Excelicrete Overview

PJA Holdings, LLC

Presentation Overview

- Intelligent Concrete Overview
 - Mix Design Technology
 - Intelligent Concrete System and Quality Control & Assurance
- Intelligent Concrete Test Performance
 - Intelligent Concrete Historical Reference
 - Intelligent Concrete Current Projects

Mix Design Technology

CONVENTIONAL APPROACH

- Design for strength and slump by standard Tables
- Requires excessive trial and error and 28D
- Approximation of strength and workability at best
- No way to know if mix is optimized
- Poor water control
- Large standard deviation on slump and strength
- Large over-design required to reduce risk of failure
- Segregation and bleeding problems at slumps >150 mm

Mix Design Technology

Intelligent Concrete Approach

- Optimize aggregates ratio through particle packing
- Reduces water demand
- Reduces Bingham viscosity through optimization of sand to rock ratio
- Increases cohesion and reduce segregation and bleeding
- Determines unique fingerprint for materials used (in 7D)
- Determines true strength potential of all cementitious materials
- Allows for easy design of all strengths (3, 7 and 28D), and slumps without trial and error. All designs will hit required strength plus desired over-design
- All designs can be used for Self Compacting Concrete (even as low as 20 MPa)
- Improved finishability
- Applies Real-Time Quality Management System to keep precise water and materials balance

Intelligent Concrete Overview

Mix Design Technology: Intelligent Concrete versus Conventional

Standard Mix Designs

- Larger void spaces require more water and cement
- Cement paste is the most expensive material in concrete
- Excess cement generates excess heat of hydration
- Excessive trial end error
- No way to predict properties

Intelligent Concrete Mix Designs

- Void spaces are reduced by optimized packing of aggregates
- Sand to aggregate ratio is optimized for reduced viscosity and increased cohesion to give improved flow and stability
- Aggregates replace excess cement paste to give less shrinkage and lower cost
- Lower hydration temperatures
- Easier handling, better flow and easier finishing

Mix Design Overview

Mix Design Technology: Unique and Novel Approach

- Intelligent Concrete designs for optimal:
 - Workability
 - Strength
 - Cost
 - Any performance specification

Ternary Packing Diagram:

Intelligent Concrete identifies the <u>optimum</u> particle packing (not the maximum) through the application of its proprietary materials testing methods and computer algorithms

Unique Mix Design Qualifiers

- 1. Reactivity of cementitious components
- 2. Quantified water demand of materials
- 3. 3, 7 and 28 days fingerprint performance

Concrete Fingerprint

Traditional QC

- Incoming Materials Control
- Manual Moisture Tests and Inputs
- Batch Ticket:

```
CLIENTE
                                ID DE REMISION ID DE CARGA
                                                            NOMBRE DE PLANTA
PCM CONCRETO SA DE CV
                                        8439
                                                     8444
                                                             01
CAMION
            USUARIO
                         CONDUCTOR
                                     NUM DE REM
                                                ID DE REM
                                                           HORA
                                                                    FECHA
JR-117
           USER
                         J. REYES
                                           8439
                                                      6095
                                                           18:57
                                                                  06/09/2007
 TAMAÑO
            MEZCLA
                                                             SEC
                                                                  CARGA ID
4.00 m3
          ICI
                                                             \mathbf{p}
                                                                        6619
MATERIAL
          CTD DISERO
                      EXIGIDO CARGADO
                                           VAR
                                                 % VAR
                                                         %HUMEDAD
                                                                   AGUA REAL
3CA2
              894 kg
                     3688 kg
                                  3660
                                          -28
                                                -.76% 3.146% A 111.62 L
AR1
             1017 kg
                       4281 ka
                                  4270
                                           -11
                                                   -.26% 5.242% A 212.69 L
CPOSOR
            192 kg
                       768 ka
                                 766
                                                   -.26%
AGUA
            166.0 L
                       338.3 L
                                .339.0
                                                   0.21%
                                                                   339.00 L
                                            0.7
COLD HIMLES-MUN
            NUMERO DE BACHADAS: 1
                                         MANUAL 18:57:34
                     DESENO A/C: 0.865 AGUA/CEMENTO: 0.867T AGUA EN MEZCLA: 6
54.0 L
 AGUA REAL: 663.3 L
                       ANADIR:
                                 0.7 L
ASENT.:100 mm AGUA EN CAMION:
                              0.0 L
                                        AJUSTE AGUA: . O.O L /carga GRAD AGU
     0.0 L /m3
CARGA COMPLETA
                  TIEMPO DE CARGA:06:44 ----TARAS-----
AGG SCALE T: 1 CR:
                     20 TR:
                              30 kg CEM SCALE T: 1 CR:
                                                            4 TR: -36- kg
```

- Unit Weight and Slump
- 1, 3, 7, and 28 Days Strength

Over-Design and Failure Risk

Failure Rate is the area under the curve to the left of the specification line. More over-design equals lower failure rate.

