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Abstract 

Azaphilones are an important class of secondary metabolites derived from the polyketide 

pathway. These metabolites have an intense yellow-orange-red pallet of colour and have been 

studied as promising natural pigments for use in the food industry. On a screening with 30 

fungi isolated from soil and cultivated in different conditions, a fungal species furnished an 

orange extract containing a very major metabolite, as determined by HPLC analysis. The 

species was identified Penicillium maximae by molecular biology and morphological studies, 

and it was selected to determine the major secondary metabolites responsible by the colour 

present in the extract. The dichloromethane extract prepared from P. maximae was column 

chromatographed leading to the isolation of sclerotiorin (1, 16.36 % yield), eupenicilazaphilone 

B (2, 0.77 % yield) and sclerotioramin (3, 1.05 % yield). Sclerotiorin yield is encouraging for 

industrial production. These azaphilones of orange, yellow and red colour respectively, are the 

major metabolites produced by P. maximae on a culture medium containing peptone as a 

differential. High concentration of sucrose and the presence of iron ions in the culture medium 

did not improve the metabolites yield. P. maximae is, therefore, a good source of pigments for 

potential food, pharmaceutical and dyeing applications. 
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1. Introduction 

Fungi produce small molecules with diverse chemical structures to mediate processes such as 

intra and inter-species communication and self-defence towards biotic and abiotic adversities 

present in their natural habitats (Deshmukh et al., 2024; Oliveira et al., 2022). Research in this 
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area has gained strength over the last decades with the decrease in the cost of genome sequence 

analysis and the development of novel approaches to mine fungal metabolites for 

pharmaceutical and food and other industrial applications (Kenshole et al., 2021). The 

advancement of omics techniques has also sped up the development of research with fungal 

metabolites (Saini et al., 2024; Takahashi et al., 2024). 

 

One of the most common fungal genera is Penicillium, which can be found in different 

ecosystems, having an important role in pharmaceutical area as well as in the environmental 

balance as decomposers and bioremediation agents (Martins et al., 2016; Saxena et al., 2024; 

Wang et al., 2010). Penicillium species have been described as outstanding producers of 

metabolites from diversified biosynthetic pathways (Bazioli et al., 2017) and with several 

medicinal applications such as antiviral, anticancer, immunosuppressant, and neuroprotective 

activities (Toghueo & Boyom, 2020). Among 354 species of Penicillium, P. maximae section 

Sclerotiora can be considered an under-reported taxon (Houbraken et al., 2020). This species 

is reported to grow well in Czapek Yeast Autolysate (CYA) Agar at 30 °C, Malt Extract Agar 

(MEA) and Yeast Extract Sucrose (YES) Agar and moderately in Dichloran 18% glycerol 

(DG18) agar, being distinguishable from closely related species P. sclerotiorum by the absence 

of sclerotia (Visagie et al., 2013). P. maximae has already been isolated from marine 

environment in Korea (Park et al., 2019) and as an endophyte capable of producing azaphilone 

alkaloids (Koyanagi et al., 2021). 

 

Azaphilones are fungi-exclusive secondary metabolites derived from the polyketide pathway 

with a pyrone-quinone structure and a chiral quaternary carbon atom (Pimenta et al., 2021). 

The intense yellow-orange-red pallet of colour of azaphilones makes them promising pigments 

for food and textile applications to replace synthetic dyes (Morales-Oyervides et al., 2020; 

Venil et al., 2020). In addition to their application as pigments, azaphilones possess 

antimicrobial, antifungal, antiviral, antioxidant, cytotoxic/antitumor, nematicide and anti-

inflammatory activities, which are likely a consequence of their reactions with amino groups 

present in amino and nucleic acids (Chen et al., 2020). The bioactivity of these pigments adds 

an important functional appeal to their incorporation in foods, beyond the dyeing property.  

 

This work describes the screening of terrestrial fungal strains capable of producing coloured 

pigments and the isolation and identification of three azaphilones from P. maximae, an 

understudied species of Penicillium. 

