor and

reliability of cross-sectional return predictability research.

To validate our protocol and provide a benchmark for evaluating newly proposed

anomalies, we conduct a comprehensive data mining exercise using over 31,000 po-

tential signals derived from COMPUSTAT variables. Our results, detailed in Sec-

tion 3.2, demonstrate the protocol’s effectiveness in filtering out spurious predictors.

We find that while 41.60% of signals appear significant using simple equal-weighted

portfolio sorts, only 9.92% remain significant under more conservative value-weighted

sorts. After accounting for transaction costs and applying dual significance criteria,

the percentage of robust predictors drops even further, with merely 1.85% of signals

passing our most stringent tests. These findings underscore the importance of using

conservative testing methods and highlight the discriminating power of our protocol.

They also provide a valuable benchmark: any new predictor that survives our battery

of tests can be considered more robust than the vast majority of signals generated

through extensive data mining of accounting variables.

Our goal is to provide the option for any authors proposing new anomalies to

freely implement our protocol with minimal effort. The potential impact of the

project on the academic literature is extensive. The protocol provides a common,

easily-accessible framework for the basic testing for new factors. This removes de-

grees of freedom that authors have when testing proposed new anomalies, thereby

mitigating the overfitting concerns that have become increasingly pernicious for the

profession. It makes it easy for reviewers to request, and authors to provide, a set of
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standard robustness checks for an online appendix. The project also has significant

practical relevance due to its emphasis on accounting for implementation frictions,

and can help bridge the gap between academic research on new factors and their

application in industry.

2 Walk-through of the anomaly testing protocol

This section provides a brief overview of the actual tests performed and exhibits pro-

duced by the code when it automatically generates its report. Appendix A provides

more details, presenting an actual example of an automatically generated report us-

ing input data for Income Taxes to Total Debt signal. The signal is constructed as

the the ratio of Income Taxes (COMPUSTAT item TXC) to Total Debt (COMPU-

STAT item DLTT). A walk-through of this report is provided below and the results

are discussed in more detail in Section 3.1.

2.1 Section 1: Introduction

Section 1 briefly describes the report and how it is generated, referencing this paper’s

protocol. It states the specific version of the publicly available code that was used

to produce the report.

2.2 Section 2: Signal diagnostics

Section 2 provides signal diagnostics. Figure 1 plots descriptive statistics for the

proposed predictor (Panel A) and its coverage over time both as a fraction of total

firms and total market capitalization (Panel B). The plot helps identify any obvious

outliers and if there are any periods with poor data coverage.
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2.3 Section 3: Does the signal predict returns?

Section 3 checks whether the signal reliably predicts cross-sectional differences in

average returns. Table 1 reports time-series regression results employing the value-

weighted returns to portfolios constructed from a quintile sort using NYSE break-

points on the candidate predictor (TXCDLTT for this example). Univariate sorts

like these are the main technique in the anomaly literature to test whether a sig-

nal predicts returns in the cross-section of equities. A version of this table is what

most anomaly papers report, though they vary in the specific portfolio construction.

Our choice of value-weighting and NYSE breakpoints is conservative, as anomalies

are usually strongest among micro-cap stocks and thus generally look stronger when

implemented using equal-weighted portfolio returns or name breakpoints (Fama and

French, 2008). Our default choice of value-weighting and NYSE breaks provides re-

sults that are closer to what an actual investor might be able to achieve in practice.

Table 2 reports results for various alternative construction methodologies. It

varies the number of portfolios (five or ten), the type of portfolio breakpoints em-

ployed (NYSE, name, or capitalization), and the weighting of individual stocks within

each portfolio (value- or equal-weighting). Panel B of Table 2 considers the impact

of accounting for transaction costs. The trading cost calculation follows Detzel et al.

(2022). The net-of-costs return on anomaly f in month t is given by:

fnet
t = f gross

t − TCLong,t − TCShort,t

where

TCj,t =
∑
i∈Ij,t

|wi,t − w̃i,t−1| · ci,t

for j ∈ {Long, Short} and Ij,t indexes the stocks in portfolio j at time t; ci,t is the
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one-way trading cost of stock i at time t, measured as the high-frequency combination

effective half-spreads from Chen and Velikov (2023); wi,t is the weight of stock i in

its portfolio at time t after rebalancing and w̃i,t−1 =
wi,t−1(1+rit)∑

k∈Ij,t
wk,t−1(1+rkt)

is the weight

of the stock in the portfolio before rebalancing.

Table 2, Panel B also reports the Novy-Marx and Velikov (2016) generalized

alphas that account for trading costs. It reports these generalized alphas relative

to five models: the CAPM, the Fama and French three- and five-factor models, and

these three- and five-factor models augmented with the momentum factor UMD. The

alphas are estimated as

w−1
y,MV E{X,y}

MVE{X,y} = α∗ + β∗ ·MVE{X} + ϵ∗,

where MVE{X} denotes the ex-post mean-variance efficient portfolio of the assets X,

where X are the factors in the model, and wy,MV E{X,y} denotes the weight on asset

y (the candidate factor) in MVE{X,y}. Following Novy-Marx and Velikov (2016), α∗

is defined to equal 0 when wy,MV E{X,y} = 0.

Table 3 explicitly accounts for the role of firm size in the strength of the can-

didate anomaly’s performance. It does so by constructing strategies based on the

candidate cross-sectional returns predictor within NYSE size quintiles. The table

reports average portfolio returns, average number stocks, and average firm size, for

twenty five portfolios constructed from a conditional double sort on size and and

the proposed signal. It also reports the average returns and alphas for long/short

trading strategies based on the signal within each size quintile.

2.4 Section 4: Signal performance relative to the factor zoo

Section 4 considers the strategy’s performance in the context of the factor zoo. It does

so by comparing the proposed factor’s performance to that of up to 212 anomalies

8



from the literature satisfying our criteria for inclusion in the testing protocol.3

Figure 2 plots histograms of gross and net Sharpe ratios for up to 212 known

anomalies and places the candidate factor in these distributions (Panel A and B,

respectively). To keep performances comparable, SR for anomalies in the factor zoo

are calculated over the sample for which the candidate return predictor is provided.

Figure 3 plots the growth of a $1 invested in each of the 212 known anomalies,

and compares those with the growth of a $1 invested in the test signal strategy (red

lines), again on both a gross and net basis (top and bottom panels, respectively).4

Figure 4 shows how the candidate strategy performs relative to known anomalies

in expanding the investment frontier spanned by common factor models. It plots the

entire distribution, from lowest to highest, of the gross alphas (left panel) and the

net generalized alphas (right hand panel) for each anomaly in the factor zoo relative

to each of the five models used in Table 1 (CAPM and Fama-French three-, four-,

five-, and six-factor models). It then places gross and net generalized alphas of the

candidate strategy relative to each of these models in these distributions.

2.5 Section 5: Does the signal add relative to related anoma-

lies?

Even if a candidate strategy has strong performance relative to most of the factors

in the zoo, it may still not add significantly to the factor zoo. For example, a slight

variation on one of the strongest know anomalies will itself have strong performance,

but will not be a significant addition to the zoo already containing the strategy on

which it is a variation. Section 5 accounts for this, by checking if the test signal adds

information beyond that provided to the most closely related known anomalies.

3The anomalies come from the August, 2024 release of the Chen and Zimmermann (2022) open
source asset pricing dataset.

