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Abstract

Machine olfaction—the artificial replication of the sense
of smell—faces significant challenges due to the absence
of large, standardized training datasets. Unlike vision, lan-
guage, and audio models, which benefit from extensive cor-
pora such as ImageNet, GLUE, and AudioSet, olfaction lacks
scaled equivalents and universally accepted benchmarks.
This gap hinders progress and delays the achievement of
intelligence milestones in artificial olfaction. Adaptive learn-
ing presents a critical path forward, enabling machine olfac-
tion to evolve alongside advancements in computer vision,
natural language processing, and auditory intelligence. In
this survey, we explore why adaptive learning is essential
for olfaction and highlight the instruments and theoretical
foundations that uniquely position it to benefit from active
sensing methodologies. We argue for the necessity of active
and continuous learning over small datasets for attaining
state-of-the-art performance in tasks such as classification,
navigation, and general olfactory reasoning. Our review cov-
ers key components that facilitate adaptive learning, includ-
ing multi-modal learning, swarm intelligence, game theory,
neuromorphic computing, and uncertainty quantification.
Through this survey, we aim to advance understanding of
machine olfaction, chemical sensing techniques, and frame-
works for active, continual machine learning. We hope to
inspire interdisciplinary researchers to push the boundaries
of olfactory robotics and drive progress in this crucial but
underexplored domain.

Keywords: machine olfaction, adaptive learning, continuous
learning, robotics, artificial intelligence
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1 Introduction

The field of robotics has gathered a lot of momentum over
the last couple of decades partially due to the advances in
many domains of AI. Humanoid robotics in particular have
seen a surge of interest as of late. Companies developing
these robots are attempting to replicate the five senses of
humans artificially. Vision and hearing are the two highest-
bandwidth modalities that humans sense with, so they de-
serve a high degree of research attention in order to replicate
artificially. Computer vision and natural language processing
have provided benchmark performance on sight and sound,
with a significant part of the last few decades being dedicated
to moving the performance in these fields forward to super-
human level. Artificial touch has been thoroughly addressed
by haptic feedback mechanisms and mechano-sensory ac-
tuators. Taste, while still a large contributor to human level
intelligence, is arguably the least important sense because
taste is largely involved in the method in which humans
acquire energy and fuel, with most robotics acquiring their
energy from electrical power. Therein leaves one final sense
to be explored - the sense of smell.

1.1 Scope of the Survey

Artificial smell is commonly referred to as machine olfaction.
This survey covers machine olfaction and adaptive learning.
Olfaction is uniquely suited to benefit from adaptive learning
due to the lack of standardization, large scale datasets, and
proliferate community. We discuss various methods of learn-
ing and focus on those particularly fitting for robotics, active
sensing, and embodied learning among stimuli from the en-
vironment. Reinforcement learning, multimodal learning,
and continuous learning are machine learning approaches
that fit these criteria. Reinforcement learning tightly couples
with game theory, and game theoretic principles become
important in multi-agent settings. As artificial intelligence
becomes more capable, robotics will inherently become mul-
timodal. Multimodal learning can uniquely benefit machine
olfaction because vision, language, and audio can act as pri-
ors to inform olfactory posteriors.

This work takes the intersection of surveys in multimodal
learning [13] [204], adaptive learning [201] [112], swarm
intelligence [92], and machine olfaction [35] [48] [139] and
contextualizes them with modern research to answer the
singular question: How can machines rapidly learn the sense
of smell?

1.2 Machine Olfaction

Research in machine olfaction is largely asymmetrical to
the magnitude of research performed in computer vision
and natural language processing, but the advancement of
olfaction science should be given due importance.

Before vision or auditory capabilities, the most primitive
forms of navigation in biological organisms arose from ol-
factory tracking of odor plumes and pheromone trails to a
food source. Odor plumes are dynamic, change directions
with wind shifts, and are highly subject to environmental
constraints such as temperature and relative humidity. The
strength of the plume also slowly decays with time as air
equalizes, making it difficult to identify the tail of the odor
plume. While some organisms may visually locate the source
of an odor over short distances, they must rely entirely on
olfactory tracking when the source is not yet visible, making
scent-based navigation via plume tracking a very challenging
control problem.

Successful plume tracking is dependent on appropriately
diagnosing uncertainty, and we focus on demonstrating how
adaptive learning helps with constructing a probability dis-
tribution that can be used to locate the plume source in
machine olfaction tasks. Evolutionary techniques such as
ant colony optimization (ACO) [60] and particle swarm opti-
mization (PSO) [103] were originally inspired by insects that
collaboratively perform pheromone tracking through scent
plumes and these scenarios prove to be excellent models for
our work.

1.3 Adaptive Learning

Conventional machine learning methods require thousands
or even millions of training samples per class in order to
accomplish a target task. The typical process of learning oc-
curs via training over this dataset, validating over a separate
holdout set, and then deploying of the model to the applica-
tion. In many scenarios, this model is not ever trained again,
which can lead to performance degradation upon data drift.
This limits the applications for which machine learning can
be used.

There has been a plethora of research performed over the
last few decades of different ways to optimize artificial intelli-
gence models in learning more over "big data". In proportion,
artificial intelligence models have grown in size such that big
models and big data elicit big results. With the growing popu-
larity of large language models (LLMs), datasets on the order
of petabytes are fed in for training, and these models are so
large and training so cumbersome that it is very expensive
to construct them. Engineers and researchers performing
computer vision (CV) and natural language processing (NLP)
tasks are privileged in the fact that terabytes data and bench-
marks exist for download online. CV and NLP knowledge is
also very prolific among the machine learning community,
making it more likely to advance the state of the art and
faster to develop solutions. In cases where samples are rare
(e.g. certain medical applications), one may not always have
the luxury of large datasets. Such is the case with machine
olfaction. To achieve the same state-of-the-art in olfaction
as in vision and audio, continuous updates of priors over
existing data must take place. In the absence of large training
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Figure 1. Odourants plotted by the first and second principal components according to their perceptual labels at (A), structural
fingerprints at (B), and Principal Odor Map (POM) coordinates at (C). Areas dense with molecules having the broad category
labels floral, meaty, or alcoholic are shaded; areas dense with narrow category labels are outlined. The POM recapitulates the
true perceptual map, but the fingerprint map does not; note that only relative (not absolute) coordinates matter. See [110] for
further details. Figure and caption adapted from Lee, et al. in [110] under the Creative Commons License.

sets and credible simulations, adaptive learning is the only
method by which a machine can acquire intelligence.

2 Theories of Olfaction

The position paper from [74] highlights why many issues in
olfaction stem from the lack of a universal data standard and
the contributing reasons for this. Olfaction stands apart from
other sensory modalities in that it admits multiple physical
mechanisms for detecting and discriminating odorants. De-
pending on the underlying sensor architecture, these mecha-
nisms can span distinct physical domains. Certain optical sen-
sors infer molecular presence by monitoring shifts in specific
wavelength bands as odorant molecules perturb the refrac-
tive or absorptive properties of a medium. Electrochemical
detectors, in contrast, measure current or voltage differen-
tials induced by redox reactions or ionic transport, typically
across an electrolyte or semipermeable membrane. Other
approaches operate at the quantum scale, detecting odor-
ants by measuring molecular vibrational spectra—essentially
"hearing" the unique frequency signatures associated with
intramolecular bond dynamics.

The former two sensing paradigms are most often associ-
ated with the Shape Theory of Olfaction (STO), which posits
that molecular geometry, size, and surface properties govern
receptor binding and olfactory perception [19, 165, 194]. The
latter vibrational approach corresponds to the Vibrational
Theory of Olfaction (VTO), an alternative hypothesis assert-
ing that molecular scent is predominantly determined by
quantized vibrational modes.

Originally proposed by C.G. Dyson in 1928 and further
elaborated in 1938 [62, 125], the VTO faced early skepti-
cism due to Raman spectroscopy data that failed to corre-
late vibrational spectra with perceived odor. However, in
2001, biophysicist Luca Turin reignited interest in the theory,
proposing that inelastic electron tunneling might underlie
odorant discrimination in mammalian receptors [180]. This
theory has since been expanded to include variants such as
phonon-assisted tunneling, as discussed by Brookes et al.
[30]. Despite these developments, the theory remains contro-
versial; Block et al. [22] have published extensive critiques
challenging both its biophysical plausibility and experimen-
tal reproducibility.

Crucially, both STO and VTO enjoy empirical support
from distinct experimental paradigms, yet neither provides
a complete or unified account of olfactory phenomena. No-
tably, both theories fail to explain why certain odorants ex-
hibit concentration-dependent perceptual shifts—a phenom-
enon well recognized by perfumers but still lacking mech-
anistic elucidation [26]. As Stevens remarked in 1951, “it
is very probable that no one physical property alone is in-
volved in the physical nature of the adequate stimulus” [174].
Thus, despite a growing body of work, a comprehensive and
experimentally validated theory of olfaction remains elusive.
No current sensor modality, whether biologically inspired
or physically engineered, offers a complete framework for
odor characterization.

This epistemological gap raises a practical question: how
can one define a data standard for a sensory modality whose
fundamental operating principles remain unresolved? We
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argue that this lack of consensus is not a hindrance, but
rather a fertile opportunity for the artificial intelligence and
machine olfaction communities. Precedents from other do-
mains are instructive. The development of JPEG and PNG
standards did not require a complete understanding of hu-
man visual cognition—though progress in neuroscience has
certainly informed modern computer vision. Likewise, avi-
ation standards do not demand biomimicry of avian flight;
yet regulatory frameworks for airworthiness have enabled
safe and scalable deployment.

By analogy, the formulation of olfactory data standards
can proceed alongside, rather than in wait of, a final theory
of olfaction. Recognition of both STO and VTO perspec-
tives should inform the design of benchmark tasks, sensor
calibration protocols, and data representation formats. But
standardization and theoretical resolution need not proceed
sequentially; they can—and should—co-evolve. We point in-
terested readers to the work of [74] for a more comprehensive
analysis on the points presented in this section.

