GreenCreteIntelligent Concrete

PJA Holdings, LLC

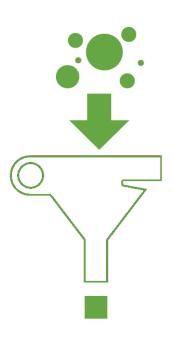
September 2016

Technology Overview

- Introduction
- GreenCrete Overview
 - Mix Design Technology
- GreenCrete Test Information and Results
 - GreenCrete References and Case Study: Revel Casino
- GreenCrete Construction Stakeholders Value Proposition

CONFIDENTIAL 2

GreenCrete provides premier concrete technology revolutionizing the construction industry by bringing the next generation in concrete production and associated technologies


- Mix Design Technology
- Cost Savings
- Data Integration
- Superior Concrete Performance

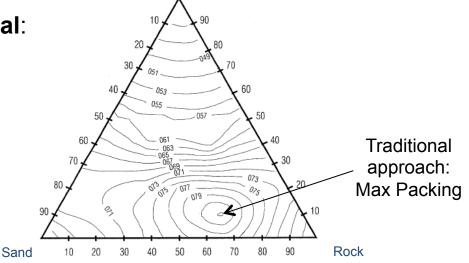
The result - A higher performing, more economical and more environmentally friendly concrete

Designed specifically for workability, strength, durability and any specification

CONFIDENTIAL

Mix Design Technology: Proprietary testing methods

- GreenCrete conducts proprietary material tests necessary for optimum mix design formulation
- Results from proprietary tests are applied to GreenCrete mix algorithms. Tests are conducted on the following ingredients:
 - Cement
 - Coarse aggregates
 - Fine aggregates
 - Supplementary cementitious materials (SCMs)
 - Admixtures
- GreenCrete maintains databases of materials, their sources, their chemical and physical properties, and their interrelationships which are continuously updated and monitored


CONFIDENTIAL

Mix Design Technology: Unique Approach

GreenCrete has studied material characteristics and has developed a novel approach to concrete mix designs

GreenCrete designs for optimal:

- Workability
- Strength
- Cost
- Any performance specification

GreenCrete has identified the <u>optimum</u> particle packing (not the maximum) through the application of its proprietary materials testing methods and computer algorithms

GreenCrete utilizes your materials and optimizes for workability and cost effectiveness

Mix Design Technology: GreenCrete versus Conventional

Standard Mix Designs

- Larger void spaces require more cement paste
- Cement paste is the weakest and most expensive material in concrete
- Excess cement generates excess heat of hydration
- Industry commonly allows driver-added water to meet workability requirements, which reduces strength

GreenCrete Mix Designs

- Void spaces are reduced by optimizing packing of raw materials
- Aggregates replace excess cement paste to give improved stability, less shrinkage and lower cost
- Lower hydration temperatures
- Easier handling, better consistency and easier finishing

GreenCrete mix designs produce higher quality concrete and can be produced at a reduced cost relative to conventional mixes

CONFIDENTIAL

Mix Design Technology: Designing for workability

- CONVENTIONAL APPROACH
 - Design for slump
 - QC measurement
 - Approximation of workability at best
 - Managed with water, which effects strength through water/cement ratio
 - Results in higher standard deviation

- GreenCrete APPROACH
 - Design for cohesion and viscosity
 - Viscosity is a characteristic experienced by the workers onsite
 - Optimizes rheology of the concrete
 - Reduces segregation, bleeding and improves finishability

CONFIDENTIAL

Designed to Specification

The GreenCrete System is designed specifically for workability, strength and durability to meet any specification.

