

Original Research

Mariannaea camelliae from India: Morphological and Phylogenetic Insights

Shiwali Rana*, Komal Bungla, Vedika Inchure, Shweta Kumavat and Sanjay K. Singh*

National Fungal Culture Collection of India, Biodiversity and Palaeobiology Group MACS' Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, India

Abstract

This study reports *Mariannaea camelliae* isolated as a phylloplane fungus from *Camellia sinensis* leaves collected from Kangra, Himachal Pradesh. The isolate was characterized based on cultural morphology, microscopic features, and molecular phylogeny. Detailed observations of colony morphology on different media, along with conidiophore structure, phialides, and conidia, confirmed its morphological congruence with the type description. Molecular identification using a combined dataset of internal transcribed spacer (ITS), large subunit (LSU), and beta-tubulin gene sequences further supported its identity. Phylogenetic analysis using the maximum likelihood (ML) method positioned the isolate firmly within the *Mariannaea* clade, forming a sister clade with *M. camelliae*. This finding expands the known distribution of *M. camelliae* and underscores the ecological significance of phylloplane fungi in tea ecosystems. Understanding its diversity and functional attributes may contribute to sustainable strategies for plant health and disease management in tea cultivation. To our understanding, this is the first report describing a phylloplane *M. camelliae* using an integrated approach of conventional and modern molecular tools from India.

Keywords: Fungi, Nectriaceae, Phylogeny, Phylloplane, Taxonomy, India.

Citation: Rana, S., Bungla, K., Inchure, V., Kumavat, S., Singh, S.K. (2025). *Mariannaea camelliae* from India: Morphological and Phylogenetic Insights. *Mycological Spectrum*, 1(2):66-79.

Received: 24 August 2025 | Accepted: 18 September 2025 | Published: 23 September 2025.

Handling Editor: Dr. S.K. Deshmukh | **Reviewers**: Prof. D.J. Bhat and Dr. Mahadevakumar.

Copyright: ©2025 Rana, Bungla, Inchure, Kumavat, Singh. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution, or reproduction in other forums is permitted, provided the original author(s) or licensor is credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution, or reproduction is permitted that does not comply with these terms.

^{*}Author for correspondence: shiwalirana@aripune.org; sksingh@aripune.org

1. Introduction

Fungi represent a vast and ecologically integral group of organisms adapted to nearly all terrestrial and aquatic ecosystems. They are pivotal in ecosystem stability through critical functions such as nutrient recycling, decomposition of organic matter, establishment of symbiotic associations, and engagement in complex trophic interactions (Park et al., 2020; Lombard et al., 2015; Domínguez-Núñez & Albanesi, 2020). Despite their ecological significance and the burgeoning recognition for biotechnological applications, fungi remain one of the least explored groups globally. Currently, it's estimated that between 2.2 to 3.8 million species of fungi exist, yet a mere fraction—approximately 170,000—are described formally, underscoring a significant taxonomic gap, especially in tropical and subtropical regions believed to harbor a great diversity of yet undescribed taxa (Wendt et al., 2017).

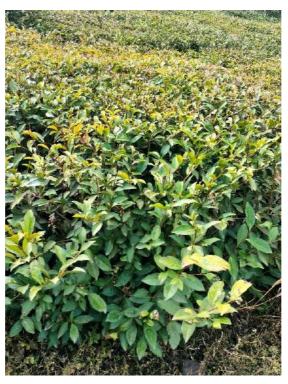
The Indian Himalayas specifically exemplify an underexplored fungal biodiversity hotspot. This region, characterized by its extensive altitudinal range, diverse vegetation, and high levels of endemism, is likely to serve as a rich repository of fungal diversity that remains largely undocumented (Jung et al., 2018). Systematic documentation of these fungi is essential not only for taxonomic and ecological insights but also for identifying species with potential applications in agriculture, forestry, medicine, and industry (Domínguez-Núñez & Albanesi, 2020). Such efforts align with emerging needs for better understanding biodiversity in the face of environmental change (Printzen et al., 2013).

The genus Mariannaea G. Arnaud ex Samson (Nectriaceae) constitutes a diverse group of ascomycetous fungi primarily associated with decaying plant materials, soil, and occasionally insects. The taxonomic placement and phylogenetic relationships of Mariannaea have been elucidated through modern molecular techniques, revealing its close relationship within hypocrealean fungi, specifically relating it to genera such as Cosmospora and Acremonium (Gräfenhan et al., 2011; Lombard et al., 2015). The genus is typified by Mariannaea elegans (Corda) Samson, characterized by distinct morphological traits, including slimy, onecelled conidia produced from flask-shaped phialides, with the ability to adapt to various ecological niches (Noh & Kim, 2025). Sexual morph has been linked to Nectria (Fr.) Fr. and Cosmospora Rabenh. in Nectriaceae (Samuels & Seifert, 1991), which has been proved to be a monophyletic group by molecular studies (Cai et al., 2009; Lombard et al., 2015). Hu et al. (2016) reviewed the genus and designated an epitype of the type species M. elegans with extype culture. Currently, around 25 species of *Mariannaea* are recognized, with new species continuously being described and added to this genus (https://www.indexfungorum.org/, accessed on 4th August 2025). These fungi are often isolated from diverse habitats, including soil, decaying bark, and freshwater environments (Cai et al., 2009; Tang et al., 2012). Mariannaea species are recognized for their potential in biotechnological applications, particularly due to their ability to produce robust extracellular enzymes. These enzymes, including cellulases and xylanases, are effective in bioremediation and industrial processes such as the bioconversion of lignocellulosic biomass (Luangsa-ard et al., 2005). Furthermore, some members of this genus exhibit entomopathogenic properties, potentially serving as biocontrol agents against pest populations (Park et al., 2021). The ecological roles of Mariannaea highlight its importance not only in decomposing organic matter but also in nutrient cycling within ecosystems. Despite its ecological significance, the diversity of Mariannaea species, particularly in less explored regions such as the Indian Himalayas, remains understudied.