3 Olfaction Standardization
3.1 Data Standards

In contrast to other sensory modalities, olfaction lacks a
universally accepted data standard. Visual information is
typically stored in well-defined formats such as PNG and
JPEG (for images) and MP4 (for videos), which facilitate
uniform processing and widespread data sharing. Audio data
benefits from standardized representations like WAV files,
while speech can be transcribed into words that serve as a
natural language standard. These common formats have been
instrumental in driving rapid progress in machine learning
applications for vision, audio, and speech processing.

Olfactory data, however, has no such analogue. There is
no agreed-upon digital file format or encoding scheme that
comprehensively captures the rich, multidimensional nature
of odor perception. This absence of standardization has led
to a paucity of large, curated datasets, which in turn hampers
the development of robust machine learning models for odor
prediction and synthesis.

Recent research has sought to bridge this gap through in-
novative approaches. For instance, the work by Lee, Wiltschko
and colleagues introduces a *Principal Odor Map* (POM) that
represents odors as nodes within a graph structure, where
inter-node distances reflect perceptual similarities between
odorants [110]. This approach offers a promising route to
“digitize” odor by creating a high-dimensional mapping anal-
ogous to RGB for color. Their training data is a combina-
tion of the GoodScent [46] and LeffingWell [11] datasets,
which give human-evaluated aromas for several chemical
compounds. This Principal Odor Map deduced from PCA
space can be seen in Figure 1. Complementary data from
research on the olfactory perception of structurally diverse
chemicals was produced by Keller in [102].

A large training corpus of 18,000 time series measure-
ments over 72 gas sensors was compiled by [186]; however,
later work from Dennler, et al. in [55] revealed that the lack
of certain experimental controls during data accumulation
could invalidate the prudence of the data.

In parallel, research led by Michael Schmuker and Nik
Dennler has modeled olfactory responses as time series, cap-
turing the dynamic, temporal nature of odor signals through
neuromorphic circuits [54]. These time series representa-
tions mimic the spiking behavior observed in biological ol-
faction, yet they remain isolated demonstrations rather than
components of an integrated, universal standard.

The proliferation of the attention mechanism and the
transformer architecture by Vaswani, et al. [185] has popu-
larized the idea of breaking data up into small chunks called
"tokens". In text, each token represents a word or word part;
in vision, each token represents a group of pixels. Trans-
formers train to understand patterns within these tokens
and contextualize them to larger patterns within the data
sample. Analogously, one can envision scent being broken
up into tokens where each token is a representation of a
molecule at a specific temperature, or a group of molecules
belonging to a specific aroma. While this has yet to be ex-
ercised, the prolific use of transformers in modern machine
learning begs the idea to be proven.

The current fragmentation in olfactory data representa-
tions — not only between graph-based and time series ap-
proaches but also across diverse experimental protocols —
presents a significant barrier to data aggregation and model
generalization. Without a common standard, datasets re-
main small, heterogeneous, and difficult to compare, which
slows progress in both fundamental olfactory research and
its practical applications.

Moving forward, the establishment of a standardized data
format for olfaction could catalyze advances similar to those
seen in vision and speech processing. Such a standard would
not only enable the integration of disparate datasets but also
foster the development of more robust machine learning
frameworks tailored to the complexities of odor perception.

3.2 Benchmarks

The lack of a data standard makes it difficult to define a set
of benchmarks from which olfactory sensors should be mea-
sured. Language models are benchmarked against GLUE and
ROUGE. Computer vision models are benchmarked against
CIFAR and ImageNet datasets. Larger models such as LLMs
are measured against various benchmarks for coding, math-
ematical reasoning, creative writing, visual question and
answering (VQA), and deep research [113]. Many of these
benchmarks can be viewed on the popular HuggingFace
leaderboard [42] that give a live ranking of top performers.

While incorporating olfaction into measures for math-
ematical reasoning could grant little advantage, it could
strongly influence VQA tasks and instruction finetuning over



chemistry and agricultural tasks. One can imagine the ad-
vent of olfaction-visual instruction finetuning and olfaction-
visual question and answering (OVQA) benchmarks as a
result.

The Open X-Embodiment dataset [45] is a multimodal
dataset designed for vision-language robotics applications.
It is a collaboration between 21 institutions collected over
160k tasks from 22 different robots. Such a collaboration is
extremely monumental for the realm of robotics and the
addition of olfaction at this scale could enable a strong se-
ries of measurable benchmarks that assess the incremental
advantage received by adding olfaction to a task. This also
calls creates further opportunities to improve multimodal
model alignment, which is discussed more in section 12.

4 Use Cases for Olfaction

Many applications of olfactory sensors exist. One of the most
commonly recognized uses is the smoke detector, a chemical
sensor that detects high concentrations of carbon monoxide.
The below summaries give a brief overview of some common
applications within olfactory sensing with a special focus on
scent-based navigation in Section 6.

Robotics Companies like Boston Dynamics [25], Tesla
[195], Figure [65], and Clone Robotics [44] are developing
humanoid robots with ambitions to deploy them at scale—in
homes and factories—over the next decade. These robots are
typically equipped with cameras and lidar for vision, mi-
crophones and speakers for audio, and embedded language
models to facilitate human-like communication. Yet, one
critical sensory modality remains absent: olfaction. Incor-
porating olfactory sensors could dramatically expand the
functionality of these systems, enabling robots to detect haz-
ardous chemicals, perform breath-based health monitoring,
and navigate environments by scent cues [34, 35, 61].

Agriculture In agriculture, olfactory sensors are valuable
tools for monitoring soil health through the detection of
volatile organic compounds (VOCs) emitted by microbial
activity [40, 57]. They also offer early disease detection by
sensing VOC markers released by infected plants, allowing
farmers to act preventively and reduce crop losses—while
minimizing reliance on chemical treatments. Recent work by
Barhoum et al. [16] outlines the engineering challenges and
opportunities in designing olfactory systems that function
reliably in rugged agricultural environments.

Food and Beverage Industry Aroma is a crucial indica-
tor of quality and authenticity in wine and other consum-
ables. Olfactory sensors can detect nuanced scent profiles
that may reveal contamination or counterfeiting, thus pro-
tecting both consumers and brand integrity. Aryballe’s work
with Mach-Zehnder interferometer-based sensors illustrates
the potential of artificial olfaction in beverage authentica-
tion [10]. Longin et al. [119] have shown that bread aroma
analysis can predict shelf life, while Wang et al. [188] apply

similar techniques to assess pork freshness. Together, these
efforts demonstrate scalable frameworks for broader food
quality assurance.

Indoor Air Quality Monitoring In residential, commer-
cial, and public spaces, olfactory sensors enable continuous
monitoring of indoor air quality. They can detect pollutants
such as VOCs, allergens, mold, and gases infiltrating from
the outdoors [90], often at concentrations below human de-
tection thresholds. Humans themselves emit VOC signatures
[96], and olfactory systems may learn to associate chemical
profiles with specific occupants. Much like smoke detectors
are now ubiquitous, advanced olfactory sensors could be-
come a standard feature in indoor environments—enhancing
safety, comfort, and public health. Opportunities for innova-
tion in this space are still substantial [16].

Cosmetics & Perfumery In the cosmetics and fragrance
industries, olfactory sensors are aiding product formulation
and quality control for items like lotions, creams, and deodor-
ants. Companies such as Osmo AI [142, 143] are pioneering
the intersection of artificial intelligence and olfaction to both
generate novel products and maintain olfactory consistency
in existing ones. These sensors help ensure that scent pro-
files match consumer expectations and that no unwanted
odors compromise product integrity.

Energetics and Explosives Detection Olfaction is also
being explored for detecting explosives and hazardous sub-
stances, in both military and civilian domains. Canine units
remain the standard [52], but artificial alternatives are emerg-
ing. Surveys by Bobrovnikov [24] and others [148] catalog
the state of sensor-based explosive detection. Wasilewski
et al. [191] propose hybrid systems that combine biological
and artificial approaches. Drone-based olfaction for locating
explosives is also under investigation [35], opening new path-
ways for automated surveillance and protection. Research
from [120] emphasize the difficulty in working with such a
use case with small datasets - another point to underscore
the importance of adaptive learning in olfaction.

Personalized Medicine In healthcare, olfactory sensors
offer noninvasive means to tailor treatments through breath
and fluid analysis, enabling personalized diagnostics based
on metabolic signatures. These sensors can detect disease-
specific biomarkers—for conditions such as pneumonia [15,
100] and lung cancer [6, 146]—and track how individuals
respond to treatments in real time. This paves the way for
more targeted and responsive medical interventions.

Automotive Industry The automotive sector is explor-
ing olfactory sensors to enhance in-cabin air quality and
monitor for hazardous odors [9, 179]. These sensors can el-
evate passenger comfort by neutralizing unpleasant smells
and alerting to contaminants. Additionally, they serve a role
in manufacturing, where olfactory monitoring helps ensure
that car interiors meet sensory quality standards and can
detect early signs of material degradation, such as paint or
corrosion issues [152].



5 Olfaction and Navigation

Organisms navigating through olfactory methods use a vari-
ety of behaviors to locate the plume source. Two prominent
behaviors are called casting and surging. Casting is the act
of scanning from side to side in gradually broader strokes.
Surging is the act of rapidly moving upwind of the plume.
In nature, insects and ants will typically cast until they ac-
quire the plume and surge once they detect it; if they lose
the plume, they will repeat the process until the source is
located. Ants use a method of detection called tropotaxis
with symmetrically placed receptors in the antennae.