4If an anomaly in the factor zoo starts later than the candidate strategy, then for that factor
we assume that the dollar is invested in the candidate strategy up to the date the factor becomes
available.
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Figures 5 and 6 show how closely related the candidate strategy is to members

of the factor zoo. Figure 5 plots a name histogram of the panel correlations of the

test signal with the anomaly signals from the factor zoo. Figure 6 shows an agglom-

erative hierarchical cluster plot using Ward’s minimum method and a maximum of

10 clusters.

Figure 7 shows how much the candidate signal adds relative to each individual

member in the factor zoo. It plots histograms of t-statistics for predictability tests,

which test the power of the test signal controlling for other individual known anomaly

signals. Panel A reports t-statistics on the loading on the test signal, t(βS) from

Fama-MacBeth regressions of the form:

ri,t = α + βSSi,t + βXXi,t + ϵi,t

where X stands for one of the anomaly signals at a time, and S stands for the test

signal.

Panel B plots t-statistics on α from spanning tests of the form:

rS,t = α + βrX,t + ϵt

where rX,t stands for the returns to one of the anomaly trading strategies at a time,

and rS,t stands for the returns to the test signal trading strategy. The strategies

employed in the spanning tests are constructed using quintile sorts, value-weighting,

and NYSE breakpoints.

Panel C plots t-statistics on the average returns to strategies constructed by

conditional double sorts. In each month, we sort stocks into quintiles based one of

the anomaly signals at a time. Then, within each quintile, we sort stocks into quintiles

based on the test signal. Stocks are finally grouped into five test-signal-portfolios

by combining stocks within each anomaly sorting portfolio. The panel plots the t-
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statistics on the average returns of these conditional double-sorted trading strategies

of the test signal conditioned on each of the anomalies.

Tables 4 and 5 control for the six most-closely related anomalies. To find the

most closely related anomalies, we rank all anomalies based on:

rank(|ρi,s|) + rank(R2
rit=α+βris+ϵ),

where ρi,s is the panel correlation of the underlying signal for anomaly i and the test

signal s, and R2
rit=α+βris+ϵ

is R2 from the spanning test of regressing the returns to

the testing strategy exploiting anomaly i on the test signal s.

Table 4 reports Fama-MacBeth cross-sectional regressions of returns on the test

signal controlling for the six most closely-related anomalies, both individually and

jointly. Table 5 reports spanning tests results from time-series regressions of the

returns to the test signal trading strategy onto the returns of trading strategies

exploiting the six most closely-related anomalies and the six Fama-French factors.

2.6 Section 6: Does the signal add relative to the whole zoo?

Section 6 quantifies the extent to which the test signal increases the investment

frontier beyond that spanned by the entire factor zoo.

Figure 8 plots the growth of a $1 invested in trading strategies that combine

multiple anomalies following Chen and Velikov (2023). We combine signals using a

linear model of expected returns:

Et(ri,t+1) = β0 +
J∑

j=1

βjxi,j,t,

where ri,t+1 is the gross return of stock i in month t + 1, J is the total number of

predictors, βj is the slope coefficient on predictor j, and xi,j,t is the standardized jth

11



anomaly characteristic for stock i in month t.5

The figure shows results using six different methods for combining anomalies. The

methods used are average rank (i.e., β̂j =
1
J
), weighted-average rank (i.e., β̂j ∝ r̄j),

Fama-MacBeth regression following Lewellen (2015), Partial Least Squares (PLS) fil-

ter following Light et al. (2017), Instrumented Principal Component Analysis (IPCA)

following Kelly et al. (2019), and the Least Absolute Shrinkage and Selection Oper-

ator (LASSO) as implemented in Chen and Velikov (2023).

The figure compares the performance of combinations made using the broad cross-

section of known anomalies, and the extent to which performance is improved by also

including the proposed candidate.

3 Protocol validation

3.1 Case study: Income Taxes to Total Debt

To showcase the protocol’s ability to uncover published predictors that explain the

test signal, we document a new signal that robustly predicts returns, the ratio of In-

come Taxes (COMPUSTAT item TXC) to Total Debt (COMPUSTAT item DLTT).

Appendix A shows that a value-weighted long/short trading strategy based on TX-

CDLTT achieves annualized gross (net) Sharpe ratios of 0.36 (0.32) and monthly

average abnormal gross (net) returns of 23 (22) basis points relative to the Fama-

French five-factor model plus momentum. The strategy’s performance is robust to

various portfolio construction methods and remains significant after accounting for

transaction costs. TXCDLTT’s predictive power persists across different size quin-

tiles and outperforms many other documented anomalies.

Based on the initial results presented in this appendix, a researcher could formu-

5For these combination signals, we filter the 212 anomalies and require for each anomaly the
average month to have at least 40% of the cross-sectional observations available for market capital-
ization on CRSP in the period for which the candidate signal is available.
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late at least two contrasting hypotheses about the relationship between taxes-to-debt

and stock returns:

Risk Hypothesis: The positive relationship between Income Taxes to Total

Debt (TXCDLTT) and stock returns could be interpreted as evidence that higher

taxes-to-debt ratios make firms riskier. This hypothesis would suggest that firms with

higher TXCDLTT are exposed to greater financial or operational risks, perhaps due

to less favorable debt structures or higher tax burdens relative to their debt capacity.

As a result, investors demand higher returns to compensate for this increased risk.

Behavioral Hypothesis: Alternatively, the predictive power of TXCDLTT

could be viewed through a behavioral finance lens. Under this hypothesis, higher

taxes-to-debt might proxy for some positive firm characteristic or future performance

indicator that is not yet fully reflected in stock prices. For instance, it could signal

more efficient tax management or stronger overall financial health. The fact that

trading on this signal leads to positive abnormal returns could suggest that the mar-

ket is slow to incorporate this information, possibly due to investor inattention, limits

to arbitrage, or other behavioral biases.

Both hypotheses could be supported by elements of the empirical evidence pre-

sented in the appendix, such as the strategy’s consistent outperformance across vari-

ous portfolio construction methods and its robustness to transaction costs. Without

a comprehensive protocol to compare this signal to an exhaustive list in the liter-

ature, one could try to argue that this signal is a new, independent cross-sectional

predictor.

The appendix’s analysis of closely related anomalies, however, reveals that the

TXCDLTT signal’s predictive power is largely subsumed by existing profitability

measures, suggesting that it may not represent a novel or independently valuable

predictor of stock returns. This conclusion is evident from the results presented

in Tables 4 and 5, which show the Fama-MacBeth regressions and spanning tests
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controlling for the six most closely related anomalies. Notably, these related anoma-

lies include various measures of profitability such as ”Operating profitability R&D

adjusted,” ”Cash-based operating profitability,” and ”gross profits / total assets.”

When these profitability measures are included in the analysis, the TXCDLTT strat-

egy’s alpha becomes negative and statistically insignificant, dropping to -4 basis

points per month with a t-statistic of -0.64 in the last column of Table 5. This

suggests that TXCDLTT is essentially capturing information already contained in

existing profitability metrics rather than providing a unique signal. Furthermore,

the high R-squared value (67%) in the spanning test indicates that a large portion of

TXCDLTT’s variation can be explained by these related anomalies and standard risk

factors. Given these findings, it would be difficult to justify publishing TXCDLTT

as a new anomaly, as it appears to be largely redundant with existing profitability

measures and does not contribute substantial new information to the cross-section

of stock returns.