Mariannaea camelliae Suwannar. & J. Kumla, initially described from Thailand is known for its association with Camellia species leaf litter (Boonmee et al., 2021). This species is morphologically distinguished by verticillately branched conidiophores and chains of conidia (Domínguez-Núñez & Albanesi, 2020). In mycological explorations aimed at documenting foliar fungi in the Northwestern Himalayas, an isolate exhibiting morphological characteristics consistent with M. camelliae was recovered, marking its first record in India. The identity of the isolate was further confirmed by phylogenetic characteristics. This record not only broadens the geographical scope of the species but also highlights the rich, yet largely uncharacterized, fungal diversity endemic to the Indian Himalayan region (Park et al., 2020). Such findings are crucial for refining fungal biogeography and enhancing ecological understanding of species distribution patterns in this biodiverse landscape.

The discovery of *Mariannaea camelliae* from Himachal Pradesh, represents a significant addition to the known distribution of this genus from India, further emphasizing the rich and largely undocumented fungal diversity present in the region (Park et al., 2020). This finding not only expands the known geographical range of the species but also underscores the need for systematic exploration and documentation of fungal biodiversity in underrepresented areas.

2. Materials and Methods


Samples were collected from two freshwater streams flowing through scrub jungles in southwest India with differing water qualities and riparian vegetation. Drift conidia of aquatic hyphomycetes in water and accumulated conidia in foam samples were assessed. Colonized aquatic hyphomycetes were assessed in submerged leaf litter and wood (bark and cambium).

2.1 Collection, isolation, and morphological characterization

Tea (Camellia sinensis) leaves were collected from Panchrukhi, Kangra region of Himachal Pradesh, India (Figure 1). Samples were collected in sterile polythene bags and transported to the laboratory. The collected tea leaves were surface washed using sterile water, and the washed water was inoculated on potato dextrose agar (PDA) supplemented with antibacterial antibiotics. After 5-7 days of incubation at 25 °C, fungal colonies appearing on agar plates were picked up separately with the help of a stereomicroscope (NIKON SMZ1500 aided with Digi-CAM) and transferred onto fresh PDA plates. The inoculated petri-plates were kept for incubation at 25 °C. After 5 days, plates were observed for purity, sporulation and preliminary identification, and then selected colonies were transferred onto 08 different culture media for further studies.

Cultural characteristics were studied on 8-different culture media, viz., Potato dextrose agar (PDA), Rose Bengal agar (RBA), Malt extract agar (MEA), V8 Juice Agar, Sabouraud dextrose agar (SDA), Cornmeal agar (CMA), Czapek dox agar (CDA) and Potato carrot agar (PCA). Methuen handbook of color was referred to for recording colors of the colonies on different agar media (Kornerup & Wanscher 1978). Microscopic details of the fungus in question were observed using lactophenol-cotton blue as staining cum mounting media under Olympus BX53 (Tokyo, Japan) microscope. Measurements and photomicrographs of the fungal structures were taken from Olympus cellSens Standard 3.2 software and Olympus DP74 camera attached with Olympus BX53 microscope. Photomicrographs of the fungal structures were also taken from a Scanning Electron Microscope (Zeiss MA15) Jena, Germany. The pure culture is deposited and accessioned in the National Fungal Culture Collection of India (WDCM 932).

Figure 1. Camellia sinensis, the host plant from which Mariannaea camelliae was isolated. The host plant was photographed at the field site in Panchrukhi, Kangra, Himachal Pradesh.

2.2 DNA extraction, PCR amplification, and DNA sequencing

Genomic DNA was extracted from pure fungal colonies raised on Potato Dextrose Agar (PDA) Petri plates. Following approximately one week of incubation, DNA extraction was performed using a simple, easy, and rapid protocol facilitated by FastPrep®24 tissue homogenizer (MP Biomedicals GmbH, Eschwege, Germany) (Aamir et al., 2015). In brief, 300 mg of fresh mycelia was carefully scraped from the PDA plate and placed in a 2 mL screw cap tube containing a ceramic pestle along with acid-washed fine glass beads [425-600 μm (30-40 U.S. sieve), Sigma].