Example from Plant ZF. Lower Over-Design is Possible Through QC Control

	Failure Rate
Hanson	4.9%
iCrete	1.2%
Savings	€ 3.05

Intelligent Concrete Overview

System Structure

Quality Management System

Welcome Page - Dashboard

Quality Management System

- 1. Generates real-time monitoring of all weights, slump, unit weight, yield, water to cement ratio and strength results
- 2. Use x-charts, Cpk charts and CUSUM charts to evaluate production process
- 3. Identifies batching errors and determines cost of errors
- 4. Provides automated alarms to personnel
- 5. Provides standardized QC and management reports

QMS X Charts

- Material is being under weighed
- Errors of batching too much
- Workability issues
- Process limits outside of spec limits
- $C_{pk} = 0.39$

Material Name	TYPEI/II		
Total Batches	655		
Actual Material Used	3,599,930		
Target Material Used	3,617,539		
Batching Error	-17,609		
Total Batching Errors	49		
Over Tolerance	29		
Under Tolerance	20		
Average Batching Error	-0.3%		
Standard Deviation	1.0%		
Max Batching Error	18.9%		
Min Batching Error	-69.4%		
Cost of Batching Error	-\$882.67		

Definition of Cpk

- Is a measure of process capability
- Measures how close a process is running to its specification limits

```
Cpk = Min(Cpl, Cpu)
```

```
Cpl = (mean-Lower spec. limit)/(3x st.dev)
```

Cpu = (Upper spec. limit-mean)/(3x st.dev)

Cpk Charts

Plant Performance Score over Time

Cpk Score = 100 x (Parameter Cpk/2)

Name	Week 1	Week 2	Week 3	Week 4	Month	
SAND	52.5	62.5	71.8	95.6	70.6	
BELL SAND	80.0	100.0	100.0	100.0	95.0	
3/8 HWY	40.0	54.8	62.5	50.6	52.0	
3/8 GRAV	80.0	91.2	100.0	100.0	92.8	
STATE	2.0	2.1	2.5	2.6	2.3	
BETTER	50.5	63.6	60.4	54.4	57.2	
JDM3/4	100.0	100.0	100.0	100.0	100.0	
LTWT	28.5	38.8	33.2	42.3	35.7	
LEHIGH	23.0	26.5	27.0	31.3	26.9	
SLAG	0.0	0.0	0.0	0.0	0.0	
FLYASH	0.0	0.0	0.0	0.0	0.0	
W/R	100.0	100.0	100.0	100.0	100.0	
ALLEGRO B	34.5	40.4	48.4	65.4	47.2	
ALLEGRO B	31.5	32.1	39.2	32.9	33.9	
HE	100.0	100.0	100.0	100.0	100.0	
NC	43.0	55.0	45.7	53.9	49.4	
RET	100.0	100.0	100.0	100.0	100.0	
AIR	11.5	9.7	8.5	11.2	10.2	
WATER	27.5	27.8	24.7	27.2	26.8	
Yield	55.0	76.5	65.7	67.1	66.1	
Unit Weight	100.0	100.0	88.0	83.6	92.9	
W/C	22.5	27.5	24.7	33.8	27.1	
Plant Score	49.2	54.9	54.7	56.9	53.9	

C _{pk}	Sigma
1.00	3
1.33	4
1.66	5
2.00	6

^{*}Plant Score is the weighted average of all materials and calculations based on the number of times a parameter is used during the time period

Cusum Charts

Cusum Report

- Cusum Report will be generated for all parameters (including single material and overall parameter).
- Accumulated value of "% variance" for all data points
 (Each Data Point Value = Average of 5 "% Variance" from 5 Consecutive Batches)

Intelligent Concrete Test Performance

Test Results of Trial Mixes on April, 2010 at Ma On Shan Site Batching Plant

Cube Strength [MPa]	Concrete grade	D45/20	Intelligent Concrete 45		D35/20	Intelligent Concrete 35		D60/10	Intelligent Concrete 60	
	Concrete Cube Test Result Average (1 day)	21.14	16.79		N/A	14.04		23.36	20.18	
	Concrete Cube Test Result Average (3 days)	44.72	37.82		35.55	N/A		50.31	42.73	
	Concrete Cube Test Result Average (7 days)	55.61	44.6		44.20	40.91		62.86	57.98	
	Concrete Cube Test Result Average (28 days)	65.25	56.15		57.63	52.56		84.28	74.77	
Cement content (Kg/M³):		520	3 72	Saved 148kg	4 2 0	327	Saved 93kg	405	335	Saved 70kg
% of Cement Saving		Less 28% Cement		Less 22% Cement			135 (PFA)	111 (PFA)	24kg (PFA)	
								Less 17% Cement		

Savings on D45 Grade Concrete: HK\$48.26 (US\$6.19) /m3

Intelligent Concrete Overview Summary

Intelligent Concrete Design Means:

- More Rock, More Sand
- Less Cement Paste
- Better Workability without More Water
- Lower Porosity / Higher Durability
- Less Shrinkage, Less Creep
- Lower Standard Deviation

Intelligent Concrete QMS Means:

- Better Control of Raw Materials
- Guaranteed Water : Cement Ratio
- Every Batch Recorded with All Information
- Instant Notice of Potential Problems
- Trends Identified to Prevent Failure

HIGHER QUALITY, BETTER ENVIRONMENTAL FOOTPRINT, LOWER COSTS

KT1B Savings on D45 Grade Concrete: HK\$48 (SGD\$8.0)/m3

Moisture Probe Requirement

Moisture Probe Usage

Probe Installation

 25 Readings per second will be taken by the probe and response the average value to the batching system.

Probe Installation for 10MM / 20MM

Probe Installation for Stone Fines

Probe Installation

- Since the probe is installed horizontally at the bottom of storage bin
- Around 30-50kg of material would not be measured in the first batch and return to the storage bin.