3.2 Data mining

To further demonstrate the protocol’s power in uncovering signals that lack robust-

ness, we replicate aspects of recent studies that employ data mining on COMPUS-

TAT variables (Yan and Zheng, 2017; Chordia et al., 2020; Chen et al., 2024). This

exercise serves two purposes: (1) it demonstrates the protocol’s ability to filter out

spurious predictors, and (2) it provides a benchmark for evaluating the strength of

newly proposed anomalies.

Table I presents the results of our data mining exercise. Panel A outlines our

filtering process, which reduces an initial set of 31,460 signals to 17,074 filtered

signals. We apply several criteria to ensure data quality and sufficient historical

coverage, including excluding redundant signals, requiring a minimum of 30 stocks

per signal-month, data availability through December 2023, and at least 360 months
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of historical data.

Panels B and D report the number and percentage of signals that pass single

significance tests under various portfolio construction methods for gross and net

returns, respectively. We consider different combinations of test statistics (excess

returns or alphas), portfolio sorts (quintiles or deciles), breakpoint methods (NYSE

or name), and weighting schemes (equal- or value-weighted).

For gross returns (Panel B), we find that 41.60% of signals are significant when

using equal-weighted quintile sorts with NYSE breakpoints and excess returns as

the test statistic. However, this percentage drops substantially to 9.92% when

using value-weighted quintile sorts with NYSE breakpoints. This stark difference

highlights the importance of using conservative portfolio construction methods, as

equal-weighting and name breakpoints can lead to an inflated number of apparently

significant predictors.

When we account for transaction costs and examine net returns (Panel D), the

percentage of significant predictors decreases further. For instance, using value-

weighted quintile sorts with NYSE breakpoints, only 4.99% of signals remain signif-

icant after accounting for trading costs.

Panels C and E present results for signals that pass dual significance criteria,

providing a more stringent test of robustness. These panels show the percentage of

signals that are simultaneously significant under pairs of different portfolio construc-

tion methods. For gross returns (Panel C), we find that only 7.32% of signals are

significant under both equal- and value-weighted quintile sorts using NYSE break-

points. When we consider net returns (Panel E), this percentage drops to just 2.66

The most conservative estimate in our analysis comes from signals that are simul-

taneously significant under value-weighted quintile sorts using NYSE breakpoints for

both excess returns and Fama-French 6-factor alphas, after accounting for transac-

tion costs. Only 1.85% of signals pass this stringent dual criterion for net returns.
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These results demonstrate the effectiveness of our protocol in filtering out spu-

rious predictors. The vast majority of potential signals do not survive our battery

of tests, especially when using conservative portfolio construction methods and ac-

counting for transaction costs. This underscores the importance of applying rigorous

and comprehensive testing procedures, such as those outlined in our protocol, when

evaluating new candidate predictors for cross-sectional stock returns.

Furthermore, these findings provide a useful benchmark for assessing the strength

of newly proposed anomalies. Any new predictor that survives our protocol’s tests

can be considered more robust than the vast majority of signals generated through

data mining of accounting variables.

4 Discussion and caveats

First, as mentioned previously, the protocol is not meant to be completely exhaus-

tive. The tools provide a thorough, transparent analysis, going far beyond the tests

commonly employed using standard linear factor models. They cannot, however,

account for everything, and that is not their purpose. They are meant to effort-

lessly identify the most important issues that arise in common tests of asset pricing

strategies. They are also specifically designed to identify strategies constructed to ex-

ploit market frictions that limit arbitrage in ways that strengthen paper performance

without improving the opportunities available to actual investors.

Discrete signals also present a challenge, especially when the set of possible values

is small. Many of our tests rely on non-parametric methods involving assigning stocks

to portfolios on the basis of some signal. When many firms share the same signal,

then some firms with the same signal must be assigned to different portfolios or the

resulting portfolios will be unbalanced. In our context, where the tests are designed to

run independently without requiring human judgement specific to the signal being
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tested, thin portfolio present a real risk. When multiple firms can naturally be

assigned to two different portfolios, we consequently let nature chose which firms are

assigned to each in a manner that ensures a similar degree of portfolio diversification.

That is, we have some random assignment among firms with identical signals. While

there is nothing inherently wrong with this procedure, it is somewhat arbitrary, and

complicates the interpretation of results involving discrete signals.

Finally, even when the protocol uncovers serious inconsistencies across differently

constructed strategies formed on the basis of a candidate predictor, the underlying

signal may still be interesting. Several of the tests are designed to identify difficulties

that may arise exploiting the strategy in practice due to market frictions. Results

that reveal significant differences in performance across construction methods point

to significant implementation issues related to limits to arbitrage. While this does

suggest the strategy may be of limited interest to practitioners as an investment

opportunity, the existence and nature of the limits to arbitrage that impact strategies

based on the signal may themselves be highly interesting.

5 Conclusion

This paper describes a protocol for testing potential cross-sectional equity return

predictors. This protocol goes far beyond the simple tests commonly employed using

standard linear factor models, and identifies the most important issues that arise

testing asset pricing strategies. It also describes turn-key tools for implementing

this protocol, which produce a thorough, transparent analysis, along the lines of

a referee report, with little more effort than pushing a button. These are part of

broader package of freely available tools offering functionality that goes far beyond

the testing protocol proposed here. These are well-documented and require minimal

coding skill, dramatically lowering the bar for researchers wanting to start serious
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empirical work and offering an easy on-ramp for those beginning their careers.
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Table I: Data mining summary
This table presents results from our data mining exercise on COMPUSTAT variables.
Panel A outlines the filtering process, reducing 31,460 initial signals to 17,074 filtered
signals. Panel B (D) displays the number and percentage of signals passing single gross
(net) significance tests under various portfolio trading strategy construction methods, for
both gross and net returns. Panel C (E) shows the cumulative effect of applying dual gross
(net) significance criteria. Criteria include t-statistics > 1.96 for different strategies which
vary the statistic of interest (excess return, re, or alpha, α), portfolio sort (Quintile or
Decile), breakpoints (NYSE or Name), and weighting scheme (Equal or Value).

Panel A: Filtering

Filter # of
Signals

% of
Fil-
tered

Initial set 31460

Exclude redundant signals 29315

Require 30 stocks 25852

Require data until 12/2023 19834

Require 360 months 17074 100.0%

Panel B: Single gross significance criteria

re re re re αFF6

Quint Dec Quint Quint Quint

NYSE NYSE Name NYSE NYSE

Equal Value Value Value Value

# of significant 7102 1880 1705 1693 4220

% of significant 41.60% 11.01% 9.99% 9.92% 24.72%

Panel C: Dual gross significance criteria

re re re re αFF6

Quint Dec Quint Quint Quint

NYSE NYSE Name NYSE NYSE

Equal Value Value Value Value

re Quintile NYSE Equal 7.32% 6.93% 6.70% 9.66%

re Decile NYSE Value 1249 6.18% 5.68% 3.00%

re Quintile Name Value 1183 1056 7.00% 3.02%

re Quintile NYSE Value 1144 969 1195 3.55%

αFF6 Quintile NYSE Value 1649 512 515 606
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Table I (Cont’d): Data mining summary

Panel D: Single net significance criteria

re re re re αFF6

Quint Dec Quint Quint Quint

NYSE NYSE Name NYSE NYSE

Equal Value Value Value Value

# of significant 4,589 1,045 817 852 2,335

% of significant 26.88% 6.12% 4.79% 4.99% 13.68%

Panel E: Dual net significance criteria

re re re re αFF6

Quint Dec Quint Quint Quint

NYSE NYSE Name NYSE NYSE

Equal Value Value Value Value

re Quintile NYSE Equal 2.66% 2.10% 1.89% 2.34%

re Decile NYSE Value 454 3.15% 2.99% 1.50%

re Quintile Name Value 359 537 3.21% 1.36%

re Quintile NYSE Value 322 510 549 1.85%

αFF6 Quintile NYSE Value 399 256 233 316
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Appendix A Output example