Subsequently, 1 mL of the lysis buffer, composed of 100 mM Tris HCl (pH 8), 50 mM EDTA (pH 8), and 3% SDS was added to the tube. The homogenization process was performed for 1 minute at 6 M/s twice. Following homogenization, the mixture was centrifuged at 13,000 rpm for 15 minutes at room temperature. The resulting supernatant was carefully transferred into a fresh microcentrifuge tube, and an equal volume of phenol:chloroform: isoamyl alcohol was added. The mixture was shaken well; this was followed by centrifugation at 13,000 rpm for 10 minutes. The upper aqueous layer was transferred into a fresh microcentrifuge tube, and an equal volume of chilled isoamyl alcohol (stored at -20°C) was added. This mixture was incubated for 20 minutes. The DNA precipitated, and the microcentrifuge tube was centrifuged at 13,000 rpm for 10 minutes to pellet down the DNA. The supernatant was discarded, and the DNA pellet was washed with 70% ethanol before being centrifuged at 13,000 rpm for 5 minutes. The pellet was allowed to air-dry and was later dissolved in a 1× TE buffer [10 mM Tris HCl, 1 mM EDTA]. To eliminate RNA, 1 µL of RNase A Solution (20 mg/mL) was added, followed by vortexing, and incubation at 37°C for 30 minutes. The quality and integrity of the

Mycological Spectrum (e-ISSN:3107-6203) https://mycologicalspectrum.org/ Published by Association of Fungal Biologists, India

extracted genomic DNA were assessed using 0.8% agarose gel electrophoresis (Sigma-Aldrich, USA) prepared in 1× TAE buffer (0.4 M Tris acetate, 0.01 M EDTA) containing 0.5 μ g/mL ethidium bromide.

Partial gene sequences of isolates were determined for three gene markers, i.e., ITS, LSU, and β -tubulin. The primer sets used to amplify particular gene regions are ITS-5 (5'-GGAAGTAAAAGTCG-TAACAAGG-3') and ITS-4 (5'-TCCTCCGCTTATTGATATGC-3') for amplifying and sequencing Internal transcribed spacer (ITS) (White et al., 1990); LR-OR (5'-ACCCGCTGAACTTAAGC-3') and LR-7 (5'-TACTACCACCAAGATCT-3') for amplifying and sequencing 28S large subunit of the nrDNA (LSU) (Vilgalys et al., 1990; Vilgalys et al., 1994); Bt2a (5'-GGTAACCAAATCGGTGCTGCTTTC-3') and Bt2b (5'-ACCCTCAGTGTAGTGACCCTTGGC-3') for amplifying and sequencing of β -tubulin (Glass & Donaldson, 1995).

PCR was carried out in a 25 μ L reaction using 12.5 μ L 2x Invitrogen Platinum SuperFi PCR Mastermix, 2 μ L template DNA (10–20 ng), 1.5 μ L 10 pmol primer, 5 μ L 5x GC enhancer and H₂O (Sterile Ultra-Pure Water, Sigma, St. Louis, MO, USA), with the volume made to 25 μ L. The conditions of the thermo-cycling involved: for the ITS gene region, an initial denaturation at 94 °C for 5 min, 35 cycles of 1 min at 94 °C, 30 s at 52 °C, 1 min at 72 °C, and lastly an extension at 72 °C for 8 min; for LSU, 5 min denaturation at 95 °C, 35 cycles of 60 s at 95 °C, 50 s at 52 °C, and 1.2 min at 72 °C, with a final 8 min extension at 72 °C; for β -tubulin gene region, 2 minutes denaturation at 94°C, 40 cycles of 35 seconds at 94°C, 55 seconds at 52°C and 2 minutes at 72°C with a final 10 minutes extension at 72°C.

The PCR amplicons were purified with an ALPHAGEN Biotech Ltd. (Taiwan) PCR purification kit as per the manufacturer's instructions. Purified PCR products of all marker genes were checked on 1.2% agarose gel electrophoresis stained with 0.5 µg/mL ethidium bromide. They were further subjected to a sequencing PCR reaction using a BigDye®Terminator v3.1 Cycle Sequencing Kit, as per the manufacturer's instructions. Briefly, the sequencing PCR reaction of 20 μL included 4 μL of 5× sequencing buffer, 2 μL of BigDyeTM Terminator premix, 4 μL of primer (5 pmol), 4 μL of the purified amplicon and H₂O (Sterile Ultra-Pure Water, Sigma), with the volume made to 20 µL. Thermal cycling conditions consisted of an initial denaturation at 96°C for 3 minutes, followed by 30 cycles of 94°C for 10 seconds, 50°C for 40 seconds, and 60°C for 4 minutes. The BigDye® terminators and salts were removed using the BigDye Xterminator® Purification Kit (Thermo Fisher Scientific, Waltham, MA, USA) as per the manufacturer's instructions. After performing cycle sequencing with BigDyeTM terminators, 80 µL of SAMTM Solution and 20 µL of XTerminatorTM solution were added to each tube. The mixture was vortexed for 30 minutes and then centrifuged at 10000 rpm for 30 seconds. The supernatant was transferred to a 96well microplate, the module was selected, and the run was set up. The sequence was elucidated using the Applied Biosystems SeqStudio Genetic Analyzer (Applied Biosystems, Foster City, CA, USA). Sequences obtained were submitted to NCBI GenBank.

2.3 Phylogenetic analysis

To determine the evolutionary relationship of this taxon, three ITS, LSU and β -tubulin gene regions were used to compare with the existing species under the genus Mariannaea. The sequences of the related authentic strains were retrieved from NCBI. A phylogenetic tree was constructed, in which 30 sequences of species belonging to genus Mariannaea were aligned with sequences of these taxa. They were used to construct the phylogenetic tree. Stachybotrys echinatus CBS 344.39, Stachybotrys chartarum CBS 129.13, and Nectria balansae A.R. 4446 were selected as the outgroup taxa. The strains used for the construction of the phylogenetic

tree, along with their accession numbers and other details, are tabulated in Table 1. Each gene region was aligned individually with MAFFT v. 6.864b (Katoh & Standley, 2013). The alignments were adjusted and manually checked with Aliview (Larsson, 2014).