 

2. Materials and methods  

Thin layer chromatography (TLC) plates were obtained from Silicycle (Canada); silica gel for 

column chromatography (230-400 mesh) was purchased from Merck (Germany). Analytical 

grade solvents, chemicals and culture media were purchased from VETEC and KASVI 

(Brazil), and HIMEDIA (India). Deuterated solvents were acquired from Sigma Aldrich (USA) 

and Cambridge Isotope Laboratories (USA). 

 

2.1 Isolation and screening of fungal species 

Soil samples (1 g) were suspended in aqueous NaCl (0.85 m/v, 4.5 mL) and serially diluted to 

the final concentration of 10-3 gL-1. Aliquots of 100 µL were added to Petri dishes containing 

bacteriological agar (15.0 gL-1), peptone (50.0 gL-1), yeast extract (50.0 gL-1), and rose bengal 

(0.033 gL-1). After 24 to 72 h, individual colonies were transferred successively to freshly 

sterilized agar until recovery of 30 pure cultures that were stored in PDA at -80 °C. A screening 

was carried out with 30 fungal species, that were cultivated in 100 mL of three different culture 
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media, as following described. Culture medium 1: Yeast extract (12.0 gL-1), Sucrose (150.0 

gL-1), MgSO4.7H2O (0.5 gL-1), and Glucose (20.0 gL-1). Culture medium 2: Glucose (20.0 gL-

1), Bacterial peptone (5.0 gL-1), Yeast extract (3.0 gL-1), and KH2PO4 (5.0 gL-1). Culture 

medium 3: Glucose (20.0 gL-1), Bacterial peptone (5.0 gL-1), Yeast extract (3.0 gL-1), KH2PO4 

(5.0 gL-1), Fe3+ (2.5 gL-1), and Fe2+ (2.5 gL-1). 

 

The culture media were distributed to 500 mL Erlenmeyer flasks; the pH was adjusted to 5.12 

and the flasks were autoclaved for 15 minutes at 121 ºC. After cooling, the 30 fungal species 

were individually inoculated to the media in a laminar flow hood, previously sterilized with 70 

% ethyl alcohol. Resting growth was awaited, and three flasks were discarded during the 

process, as the respective fungi suffered contamination during cultivation. After 14 days, 30 

mL of ethyl acetate was added to each Erlenmeyer flask, followed by filtration at reduced 

pressure to separate the mycelium from the liquid phase containing ethyl acetate and broth. The 

mycelium was then collected, placed in an Erlenmeyer flask, and left immersed in ethyl acetate 

for further 24 hours. The extraction procedure was carried out in a separation funnel 

individually for each of 27 fungi. Vigorous stirring was carried out to remove all secondary 

metabolites from the broth, collecting the organic phase. The process was repeated twice with 

30 mL of extracting solvent and the organic phases were combined. The solvent in which the 

respective mycelium was immersed was separated from the mycelia and added to the organic 

phase. Finally, the organic phase was taken to rotary evaporation to remove the solvent and 

obtain the extracts. The mycelia were autoclaved for 15 minutes at 121 ºC and subsequently 

discarded. A species presenting white mycelia orange-coloured reverse which presented an 

outstanding HPLC profile was selected for identification and large-scale study. 

 

2.2 Identification of P. maximae 

Fungal mycelium was transferred to microtubes containing buffer (Tris-HCl 0.05 M, EDTA 

0.005 M pH 8.0, NaCl 0.1 M and sodium dodecyl sulphate 1 %) (400 μL). Stainless steel beads 

were added to improve the extraction. The material was homogenized for 5 min in a Bullet 

Blender24 and then incubated (60 °C; 30 min). After that, cetyltrimethylammonium bromide 

buffer (200 μL) and β-mercaptoethanol (4 %; 4 µL) were added and the microtubes were stirred 

and incubated (65 ºC; 30 min). Then, chloroform:isoamilic alcohol (24:1, 570 μL) were added 

and the microtubes were gently shaken followed by centrifugation at 13,200 rpm (15 min). The 

aqueous phase was then transferred to new microtubes containing a solution of sodium acetate 

(3 M, 10 %). After mixing, solutions were centrifuged (13,200 rpm, 10 min) and the 

supernatant was transferred to microtubes and followed by precipitation with isopropanol. The 

tubes were centrifuged (13,200 rpm, 10 min). The supernatant was removed, and the DNA 

pellet was washed twice in 70 % cold ethanol, dried down, and resuspended in 50 μL of Tris-