This Appendix provides the actual output from the tools that implement our pro-
tocol. These take a flat .csv data file with three columns—firm identifier, date, and
signal—and generate a .tex file for a referee report or internet appendix that tests
the proposed signal. For the actual implementation provided here the signal we use
is Income Taxes to Total Debt signal (TXCDLTT). The signal is constructed as the
the ratio of Income Taxes (COMPUSTAT item TXC) to Total Debt (COMPUSTAT
item DLTT). The following report is the direct output of the tools that results from
inputing the .csv file containing firm-date observations on TXCDLTT.
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Online Appendix for Assaying Anomalies:
Income Taxes to Total Debt and the Cross Section

of Stock Returns

Robert Novy-Marx Mihail Velikov

February 4, 2025

Abstract

This report studies the asset pricing implications of Income Taxes to Total
Debt (TXCDLTT), and its robustness in predicting returns in the cross-section
of equities using the protocol proposed by Novy-Marx and Velikov (2023).
A value-weighted long/short trading strategy based on TXCDLTT achieves
an annualized gross (net) Sharpe ratio of 0.36 (0.33), and monthly average
abnormal gross (net) return relative to the Fama and French (2015) five-factor
model plus a momentum factor of 24 (22) bps/month with a t-statistic of
2.82 (2.72), respectively. Its gross monthly alpha relative to these six factors
plus the six most closely related strategies from the factor zoo (Operating
profitability R&D adjusted, net income / book equity, Cash-based operating
profitability, gross profits / total assets, Taxable income to income, operating
profits / book equity) is -4 bps/month with a t-statistic of -0.61.
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1 Introduction

The following automatically generated report tests the asset pricing implications of

Income Taxes to Total Debt (TXCDLTT), and its robustness in predicting returns

in the cross-section of equities. It is produced using the methodology of Novy-Marx

and Velikov (2023), from input data consisting of firm-month observations for the

proposed predictor.1

2 Signal diagnostics

Figure 1 plots descriptive statistics for the TXCDLTT signal. Panel A plots the time-

series of the mean, median, and interquartile range for TXCDLTT. On average, the

cross-sectional mean (median) TXCDLTT is 3.66 (0.06) over the 1963 to 2023 sample,

where the starting date is determined by the availability of the input TXCDLTT

data. The signal’s interquartile range spans -0.00 to 0.49. Panel B of Figure 1

plots the time-series of the coverage of the TXCDLTT signal for the CRSP universe.

On average, the TXCDLTT signal is available for 4.34% of CRSP names, which on

average make up 5.83% of total market capitalization.

3 Does TXCDLTT predict returns?

Table 1 reports the performance of portfolios constructed using a value-weighted,

quintile sort on TXCDLTT using NYSE breaks. The first two lines of Panel A report

monthly average excess returns for each of the five portfolios and for the long/short

portfolio that buys the high TXCDLTT portfolio and sells the low TXCDLTT port-

folio. The rest of Panel A reports the portfolios’ monthly abnormal returns relative

to the five most common factor models: the CAPM, the Fama and French (1993)

1It used version v0.4.1 of the publicly available code repository at https://github.com/velikov-
mihail/AssayingAnomalies. See more details at http://AssayingAnomalies.com.
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three-factor model (FF3) and its variation that adds momentum (FF4), the Fama

and French (2015) five-factor model (FF5), and its variation that adds momentum

factor used in Fama and French (2018) (FF6). The table shows that the long/short

TXCDLTT strategy earns an average return of 0.30% per month with a t-statistic

of 2.81. The annualized Sharpe ratio of the strategy is 0.36. The alphas range from

0.24% to 0.52% per month and have t-statistics exceeding 2.82 everywhere. The

lowest alpha is with respect to the FF6 factor model.

Panel B reports the six portfolios’ loadings on the factors in the Fama and French

(2018) six-factor model. The long/short strategy’s most significant loading is 0.68,

with a t-statistic of 17.46 on the RMW factor. Panel C reports the average number

of stocks in each portfolio, as well as the average market capitalization (in $ millions)

of the stocks they hold. In an average month, the five portfolios have at least 354

stocks and an average market capitalization of at least $679 million.

Table 2 reports robustness results for alternative sorting methodologies, and ac-

counting for transaction costs. These results are important, because many anomalies

are far stronger among small cap stocks, but these small stocks are more expensive

to trade. Construction methods, or even signal-size correlations, that over-weight

small stocks can yield stronger paper performance without improving an investor’s

achievable investment opportunity set. Panel A reports gross returns and alphas

for the long/short strategies made using various different protfolio constructions.

The first row reports the average returns and the alphas for the long/short strategy

from Table 1, which is constructed from a quintile sort using NYSE breakpoints and

value-weighted portfolios. The rest of the panel shows the equal-weighted returns

to this same strategy, and the value-weighted performance of strategies constructed

from quintile sorts using name breaks (approximately equal number of firms in each

portfolio) and market capitalization breaks (approximately equal total market cap-

italization in each portfolio), and using NYSE deciles. The average return is lowest
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for the quintile sort using cap breakpoints and value-weighted portfolios, and equals

24 bps/month with a t-statistics of 2.30. Out of the twenty-five alphas reported in

Panel A, the t-statistics for twenty-three exceed two, and for seventeen exceed three.

Panel B reports for these same strategies the average monthly net returns and

the generalized net alphas of Novy-Marx and Velikov (2016). These generalized al-

phas measure the extent to which a test asset improves the ex-post mean-variance

efficient portfolio, accounting for the costs of trading both the asset and the explana-

tory factors. The transaction costs are calculated as the high-frequency composite

effective bid-ask half-spread measure from Chen and Velikov (2022). The net aver-

age returns reported in the first column range between 13-30bps/month. The lowest

return, (13 bps/month), is achieved from the quintile sort using NYSE breakpoints

and equal-weighted portfolios, and has an associated t-statistic of 1.09. Out of the

twenty-five construction-methodology-factor-model pairs reported in Panel B, the

TXCDLTT trading strategy improves the achievable mean-variance efficient frontier

spanned by the factor models in twenty-four cases, and significantly expands the

achievable frontier in twenty-one cases.

Table 3 provides direct tests for the role size plays in the TXCDLTT strategy

performance. Panel A reports the average returns for the twenty-five portfolios con-

structed from a conditional double sort on size and TXCDLTT, as well as average

returns and alphas for long/short trading TXCDLTT strategies within each size quin-

tile. Panel B reports the average number of stocks and the average firm size for the

twenty-five portfolios. Among the largest stocks (those with market capitalization

greater than the 80th NYSE percentile), the TXCDLTT strategy achieves an average

return of 36 bps/month with a t-statistic of 3.26. Among these large cap stocks, the

alphas for the TXCDLTT strategy relative to the five most common factor models

range from 27 to 53 bps/month with t-statistics between 2.83 and 5.19.
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4 How does TXCDLTT perform relative to the

zoo?