Chemotaxis is the process of continuously sampling the
environment with a single receptor and moving in the direc-
tion of the strongest gradient. Bacterium navigate through
a process called orthokinesis which compares the temporal
change in stimulus intensity and makes changes in move-
ment analogous to such intensity. The research of [169] and
[168] leverage a combination of both chemotaxis and orthoki-
nesis because their methodology samples the environment
with a single sensor and measures the change in magnitude
between time steps, accelerating (or surging) in proportion
to the magnitude change. This mechanism gives natural in-
clination to use various temporal difference reinforcement
learning (RL) agents with which swarms can be constructed.
Olfactory-based scenarios like plume tracking are an excel-
lent and unbiased way of exemplifying adaptive learning be-
cause they require quantifying a high degree of uncertainty,
characterizing the environment, multi-modal learning, and
multi-agent cooperation, effectively consolidating each of
the aforementioned principles.

5.1 Sensing Techniques

To properly qualify the application of adaptive learning tech-
niques in the context of olfactory-based navigation, it is help-
ful to establish some of the limitations of existing olfactory
sensors and why their limitations impose certain restrictions
on learning. Cameras and microphones can rapidly sample
visual and audio data, respectively, hundreds of times per
second. The technology is mature enough that only a small
temporal assessment is needed to identify patterns in the re-
spective data mediums. Olfactory sensors are inherently slow,
the fastest sensors taking among seconds and the slowest
taking among hours to properly respond to a stimulus. The
environmental conditions for olfactory stimuli change much
faster. This makes dynamic responses for navigation tasks
difficult because agents typically need to respond quickly
due to changes within the environment. Crimaldi, et al. in
[49] highlight the paradox with these temporal mismatches
well.

The aim of their work is to communicate the evidence
of high temporal resolution present in olfaction data. The
slow sensing mechanisms are largely fixed by physics, but
the environment data can be adjusted to accommodate the

sampling frequency of the sensor. However, [49] suggests an
alternative route of "reformatting the spatiotemporal struc-
ture of an odor field into temporal fluctuations registered
by a sensor, with both a finer spatial structure or faster rel-
ative motion (flow-to-sensor) leading to higher-frequency
fluctuations.” Put simply, one can reformat the data received
by the sensor into spatiotemporal data that maximizes in-
formation over a smaller sampling rate. They suggest fusing
other sensing modalities together to maximize the spatiotem-
poral picture at each timestep and employing multi-modal
learning techniques on top of this. The previously mentioned
work of ImageBind in [80] could be an excellent candidate
here: instead of encoding all input into visual data, one could
encode all input into spatiotemporal data.

5.1.1 Gas Chromatography Mass Spectrometry Gas
Chromatography-Mass Spectrometry (GC-MS) is a power-
ful analytical technique used to identify and quantify com-
pounds in complex mixtures. The process involves two main
steps: Gas Chromatography (GC) and Mass Spectrometry
(MS). GC-MS is considered the gold standard for chemical de-
tection due to its high sensitivity and specificity, versatility in
analyzing a wide range of compounds, quantitative accuracy,
and reliability. It can detect compounds at very low concen-
trations and provides precise quantitative data, making it
suitable for various applications, including environmental
analysis, forensic science, food safety, and pharmaceuticals.
The combination of GC’s separation capabilities with MS’s
detailed molecular analysis ensures consistent and repro-
ducible results, making GC-MS an indispensable tool for
chemical detection and analysis.

5.1.2 Metal Oxide Sensors Metal oxide sensors are widely
used for gas detection due to their simplicity and cost ef-
fectiveness, consisting of a sensing layer made from metal
oxides like tin oxide. They operate by detecting changes
in electrical resistance when target gases interact with the
metal oxide surface, making them effective for gases such
as carbon monoxide and methane. These sensors are inex-
pensive and have a fast response time but can be sensitive
to humidity and temperature changes.

5.1.3 Photoacoustic Sensors Photoacoustic sensors lever-
age the photoacoustic effect, where absorbed light energy is
converted into sound waves, allowing for the detection of
trace gases. When a gas absorbs light from a modulated laser,
it generates acoustic waves that are detected and analyzed,
making these sensors suitable for environmental monitoring
and industrial applications. They provide high sensitivity
and are less affected by temperature variations but can be
complex and costly.

5.1.4 Nondispersive Infrared Sensors Non-dispersive
infrared sensors (NDIR) utilize infrared absorption spec-
troscopy to detect gases by measuring the absorption of
infrared light at specific wavelengths. They consist of an
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Figure 2. Odor landscapes and temporal reformatting of spatiotemporal structure. Normalized instantaneous odor concentration
fields measured by planar laser-induced fluorescence illustrate diverse odor landscapes in air (left & middle columns) and
water (right column) for varying release conditions and flow speeds. Cross-hatching signifies a data gap from laser shadowing
behind the obstacle. Figure and caption adapted from [49] under the Creative Commons License.

infrared light source, a gas sample chamber, and a detector,
making them effective for measuring gases like carbon diox-
ide and methane. NDIR sensors offer high specificity and
sensitivity, are stable over time, but can be more expensive
and require periodic calibration.

5.1.5 Electrochemical Sensors Electrochemical sensors
are used for detecting toxic and combustible gases, consist-
ing of an electrode system immersed in an electrolyte. They
operate by generating a current proportional to the gas con-
centration when the target gas undergoes a redox reaction
at the electrode. These sensors are highly sensitive and rela-
tively inexpensive but may require regular calibration and
can be affected by other gases. Work from [147] [82] and [15]
denote several applications with electrochemical sensors.

5.1.6 Conductive Polymer Sensors Polymer sensors uti-
lize conductive polymers that change their electrical prop-
erties in response to specific chemicals, operating on the
principle that gas absorption leads to changes in conductiv-
ity or resistance. They are often used for detecting volatile
organic compounds and can be tailored for specific applica-
tions, being lightweight and low-cost. However, they may
have lower sensitivity compared to other sensor types and
can be influenced by humidity and temperature changes.

5.1.7 Colorimetric Sensors Colorimetric sensors detect
and quantify chemical substances based on color changes
resulting from chemical reactions. These sensors typically
consist of a sensing material that interacts with specific ana-
lytes, leading to a visible color change that can be measured
and correlated to the concentration of the target substance.

They can be designed to respond to specific gases or com-
pounds, providing a visual indication of their presence. The
degree of color change can be quantitatively analyzed, allow-
ing for the measurement of concentration levels of various
substances. Colorimetric sensors can be coupled with cam-
eras or spectrometers to automate the detection process and
enhance data analysis.

5.2 Dynamic Environments & Ambiguity

Even through the use of fast and reliable sensing techniques,
navigation via olfactory signal is still a very challenging
task. Singh, et al. in [168] and [169] demonstrate a method
using reinforcement learning to train a recurrent neural net-
work that can maintain temporal information about chang-
ing plume dynamics. They maintain the protocols of [79]
and [59] in keeping the agent simple, computationally ef-
ficient, and adaptive. They employ similar principles that
complement active, continuous, and lightweight learning.
Crimaldi discusses how insects use multimodal principles
through fixational eye movements while tracking plumes.
Locking onto a source of smell visually allows the insect to
discern through ambiguity imposed by air dynamics. In-
sects actively adjust their antennae to scan for odors as
they are tracking. This effects the neural odor representa-
tion within their brain. Mammals sample odors in the en-
vironment through rapid sniffing at 2-15 Hz, pulling the
target odorants into contact with the olfactory bulb in the
process. While these techniques are used to maximize the
signal within the olfactory sensor, they also introduce dif-
ferent dynamics around the immediate local environment
surrounding the sensor. This introduces more ambiguity into
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Figure 3. Moving through odor landscapes is an active sens-
ing modality where the information content of the signal is
modified by sensor kinematics (top panel, black line shows a
hypothetical trajectory). This is seen in concentration time-
series from one static sensor (middle panel, black circle in top
panel), and two active sensors (bottom panel, green & ma-
genta arrows in top panel) moving upstream (downstream)
through the same plume along straight trajectories (arrows,
upper panel) on the mean plume centerline (dashed black
line, upper panel) at 5 cm/s absolute velocity. All sensors
have the same mean position over their 3-second trajectories
(black circle symbol, top panel). Figure and caption adapted
from [49] under the Creative Commons License.

the sensor sampling and further magnifies the difficulty be-
hind olfaction use cases. Many aspects of olfactory tracking
can be modeled by navigation algorithms that consolidate a
simple state machine with continuous updating of heading
and orientation governed by instantaneous detection of the
odor concentration [49]. This makes the problem of olfactory
tracking seem simple, especially when multiple modalities
are involved. Where the complications arise is through the
modeling of the odors themselves and the continuous motion
(e.g. surging and casting) of the insect. Aerodynamic model-
ing is inherently difficult, highly dimensional, and has many
degrees of freedom. From [49], "Hopfield, 1991 suggested
that odors emanating from spatially separate sources usually
generate distinct spatio-temporal distribu- tions, whereas

co-located odor sources will result in coincident odor encoun-
ters." Knowing these proxies about aerodynamic behavior
allows us to build higher degrees of uncertainty quantifica-
tion into the simulation environment.

Drift among olfaction sensors is also a common problem.
Each sensing type drifts with its own variance and differ-
ent environmental variables can significantly influence this.
Metal oxide sensors, for example, have a warmup duration
that must be completed before the sensors can be reliably
used for gas measurement. It can be difficult to discern sensor
drift between true signal after this warm-up period occurs,
because environmental factors, sensor saturation, and time
since last use can all influence the true duration of the drift
period needed for adequate sensor reset. Dennler, et al. in
[55] demonstrate different remedies for detecting drift and
how to compensate for it through methods like bout detec-
tion [162].

The dynamism in olfaction scenarios make acquiring train-
ing data difficult, and acquiring matching multi-modal sen-
sors even more so. As a result, adaptive learning through
multi-modal and multi-agent methods becomes not only
helpful, but paramount for success.