Further, alignments were concatenated using MEGA11 (Tamura et al., 2021) and used for the phylogenetic analyses. The best substitution model was figured using ModelFinder (Kalyaanamoorthy et al., 2017). Later, the Windows version IQ-tree tool v.1.6.12 (Nguyen et al., 2015) was used to construct the phylogenetic tree. Bootstrap analyses of 1000 replicates assessed the reliability of the branches. The constructed phylogenetic tree was visualized in FigTree v.1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/ accessed on 30th July 2025).

Table 1. GenBank accession numbers and other details of the isolates used for the phylogenetic study.

Sr.	Scientific name	Strain	Source	Location	GenBank Accession Nos.		
no.							
					ITS	LSU	β-tub
1	Mariannaea	LC1715 ^T	Submerged	China	KX98	KX98	KX98
	chlamydospora		wood		6134	6141	6147
2	M. elegans	CBS	Pinus sylvestris,	Netherland	KX98	KX98	KX98
		$217.73A^{T}$	decayed bark	S	6132	6139	6145
3	M. camptospora	CBS 209.73 ^T	Forest soil	Netherland	MH86	MH87	AY62
				S	0663	2365	4245
4	M. macro-	FKI-4735 ^T	Soil	Japan	AB85	AB85	-
	chlamydospora				5777	5782	
5	M. lignicola	LC1791 ^T	Submerged	China	KX98	KX98	KX98
			wood		6136	6143	6149
6	M. lignicola	LC1792	Submerged	China	KX98	KX98	KX98
			wood		6137	6144	6150
7	M. submersa	MFLU 19-	Submerged	Thailand	MT49	MT49	-
		0549	wood		6744	6752	
8	M. submersa	MFLU 19-	Submerged	Thailand	MT49	MT49	-
		0542 ^T	wood		6743	6751	
9	M. pinicola	CBS 745.88 ^T	Pinus sp.	Venezuela	MH86	MH87	KM23
					2152	3845	2011
10	M. samuelsii	CBS	-	Guatemala	MH86	MH87	KM23
		125515 ^T			3675	5139	2015
11	M. samuelsii	CBS 746.88	Bark	Jamaica	MH86	MH87	KM23
		_			2153	3846	2014
12	M. humicola	CBS 740.95 ^T	Soil	Brazil	KM23	KM23	KM23
					1755	1619	2012
13	M. aquaticola	MFU090223	Submerged	Thailand	GQ15	GQ15	-
		T	wood		3834	3833	
14	M. aquaticola	MFU090224	Submerged	Thailand	GQ15	GQ15	-
			wood		3836	3835	
15	M. cinerea	LC 1766 ^T	Submerged	China	KX98	KX98	KX98
			wood		6135	6142	6148
16	<i>M</i> .	MFLUCC	-	-	MK82	MK82	-
	superimposita	17-0465 ^T			8662	8227	
17	<i>M</i> .	CBS 124559	Soil	Japan	AB85	AB85	-
	superimposita				5781	5786	

18	М.	CBS 113472	Soil	Japan	AB85	AB85	_
10	superimposita	CBS 113 172	Son	Japan	5780	5785	
19	M. catenulatae	CBS 491.62 ^T	Wood	Venezuela	KM23	KM23	KM23
1)	M. catematatae	CD5 471.02	Wood	Venezueia	1752	1617	2009
20	M dimounha	HMAS	Rotten bark	China	KF767	KJ002	2007
20	M. dimorpha	266564 ^T	Kottell balk	Cillia	353	443	-
2.1	M. camelliae	CMU 329 ^T	Camallia	Thailand			
21	M. cameiliae	CMU 329	Camellia	Inamana	NR_1	NG_0	-
22	16 11:	NEGGI (125	sinensis	т 1'	75622	88070	DYZOO
22	M. camelliae	NFCCI 6135	Camellia	India	PX071	PX071	PX09
			sinensis		450	451	3732
23	M. koreensis	NIBRFGC00	Soil	Republic	OR83	OR83	OR84
		0512616 ^T		of Korea	5254	5270	1123
24	M. koreensis	DUCC15750	Soil	Republic	PQ533	PQ533	PP111
				of Korea	829	831	899
25	M. atlantica	URM 8146 ^T	Soil	Brazil	MN15	MN15	-
					1372	1398	
26	M. fusiformis	LC 1701 ^T	Submerged	China	KX98	KX98	KX98
			wood		6133	6140	6146
27	M. elegans var.	CBS 239.56 ^T	-	Zaire	AY62	AY52	AY62
	punicea				4201	6489	4244
28	M. terricola	URM	Soil	Brazil	MK10	MK10	-
		92163 ^T			1011	1012	
29	Stachybotrys	CBS 344.39	-	_	KU84	-	KU84
	echinatus				6145		6247
30	Stachybotrys	CBS 129.13	-	_	KM23	MH86	KM23
	chartarum				1858	6145	2127
31	Nectria	A.R. 4446	Coronilla sp.	France	HM48	GQ50	HM48
	balansae		co. omma sp.	1 101100	4552	5996	4607
L	Caransac	<u> </u>		I	.552	2770	1007