Figure 2 puts the performance of TXCDLTT in context, showing the long/short

strategy performance relative to other strategies in the “factor zoo.” It shows Sharpe

ratio histograms, both for gross and net returns (Panel A and B, respectively), for

212 documented anomalies in the zoo.2 The vertical red line shows where the Sharpe

ratio for the TXCDLTT strategy falls in the distribution. The TXCDLTT strategy’s

gross (net) Sharpe ratio of 0.36 (0.33) is greater than 79% (93%) of anomaly Sharpe

ratios, respectively.

Figure 3 plots the growth of a $1 invested in these same 212 anomaly trading

strategies (gray lines), and compares those with the growth of a $1 invested in the

TXCDLTT strategy (red line).3 Ignoring trading costs, a $1 invested in the TX-

CDLTT strategy would have yielded $5.33 which ranks the TXCDLTT strategy in

the top 6% across the 212 anomalies. Accounting for trading costs, a $1 invested

in the TXCDLTT strategy would have yielded $4.12 which ranks the TXCDLTT

strategy in the top 4% across the 212 anomalies.

Figure 4 plots percentile ranks for the 212 anomaly trading strategies in terms of

gross and Novy-Marx and Velikov (2016) net generalized alphas with respect to the

CAPM, and the Fama-French three-, four-, five-, and six-factor models from Table 1,

and indicates the ranking of the TXCDLTT relative to those. Panel A shows that the

TXCDLTT strategy gross alphas fall between the 69 and 88 percentiles across the

five factor models. Panel B shows that, accounting for trading costs, a large fraction

of anomalies have not improved the investment opportunity set of an investor with

2The anomalies come from March, 2022 release of the Chen and Zimmermann (2022) open source
asset pricing dataset.

3The figure assumes an initial investment of $1 in T-bills and $1 long/short in the two sides
of the strategy. Returns are compounded each month, assuming, as in Detzel et al. (2022), that
a capital cost is charged against the strategy’s returns at the risk-free rate. This excess return
corresponds more closely to the strategy’s economic profitability.
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access to the factor models over the 196306 to 202306 sample. For example, 47%

(53%) of the 212 anomalies would not have improved the investment opportunity

set for an investor having access to the Fama-French three-factor (six-factor) model.

The TXCDLTT strategy has a positive net generalized alpha for five out of the five

factor models. In these cases TXCDLTT ranks between the 87 and 96 percentiles in

terms of how much it could have expanded the achievable investment frontier.

5 Does TXCDLTT add relative to related anoma-

lies?

With so many anomalies, it is possible that any proposed, new cross-sectional pre-

dictor is just capturing some combination of known predictors. It is consequently

natural to investigate to what extent the proposed predictor adds additional predic-

tive power beyond the most closely related anomalies. Closely related anomalies are

more likely to be formed on the basis of signals with higher absolute correlations.

Figure 5 plots a name histogram of the correlations of TXCDLTT with 208 filtered

anomaly signals.4 Figure 6 also shows an agglomerative hierarchical cluster plot

using Ward’s minimum method and a maximum of 10 clusters.

A closely related anomaly is also more likely to price TXCDLTT or at least

to weaken the power TXCDLTT has predicting the cross-section of returns. Fig-

ure 7 plots histograms of t-statistics for predictability tests of TXCDLTT condi-

tioning on each of the 208 filtered anomaly signals one at a time. Panel A re-

ports t-statistics on βTXCDLTT from Fama-MacBeth regressions of the form ri,t =

α + βTXCDLTTTXCDLTTi,t + βXXi,t + ϵi,t, where X stands for one of the 208 fil-

4When performing tests at the underlying signal level (e.g., the correlations plotted in Figure 5),
we filter the 212 anomalies to avoid small sample issues. For each anomaly, we calculate the common
stock observations in an average month for which both the anomaly and the test signal are available.
In the filtered anomaly set, we drop anomalies with fewer than 100 common stock observations in
an average month.
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tered anomaly signals at a time. Panel B plots t-statistics on α from spanning tests

of the form: rTXCDLTT,t = α + βrX,t + ϵt, where rX,t stands for the returns to one

of the 208 filtered anomaly trading strategies at a time. The strategies employed in

the spanning tests are constructed using quintile sorts, value-weighting, and NYSE

breakpoints. Panel C plots t-statistics on the average returns to strategies con-

structed by conditional double sorts. In each month, we sort stocks into quintiles

based one of the 208 filtered anomaly signals. Then, within each quintile, we sort

stocks into quintiles based on TXCDLTT. Stocks are finally grouped into five TX-

CDLTT portfolios by combining stocks within each anomaly sorting portfolio. The

panel plots the t-statistics on the average returns of these conditional double-sorted

TXCDLTT trading strategies conditioned on each of the 208 filtered anomalies.

Table 4 reports Fama-MacBeth cross-sectional regressions of returns on TX-

CDLTT and the six anomalies most closely-related to it. The six most-closely related

anomalies are picked as those with the highest combined rank where the ranks are

based on the absolute value of the Spearman correlations in Panel B of Figure 5 and

the R2 from the spanning tests in Figure 7, Panel B. Controlling for each of these

signals at a time, the t-statistics on the TXCDLTT signal in these Fama-MacBeth

regressions exceed -2.61, with the minimum t-statistic occurring when controlling for

Operating profitability R&D adjusted. Controlling for all six closely related anoma-

lies, the t-statistic on TXCDLTT is -3.17.

Similarly, Table 5 reports results from spanning tests that regress returns to the

TXCDLTT strategy onto the returns of the six most closely-related anomalies and

the six Fama-French factors. Controlling for the six most-closely related anomalies

individually, the TXCDLTT strategy earns alphas that range from 1-21bps/month.

The minimum t-statistic on these alphas controlling for one anomaly at a time is

0.12, which is achieved when controlling for Operating profitability R&D adjusted.

Controlling for all six closely-related anomalies and the six Fama-French factors
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simultaneously, the TXCDLTT trading strategy achieves an alpha of -4bps/month

with a t-statistic of -0.61.

6 Does TXCDLTT add relative to the whole zoo?

Finally, we can ask how much adding TXCDLTT to the entire factor zoo could

improve investment performance. Figure 8 plots the growth of $1 invested in trading

strategies that combine multiple anomalies following Chen and Velikov (2022). The

combinations use either the 154 anomalies from the zoo that satisfy our inclusion

criteria (blue lines) or these 154 anomalies augmented with the TXCDLTT signal.5

We consider six different methods for combining signals.

Panel A shows results using “Average rank” as the combination method. This

method sorts stocks on the basis of forecast excess returns, where these are calculated

on the basis of their average cross-sectional percentile rank across return predictors,

and the predictors are all signed so that higher ranks are associated with higher

average returns. For this method, $1 investment in the 154-anomaly combination

strategy grows to $3258.25, while $1 investment in the combination strategy that

includes TXCDLTT grows to $3672.45.

Panel B shows results using “Weighted-Average rank” as the combination method.

This method sorts stocks on the basis of forecast excess returns, where these are cal-

culated as weighted-average cross-sectional percentile rank across return predictors,

and the predictors are all signed so that higher ranks are associated with higher aver-

age returns and the weights are determined by the average returns over the past ten

years to the long/short strategies based on the individual signals. For this method,

$1 investment in the 154-anomaly combination strategy grows to $193.64, while $1

investment in the combination strategy that includes TXCDLTT grows to $252.22.
5We filter the 207 Chen and Zimmermann (2022) anomalies and require for each anomaly the

average month to have at least 40% of the cross-sectional observations available for market capital-
ization on CRSP in the period for which TXCDLTT is available.
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Panel C shows results using “Fama-MacBeth” as the combination method. This

method sorts stocks on the basis of forecast excess returns, where these are calculated

from Fama and MacBeth (1973) regressions following Haugen and Baker (1996) and

Lewellen (2015) using only data in the investor’s information set at the time of port-

folio formation. The estimation uses rolling ten years of data, so the actual strategies

begin ten years later for this combination method. For this method, $1 investment

in the 154-anomaly combination strategy grows to $160154.97, while $1 investment

in the combination strategy that includes TXCDLTT grows to $195460.94.