5.3 Neuromorphic Computing

Neuromorphic computing is an approach to designing com-
puter systems inspired by the structure and function of the
human brain. Instead of relying on a centralized clock and
separate memory and processing units, neuromorphic sys-
tems use networks of spiking neurons that process informa-
tion asynchronously and in parallel based on events. This
design mimics how biological neurons communicate through
discrete events (spikes), leading to highly energy-efficient,
real-time processing, particularly well-suited for tasks in ac-
tive and continuous machine learning. Most neuromorphic
architectures co-locate memory and processing together, re-
ducing data movement and energy consumption [154].

Neuromorphic architectures naturally support massive
parallelism. This can be advantageous for applications in
artificial intelligence and sensory processing, where many
small, concurrent operations are needed. Many neuromor-
phic systems use spiking neural networks that are well-suited
for processing noisy or unstructured data, potentially offer-
ing robustness in areas like autonomous systems or robotics.
Leveraging insights from the human brain could lead to more
adaptive, resilient, and efficient computing systems that bet-
ter mimic human cognitive functions, opening doors to new
types of machine intelligence.

While neuromorphic computing is still largely in its in-
fancy, some real world applications are being developed.
Work from [95] specifically demonstrate how neuromorphic
architectures naturally exhibit adaptive learning through
the construction of a real circuit. Research from Hajizada, et
al. in [85] has shown one of the most promising real-world
developments in neuromoprhic computing with their Loihi
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chip. The Intel Loihi chip is designed to mimic key aspects
of biological neural processing.

Adaptive learning naturally inherits from neuromorphic
computing, and machine olfaction can substantially benefit
from its event-driven architecture. When it comes to olfac-
tion, many challenges revolve around processing complex,
noisy, and time-varying chemical signals. Olfaction sensors
detect volatile compounds that might appear sporadically. By
encoding sensor outputs as asynchronous events—much like
spikes—one can process only the meaningful changes rather
than continuously sampling, which leads to lower power
consumption and faster response times. The spiking neural
networks on a neuromorphic chip are inherently good at
capturing the temporal dynamics of signals. This is a natural
fit for olfaction, where the pattern and timing of chemical
concentrations can be crucial for identifying different odors.
With on-chip learning, a neuromorphic system can adapt to
variations in environmental conditions, sensor drift, or new
odor profiles.

As shown by the work of Dennler, et al. in [56] neuro-
morphic computing highly complements applications for
olfaction. Yet this idea is still largely in experimental or early
commercial stages. Research by [107] delineate challenges
and opportunities of neuromorphic computing at scale. Is-
sues like manufacturing consistency, scalability, and durabil-
ity under varied workloads need to be addressed before they
can be considered a reliable replacement for mature technolo-
gies. The tools, frameworks, and programming models for
neuromorphic computing are not as well-developed as those
for conventional architectures. This makes it challenging
to design, implement, and optimize applications—hindering
widespread adoption. Many of today’s algorithms, partic-
ularly in machine learning, are designed for conventional
hardware. Adapting or rethinking these algorithms to lever-
age neuromorphic principles may require significant inno-
vation and re-engineering. While neuromorphic systems
may excel in specific domains (like sensory processing or
edge computing), it’s unclear whether they can handle the
broad range of tasks managed by general-purpose von Neu-
mann systems. A hybrid approach might emerge, where
neuromorphic processors complement rather than replace
conventional architectures.

6 Plume Tracking & Olfactory Navigation

The machine olfaction task that can most benefit from adap-
tive learning is plume tracking, or scent-based navigation.
Plume tracking not only involves the act of localizing an
odour to its source, but in identifying the specific compound
to track and modeling the plume itself. Accurate plume track-
ing requires the robot to create a model of the plume and
understand how the plume evolves in accordance to vary-
ing environmental conditions like wind, temperature, and

humidity. The signal magnitude for many chemical com-
pounds change as they are heated, pressurized, and mixed
with other chemicals in the air. This means that the robot
must intuit how the target compound is evolving as it navi-
gates. For example, for a robot trained to locate the source of
the compound 2,4-Dinitrotoluene (a primary component of
explosives), the signal for such compound looks vastly differ-
ent at 0°C and 2000 meter altitude than it does at 40°C and 100
meter altitude. Thus, effective plume navigation must bal-
ance an ego-centric model from the robot and a world model
of the changing plume. In some instances, multi-hypothesis
tracking and extended Kalman filtering can prove to be ef-
fective. However, in extreme environments, these Kalman
filters may need to be fused with neural models like those
from HybridTrack in [17] maybe needed. This is also par-
tially remedied by the techniques defined in [71]. In their
work, they define analytical techniques that are helpful for
calibrating various olfactory sensors. Their research builds
off that from [72] where they demonstrate a method called
Olfactory Inertial Odometry (OIO) that fuses inertial data
with the olfactory signal of chemical sensors to facilitate
scent-based navigation.

Research from [49] discuss the dynamics of plume track-
ing. Computational fluid dynamics packages become bene-
ficial in modeling how plumes will behave for various en-
vironments and compounds. Even the effect that the robot
itself has on the plume must be considered: The rotors from
a quadcopter can significantly distort the plume as it is being
tracked. This warrants the robot designer to consider careful
placement of the olfactory sensors to maximize the signal. In
the demonstrations of [34] and [61], both show that placing
the olfactory sensor at an elevated point in the middle top
of the quadcopter is sufficient to track ethanol. On the other
hand, the antennae of moths extend far passed their head in
order to escape the beat of their wings, so that the olfactory
sensors of the antennae may sense the undisturbed air.

Other robots such as humanoids may not have as strong of
an influence on a plume being tracked since their movements
are more graceful and induce less turbulence than propellers.
However, dense chemical compounds that lie low to the
ground may difficult for tall humanoids to detect. Examples
from [35] discuss how quadcopter rotor wash reverberating
off the ground strongly distorts the olfactory signal when
tracking a plume close to the ground. This is in contrast to
ants that perform pheremone tracking by laying chemicals
close to the drone for the rest of the colony to localize.

Adaptive learning is a very appropriate methodology from
which plume tracking can benefit due to the volatility of
plumes and the influence even subtle aerodynamic changes
have on chemistry, and Crimaldi et, al. allude to this in their
2022 work. Methods from Singh, et al. in [169] leverage many
of their assumptions to train a recurrent neural network
(RNN) through reinforcement learning. An overview of their
assumptions for plume modeling is displayed in Figure 4.



Figure 5 illustrates how the trained RNN handles changes in
plume direction and differing plume diffusion rates. Singh,
et al. demonstrate their methods in simulation, but an oppor-
tunity exists to prove the practicality of their work in reality
through experiments similar to [34] and [61].

Though only a singular problem in machine olfaction,
plume tracking engages several different disciplines and no
one unified framework has been proposed that effectively
enables robots to navigate by scent. Adaptive learning is key
to solving olfactory navigation and doing so will largely be
driven by a confluence of sufficient data acquisition over a
defined olfaction standard, a variety of olfaction sensors, and
multimodal learning.

7 Multi-Modal Learning

Data and sensing can be classified into different modalities.
Each modality is a quantitative format for which different ma-
chine learning techniques can be used. Vision, hearing, and
speech are all different sensing modalities and they are all
represented by PNG/JPEG data (for images), WAV/MP3 data,
and text data respectively. As previously mentioned, there is
not a community consensus on how olfaction data should
be represented. In most cases, olfaction data is represented
in the form of time series data or spectrograms. This survey
shall focus on the general field of olfaction, discussing the
many different sensing techniques and data forms available.
Some of the more compelling demonstrations of olfaction
are not where olfactory sensors are used in isolation, but
used in conjunction with other sensing modalities such as
in computer vision for scent-augmented navigation.

Multi-modal learning is the process of using data inputs
of multiple types in order to construct a model of approxi-
mation. These modalities can be image data from cameras,
audio data from microphones, chemical data from olfaction
sensors, or any other kind of data medium. One approach to
multi-modal learning is to distinctly learn separate signals
for each modality through separate models. This works well
in theory, but can become highly computationally expensive
as many modalities are added.

An alternative method of multi-modal learning is called
modality binding. In their work [80], they discuss ImageBind,
a model that fuses these data streams together into a sin-
gle "embeddings space" that facilitates conditional pattern
recognition in higher dimensions. Multi-modal learning then
occurs by conditioning all other modalities with respect to
one "grounding modality". They conduct experiments over
six different modalities: images, thermal, motion (inertial
measurement unit), audio, text, and depth data. All of these
modalities are bound to the image modality, hence the name
"ImageBind". One benefit of having a single embeddings
space for all modalities is the break of dependence among
all modalities contributing to multi-modal learning. Multi-
modal models can be developed in such a way that all six
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modalities must be needed as input in order for an accurate
response to occur; if one modality is not present in the input,
the model exhibits high uncertainty or breaks. With Image-
Bind, the authors remove this crux through the creation of
the common embeddings space. One modality, all six modal-
ities, or an observation with any permutation therein can
be fed into the model and still deliver a competent result.
This requires identical encoders among all data modalities
so that an entire observation can be encoded into the same
latent space and therefore be normalized for training. In
their work, [80] demonstrate that modality pairs are "bound"
together to create this embeddings space. They define I as
the grounding modality and M as another modality - any of
the other five. These modality pairs are encoded together,
effectively binding them in the process. These encoders are
optimized through an InfoNCE loss, first proposed by [181].
The equation for this loss is shown below.

exp (q7 ki/7)
& exp (T ki/7) + 2,21 xp (4] k;/7)

where 7 denotes a scalar temperature that controls the smooth-
ness of the softmax distribution and j defines "negatives", or
unrelated observations. Each example j # i in the mini-batch
is presumed to be a negative. The loss makes the embeddings
qi and k; closer in Euclidean distance in joint embedding
space. This consequently aligns I with M conveniently for
joint learning. Equation (1) significantly increases the effi-
ciency of jointly learning the embedding space.