Ex-type isolates/vouchers marked as ^T

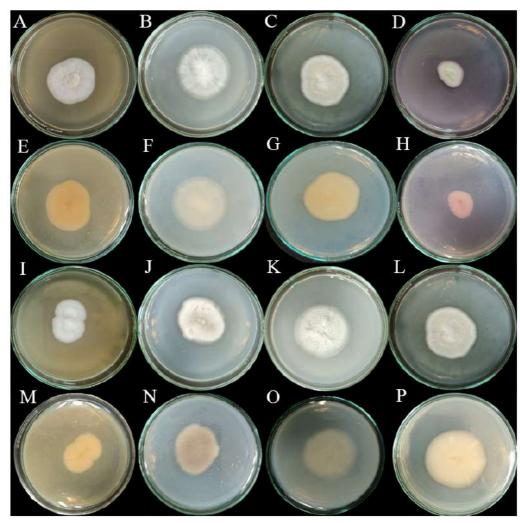
3. Results

3.1 Taxonomy

Mariannaea camelliae N. Suwannarach & J. Kumla, Fungal Diversity 111:182, 2021(Figs. 2-4).

Host/distribution: Camellia sinensis from Palampur, Himachal Pradesh, India

Description: Hyphae hyaline, septate, smooth-walled, sometimes constricted near septa, 1.8–5.7 (\bar{x} =3) μm wide. Conidiophores hyaline, septate, smooth-walled, erect, macronematous, mononematous, sometimes branched, bearing 1–4 phialides, 54–198 × 1.45–2.95 (\bar{x} =112 × 2) μm. Phialides hyaline, smooth-walled, flask-shaped, 9.35–25 × 1.45–3.1 (\bar{x} =16 × 2.25) μm. Conidia hyaline, aseptate, smooth-walled, globose to subglobose, produced in imbricate chains 2.5–5.5 × 2.1–4.5 (\bar{x} = 3.75 × 3.1) μm; Q=1–1.65, Qm=1.24. Chlamydospores when present, hyaline, smooth and thick-walled, terminal to intercalary, produced in chains, globose to ellipsoidal or lageniform, sometimes irregular, 8.3–20.4 × 5.05–12.45 (\bar{x} = 13.3 × 8.7) μm.


Material examined: INDIA, Himachal Pradesh, Kangra, Palampur, Panchrukhi, *Camellia sinensis* leaves, S. Rana, 1st November 2024, NFCCI 6135.

GenBank numbers: ITS = PX071450, LSU = PX071451, β -tubulin = PX093732.

Culture characteristics: After 7 days of incubation at 25 °C, colonies on SDA reached 26–30 mm diameter, bit raised and velvety, having uniform to irregular filamentous edges; front orange grey (5B2), reverse greyish orange (5B4). On MEA, colonies reached 35 mm in

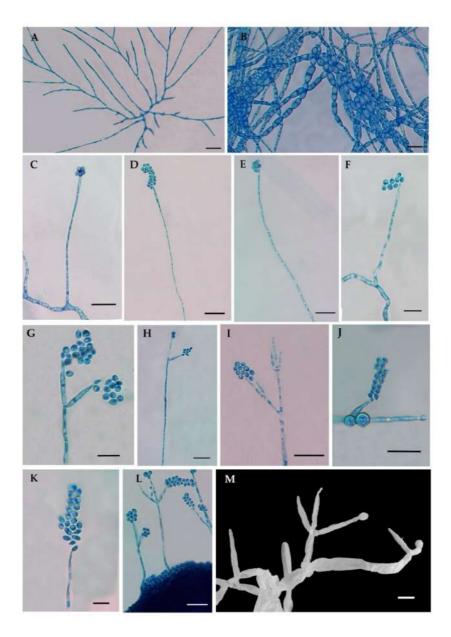

diameter, white to off-white, fluffy and velvety, slightly raised with uniform circular filamentous edges; front white (4A1), and reverse pale yellow (4A3). On PDA colonies reached 35 mm in diameter, white to off-white, fluffy and velvety with slightly raised texture and filamentous uniform to irregular edges; the front was dull yellow (3B3), and the reverse reddish yellow (4A7). On RBA, colonies measured 16 mm, also white to off-white, fluffy, velvety, slightly raised, with uniform and irregular filamentous edges; front white (10A1), and the reverse pastel red (10A4). On V8 juice agar, colonies reached 27 mm, showing a white to off-white fluffy texture, slightly raised, velvety with filamentous and irregular edges; front white (6A1), and reverse orange, grey (6B2). On Czapek Dox Agar, colonies measured 28 mm, light grey to white with a dense cottony, fluffy and velvety texture, having a smooth, well-defined edge; front white (6A1), reverse light brown (6D4). On CMA, colonies reached 29 mm in diameter, pale white to light grey with a fine, central dense cottony and radiating appearance, and a circular edge; front white (1A1), reverse pale yellow (1A3). On PCA, colonies measured 39 mm, white to off-white, fluffy, velvety, slightly raised with uniform and irregular filamentous edges; front white (5A1), reverse orange, grey (5B2).