Experience Sharing of Excelicrete Usage World-wide

Intelligent Concrete Performance

- United States Federal Highway Administration
- Strategic Highway Research Program (1988-91)
- Great Belt Link Connection Denmark (1988-92)
 - 100 years durable concrete
 - ±1% Materials Uniformity
- Prince Edward Island Bridge, (1994)
- Freedom Tower New York City (2008)
 - Highest Strength Concrete Placed in High Rise Structure in NY
 - Standard Deviation 3MPa
 - >100 MPa Compressive Strength

Technical Review of Self-Compacting Concrete (SCC)

Self Compacting Concrete

Advantages:

- Can be placed at a faster rate with no mechanical vibration and less screeding, resulting in savings in placement costs.
- Improved and more uniform architectural surface finish with little to no remedial surface work.
- Ease of filling restricted sections and hard-to-reach areas. Opportunities to create structural and architectural shapes and surface finishes not achievable with conventional concrete.
- Improved consolidation around reinforcement and bond with reinforcement. Improved pumpability.
- Improved uniformity of in-place concrete by eliminating variable operator-related effort of consolidation.
- Labor savings.
- Shorter construction periods and resulting cost savings.
- Quicker concrete truck turn-around times, enabling the producer to service the project more efficiently.
- Reduction or elimination of vibrator noise, potentially increasing construction hours in urban areas.
- Minimizes movement of ready mixed trucks and pumps during placement.
- Increased jobsite safety by eliminating the need for consolidation.
- Will increase overall productivity.

Excellicrete SCC

- No need for powder additions.
- No need for high cement contents.
- Use Bingham rheology approach to choice of admixtures.
- Provides spreads from 550 mm and up.
- Provide SCC mixes with aggregate up to 25 mm.
- Cheaper than the prevailing market price by about 20%.
- Wide range scale on strength from as low as 15MPa to a maximum of 100MPa, over that of the very limited 45-65MPa provided by other manufacturers.

Excelicrete QMS System Overview

QMS System Overview

Batching Plant Environment

Excelicrete Link at Plant

System Requirement

Software Requirement (Web base Solution)

Operation System : Windows XP (SP2) or above

– Internet Browser : IE 7.0 or above

PC Hardware Requirement

Processor: Intel Core 2 Duo 2.4G or above

Memory: 2G or above

– Hard disc : 160G or above

Internet Requirement for Excelicrete Link

– Bandwidth : 2M/2M

– IP address : At least 1 <u>Fixed IP</u> Address

Network Port: HTTP, HTTPS, DNS Service, DB Service

Login Screen

Dashboard for Operator

QMS Notification

Dashboard for Management

Dashboard

- O Operator Dashboard
- O Dashboard for HA
- o Management Dashboard

Dashboard for Management

FCU (MPa): 40

Data Range: C Instant C Last Day € Last Month C Last 3 Months C Last 6 Months C Year To Date

Batching Summary

Period: 2011-12-11 to 2012-01-11

Production V			olume (m³)			
Design Mix Name	Design Mix ID	Produced	Disposed		Standard Deviation of Batching Error	Average of Batching Error
D60/200	4344	5258	2	\$4,923	0.24	0.3
D60/120	4377	8465	10	\$3,263	0.14	0.36
D46/100	7534	1545	1	\$2,252	0.03	0.13
D45/120	6724	586	0	\$125	0.2	0.13

CPK Chart

Strength

Material Name	Cusum	Performance Analysis Report	CPK Score
10 MM	~		50.46
20 MM	~		78.42
S/F	~		48.13
Cement	~		96.25
D-17D	~		30.14
Super-20	~		31.15
Water	~		98.46
Good (66.7-100)	Average (33.4	1-66.6) Poor ((0-33.3)

W/C

Performance Analysis Report

CPK Chart

Monthly Summary Report

Cusum Report

Excelicrete QMS (SCC Module)

SCC Production Report

Dashboard for Operator

QMS Analysis Reports

Batching Plant System

Batching Plant SystemInterfacing Requirement

Batching Plant Data Interface

Interface Requirement

QMS Interface Condition:

- Supports Max. Number of Material Selections per Material Type:
 - Aggregate (Max. 20 Selections)
 - Cement (Max. 20 Selections)
 - Admixture (Max. 20 Selections)
 - Water (Max. 20 Selections)

Green Technologies

Think Green, Practice Green, Act Green Aim to provide a green living to our society.

Thank You!