Other methods such as Prototypical Networks in [170]
make use of Kullback-Leibler divergence as another helpful
routine for use in multi-modal learning. The equation for
this is shown below:

1)

L[,M =-lo

P(x)
Q(x)

The "KL" divergence as it is commonly referred to mea-
sures the difference between two distributions. In multi-
modal learning, each of these distributions can be thought
of as characterizing a distribution around unimodal data. In
high dimensional space, these distributions are not expected
to align. However, with the use of the techniques in Image-
Bind, all modalities are encoded using a similar encoder and
bound to a common reference modality. This enables the
distributions for each modality to overlap, such that the KL-
divergence is close to zero (zero meaning distributions are
identical in shape, size, and spread). Coupling KL-divergence
with the NCE loss could enable efficient adaptive learning
with ImageBind. As Snell et al. suggest in [170], the use
of KL-divergence enables out-of-distribution detection in
prototypical networks. This concept can be extrapolated to
ImageBind to enable active multi-modal learning, allowing
agents to adapt to new environments and react to different
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Figure 4. (a) A schematic of a flying insect performing a plume tracking task. (b) A plume simulation model showing stochastic
emission of odour packets from a source carried by wind. Odour packets are subject to advection by wind, random cross-wind
perturbation and radial diffusion. (c) An example of a plume simulation where the wind direction changed several times. (d A
schematic of how the artificial agent interacts with the environment at each time step. The plume simulator model of the
environment determines the sensory information x available to the agent and the rewards used in training. The agent navigates
within the environment with actions a. () Agents are modeled as neural networks and trained through reinforcement learning.
An RNN generates an internal state representation h from sensory observations, followed by parallel actor and critic heads
that implement the agent’s control policy and predict the state values, respectively. The actor and critic heads are two-layer,
feedforward networks. (f) A schematic to illustrate an agent’s head, course, and wind direction. Figure and caption are adapted

from [169] under the Creative Commons License.

agent behaviors. The ability to detect and segregate out-of-
distribution data using the methods defined above is crucial
for complex olfactory tasks and critical for ensuring minimal
computational complexity of edge algorithms on olfactory
robots.

7.1 Fusion vs Multi-Modal Learning

Fusion and multi-modal learning are often referred to in the
same context, many times as the same concept. Both concepts
are similar in theory, but quite different in practice. Fusion
is the step that occurs before multi-modal learning. In other
words, all data modalities must be "fused" together in a way
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that normalizes all of the data and establishes a covariance
model. A good example of this is the extended Kalman filter.
Extended Kalman filters "extend" the concept of a single-
variable Kalman filter by adding more variables into the
filtering process. All of these variables are fused together to
construct a covariance matrix that indicates how each input
conditionally varies in the presence of other variables.

The joint embeddings space from ImageBind acts in a very
similar way, but in much higher dimensionality. The embed-
dings space from ImageBind is analogous to the covariance
matrix in an extended Kalman filter. Each variable (or data
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Figure 5. Snapshots of various odour plumes, denoted in
grey, overlaid with learned agent trajectories. The trajecto-
ries are colored according to whether the agent was able
to sense the presence (green) or absence (dark blue) of the
odor. Trajectories start at the filled black circle and end at the
odour source, indicated by dotted cross-hairs in the left-hand
side of each panel. All examples use a 0.5 m/s wind. Figure
and caption leveraged from the original work of [169] under
the Creative Commons License.

modality) is put through an encoder before it is fused into
the embeddings space. In reality, a single variable ingested
by a Kalman filter is usually low in dimensionality (e.g. a
scalar value) and complexity, whereas a single variable in-
gested by a multi-modal model like ImageBind is high in
dimensionality (e.g. videos) and much more complex. Fusion
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is a part of the multi-modal learning process, but it is not
the same as multi-modal learning.

7.2 Grounding Modality

The success of ImageBind in [80] shows how effective multi-
modal learning can be by encoding all modalities into a
common latent space. This can be achieved by selecting one
modality and binding all of the others to this. In the case
of ImageBind, image data was selected as the grounding
modality to bind all others to. All other modalities were
encoded into images in order to normalize the data into a
common format and embedding space. In other words, from
(1), I always represents an image, and M always represents
one of either thermal, IMU, depth, video, or text data.

While this proves effective in learning, the difficulty in
achieving this comes in ensuring pairs of images with each
modality exist. Otherwise, the ImageBind technique cannot
occur. This is not necessarily a fault with ImageBind, but a
condition of multi-modal learning in general. Without paired
data observations, controlled learning becomes difficult to
achieve. In the case of ImageBind, the authors had to acquire
observations for which all six modalities existed. This makes
data acquisition very expensive and time consuming, but a
necessary expense in order to build a high-fidelity model.

From a machine olfaction perspective, ImageBind could
significantly help the work of [169] and [49]. Both of their
works denote olfaction-only evaluations. Coupling another
modality in their experimentation has the potential to sig-
nificantly improve their work. Leveraging the methods from
[80] and maintaining imaging as the grounding modality,
olfaction data could be encoded into spectrograms in order
to create a synergistic pair.

7.3 Multi-Kernel vs Single-Kernel Learning

Methods involving multi-modal learning with multiple ker-
nels (or models) are an extension of the work from [81] where
they show support vector machines can allow for the use
of different kernels for different modalities or views of the
data !. Kernels can be seen as similar functions or models
between data modalities, each one allowing for better fusion
of heterogeneous data [204].

Multi-kernel learning allows for flexibility in kernel se-
lection. This is an advantage in that kernels can easily be
toggled or switched "oftf". Another advantage is that the loss
function of multi-kernel models is convex, enabling model
training using simpler, more standard optimization tech-
niques. One of the main drawbacks of multi-kernel learning
is that they are inherently slow, requiring more computa-
tional power, longer inference times, and a larger memory
footprint. Ultimately, there is a tradeoff decision that must be

1Co-training by [23] and [123] is another technique that leverages multiple
"views" of the same data to construct multiple models and will be discussed
in a later section
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made between a single fast and small model that may be dif-
ficult to train, or a slower large model that is more dynamic
and agile to adverse data conditions [204]. This is analogous
to the exploration versus exploitation tradeoff discussed in
Section 10.

7.4 Modality Encoders in Unified Models

Popularized more recently is the use of separate encoders for
each modality and then projecting the output of each encoder
into a common embeddings space for fine-tuning of a larger
model. This can be very succinctly viewed in the methods
of [117] with their Large Language and Vision Assistant
(LLaVA). LLaVA is a vision-language multi-modal model that
provides descriptions of images based on queries about those
images. In LLaVA, an image encoder (a vision transformer of
similar architecture to the Contrastive Image Pre-training,
or CLIP, model from [153]) extracts visual features from an
image. A decoder language model (multi-layer perceptron)
generates text from this image encoder. However, since the
embeddings of the image encoder are not of the same shape
as text embeddings used by the decoder, one must project
the dimensionality of image features extracted by the image
encoder to match what’s observed in the text embedding
space. As a result, projected image features become visual
tokens for the language decoder.

Analogously, one can imagine how olfaction data and
image data could be projected together to a common embed-
dings space to provide contextual mapping to assess which
objects may be emitting certain compounds. The image-
language encoder CLIP [153] is commonly used as default
starting point for many vision-language models. Instead of
encoding vision and language together, one can use a similar
architecture to create an olfaction-vision embeddings space.
This was in fact done with work from [160], a mobile appli-
cation that contains an embedded olfaction-vision-language
model that, as an extension to LLaVA, encodes olfaction
data into a separate encoder for projection into the image-
language embeddings.

7.5 Mixture of Experts Models

Mixture of Experts (MoE) models show promise in multi-
modal learning. MoE models differ from dense models in
that not all neurons are activated upon either training or
inference. In a MoE, several models are assembled together
with each model being trained for a specific task or domain.
Each expert can be a separate task (e.g. code reasoning and
mathematical reasoning) or a separate modality (e.g. vision
and olfaction). A gating network handles which experts are
activated for inference based on the data that is input into
the model. MoE models have the added advantage in that a
fault with one expert model does not require a re-training of
the full MoE. One can simply edit, replace, or entirely delete
the faulty model with minimal restructuring of the entire
MoE.
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Figure 6. Olfaction-vision-language model (OVLM) archi-
tecture from [70].

A notable example of a MoE in broader literature is DeepSeek’s
R1 reasoning model [53]. In their work, they use a process
called Group Relative Policy Optimization (GRPO) to gener-
ate several synthetic training examples from a few known
golden examples to help optimize the MoE model. This sig-
nificantly reduces the number of training examples needed
to be acquired from real data by inferring them from a much
smaller dataset, a technique that can be extrapolated to ol-
factory data.

Google DeepMind’s Robot Transformer 2 (RT-2) [29] demon-
strates a generalist vision-language-action (VLA) model for
robots that, similar to most LLMs, was trained on internet-
scale data. Research from [20] and show how these VLAs
can be further optimized to run at the edge with the help
of Efficient Action Tokenization [149], a process that uses
the Discrete Cosine Transform to compress continuous ac-
tion sequences into discrete tokens. These models have been
made available on HuggingFace for use in edge robotics.
Researchers from DeepMind, the Toyota Research Institute,
Stanford, MIT, and others have contributed to OpenVLA,
an open-sourced VLA designed to be easily finetuned on
custom datasets [104], but initially trained on the Open X-
Embodiment dataset [45].

More specific to olfaction, work from [70] demonstrates
how multiple vision experts and olfaction experts can be
combined together in a MoE to output an action for the
purposes of olfactory navigation.

MoE models show promise for olfaction applications be-
cause they require, on average, four times less compute than
dense models and each expert can be specifically tuned with-
out breaking interdependencies within the larger model [8].
In addition, all else held constant, MoE models can benefit
from much smaller all-up model size in comparison to their
dense counterparts on similar benchmarks; this makes them
more attractive to robotics applications where models need
to run at the edge.
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8 Adaptive Learning

Any statistical model is only as good as the data it is trained
on. For machine learning models, the metrics achieved upon
training and testing can be invalidated over time if (a) the
data used to train the model was not sufficiently reflective of
the entire population of data points, or (b) the population of
data points changes over time. For either case, this scenario
is called "data drift" or "distribution shift".