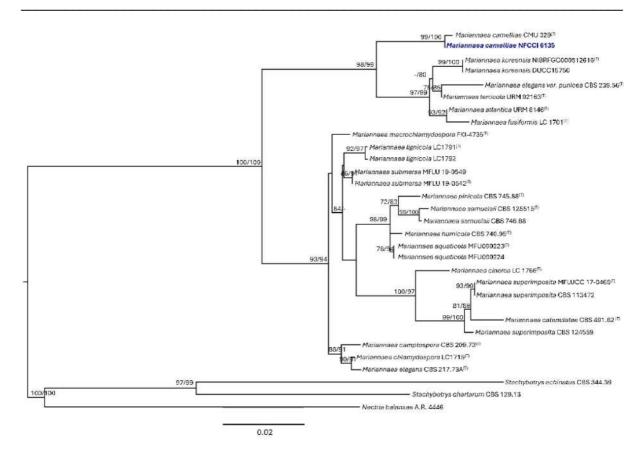
Figure 2. Colonies of *Mariannaea camelliae* after 7 days of incubation on SDA (A, E); MEA (B, F); PDA (C, G); RBA (D, H); V8 Juice agar (I, M); Czapek Dox agar (J, N); CMA (K, O); (PCA) L, P; (front view of colonies—A, B, C, D, I, J, K, L); reverse view of colonies—E, F, G, H, M, N, O, P).

Notes: The present isolate is identified as *Mariannaea camelliae* based on morphological characters and phylogenetic analysis. This isolate produced similar whorls of phialides in verticils on long conidiophores as reported earlier by Boonmee et al. (2021) for ex-type *Mariannaea camelliae* TBRC13889. In the present isolate, conidia produced were aseptate, hyaline, smooth-walled, and produced in imbricate chains as reported in its type species (*Mariannaea camelliae* TBRC13889). Moreover, the current isolate was found to make a sister clade in the phylogenetic tree based on ITS, LSU, and β -tubulin with the reported *Mariannaea camelliae* TBRC13889.

Figure 3. Morphological characters of *Mariannaea camelliae* NFCCI 6135 under an Olympus BX53 (Tokyo, Japan) microscope. A. Hyphae; B. Chlamydospores; C–F. Conidiophores bearing conidia; G–H, L. Branched conidiophores bearing conidia; I. Conidiophores and phialides; J–K. Conidia produced in imbricate chains; M. Branched conidiophores bearing conidia under Scanning Electron Microscope—Scale bars: A–E, H–L = 20 μ m; F, G = 10 μ m, D = 2 μ m.

Mycological Spectrum (e-ISSN:3107-6203) https://mycologicalspectrum.org/ Published by Association of Fungal Biologists, India

3.2 Phylogenetic analysis


The ITS, LSU, and β -tubulin gene regions were used to determine this isolate's identity. The phylogenetic tree in which 31 sequences of species belonging to Mariannaea were compared; the concatenated file contained sequence data with 1772 columns, 487 distinct patterns, 203 parsimony-informative, 126 singleton sites, and 1443 constant sites. TNe+I+G4 was chosen as the best-fit model according to the Bayesian Information Criterion as per ModelFinder. Based on the above model, the phylogeny was carried out using the Maximum Likelihood Method. The rate parameters were A-C: 1.00000, A-G: 2.36445, A-T: 1.00000, C-G: 1.00000, C-T: 6.84888, G-T: 1.00000; base frequencies were A: 0.250, 0.250, G: 0.250, and T: 0.250; the proportion of invariable sites was 0.631, and gamma shape alpha was 0.782. The log-likelihood of the consensus tree was -5483.891 (Figure 4). Tree branches were tested based on 1000 ultrafast bootstrap support replicates (UFBoot) and with an SH-like approximate likelihood ratio test (SH-like aLRT) with 1000 replicates. The combined phylogenetic tree generated using ITS, LSU, and β-tubulin sequence data nested this isolate in a unique, distinct, and wellsupported clade in the genus Mariannaea, which forms a sister clade with Mariannaea camelliae CMU 329 (Ex-type) supported with good SH-like aLRT and ultrafast bootstrap (UFBoot). The phylogenetic inference based on multiple gene regions supported by morphology, phylogeny this isolate is identified and documented here as Mariannaea camelliae N. Suwannarach & J. Kumla.

Discussion

The identification of *Mariannaea camelliae* from the phylloplane of *Camellia sinensis* leaves in Kangra, Himachal Pradesh, expands our understanding of fungal biodiversity associated with tea plants, marking its distinction from previous findings that reported this species in leaf litter of *C. sinensis* (Trilaksana & Saraswati, 2016). The phylloplane is a vital microhabitat for a variety of microorganisms, including fungi, which play crucial roles in plant health and ecosystem functionality. Fungal communities residing on the leaf surface can help inhibit the growth of phytopathogens, contribute to nutrient cycling, and enhance plant stress resilience (Zhang et al., 2019; Yang et al., 2013).

In this study, we identified the isolate using cultural characteristics, microscopic characteristics as well as phylogenetic analysis. We conducted the molecular phylogenetic analysis of Mariannaea camelliae using the maximum likelihood (ML) method, employing a combined dataset of internal transcribed spacer (ITS), large subunit (LSU), and beta-tubulin sequences. The ML approach is widely recognized for its accuracy in inferring phylogenetic relationships, particularly in complex datasets (Mehrishi et al., 2020). This analysis provides a clear picture of the evolutionary relationships of M. camelliae within its genus and related taxa while emphasizing the importance of molecular data in resolving phylogeographic questions that morphological analyses alone may not adequately address (Aardra et al., 2023). The inclusion of diverse sequence data enhances the robustness of the phylogenetic tree, allowing for more reliable interpretations of evolutionary dynamics within the clade containing Mariannaea camelliae (Ullah et al., 2022). Literature suggests that utilization of combined molecular datasets greatly improves phylogenetic resolution and accuracy, especially when dealing with taxa that exhibit morphological conservatism (Gilbert & Rossie, 2007). The successful implementation of the ML method in this context underscores its utility in documenting fungal diversity and understanding their ecological roles in specific environments.