Designed for specified engineering characteristics including:

- Strength
- Shrinkage
- Creep
- Modulus of Elasticity
- Freeze Thaw
- Rapid Chloride Permeability
- Self Consolidating Concrete
- Pervious Concrete
- Other

Unique GreenCrete Specifications:

- 100 year design life
- Permeability Test (ASTM C 1202)
- Shrinkage Test (ASTM C 157)
 - Shrinkage shall not exceed 0.042 percent to initial comparator reading
- Monitoring internal and external concrete temperatures

Max difference shall not exceed 20°C; Internal not to exceed 65°C;

Representative Specification Designs:

- One World Trade (Heat of Hydration; MOE of 48 GPa)
- Revel Casino (High-Early)
- Great Belt Link Connection (Slip Form)
- **Carbon Neutral City** (Low Carbon Footprint)
- International Causeway (Marine Application)
- International Canal (Marine Application)

Regional Testing Information: Geographically Diverse Locations

GreenCrete Testing Program

- Each location had 4 GreenCrete designs tested with local raw materials
- Target Specifications:

25 MPa Air
 Air: 6%

Target Slump: 175 mm (7 inches)

• 25 MPa Non-Air **Target Slump**: 175 mm

40 MPa PSI Non-Air
 Target Slump: 175 mm

■ 65 MPa + (low W/C) Non-Air **Target Slump**: 250 mm (10 inches)

- All mixes contained Ordinary Portland Cement, local fly ash, local sand, 3/4''
 aggregates and superplastizer
- No slag or silica fume were included in these mix designs for testing purposes

Tests Conducted: Strength

- Modulus of Elasticity
- Rapid Chloride Permeability

- Drying Shrinkage
- Air Void Analysis
- Freeze Thaw

Test Highlights

Test Results

Compressive Strength

GreenCrete exceeded local compressive strength results

Modulus of Elasticity

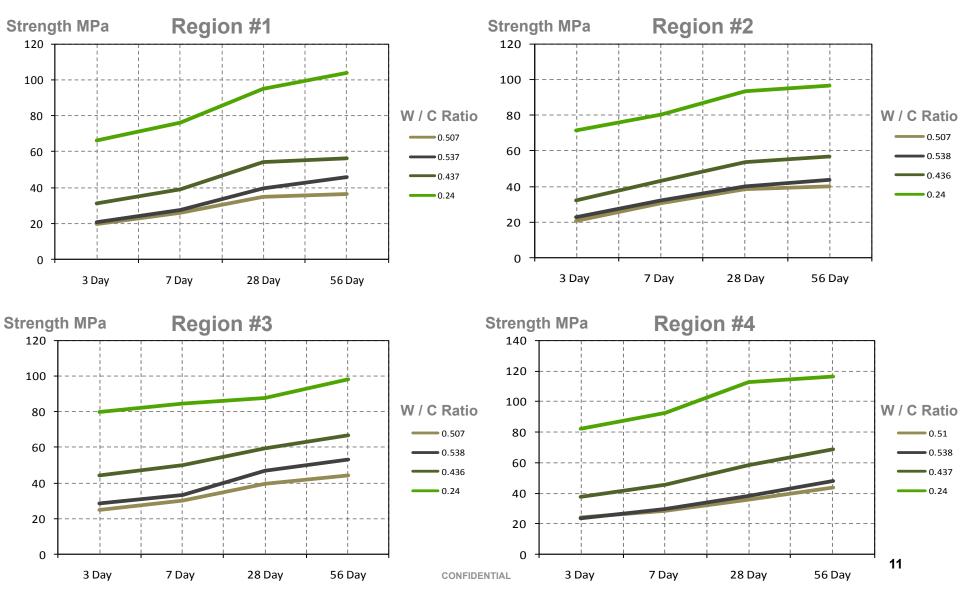
GreenCrete achieved excellent Moduli results

Rapid Chloride Permeability

GreenCrete attained latex-modified concrete density (ASTM test standard)

Drying Shrinkage

GreenCrete achieved market-leading drying shrinkage results


Air Void Analysis

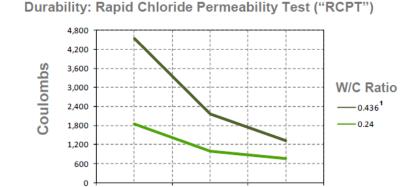
GreenCrete accomplished superior air void spacing numbers

Freeze Thaw

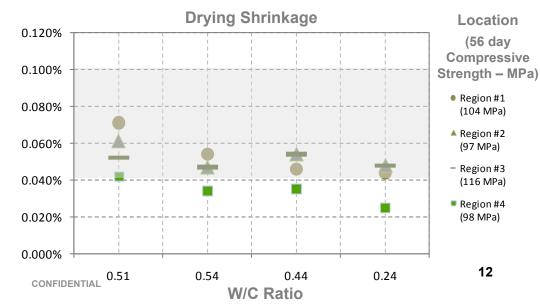
GreenCrete achieved outstanding durability results

Compressive Strength: Strength Progression

Durability and Drying Shrinkage


The GreenCrete system of design is very effective in decreasing the drying shrinkage at lower W/C ratios essential for long term durability and service life.