Panel D shows results using “Partial Least Squares” as the combination method.

This method sorts stocks on the basis of forecast excess returns, where these are

calculated from partial least squares (PLS) filtering procedure following Light et al.

(2017) using only data in the investor’s information set at the time of portfolio

formation. The estimation uses rolling ten years of data, so the actual strategies

begin ten years later for this combination method. For this method, $1 investment

in the 154-anomaly combination strategy grows to $173.86, while $1 investment in

the combination strategy that includes TXCDLTT grows to $198.14.

Panel E shows results using “IPCA” as the combination method. This method

sorts stocks on the basis of forecast excess returns, where these are calculated from

the instrumented principal component analysis (IPCA) procedure of Kelly et al.

(2019) using only data in the investor’s information set at the time of portfolio

formation. The estimation uses rolling ten years of data, so the actual strategies

begin ten years later for this combination method. For this method, $1 investment

in the 154-anomaly combination strategy grows to $18077.21, while $1 investment in

the combination strategy that includes TXCDLTT grows to $14756.88.

Panel F shows results using “LASSO” as the combination method. This method

sorts stocks on the basis of forecast excess returns, where these are estimated by least

absolute shrinkage and selection operator (LASSO) using only data in the investor’s
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information set at the time of portfolio formation. Following Chen and Velikov

(2022), LASSO penalty (λ) is selected by minimizing the mean squared error (MSE)

estimated by 5-fold cross validation. The estimation uses rolling ten years of data,

so the actual strategies begin ten years later for this combination method. For this

method, $1 investment in the 154-anomaly combination strategy grows to $50687.59,

while $1 investment in the combination strategy that includes TXCDLTT grows to

$47179.84.
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Figure 1: Times series of TXCDLTT percentiles and coverage.
This figure plots descriptive statistics for TXCDLTT. Panel A shows cross-sectional
percentiles of TXCDLTT over the sample. Panel B plots the monthly coverage of
TXCDLTT relative to the universe of CRSP stocks with available market capitaliza-
tions.
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Table 1: Basic sort: VW, quintile, NYSE-breaks
This table reports average excess returns and alphas for portfolios sorted on TXCDLTT.
At the end of each month, we sort stocks into five portfolios based on their signal using
NYSE breakpoints. Panel A reports average value-weighted quintile portfolio (L,2,3,4,H)
returns in excess of the risk-free rate, the long-short extreme quintile portfolio (H-L) return,
and alphas with respect to the CAPM, Fama and French (1993) three-factor model, Fama
and French (1993) three-factor model augmented with the Carhart (1997) momentum
factor, Fama and French (2015) five-factor model, and the Fama and French (2015) five-
factor model augmented with the Carhart (1997) momentum factor following Fama and
French (2018). Panel B reports the factor loadings for the quintile portfolios and long-short
extreme quintile portfolio in the Fama and French (2015) five-factor model. Panel C reports
the average number of stocks and market capitalization of each portfolio. T-statistics are
in brackets. The sample period is 196306 to 202306.

Panel A: Excess returns and alphas on TXCDLTT-sorted portfolios

(L) (2) (3) (4) (H) (H-L)

re 0.28 0.44 0.61 0.58 0.58 0.30
[1.43] [2.52] [3.60] [3.53] [3.52] [2.81]

αCAPM -0.33 -0.10 0.07 0.05 0.05 0.38
[-3.92] [-1.39] [1.16] [0.95] [0.93] [3.65]

αFF3 -0.40 -0.18 0.04 0.05 0.12 0.52
[-4.89] [-2.58] [0.63] [0.94] [2.16] [5.40]

αFF4 -0.32 -0.11 0.06 0.05 0.15 0.47
[-3.91] [-1.63] [1.03] [0.98] [2.68] [4.83]

αFF5 -0.22 -0.16 -0.05 -0.07 0.04 0.26
[-3.11] [-2.35] [-0.76] [-1.36] [0.72] [3.12]

αFF6 -0.16 -0.11 -0.01 -0.06 0.07 0.24
[-2.32] [-1.55] [-0.25] [-1.08] [1.32] [2.82]

Panel B: Fama and French (2018) 6-factor model loadings for TXCDLTT-sorted portfolios

βMKT 1.03 1.00 1.02 0.99 0.96 -0.08
[62.06] [59.86] [71.52] [76.05] [72.12] [-3.90]

βSMB 0.05 -0.09 -0.12 -0.05 -0.11 -0.16
[1.90] [-3.71] [-5.62] [-2.40] [-5.76] [-5.42]

βHML 0.06 0.13 -0.00 -0.09 -0.23 -0.29
[1.95] [4.13] [-0.00] [-3.68] [-9.14] [-7.71]

βRMW -0.55 -0.11 0.08 0.21 0.13 0.68
[-16.80] [-3.52] [2.84] [8.22] [5.13] [17.46]

βCMA 0.12 0.17 0.28 0.26 0.18 0.06
[2.58] [3.66] [7.06] [7.09] [4.95] [1.13]

βUMD -0.08 -0.08 -0.04 -0.02 -0.05 0.03
[-4.92] [-5.04] [-3.18] [-1.67] [-3.77] [1.61]

Panel C: Average number of firms (n) and market capitalization (me)

n 775 394 354 375 516

me ($106) 679 1005 1390 1935 2668
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Table 2: Robustness to sorting methodology & trading costs
This table evaluates the robustness of the choices made in the TXCDLTT strategy con-
struction methodology. In each panel, the first row shows results from a quintile, value-
weighted sort using NYSE break points as employed in Table 1. Each of the subsequent
rows deviates in one of the three choices at a time, and the choices are specified in the
first three columns. For each strategy construction methodology, the table reports average
excess returns and alphas with respect to the CAPM, Fama and French (1993) three-factor
model, Fama and French (1993) three-factor model augmented with the Carhart (1997)
momentum factor, Fama and French (2015) five-factor model, and the Fama and French
(2015) five-factor model augmented with the Carhart (1997) momentum factor following
Fama and French (2018). Panel A reports average returns and alphas with no adjustment
for trading costs. Panel B reports net average returns and Novy-Marx and Velikov (2016)
generalized alphas as prescribed by Detzel et al. (2022). T-statistics are in brackets. The
sample period is 196306 to 202306.