EDTA (Tris-HCl 0.01 M and EDTA 0.001 M). Pure genomic DNA was assayed in NanoDrop 

ND 1000 (NanoDrop Technologies) and stored at 20 ºC until amplification of the internal 

transcribed spacer (ITS) region. After DNA extraction, the ITS region was amplified with the 

universal primers ITS1 and ITS4 (Abrão et al., 2014; White et al., 1990). Successfully 

amplified PCR products were purified by precipitation with ethanol/ 

ethylenediaminetetraacetic acid. The sequencing reactions and quality control of individual 

sequences were performed (Applied Biosystems). Molecular fungal identification was 

performed as described in Ferreira-Silva et al. (2021). The consensus sequence was submitted 

to GenBank and assigned an accession number: MZ683178. Phylogenetic analysis was 

performed in MEGA version X (Kumar et al., 2018). The ITS sequences were aligned using 

MUSCLE. The alignments were prepared including sequences of all relevant ex-type strains, 

from sequences obtained from GenBank to ensure an accurate identification. The Bayesian 
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information criterion was used to identify the most appropriate model of evolution. The 

molecular identification was in accordance with macroscopic examination and optical 

microscopy (Visagie et al., 2013). 

 

2.3 Fermentation, extraction, and isolation of secondary metabolites  

P. maximae was grown (10 × 1 L) using (gL-1) glucose (20.0), peptone (5.0), yeast extract (3.0), 

KH2PO4 (5.0) at pH 5.65 ± 0.07, at room temperature (25 ± 4 °C). To maximize pigments 

recovery, the growth was allowed for 35 days. After this period, the mycelia were filtered under 

vacuum and the broth was exhaustively extracted with dichloromethane (3 × 300 mL CH2Cl2/L 

broth), which promoted higher yield of extract than EtOAc. The solvent was removed to furnish 

the broth extract. The mycelia were soaked overnight with CH2Cl2, the organic fraction was 

recovered by filtration and the solvent was removed, furnishing the mycelia extract. Broth and 

mycelia extracts were combined (8.56 g total) and subjected to silica gel column 

chromatography using hexane, ethyl acetate and methanol gradient. Fractions were combined 

according to their TLC profiles into nine groups (F1–F9). Group F2 (1.40 g) was constituted 

by a pure metabolite (1). Groups F7 (0.23 g), and F8 (0.53 g) were further chromatographed to 

furnish 2 (66.0 mg) and 3 (90 mg), respectively.  

 

2.4 Nuclear Magnetic Resonance (NMR) Analysis  

NMR spectra were determined on a Bruker Avance DRX 400 MHz Spectrometer with 

tetramethylsilane (TMS) as an internal standard. Samples (10 mg) were solubilized in 0.7 mL 

of chloroform-d (1, 3) or methanol-d4 (2). Chemical shifts (δ) are given in parts per million 

(ppm) relative to the internal standard TMS. Coupling constants (J) are given in hertz (Hz).  

 

3. Results and discussion  

Thirty fungal species isolated from soil were cultivated in three different culture media. Culture 

medium 1 was distinguished by its high sucrose content (150 gL-1) as an additional carbon 

source. Sucrose is associated with the production of azaphilones (Pimenta et al., 2021). Culture 

medium 2, in turn, contained peptone, as an additional nitrogen source in its composition. 

Peptone is an ingredient classically present in culture media aimed at producing pigments, also 

favoring fungal growth and biomass production (Gomes, 2024; Lucas et al., 2007). Culture 

medium 3 contained the same ingredients as culture medium 2, with the addition of iron ions. 

The presence of metals in the culture medium causes abiotic stress, which interferes with 

metabolic pathways, intensifying or reducing metabolic production (Takahashi et al., 2013). 

The profiles of the extracts, analyzed by HPLC, showed, in general, low metabolic production, 

however one species stood out for the production of colored metabolites, which was suppressed 

in the presence of iron (Fig. 1). 