In classical machine learning, models are trained and
locked upon deployment, never again allowed to change.
However, the metrics achieved during training can only be
assumed to hold true throughout the deployment lifetime of
the model if neither of the aforementioned conditions are
violated. In many cases, both of the aforementioned condi-
tions are violated and the model begins to give improper
results, but the user of the model may not know that dis-
tribution shift has occurred. One can imagine the critical
implications of this in highly sensitive applications, such as
those in healthcare and defense.

These reasons underscore the importance of adaptive
learning. Adaptive learning (sometimes called lifelong learn-
ing or continuous learning) is a fairly young branch of ma-
chine learning research where agents continuously learn by
encountering new tasks, gaining new knowledge without
forgetting previous ones. This contrasts with the traditional
train-then-deploy protocol for machine learning models,
which cannot incrementally learn without experiencing cat-
astrophic interference between consecutive tasks. Adaptive
learning allows the model to adjust itself over time to accom-
modate evolving data inputs. In reinforcement learning, this
could mean that the existing policy is allowed to adjust itself
according to changing environment conditions, degrading
sensors, changing behaviors of other agents within the en-
vironment, or adopting entirely new capabilities. The work
of Ge, et al. in [79] lays out a concise protocol for which
adaptive learning can occur.
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8.1 Continuous & Federated Learning

It is trivial to surmise a bunch of data, feed it into an ex-
tremely large transformer, and have it recognize some sort
of patterns within the data. In fact, Halevy, et al in [86]
even demonstrate that said data does not even need to be
sufficiently clean insomuch as it is plentiful. There is an abun-
dance of machine learning research that has occurred over
the last few decades working on solving big data with bigger
models. However, in some instances, acquiring an abundance
of data is not always possible. For example, in medical appli-
cations, the available data for rare diseases does not satisfy
conditions for data-hungry classical machine learning. This
is where continuous learning becomes prudent. Continuous
learning allows the learned distribution to shift and edge
closer to the true population distribution as more observa-
tions, experiences, and datapoints are acquired. [79] propose
an architecture for their adaptive learning agent that com-
prises a larger pre-trained common "backbone"” model and
smaller fine-tuned modules that are adapted perform spe-
cific sub-tasks. This backbone enables agents to learn from
a common representation and therefore enable faster gener-
alization, while the smaller task-specific modules allow the
agents to quickly learn new tasks and/or recognize new fea-
tures. [79] label this framework as SKILL: shared knowledge
in lifelong learning.

SKILL prevents the need for a large monolithic model to
learn all skills together. The common backbone keeps the
SKILL model lightweight and computationally efficient. The
use of adaptive learning is also a factor in maintaining low
resource use of the model, because the model needs less pre-
training, less storage due to a smaller model size, and fewer
dependencies to heavy submodules.

One can imagine how allowing a machine learning model
to adjust itself can have severe implications if the adjust-
ments are not controlled. How does the model know it ad-
justed itself correctly? What conditions should be put in
place that govern when the model should change? We can
find the answers to these questions with federated learning.
Federated learning is a method that allows multiple decen-
tralized models to learn on their own and be periodically
synchronized with a central master model that normalizes
all of the training data and observations together. The term
"federated learning" was first proposed by McMahan, et al.
in [126] in their 2017 work with Google.

From a swarm intelligence perspective, federated learn-
ing is a huge asset because it allows each member of the
swarm to contribute to an optimal hivemind that, in turn,
learns from each of the constituent swarm members. Fed-
erated learning helps limit the number of times that each
constituent swarm member needs to communicate back to
the master model, appropriately throttling computational
resources needed for communication transactions, especially
when communication is difficult or the environment denies
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Figure 8. Comparison of SKILL lifelong learning with related learning paradigms. a) Multi-task learning: A single agent
simultaneously learns multiple tasks in the same physical location. b) Sequential Lifelong Learning (S-LL): A single agent
sequentially learns multiple tasks in one location, using specific mechanisms to prevent task interference. c) Federated learning:
Multiple agents independently learn the same task in different physical locations and then share their knowledge (parameters)
with a central agent. d) SKILL lifelong learning: Different S-LL agents in various physical regions each learn different tasks, and
the learned knowledge is shared among all agents, enabling them to eventually solve all tasks. Bottom-right table: Strengths
and weaknesses of each approach. Figure and caption adapted from [79] under the Creative Commons License.

communication among the swarm (e.g. due to signal loss).
Federated learning is also a privacy-preserving feature in
that it allows fewer data transactions to occur and more iso-
lated edge models limiting the opportunities for adversarial
attacks. Secondly, federated learning allows each agent of
the network to learn a slightly different part of the distribu-
tion. The synchronization back to the master model allows
all other edge agents to leverage the experiences of the other
agents without directly having to have those experiences
themselves. This allows for "multi-threaded" or "distributed"
learning in that each agent is learning different details about
a common task.

From an adaptive learning standpoint, this is extremely
attractive as it allows agents to adapt to their environments
in a controlled manner. For example, through the lifelong
learning framework in [79], agents can quickly learn new
skills through federated learning by maintaining a common
backbone model and several finetuned models on each skill.
Each agent has a separate finetuned model for specific tasks,
but the backbone is a hivemind model contributed to by
all other agents in the swarm. Figure 8 illustrates how the
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SKILL lifelong learning framework from [79] uses federated
learning to keep machine learning models light and adaptive.

Federated learning not only helps spread information
among constituent members of the swarm. It also promotes
controlled and stable learning among distribution shift. As
[170] discuss in their work with prototypical networks, gra-
dient explosion, catastrophic forgetting, and other means of
"unlearning” can occur when uncontrolled active or trans-
fer learning occurs. Federated learning allows the swarm of
agents to, indirectly, shift the prototypical network to align
with the true network by taking the weighted average of
the prototypes learned by each agent. This helps ensure that
any shift in network modeling is generally moving in the
direction of the true data distribution.

8.2 Self-Adaptive Networks

The previous section discussed a style of learning that allows
the weights of a network to continue to change throughout
its use. Another approach to continuous and adaptive learn-
ing is through the use of columnar constructive networks
(CCNis). Originally established by Javed, et al. in [97], CCNs
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Figure 9. Columnar-Constructive networks (CCNs) combine
the ideas from Columnar and Constructive networks. Old
knowledge is preserved in the frozen layers and new knowl-
edge is acquired in new layers (columns). This allows the
network architecture to adapt to the task or pattern complex-
ity. Figure adapted from [97] under the Creative Commons
License.

begin training with a shallow neural network, typically only
a couple of layers. The error of the network is monitored
and, when enough evidence has amounted that the network
can no longer improve prediction quality, another layer is
added. Each layer is considered a "column". As the next layer
is added, all preceding hidden layers are frozen, effectively
preserving knowledge over the data learned thus far. As
learning continues, only the weights of the recently added
layer are adjusted. This process continues until some thresh-
old of error is accomplished consistently, and the addition of
layers may be throttled by a temperature parameter. Javed, et
al. mention the optimization of the temporal difference (TD)
error and emphasize the use of the technique in reinforce-
ment learning. In contrast to simply adjusting weights of a
constant-size network, the use of CCNs enables a network
that grows to the complexity of the task or pattern.

We find the CCN technique particularly compelling for
machine olfaction. As a robot navigates, the scent it is track-
ing may evolve or change as its concentration ebbs and flows
and it reacts with other compounds in the air. Maintaining
snapshots of the plume in the frozen layers could capture
a temporal snapshot of a scent as the robot pursues it to
the target source. More on plume tracking is discussed in
Section 6.

8.3 Task vs Style vs Modality Transfer Learning

One goal of adaptive learning is to develop Al systems that
can continuously learn to address new tasks from new data,
while preserving knowledge learned from previously learned
tasks. Discussed above, this is known as multi-task learn-
ing or task transfer learning. Also previously discussed is
multi-modal learning where multiple data sources are jointly
learned together into a single reward signal. There is another
type of knowledge transfer in adaptive learning called style
transfer learning.
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Style transfer learning can be generally pictured with the
following anecdote: Two agents have an identical goal of
navigating a course to the finish line. Both agents know the
route to the finish line with 80% confidence but one agent
has an exploratory style and the other agent has an exploita-
tion style. In other words, one agent is going to complete
the course as fast as possible and have full confidence that
it’s policy is correct, deviating as little from its policy as
necessary. The other is going to attribute less confidence to
its policy and explore alternative routes to the finish line in
the event that one route may lead to the finish line more
quickly. Both agents have identical sensors, goals, and re-
ward signals, but their styles of achieving the desired goal is
slightly different.

The work of [138] illustrates this concept well. In their
manuscript, they propose a framework called MultiCriticAL
that shows how actor-critic reinforcement learning methods
can be extended to support different styles via the use of
multiple critics among a single actor. Actor critic methods
are temporal different reinforcement learners that represent
the policy independent of the value function through the
use of separate policy and memory mechanisms. The policy
mechanism is known as the actor and is the one selecting
actions. The critic mechanism is the estimated value func-
tion because it "criticizes" the decisions made by the actor.
The back-and-forth exchange of state-action trajectories be-
tween these mechanisms facilitates learning in the form of
temporal differences between the actor’s decisions and the
critic’s scrutiny. Learning always occurs on policy. A dia-
gram showing the MultiCriticAL framework from [138] can
be seen in Figure 10.

In typical actor-critic learning, the value functions are
learned by a single network with a single output node for
all tasks. One problem with using a single learned value-
function for multi-task learning is that one value-function
representing multiple values may enforce continuity be-
tween the learned values. If this occurs, it could compro-
mise the quality of the learned values and resulting policies,
decreasing the quality of the learned values and the conse-
quential performance thereof. [138] suggest separating the
learned values per style, or task. The continuity between
task values can be dismissed, and the values for each task
specifically learned without relying on the critic’s policy to
learn the distinctions between each.