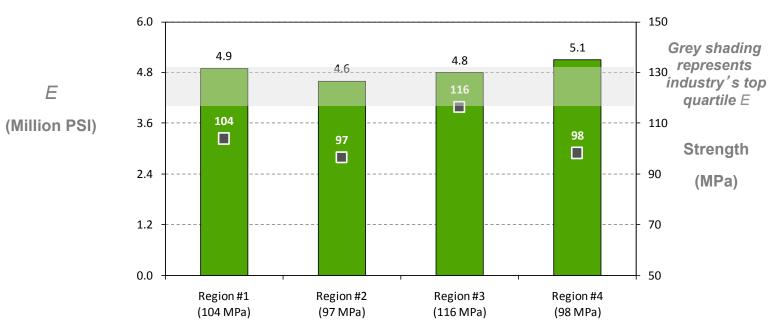
- Drying shrinkage values will vary with local raw materials as these results indicate.
- Typically, the GreenCrete system can reduce drying shrinkage 15% to 35% versus conventional mixes produced with the same material.
- Designed for specified engineering characteristics including:


- Shrinkage
- Creep
- Modulus of Elasticity
- Freeze Thaw
- Rapid Chloride Permeability
- Self Consolidating Concrete
- Pervious Concrete
- Other
 Mix is air-entrained

Grey shading represents industry average

56 Day

90 Day


28 Day

Modulus of Elasticity ("E")

Mix designs utilizing the GreenCrete system of mix formulation produces maximum moduli and strengths with the local materials for each of the regions tested.

- The highest compressive strength does not always produce the highest E
 as displayed in this series of tests.
- GreenCrete can help achieve the highest E for a given set of materials.

E Test Results @ 28 Days*

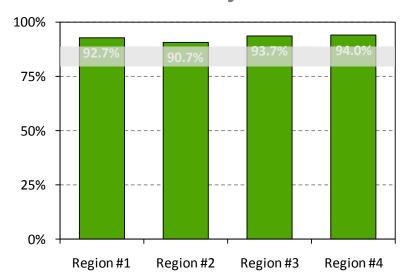
Hardened Air Void and Freeze-Thaw Analysis

GreenCrete mixes create a higher cohesion of the mortar system that produces a unique air void system, which generally consists of a large number of very small bubbles with excellent specific surface areas and distance factors.

- The spacing factor is important because the closer the voids are to one another, water travels shorter distances in order to expand.
- GreenCrete mixes produced using the GreenCrete system achieved spacing factors that exceed the industry average range from 0.23 mm to 0.17 mm.
- GreenCrete mixes produced using the GreenCrete system were all very freeze-thaw durable.
- Durability factors above 80% are considered a sign of durable concrete.

Hardened Air Void Analysis and Freeze Thaw Durability Testing							
Region	#1	#2	#3	#4			
Air Content							
Plastic:	7.40	6.70	7.40	7.40			
Hardened:	9.22	9.86	11.06	6.62			
Specific Surface (mm-1):	35.27	35.20	27.86	44.80			
Spacing Factor (mm):	0.086	0.084	0.094	0.097			
Void Frequency:	0.813	0.867	0.770	0.741			
Average Chord Length:	0.113	0.114	0.144	0.089			
Paste-to-Air Ratio:	3.040	2.940	2.620	4.380			
Freeze Thaw:	92.7%	90.7%	93.7%	94.0%			

Air Void Spacing and Durability Factors


GreenCrete mixes performed well in the air void spacing and durability factors for all regions.

