REVISION SHEET CH - 02 POLYNOMIALS

Standard: 10th Mathematics **Revision Sheet Ch: 02**

- Q 1. If α , β are zeroes of the polynomial $2x^2 5x 4$, then find the value of $\frac{1}{\alpha} + \frac{1}{\beta}$.
- Q 2. If α and β are the zeroes of the quadratic polynomial $f(x) = x^2 x 4$, find the value of $\frac{1}{\alpha} + \frac{1}{\beta} \alpha\beta$.
- Q 3. If α , β are zeroes of the polynomial $4x^2 + 3x + 7$, then find the value of $\frac{1}{\alpha} + \frac{1}{\beta}$.
- Q 4. If α , β are zeroes of the polynomial $-3x^2 + x 5$, then find the value of $\frac{1}{\alpha} + \frac{1}{\beta}$.
- Q 5. If α and β are zeroes of $4x^2 x 4$, find quadratic polynomial whose zeroes are $\frac{1}{2\alpha}$ and $\frac{1}{2\beta}$
- Q 6. If the squared difference of the zeroes of the quadratic polynomial $f(x)=x^2+px+45$ is equal to 144, find the value of p.
- Q 7. If α and β are zeroes of the polynomial $x^2 p(x+1) + c$ such that $(\alpha + 1)(\beta + 1) = 0$, then find the value of c.
- Q 8. Find the value of k such that the polynomial $x^2 (k+6)x + 2(2k-1)$ has sum of its zeroes equal to half of their product.
- O 9. Find a quadratic polynomial whose zeroes are reciprocals of the zeroes of the polynomial

$$f(x) = ax^2 + bx + c, a \neq 0, c \neq 0.$$

- O 10. The quadratic polynomial, the sum of whose zeroes is -5 and their product is 6, is
 - (a) $x^2 + 5x + 6$
 - (b) $x^2 5x + 6$
 - (c) $x^2 5x 6$
 - (d) $-x^2 + 5x + 6$
- Q 11. If one of the zeroes of a quadratic polynomial $(k-1)x^2 + kx + 1$ is -3, then the value of k is
 - (a) $\frac{4}{3}$
 - (b) $-\frac{4}{3}$ (c) $\frac{2}{3}$

 - $(d) \frac{2}{3}$