The MultiCriticAL framework shows how multi-valued
critics, and therefore multi-task reinforcement learners, may
be effectively represented by separate independent critics,
or a single critic network with multiple heads. In the latter
scenario, each each head details a different learned task-value.
This allows for some learned representations to be shared
among the value functions if the tasks to be learned are
somewhat similar and using separate critics ends up being
too computationally expensive. This can be more explicitly
seen by the diagram in Figure 11.
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The claims by the authors of the MultiCriticAL frame-
work are validated by their results. Their study analyzes
the difference in path following for single-style soft actor-
critic (SAC), multi-task SAC, and both the multi-network and
multi-head flavors of MultiCriticAL. [138] claims to achieve
a 56% increase in multi-task performance with MultiCriti-
cAL in comparison to the predicate methods, all while using
smaller neural networks to construct their policies.

While Mysore, et al. proposed an actor-critic architecture
with many critics in [138], Li, et al. in [114] propose the con-
verse: an actor-critic architecture with multiple actors for
multi-task learning. While their approaches are similar in
exploitation, there are some implementation differences. In-
triguingly, [114] do not specifically emphasize their method-
ology for multi-task learning, but rather for the use of more
accurately learning single complex tasks by breaking them
down into smaller sub-tasks. They advocate the use of their
model for the purpose of weighting the different Q-values of
different actors for the same task performed, and then using
these values to more accurately construct the single-task
policy. The authors illustrate their multi-actor method with
deep deterministic policy gradient (DDPG) and twin delayed
DDPG (TD3) architectures. What they call the multi-actor
mechanism or MAM, they demonstrate how it can hedge
against estimation bias, enhance exploration, and provide
state-of-the-art results in several of tasks from the MuJoCo
battery [28].

[114] demonstrate the use of multiple actors among a
shared critic with the intent for each critic to learn different
sub-distributions of the overall task distribution. However,
the work of Zhang, et al. in [202] extends this work to more
accurately reflect the converse of the MultiCriticAL frame-
work from [138]. They demonstrate how the critic can act as
a knowledge transfer mechanism among many independent
actors, where each actor learns a different specific task. One
note that the authors emphasize is that the hyperparameters
and architectures of each actor model are not necessarily
identical. This allows the shared-critic architecture to learn
largely heterogeneous tasks through the use of differently
architected actors.

8.4 Multiple Methods, One Objective

Each of the aforementioned methods contribute a different
angle to multi-task learning. Whether through the use of
many critics as in [138], many actors as in [202], or other
methods such as those proposed by the federated learning
work of [126], multi-task learning is proposed as being an
effort that is easiest accomplished via multiple models. This
segues nicely into multi-agent learning. If multiple models
can be built to enable a single mechanism to learn multiple
tasks, each of these models can also be analogously leveraged
to enable multi-agent cooperation. In this manner, multi-task
methods can be easily extrapolated as multi-agent and swarm
learning methods. For more heterogeneous swarms, the work
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of [138] and [202] can be used, while the multi-actor model
by [114] can be leveraged for more homogeneous swarms.
There is a host of shared knowledge between multi-task and
multi-agent learning that can be used for swarm design.

8.5 Synthetic Data

In the absence of plentiful data for model training, generating
synthetic data from the data that is available is a reasonable
option to scope a sufficiently large dataset. Gaussian per-
turbation methods from [156] are an option for generating
synthetic data from seed data, with the acceptance that hav-
ing Gaussian modes around each true training sample is an
acceptable approximation of the real data distribution. GRPO
from [53] also shows a lot of promise in optimizing reward
models.

When generating synthetic data, one must be cognizant of
model collapse. Too much synthetic data generated from pre-
viously trained models (versus synthetic data generated from
ground truth data or golden queries) can lead to vanishing
gradients and model collapse if not controlled. Methodology
from Seddik, et al. in [163] denote several methods to hedge
against this. They delineate multiple recipes and limits for
mixing both synthetic and real data together during training
to prevent model collapse.

In summary, synthetic data generation is a very credible
technique to use for olfactory data, but it must be done so
with control and caution.

8.6 Plasticity

Converse to model collapse is plasticity loss. When a model
loses the ability to adjust and train (its plasticity), the amount
of data and its diversity make negligible impact on the model,
regardless of the magnitude. A very detailed survey from [58]
illustrates conditions under which plasticity in deep learning
models begin to occur. Loss of plasticity is of primary concern
with continuous learning. When a model is able to constantly
update itself, gradients become smaller and smaller until no
more updates can be made, and plasticity itself converges to
zero. One remedy for this is to implement learning rate decay,
such that plasticity is much larger in early learning than it
is in later learning. Both in and outside of machine olfaction,
robots will require the ability to continuously learn from
few examples and it is paramount that technical architects
consider strategies for maintaining plasticity during adaptive
learning.

8.7 E-Prop and Eligibility Traces

One of the most computationally expensive procedures of
machine learning algorithm is the weight update step. Typi-
cally, this is conducted through the common backpropaga-
tion algorithm proposed by Yann LeCun in 1988 [109]. It
has since become a staple of machine learning. However,
backpropagation requires the computation of expensive first-
order derivatives in order to adjust weights within a neural



network. To assess whether convergence has occurred, many
ML training procedures compute second-order derivatives
of the Hessian matrix, which is even more computationally
expensive.

An alternative weight update algorithm to backpropaga-
tion called E-prop was developed by Bellec, et al. in 2019. E-
prop performs weight updates via approximation and through
the use of eligibility traces.

The synaptic update rule in E-prop can be illustrated as
follows:

Aw;j o Zeij(t) -5;(t) 3)

Where e;;(t) denotes the eligibility trace for the synapse
between neurons i and j, §;(t) is the learning signal that
provides feedback, and Aw;; represents the weight update
between neurons i and j.

Initially proposed for the use of spiking neural networks
in neuromorphic computing, its much lower computational
demand makes it an attractive optimization algorithm for
adaptive learning. Eligibility traces are conventionally used
in temporal-difference reinforcement learning algorithms to
assign credit to the most probable actions based on recent
exploration history. This concept can be extended beyond
reinforcement learning to enable adaptive learning models
to "forget" irrelevant patterns and assign higher credit to
more recent observations.

Backpropagation is an exact calculation of the weight up-
dates and E-prop is an approximation of the weight updates
which dissuades its use among the community. However,
exactness in adaptive learning can actually be a hindrance
to performance as the model is not mature enough to pro-
vide exact assessments. As we will show in Section 10.7,
approximation through expectation can be more beneficial
than exactness in learning under extreme uncertainty. Anal-
ogously, work from van Hasselt and others from DeepMind
[183] show how eligibility traces can be adjusted to be more
informative of expected outcomes than singular exact out-
comes when informing the output of a machine learning
model. We suspect these "expected eligibility traces" to be
most informative for adaptive learning in machine olfaction.

Adaptive learning also demands computational efficiency
in order to make live updates. This is especially true for
machine olfaction applications since most olfactory sensors
run at the edge. While little comparative research exists
comparing e-prop to backprop through rigorous ablation
studies, even less research exists addressing the use of e-prop
in machine olfaction. The benefits that e-prop and expected
eligibility traces provide for adaptive learning are expected
to significantly benefit the highly dynamic machine olfaction
tasks such as plume tracking.

18

MultiCriticAL

Typical Actor-Critic RL

[ e !I, ,,,,,,,,,,,,,,,,
I

Critic i
Optimization 1

Task/Style
Rewards

Task/Style

Rewards

Observations
& Task Encoding
Observations
& Task Encoding

Figure 10. A diagram of the MultiCriticAL architecture. Mul-
tiCriticAL diverges from the common use of a single critic
and instead uses multiple critics, a separate one for each task
and/or style learned. The authors illustrate MultiCriticAL’s
success in training multiple distinct behavior styles in var-
ious games, including Pong and UFC. Figure adapted from
[138] and used under the Creative Commons License.

9 The Influence of Game Theory

Typical statistical learning methods require training on some
set of prior data in order to construct a model that can be
worthy of optimizing for some objective. The utility of this
data in training a model implies that, at some point, the
distribution (or environment) was observable to a degree
that allowed this data to be acquired. In a scenario where
one is not afforded the luxury of knowing the environment
beforehand, many of the assumptions regarding data-greedy
learning become invalidated and therefore do not contribute
to the construction of a useful model. Vidya Muthukumar
focuses on this premise in her dissertation Learning from an
Unknown Environment, the thesis of her Doctorate of Phi-
losophy research at the University of California at Berkeley.

In her paper [133], Muthukumar establishes reasons be-
hind why learning from an environment with no known pri-
ors is difficult and the precautions one must take in making
certain assumptions. She attempts to demonstrate principles
that may constitute a framework for facilitating learning in
an unknown environment that is almost as optimal as though
we had known the environment beforehand. Particularly, she
emphasizes the potential of such a framework for real-time
adaptive learning. She denotes four behaviors that an agent
can possess while learning: stochastic, adversarial, competi-
tive, and cooperative. A thorough analysis is conducted on
how to learn in the presence of the first three, while the
latter behavior is acknowledged as a natural extension of
her work to be evaluated elsewhere, leaving us with some
motivations on how it might be pursued. Throughout the
paper, Muthukumar makes consistent references to the Fre-
quentist versus Bayesian paradigms and where the inclusion
of one methodology over the other may be more adept to
addressing the certain problems. Fundamentally, Muthuku-
mar establishes a framework for optimally learning from an
unobservable environment and how to develop a policy to
do so in real-time while adapting to different environmental
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Figure 11. A diagram of the multihead version of MultiCriti-
cAL architecture. This can be used as a more computationally
efficient version of the architecture if desired. Figure adapted
from [138] and used under the Creative Commons License.

conditions by exploring single-age learning in the context
of multi-agent game theory.