 

This species was identified and selected for large scale cultivation. The identification was based 

on the analysis of the ITS region. The nucleotide sequence showed 100 % alignment and 99 % 

identity with P. maximae NRRL 2060 (CBS 134565) type species deposited in GenBank 

[NR_121343]. The phylogenetic analysis confirmed the distinct clustering with bootstrap 

support (99 %) of the isolate studied with NRRL 2060 strain (Fig. 2). The identification was 

confirmed morphologically by the absence of sclerotia, lack of sporulation on CYA, and lack 

of growth in CYA at 37 °C. P. maximae presented white and orange mycelia with orange 

reverse pigmentation on PDA, fading to orange in the center (Visagie et al., 2013) (Fig. 2). 
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Fig. 1 - A. Overview of the screening step. B. Appearance of P. maximae on the surface (a) 

and back (b) of the Petri dish. C. Chromatogram showing the presence of a major metabolite 

produced by P. maximae grown without iron supplementation. 

 

For the large-scale cultivation, P. maximae was grown in liquid media (10 L) generating a dark-

orange brownish broth. Three metabolites were isolated from P. maximae extract and identified 

by NMR spectrometry. Compound 1 was isolated as an amorphous solid that furnished an 

orange solution in chloroform. The 1H NMR spectrum of 1, identified as sclerotiorin (Lucas et 

al., 2007), showed characteristic methyl and methylene groups (0.86–2.18 ppm), conjugated 

olefinic hydrogen atoms (δH 5.71–7.94 ppm), and signals attributed to H9 and H10 (δH 6.08 

and 7.08 ppm respectively, J=15.6 Hz). The 13C NMR spectrum presented 21 signals, including 

three carbonyl groups at δC 186.0 (C6), 191.8 (C8) and 170.1 ppm (C19) and one carbinolic 

carbon at δC 84.6 ppm (C7). Sclerotiorin is a natural pigment previously isolated from P. 

sclerotiorum, a closely related species. Antibacterial properties and potential application of 

sclerotiorin as dye in the food industry have been reported (Gomes and Takahashi, 2016; Lucas 

et al., 2007). Sclerotiorin (1, 16.37 % yield): orange solid; 13C NMR (chloroform-d): 152.7 

(C1), 158.1 (C3), 106.4 (C4), 138.7 (C4a), 110.8 (C5), 186.0 (C6), 84.6 (C7), 191.8 (C8), 114.5 

(C8a), 115.7 (C9), 142.9 (C10), 132.0 (C11), 148.9 (C12), 35.1 (C13), 30.1 (C14), 12.0 (C15), 

20.2 (C16), 12.4 (C17), 22.5 (C18), 170.1 (C19), 20.1 (C20). 
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Fig. 2 - Maximum-likelihood tree based on ITS sequences showing the placement of the soil 

isolate P. maximae (in bold, GenBank accession MZ683178) relative to the type strain and 

closely related species in Penicillium section Sclerotiora.The tree was rooted with P. levitum 

CBS345.48. Numbers at branches are bootstrap values of 1,000 replications. The final dataset 

contained 543 aligned positions. The tree was constructed using MEGA software with Tamura 

3-parameter model. A discrete Gamma distribution was used to model evolutionary rate 

differences among sites [5 categories (+G, parameter = 0.0500)]. 

 

Compound 2, isolated as a yellow amorphous solid, was identified as eupenicilazaphilone B 

(2) (Gu et al., 2018), according to the signals of methyl and methylene groups (δH 0.86-1.71 

ppm) and olefinic hydrogen atoms at δH 6.10 (H4), 6.27 and 6.77 ppm (H9 and H10, J = 15.6 

Hz). The 13C NMR spectrum (19 signals) comprised signals of carbonyl (δC 191.52 ppm, C6), 

and carbinolic carbon atoms at δC 76.8 (C7), 74.5 (C8), 76.6 (C11) and 80.9 ppm (C12). 

Eupenicilazaphilone B (2, 0.77 % yield): yellow amorphous solid; 13C NMR (methanol-d4): 

70.1 (C1), 164.1 (C3), 102.0 (C4), 148.1 (C4a), 120.0 (C5), 191.5 (C6), 76.8 (C7), 74.5 (C8), 

38.4 (C8a), 122.6 (C9), 145.2 (C10), 76.6 (C11), 80.9 (C12), 36.4 (C13), 30.0 (C14), 12.2 

(C15), 14.3 (C16), 26.4 (C17), 20.1 (C18). 