Panel A: Gross Returns and Alphas

Portfolios Breaks Weights re αCAPM αFF3 αFF4 αFF5 αFF6

Quintile NYSE VW 0.30 0.38 0.52 0.47 0.26 0.24
[2.81] [3.65] [5.40] [4.83] [3.12] [2.82]

Quintile NYSE EW 0.29 0.37 0.44 0.34 0.18 0.11
[2.42] [3.18] [4.06] [3.14] [1.83] [1.16]

Quintile Name VW 0.34 0.42 0.54 0.50 0.30 0.28
[2.90] [3.61] [5.16] [4.69] [3.22] [2.98]

Quintile Cap VW 0.24 0.27 0.44 0.41 0.29 0.28
[2.30] [2.61] [4.91] [4.47] [3.43] [3.17]

Decile NYSE VW 0.29 0.38 0.53 0.48 0.30 0.28
[2.15] [2.83] [4.29] [3.86] [2.61] [2.38]

Panel B: Net Returns and Novy-Marx and Velikov (2016) generalized alphas

Portfolios Breaks Weights renet α∗
CAPM α∗

FF3 α∗
FF4 α∗

FF5 α∗
FF6

Quintile NYSE VW 0.27 0.35 0.46 0.43 0.24 0.22
[2.53] [3.31] [4.79] [4.50] [2.88] [2.72]

Quintile NYSE EW 0.13 0.20 0.24 0.19 0.01
[1.09] [1.62] [2.15] [1.70] [0.06]

Quintile Name VW 0.30 0.38 0.48 0.45 0.28 0.26
[2.56] [3.24] [4.56] [4.34] [2.97] [2.83]

Quintile Cap VW 0.21 0.24 0.39 0.37 0.26 0.25
[2.08] [2.37] [4.31] [4.09] [3.03] [2.89]

Decile NYSE VW 0.25 0.33 0.46 0.43 0.27 0.25
[1.83] [2.46] [3.73] [3.51] [2.36] [2.21]
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Table 3: Conditional sort on size and TXCDLTT
This table presents results for conditional double sorts on size and TXCDLTT. In each month, stocks are first sorted into quintiles based
on size using NYSE breakpoints. Then, within each size quintile, stocks are further sorted based on TXCDLTT. Finally, they are grouped
into twenty-five portfolios based on the intersection of the two sorts. Panel A presents the average returns to the 25 portfolios, as well
as strategies that go long stocks with high TXCDLTT and short stocks with low TXCDLTT .Panel B documents the average number of
firms and the average firm size for each portfolio. The sample period is 196306 to 202306.

Panel A: portfolio average returns and time-series regression results

TXCDLTT Quintiles TXCDLTT Strategies

(L) (2) (3) (4) (H) re αCAPM αFF3 αFF4 αFF5 αFF6

S
iz
e
q
u
in
ti
le
s

(1) 0.48 0.18 0.60 0.80 0.82 0.34 0.44 0.47 0.48 0.19 0.22
[1.69] [0.58] [2.37] [3.48] [3.43] [2.43] [3.21] [3.50] [3.47] [1.50] [1.67]

(2) 0.60 0.67 0.65 0.79 0.72 0.11 0.22 0.24 0.26 0.03 0.06
[2.19] [2.82] [2.93] [3.46] [3.23] [0.82] [1.68] [1.80] [1.97] [0.22] [0.48]

(3) 0.48 0.68 0.73 0.79 0.67 0.19 0.26 0.31 0.29 0.07 0.06
[2.02] [3.52] [3.60] [3.84] [3.19] [1.54] [2.20] [2.59] [2.33] [0.59] [0.54]

(4) 0.46 0.58 0.68 0.72 0.66 0.20 0.20 0.28 0.24 0.07 0.05
[2.20] [3.10] [3.58] [3.73] [3.23] [1.79] [1.79] [2.54] [2.14] [0.66] [0.48]

(5) 0.24 0.51 0.58 0.49 0.60 0.36 0.39 0.53 0.47 0.31 0.27
[1.33] [2.91] [3.48] [2.99] [3.54] [3.26] [3.49] [5.19] [4.49] [3.26] [2.83]

Panel B: Portfolio average number of firms and market capitalization

TXCDLTT Quintiles TXCDLTT Quintiles

Average n Average market capitalization ($106)

(L) (2) (3) (4) (H) (L) (2) (3) (4) (H)

S
iz
e
q
u
in
ti
le
s (1) 251 258 260 267 259 17 16 20 24 24

(2) 77 78 77 80 76 39 40 40 42 40

(3) 56 56 56 57 57 70 72 72 73 72

(4) 49 49 49 49 50 159 163 161 168 165

(5) 47 47 47 47 47 809 1030 1151 1405 1813
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Figure 2: Distribution of Sharpe ratios.
This figure plots a histogram of Sharpe ratios for 212 anomalies, and compares the
Sharpe ratio of the TXCDLTT with them (red vertical line). Panel A plots results
for gross Sharpe ratios. Panel B plots results for net Sharpe ratios.

37



1970 1980 1990 2000 2010 2020

$1

$10

Gross returns

Anomalies
TXCDLTT

1970 1980 1990 2000 2010 2020

$1

Net returns

Figure 3: Dollar invested.
This figure plots the growth of a $1 invested in 212 anomaly trading strategies (gray
lines), and compares those with the TXCDLTT trading strategy (red line). The
strategies are constructed using value-weighted quintile sorts using NYSE break-
points. Panel A plots results for gross strategy returns. Panel B plots results for net
strtaegy returns.
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Figure 4: Gross and generalized net alpha percentiles of anomalies relative to factor models
This figure plots the percentile ranks for 212 anomaly trading strategies in terms of alphas (solid lines), and compares those with
the TXCDLTT trading strategy alphas (diamonds). The strategies are constructed using value-weighted quintile sorts using NYSE
breakpoints. The alphas include those with respect to the CAPM, Fama and French (1993) three-factor model, Fama and French (1993)
three-factor model augmented with the Carhart (1997) momentum factor, Fama and French (2015) five-factor model, and the Fama and
French (2015) five-factor model augmented with the Carhart (1997) momentum factor following Fama and French (2018). The left panel
plots alphas with no adjustment for trading costs. The right panel plots Novy-Marx and Velikov (2016) net generalized alphas.
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Figure 5: Distribution of correlations.
This figure plots a name histogram of correlations of 208 filtered anomaly signals
with TXCDLTT. The correlations are pooled. Panel A plots Pearson correlations,
while Panel B plots Spearman rank correlations.
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Figure 6: Agglomerative hierarchical cluster plot
This figure plots an agglomerative hierarchical cluster plot using Ward’s minimum method and a maximum of 10 clusters.
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Figure 7: Distribution of t-stats on conditioning strategies
This figure plots histograms of t-statistics for predictability tests of TXCDLTT con-
ditioning on each of the 208 filtered anomaly signals one at a time. Panel A re-
ports t-statistics on βTXCDLTT from Fama-MacBeth regressions of the form ri,t =
α + βTXCDLTTTXCDLTTi,t + βXXi,t + ϵi,t, where X stands for one of the 208 filtered
anomaly signals at a time. Panel B plots t-statistics on α from spanning tests of the form:
rTXCDLTT,t = α + βrX,t + ϵt, where rX,t stands for the returns to one of the 208 filtered
anomaly trading strategies at a time. The strategies employed in the spanning tests are
constructed using quintile sorts, value-weighting, and NYSE breakpoints. Panel C plots
t-statistics on the average returns to strategies constructed by conditional double sorts.
In each month, we sort stocks into quintiles based one of the 208 filtered anomaly signals
at a time. Then, within each quintile, we sort stocks into quintiles based on TXCDLTT.
Stocks are finally grouped into five TXCDLTT portfolios by combining stocks within each
anomaly sorting portfolio. The panel plots the t-statistics on the average returns of these
conditional double-sorted TXCDLTT trading strategies conditioned on each of the 208
filtered anomalies.
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Table 4: Fama-MacBeths controlling for most closely related anomalies
This table presents Fama-MacBeth results of returns on TXCDLTT. and the six most
closely related anomalies. The regressions take the following form: ri,t = α +
βTXCDLTTTXCDLTTi,t +

∑s
k=1 ixβXk

Xk
i,t + ϵi,t. The six most closely related anoma-

lies, X, are Operating profitability R&D adjusted, net income / book equity, Cash-based
operating profitability, gross profits / total assets, Taxable income to income, operating
profits / book equity. These anomalies were picked as those with the highest combined
rank where the ranks are based on the absolute value of the Spearman correlations in Panel
B of Figure 5 and the R2 from the spanning tests in Figure 7, Panel B. The sample period
is 196306 to 202306.