- GreenCrete mixes produced using the GreenCrete system achieved spacing factors that surpassed the industry average range.
- Industry average air void spacing and durability factors range from 0.230 mm to 0.170 mm and 80% and 90%, respectively.

Air Void Spacing Factor

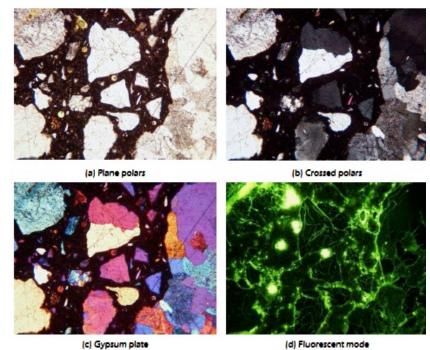
0.18 Millimeters 0.12 0.09 0.08 0.09 0.00 0.00 Region #1 Region #2 Region #3 Region #4

Durability Factor

Grey shading indicates industry averages

Local Test Results, RJ Lee Group, Inc.

RJ Lee *Group* reported that the specimens were "of similar composition; high quality, well-compacted concrete with dense cement paste" and "evaluated to be durable, high performance concrete."


 Samples were analyzed following ASTM C 856, "Standard Practice for Petrographic Examination of Hardened Concrete"

Conventional 60 MPa

(a) Plane polars (b) Crossed polars

(c) Gypsum plate

GreenCrete 60 MPa

CONFIDENTIAL

(d) Fluorescent mode

Local Test Results, RJ Lee Group, Inc.

GreenCrete's 100 MPa mix exhibits a "very dense cement paste".

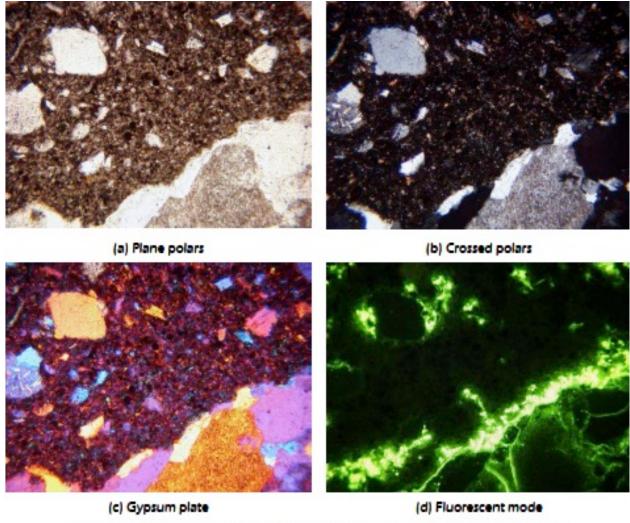


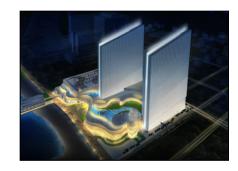
Figure 14. CN80299/2, RJLG ID 3637777. Optical images in different light modes showing aggregate in very dense cement paste. Image area is 2.6 mm wide.

GreenCrete Projects and References

GreenCrete Case Study: Revel Tower

The GreenCrete System allows for greater consistency, which allows producers to achieve lower standard deviations and coefficients of variation.

- Industry averages for Coefficient of Variation range between 8% to 10%.
 - Implies a market standard deviation of 1,035 and 1,116, for the 28 day and 56 day, respectively.
 - GreenCrete achieved standard deviations of 674 and 342, for the 28 day and 56 day, respectively.
 - GreenCrete exceeded industry averages by 35% and 70%.


28 Day Avg.

56 Day Avg.

Strength (PSI) 9,000 7,000 5,000

7 Day Avg.

Test Information					
Project	Revel Tower				
Mix ID	IC12000				
Testing Agency	Craig Testing Laboratory				
Design Strength	12000 psi at 56 Days				
Test Samples	30				
Test Period	8/8/2008 - 8/15/2008				

Test Analysis							
	Average (PSI)	Stand. Dev.	Coeff. of Var.	% of Strength			
7 Day	9,579	1,081		77.2%			
28 Day	11,499	674	5.9	92.7%			
56 Day	12,402	342	2.8	103.4%			