 

Compound 3 was isolated as an amorphous solid with intense red coloration and showed strong 

structural similarity with compound 1, according to the NMR data related to the signals 

assigned to hydrogen atoms from methyl and methylene groups (δH 0.85 to 2.47 ppm), to 

olefine hydrogen atoms (δH 5.74 to 8.07 ppm), and to H9 and H10 at δH 6.24 and 7.20 ppm, 

respectively (J = 16.08 Hz). A signal at δH 12.07 ppm indicated the presence of a secondary 

amine in the chemicals structure of compound 3. The 13C NMR spectrum (21 signals) revealed 

the presence of three carbonyl groups [δC 183.6 (C6), 193.4 (C8) and 170.7 ppm (C19)]. A 

signal at δC 85.2 ppm, corresponding to a carbinolic carbon was assigned to C7. The data 

obtained were compared to those in the literature and the compound was identified as 

sclerothioramin (3) (Wang et al., 2010). Sclerotioramin (3, 1.05 % yield): red amorphous solid; 
13C NMR (chloroform-d): 138.8 (C1), 147.0 (C3), 110.8 (C4), 148.0 (C4a), 101.1 (C5), 183.6 

(C6), 85.2 (C7), 193.4 (C8), 114.7 (C8a), 116.6 (C9), 143.5 (C10), 132.2 (C11), 149.0 (C12), 

 Penicillium vanoranjei CBS134406T 

 Penicillium vanoranjei DTO120C8 
 Penicillium johnkrugii DAOM239945 
 Penicillium johnkrugii DAOM239943T 
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 Penicillium sclerotiorum NRRL2074T 
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35.2 (C13), 30.2 (C14), 12.1 (C15), 20.3 (C16), 12.5 (C17), 23.8 (C18), 170.7 (C19), 20.6 

(C20). 

 

Sclerotioramin is an antibacterial and antifungal agent previously isolated from P. citreonigrum 

(Ferreira-Silva et al., 2021; Wang et al., 2010). Sclerotioramin (3) contains a nitrogen atom in 

the heterocyclic ring, instead of oxygen, present in sclerotiorin (1). This replacement is 

common in azaphilones due to their affinity for amine groups present in proteins, amino acids 

and nucleic acids (Svilar et al., 2012). Chemical structures of compounds 1–3 are shown in Fig. 

3. 

 

 

Fig. 3 - Chemical structure of compounds 1–3 from P. maximae. 

The production of azaphilones by P. maximae in a culture medium using glucose, peptone and 

yeast extract is relevant, as these compounds have broad potential for industrial applications 

and their production using solid state fermentation was not detected (Rengifo et al., 2023). 

Sclerotiorin (1) inhibits Hsp90, a therapeutic target for cancer treatment, while the analogue 

with nitrogen (3) was inactive (Kabbaj et al., 2015), reflecting the role of the heteroatom in the 

biological activity. Azaphilones with nitrogen in the heterocycle are red while oxygen leads to 

yellow/orange pigments due to the changes in the chromophore provoked by the heteroatom 

(Yuliana et al., 2017). Azaphilones were also reported as a promising chemotherapeutic agent 

to avoid proliferation of cancer-cells (Matsumoto et al., 2023), as well as a natural pigment for 

several applications in food industry (Dufossé, 2025). P. maximae has also been studied due to 

the high protein content of its biomass, which can be a sustainable source of alternative proteins 

for human consumption (Moura et al., 2022; Takahashi et al., 2020). 

 

4. Conclusion 

P. maximae proved to be a good source of azaphilone dyes, mainly sclerotiorin, produced with 

a yield of 16.36 % yield. This yield is relevant for large-scale production, given that the initial 

yield of secondary metabolites by fungi is not always encouraging enough to envisage 

industrial applications. On the other hand, the use of azaphilones as industrial dyes still needs 

to be authorized by regulatory bodies, which may occur in the near future, due to the significant 

increase in cases of allergies, cancer and other diseases directly related to the consume of foods 

containing some artificial dyes. 
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