Intercept 0.11 0.12 0.97 0.86 0.11 0.10 0.67
[3.69] [4.97] [3.83] [3.53] [4.24] [4.15] [2.45]

TXCDLTT -0.18 0.19 0.45 0.11 0.26 -0.41 -0.18
[-2.61] [1.48] [0.15] [0.37] [0.29] [-0.55] [-3.17]

Anomaly 1 0.16 0.46
[3.37] [0.82]

Anomaly 2 -0.37 -0.20
[-1.04] [-1.14]

Anomaly 3 0.19 0.16
[2.71] [4.29]

Anomaly 4 0.73 0.32
[1.18] [1.62]

Anomaly 5 0.10 0.43
[3.06] [1.76]

Anomaly 6 0.37 0.14
[3.20] [0.84]

# months 631 684 673 684 636 631 631

R̄2(%) 1 1 1 0 0 0 0
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Table 5: Spanning tests controlling for most closely related anomalies
This table presents spanning tests results of regressing returns to the TXCDLTT trading
strategy on trading strategies exploiting the six most closely related anomalies. The re-

gressions take the following form: rTXCDLTT
t = α+

∑6
k=1 βXk

rXk
t +

∑6
j=1 βfjr

fj
t +ϵt, where

Xk indicates each of the six most-closely related anomalies and fj indicates the six factors
from the Fama and French (2015) five-factor model augmented with the Carhart (1997)
momentum factor. The six most closely related anomalies, X, are Operating profitability
R&D adjusted, net income / book equity, Cash-based operating profitability, gross profits
/ total assets, Taxable income to income, operating profits / book equity. These anomalies
were picked as those with the highest combined rank where the ranks are based on the
absolute value of the Spearman correlations in Panel B of Figure 5 and the R2 from the
spanning tests in Figure 7, Panel B. The sample period is 196306 to 202306.

Intercept 0.04 0.21 0.01 0.08 0.18 0.18 -0.04
[0.50] [2.60] [0.12] [1.05] [2.27] [2.22] [-0.61]

Anomaly 1 44.31 13.06
[13.68] [2.94]

Anomaly 2 31.27 9.86
[7.03] [2.38]

Anomaly 3 50.50 21.10
[14.60] [4.68]

Anomaly 4 45.36 26.00
[15.25] [8.28]

Anomaly 5 36.44 21.32
[10.11] [6.45]

Anomaly 6 29.39 -2.70
[7.74] [-0.68]

mkt -0.16 -3.71 -3.19 -8.81 -7.25 -4.21 -2.42
[-0.08] [-1.82] [-1.78] [-5.07] [-3.87] [-2.11] [-1.40]

smb 2.00 -5.91 1.74 -18.65 -14.94 -8.01 -2.15
[0.70] [-1.90] [0.62] [-7.41] [-5.53] [-2.72] [-0.76]

hml -15.60 -26.90 -15.87 -10.97 -29.76 -27.79 -7.63
[-4.34] [-7.20] [-4.50] [-3.08] [-8.31] [-7.46] [-2.30]

rmw 38.91 39.87 48.02 42.46 51.81 41.02 19.43
[9.42] [7.10] [12.86] [11.13] [12.84] [7.84] [3.91]

cma 6.97 14.04 -1.85 13.63 6.10 6.88 9.16
[1.37] [2.53] [-0.37] [2.77] [1.16] [1.26] [1.96]

umd -1.17 2.02 -1.30 1.82 1.82 0.02 -1.38
[-0.66] [1.06] [-0.73] [1.06] [0.98] [0.01] [-0.86]

# months 716 720 716 720 720 716 716

R̄2(%) 57 50 59 60 53 50 67
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Figure 8: Combination strategy performance
This figure plots the growth of a $1 invested in trading strategies that combine
multiple anomalies following Chen and Velikov (2022). In all panels, the blue solid
lines indicate combination trading strategies that utilize 154 anomalies. The red
solid lines indicate combination trading strategies that utilize the 154 anomalies as
well as TXCDLTT. Panel A shows results using ”Average rank” as the combination
method. Panel B shows results using ”Weighted-Average rank” as the combination
method. Panel C shows results using ”Fama-MacBeth” as the combination method.
Panel D shows results using ”Partial Least Squares” as the combination method.
Panel E shows results using ”IPCA” as the combination method. Panel F shows
results using ”LASSO” as the combination method. See Section 6 for details on the
combination methods.

45



References

Carhart, M. M. (1997). On persistence in mutual fund performance. Journal of
Finance, 52:57–82.

Chen, A. and Velikov, M. (2022). Zeroing in on the expected returns of anomalies.
Journal of Financial and Quantitative Analysis, Forthcoming.

Chen, A. Y. and Zimmermann, T. (2022). Open source cross-sectional asset pricing.
Critical Finance Review, 27(2):207–264.

Detzel, A., Novy-Marx, R., and Velikov, M. (2022). Model comparison with trans-
action costs. Journal of Finance, Forthcoming.

Fama, E. F. and French, K. R. (1993). Common risk factors in the returns on stocks
and bonds. Journal of Financial Economics, 33(1):3–56.

Fama, E. F. and French, K. R. (2015). A five-factor asset pricing model. Journal of
Financial Economics, 116(1):1–22.

Fama, E. F. and French, K. R. (2018). Choosing factors. Journal of Financial
Economics, 128(2):234–252.

Fama, E. F. and MacBeth, J. D. (1973). Risk, return, and equilibrium: empirical
tests. Journal of Political Economy, 81(3):607–636.

Haugen, R. A. and Baker, N. L. (1996). Commonality in the determinants of expected
stock returns. Journal of Financial Economics, 41(3):401–439.

Kelly, B. T., Pruitt, S., and Su, Y. (2019). Characteristics are covariances: A unified
model of risk and return. Journal of Financial Economics, 134(3):501–524.

Lewellen, J. (2015). The cross-section of expected returns. Critical Finance Review,
4(1):1–44.

Light, N., Maslov, D., and Rytchkov, O. (2017). Aggregation of information about
the cross section of stock returns: A latent variable approach. Review of Financial
Studies, 30:1339–1381.

Novy-Marx, R. and Velikov, M. (2016). A taxonomy of anomalies and their trading
costs. Review of Financial Studies, 29(1):104–147.

Novy-Marx, R. and Velikov, M. (2023). Assaying anomalies. Working paper.

46


	Introduction
	Walk-through of the anomaly testing protocol
	Section 1: Introduction
	Section 2: Signal diagnostics
	Section 3: Does the signal predict returns?
	Section 4: Signal performance relative to the factor zoo
	Section 5: Does the signal add relative to related anomalies?
	Section 6: Does the signal add relative to the whole zoo?

	Protocol validation
	Case study: Income Taxes to Total Debt
	Data mining

	Discussion and caveats
	Conclusion
	Output example
	Introduction
	Signal diagnostics
	Does TXCDLTT predict returns?
	How does TXCDLTT perform relative to the zoo?
	Does TXCDLTT add relative to related anomalies?
	Does TXCDLTT add relative to the whole zoo?