Figure 4. Molecular phylogenetic analysis of *Mariannaea camelliae* NFCCI 6135, generated by the maximum-likelihood (ML) method based on combined ITS, LSU, and β -tubulin sequence data. The taxon isolated in this study is represented in blue bold.

Moreover, the relationship of *M. camelliae* with *C. sinensis* further supports the hypothesis that specific fungal species can adapt and thrive in particular niche environments, extending previous understandings of its ecological roles as observed in litter habitats (Trilaksana & Saraswati, 2016). The unique adaptations of M. camelliae to its environment may provide insights into fungal interactions with plants and their overall contributions to ecosystem services in tea cultivation, including resource stability and pest management for C. sinensis. Looking forward, further exploration into the biochemical properties of M. camelliae could unveil novel/interesting natural products with potential applications in agriculture and related sectors. Fungi are known producers of bioactive compounds, and identifying such capabilities in M. camelliae could provide sustainable alternatives to synthetic chemicals in agricultural practices (Mizobata et al., 2023). This underscores the importance of conserving fungal biodiversity within agroecosystems, where such microorganisms may become invaluable partners in sustainable farming strategies. In conclusion, the isolation and subsequent phylogenetic analysis of Mariannaea camelliae from Camellia sinensis in Kangra not only enriches the catalogue of Indian fungal diversity but also exemplifies the intricate ecological relationships between fungi and plants. The insights gained from this research reinforce the necessity of continued exploration, characterization, documentation, and conservation of indigenous fungal resources to harness potential ecological and biotechnological benefits.

Acknowledgements

The authors thank the Director, MACS-Agharkar Research Institute, Pune, for providing the necessary facilities and encouragement to carry out the research work. and to the ICAR-NBAIM, Mau, Uttar Pradesh, for the financial support under the Network Project of Application of Microorganisms in Agriculture and Allied Sectors (AMAAS) Project.

References

- Aamir, S., Sutar, S., Singh, S.K. & Baghela, A. (2015). A rapid and efficient method of fungal genomic DNA extraction, suitable for PCR-based molecular methods. *Plant Pathology and Quarantine*, 5, 74–81. Doi 10.5943/ppq/5/2/6
- Aardra, B., Sundar, S., Rajeshkumar, S., Ramadoss, R., Panneerselvam, S. et al. (2023). *Camellia sinensis* assisted synthesis of copper oxide nanoparticles (CuONPs) and assessment of its antioxidant activity and zebrafish embryonic toxicology evaluation. *Cureus*. https://doi.org/10.7759/cureus.50220
- Cai, L., Kurniawati, E., & Hyde, K. (2009). Morphological and molecular characterization of *Mariannaea aquaticola* sp. nov. collected from freshwater habitats. *Mycological Progress*, 9(3), 337–343. https://doi.org/10.1007/s11557-009-0641-1
- Gilbert, C., & Rossie, J. (2007). Congruence of molecules and morphology using a narrow allometric approach. *Proceedings of the National Academy of Sciences USA*, 104(29), 11910–11914. https://doi.org/10.1073/pnas.0702174104
- Domínguez-Núñez, J., & Albanesi, A. (2020). Ectomycorrhizal fungi as biofertilizers in forestry. https://doi.org/10.5772/intechopen.88585
- Glass, N.L., & Donaldson, G.C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. *Applied and Environmental Microbiology*, 61, 1323–1330. doi: 10.1128/aem.61.4.1323-1330.1995
- Gräfenhan, T., Schroers, H., Nirenberg, H., & Seifert, K. (2011). An overview of the taxonomy, phylogeny, and typification of Nectriaceous fungi in *Cosmospora*, *Acremonium*, *Fusarium*, *Stilbella*, and *Volutella*. *Studies in Mycology*, 68, 79–113. https://doi.org/10.3114/sim.2011.68.04
- Hu, D.M., Wang, M., & Cai, L. (2017). Phylogenetic assessment and taxonomic revision of *Mariannaea. Mycological Progress* 16, 271–283. https://doi.org/10.1007/s11557-016-1252-2
- Jung, P., Lee, H., Wu, S., Hattori, T., Tomšovský, M. et al. (2018). Revision of the taxonomic status of the genus *Gloeoporus* (Polyporales, Basidiomycota) reveals two new species. *Mycological Progress*, 17(7), 855–863. https://doi.org/10.1007/s11557-018-1400-y
- Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. *Nature Methods*, 14, 587. https://doi.org/10.1038/nmeth.4285
- Kornerup, A., & Wanscher, J. H. (1978). Metheun's Handbook of colours, IIIrd Ed. Metheun and Co. Ltd. London, 1–252.
- Katoh, K., & Standley, D. M. (2013). MAFFT Multiple sequence alignment software version 7: Improvements in performance and usability. *Molecular Biology and Evolution*, 30, 772–780. https://doi.org/10.1093/molbev/mst010
- Larsson, A. (2014). AliView: A fast and lightweight alignment viewer and editor for large data sets. *Bioinformatics*, 30, 3276–3278. https://doi.org/10.1093/bioinformatics/btu531
- Lombard, L., Merwe, N., Groenewald, J., & Crous, P. (2015). Generic concepts in Nectriaceae. *Studies in Mycology*, 80(1), 189–245. https://doi.org/10.1016/j.simyco.2014.12.002

- Luangsa-ard, J., Hywel-Jones, N., Manoch, L., & Samson, R. (2005). On the relationships of *Paecilomyces* sect. *Isarioidea* species. *Mycological Research*, 109(5), 581–589. https://doi.org/10.1017/s0953756205002741
- Mehrishi, P., Agarwal, P., Broor, S., & Sharma, A. (2020). Antibacterial and antibiofilm properties of medicinal plant extracts against multi drug resistant *Staphylococcus* species and non-fermenter bacteria. *Journal of Pure and Applied Microbiology*, 14(1), 403–413. https://doi.org/10.22207/jpam.14.1.42
- Mizobata, H., Hayashi, K., Yonezawa, R., Lanza, A., Kinoshita, S., et al. (2023). The complete mitochondrial genome of *Spurilla braziliana* Macfarland 1909 (Nudibranchia, Aeolidiidae). *Mitochondrial DNA Part B*, 8(8), 862-866. https://doi.org/10.1080/23802359.2023.2241693
- Nguyen, L. T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Molecular Biology and Evolution*, 32, 268–274. https://doi.org/10.1093/molbev/msu300
- Noh, H., & Kim, S. (2025). *Gliocladiopsis koreensis* sp. nov., *Ilyonectria koreensis* sp. nov., and *Mariannaea koreensis* sp. nov. (Nectriaceae), novel fungi isolated from soil in Jeju island and Upo wetland in the republic of Korea. *Mycobiology*, 53(2), 183, 199. https://doi.org/10.1080/12298093.2025.2450905
- Park, J., Павлов, И., Kim, M., Park, M., Oh, S. et al. (2020). Investigating wood-decaying fungi diversity in Central Siberia, Russia using its sequence analysis and interaction with host trees. *Sustainability*, 12(6), 2535. https://doi.org/10.3390/su12062535
- Printzen, C., Domaschke, S., Fernández-Mendoza, F., & Pérez-Ortega, S. (2013). Biogeography and ecology of *Cetraria aculeata*, a widely distributed lichen with a bipolar distribution. *Mycokeys*, 6, 33–53. https://doi.org/10.3897/mycokeys.6.3185
- Samuels, G.J., & Seifert K.A. (1991). Two new species of *Nectria* with *Stilbella* and *Mariannaea* anamorphs. *Sydowia*, 43, 249–263. https://www.zobodat.at/pdf/Sydowia_43_0249-0263.pdf
- Tamura, K., Stecher, G., & Kumar, S. (2021) MEGA11: Molecular Evolutionary Genetics Analysis Version 11. *Molecular Biology and Evolution*. 38(7), 3022–3027 https://doi.org/10.1093/molbev/msab120
- Tang, L., Hyun, M., Yun, Y., Suh, D., Kim, S. et al. (2012). *Mariannaea samuelsii* isolated from a bark beetle-infested Elm tree in Korea. *Mycobiology*, 40(2), 94–99. https://doi.org/10.5941/myco.2012.40.2.94
- Trilaksana, A., & Saraswati, A. (2016). Efficacy of green tea leaf extract (*Camellia sinensis*) with NaOCl 2.5% against *Enterococcus faecalis* as an alternative solution for root canal irrigation. *Journal of Dentomaxillofacial Science*, 1(1), 58. https://doi.org/10.15562/jdmfs.v1i1.27
- Ullah, M., Naw, S., Murtadlo, A., Tamam, M., & Probojati, R. (2022). Molecular mechanism of black tea (*Camellia sinensis*) as sars-cov-2 spike glycoprotein inhibitor through computational approach. *Saisntek*, 1(01), 20–25. https://doi.org/10.24036/sainstek/vol1-iss01/5
- Vilgalys, R., & Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. *Journal of Bacteriology* 172, 4238–4246. doi: 10.1128/jb.172.8.4238-4246.1990
- Vilgalys, R., & Sun, B. L. (1994). Ancient and recent patterns of geographic speciation in the oyster mushroom *Pleurotus* revealed by phylogenetic analysis of ribosomal DNA-sequences. *Proceedings of the National Academy of Sciences USA*, 91, 7832. https://doi.org/10.1073/pnas.91.16.783

- Wendt, L., Sir, E., Kuhnert, E., Heitkämper, S., Lambert, C. et al. (2017). Resurrection and emendation of the Hypoxylaceae, recognized from a multigene phylogeny of the Xylariales. *Mycological Progress*, 17(1-2), 115–154. https://doi.org/10.1007/s11557-017-1311-3
- White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR protocols: a guide to methods and applications, Innes, M.A.; Gelfand, D.H.; Sninsky, J.J.; White, T.J. Academic Press: Cambridge, Massachusetts, USA, pp. 315–322. http://dx.doi.org/10.1016/B978-0-12-372180-8.50042-1
- Yang, J., Yang, S., Li, H., Yang, J., & D, L. (2013). Comparative chloroplast genomes of *Camellia* species. *Plos One*, 8(8), e73053. https://doi.org/10.1371/journal.pone.0073053
- Yu, X., You, X., Zhang, L., & Li, X. (2023). Cytomixis and aberrant phenomena during meiosis in pollen mother cells of *Camellia sinensis* var. *sinensis* cv 'Fudingdabai'. https://doi.org/10.1101/2023.04.15.537005
- Zhang, X., He, Y., He, W., Su, H., Wang, Y. et al. (2019). Structural and functional insights into the LBD family involved in abiotic stress and flavonoid synthases in *Camellia sinensis*. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-52027-6