9.1 Learning in an Unknown Environment

The dissertation is constructed as follows: Chapter 1 provides
motivations behind the interest and relevance of adaptive
learning algorithms in an unknown environment; Chapters 2
and 3 provide the foundation for selecting an adaptive model
from which an agent can learn with respect to stochastic
and adversarial behaviors as a function of regret; Chapter
4 shows how the framework established by its successors
can be extended to competitive behavior learning; Chapter 5
illustrates how the previous chapters’ framework for single-
agent learning can be extended to multi-agent learning; and
Chapter 6 concludes the thesis with some remarks on future
work. Throughout each chapter, Muthukumar does an excel-
lent job of successively building on her previous arguments
with insightful ties to prior work in the field and how her
approach can address their shortcomings.

It is worth noting that the the dissertation provides argu-
ments with heavy respect to game theory versus statistical
learning, so exhaustive evaluation of hyperparameters and
their influence on performance are not discussed in great de-
tail nor should they be. Therefore, the assessment of Learning
from an Unknown Environment presented here will contain
minimal dialog and diagrams around such performance eval-
uations in comparison to other papers focused on statistical
learning.

She references Paul Milgrom’s text [130] as one of the
earlier motivators behind this effort. She also relates the ap-
plicability of constraint satisfaction through her mention
of SAT solvers [111] [140] and market matching [99] [118].
Lightheaded Regulation, proposed by Kristen Ann Woyach
[196] also indicated as another significant motivator due
to its modeling of asymmetric user interaction. Only a sin-
gle allusion to reinforcement learning is made with [177]
which was originally quite surprising since RL has many
natural extensions of this paper as a whole. However, the
author’s goal is to focus on the development of a game theo-
retic framework not weighted by classical statistical learning
techniques, so the lack of these references are sensical.
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The author frames many of her arguments in the context
of minimizing regret. One can define regret as the differ-
ence in loss between the action just taken, and the optimal
action that should have been taken in hindsight according
to the optimal behavioral policy. Early concepts of regret
were first posed by Jim Hannan [87] and David Blackwell
[21] in the context of how the approachability of convex
sets evolves over time. The “no-regret” property is a corner-
stone in the author’s proposed framework for learning in
unknown environments and the concept seems to cross over
into economics theory [88] as well, which is unsurprising
given game theory’s heavy presence throughout the paper.
She gives further support for regret by referring readers to
[39] [158] [105] that illustrate how "Follow-the-Leader" style
algorithms can achieve minimal regret of O(1).

One of the main goals of the author’s dissertation was
to show how adaptivity could be used to minimize regret
between stochastic and adversarial environments as a func-
tion of model complexity. Early players in adaptive online
learning were illustrated by [94] [39] and the author quanti-
fies this well by discussing some of the more modern work
done in the space by [182] [129] [68]. The author grounds
her model selection arguments with principles in structural
risk minimization (SRM) originally presented by Vladimir
Vapnik and Alexey Chervonenkis in their 1974 paper [184].
Muthukumar leverages work from [136] to couple the SRM
framework with the AdaHedge algorithm from [39] [158]
[182] as part of her model selection methodology. She ex-
tends this evaluation by showing how the coupled algorithms
can select adversarial models by assessing the cumulative
variance in the algorithm for a second-order regret bound.

In Chapter 3, the author discusses how her methodol-
ogy in Chapter 2 constructed what was effectively a meta-
framework of bandits “corralled” together—a direct exten-
sion of the work in [4]. Remarks around other ensemble
techniques proposed by [108] [67] are also referenced in the
context of a more optimized meta-bandit mixture of experts.
Eventually, the author proposes two algorithms to evaluate
her arguments largely built on the Stochastic and Adversarial
Optimization (SAO) method presented in [32].

References to asymmetric learning [145] are given later
on as the author explains the importance of credibility [172]
[124] and commitment [161] in the context of repeated inter-
action. Notions of commitment (especially in the context of
game theory) draw references from Stackelberg [173]. Stack-
elberg demonstrated the power of committing to a single
strategy in a special kind of one-shot interactive game be-
tween a designated leader and a designated follower (called
a Stackelberg game). There is significant discussion around
Stackelberg equilibria that provokes evaluation of sub-game
perfect Nash equilibria (SPNE) which, in the context of this
paper, can be viewed as a series of interactions between an
agent that is viewed as a “leader” over other agents “follow-
ers” [106] [131]. Arguments about the limits and benefits
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of Stackelberg assumptions in repeated interactions ensue
which motivate the author’s final single-agent model [69]
[137]. Many principles of [33] have credence for discussions
that emerge thereafter, especially regarding scenario com-
plexity as a function of learnability. However, there does not
seem to be any references to this inductive-logic methodol-
ogy. This discussion of single-agent learning under a Stackel-
berg authority teases work on a similar multi-agent strategy.
[88] [69] [31] provide insight into how the monitoring of
the moving averages of players’ strategies can be an effec-
tive means of predicting their behavior. Correspondingly,
sources [51] [3] [115] extend this research to evaluate the
performance of players employing limited mixed strategies,
or “last iterates.” [51] and [1], along with the author in a sep-
arate work [134] give a more recent update on last-iterate
convergence and divergence since the dissertation was re-
leased.

9.2 Frequentist vs Bayesian Statistics

The tradeoff between Frequentist and Bayesian thinking
is important in all robotic learning environments. When
Bayesian conditions are violated, Frequentist techniques
must be employed to construct the prior distribution for
which decision making can occur. [133] argues that frequen-
tist thinking motivates many of the principles behind game
theoretic methodologies. She continues this support by show-
ing how her own methodologies in inferring unobservable
distributions also support the frequentist angle. However,
she makes several cases on where Bayesian approaches pro-
vide more merit over its counterpart. In Chapters 2 and 3,
she explores how agent performance is influenced by (a)
establishing assumptions over each paradigm, and (b) mathe-
matically proving the limits behind the performance of each
as a function of agent regret and behavior. These construct
the foundation for her arguments in the following chapter
where she demonstrates how her frequentist framework al-
lows a learning agent engaged in a non-zero-sum game (a
Stackelberg game) to approximate other agents’ behavior
by assessing their respective tradeoffs and incentives, and
then influencing its own behavior as a consequence. In turn,
she shows how this allows the primary agent to reach the
Stackelberg equilibrium of the game.

The emphasis on the frequentist mindset is not one that is
as prominently spoken about in statistical learning or robot-
ics. [133] makes several great cases around why and where
frequentist methodologies succeed Bayesian, especially in
light of how brittle Bayesian models become when their as-
sumptions are not validated. There is strong evidence to sup-
port these statements in dynamic environments—Bayesian
learning requires a prior distribution to be established which
implies an experience has been encountered before. For tasks
and data never before seen, a robotic agent cannot leverage a
prior distribution, but must construct it. In many of Muthuku-
mar’s arguments, proofs, and lemmas, she focuses on how
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the frequentist framework does not require the need of a
common prior and how this promotes convergence of many
of the proposed algorithms. However, one concern with these
arguments (and this concern is not pointed directly toward
Muthukumar - it seems that many frequentist arguments
do not define this well) is that the start of agent learning
is not addressed. If one assumes a frequentist model, one
has to construct this model to immediately begin making
decisions. Where does this model come from? It must come
from observations of the previous game states. The initial
few turns of an agent inferring from a frequentist perspective
will be highly volatile. Granted, this volatility is a function
of the state space and action space sizes, but not until a
representative sample of moves is acquired will the agent
begin constructing an optimal model that out-competes a
Bayesian one. Now, the counter-argument to this is that, if
one is not reasoning about an observable environment, a
reliable Bayesian prior cannot be constructed because there
is no knowledge to construct it with. This is a fair case, but
it is worth pausing for a moment to think about whether
it is it more destructive to employ a “guessing” frequentist
model or establishing a (potentially) invalid common prior
to facilitate the first few game moves. The answer to this
may depend on the problem, the bias in an agent’s sensors
and the current agent state.

Additionally, the Muthukumar indicates in multiple places
that the maximum likelihood estimator (MLE) is used to pre-
dict agent behavior under the frequentist methodology. How-
ever, this assumes that the agent will continue playing with
“expected” behavior. What if the secondary agent is inten-
tionally deceiving the primary agent with stochastic moves
in a “Follow-the-Leader” behavior, only to change to adver-
sarial behavior as the follower realizes the leader is close
to the goal? At this point, the MLE may not prove optimal.
In Section 2.2, Muthukumar briefly discusses how adversar-
ial behavior could be interpreted as stochastic behavior by
analyzing an example using the binary sequence prediction
problem. This example excellently sets up her argument for
the need for model adaptability in an unobservable environ-
ment. However, it seems like some sort of dialog around
the advantage of a Bayesian prior would be helpful here
to make the agent continuously self reflect, “What is the
probability I am assessing the behavior of my fellow players
correctly given what I have observed in their behavior thus
far and given that my policy is 100% correct?”. At this point
in my analysis, I did not think that there was compelling
evidence presented to suggest that the frequentist paradigm
appropriately rectified a change in other players’ behaviors,
especially since this partially grounds the rest of the author’s
framework. Regardless, the author does recognize that this
could be fatal to a learner, and moves on to show how model
selection and re-selection should occur in the presence of
this.



Almost immediately after this, the author shows how not
only is model adaptability needed, but data adaptability is
needed as well. The investigation into this is admirable and
quite prudent, and could have been easily overlooked. This
highlights a key point in adaptive learning, and the argu-
ments are even more intriguing in the context of a frequentist
approach. Muthukumar’s model selection processes thereon
illustrates the best selection criterion with respect to both
behavior and data which, ignoring the above concern, was
otherwise well defined.

The tradeoff between frequentist and Bayesian thinking is
a crucial one for adaptive learning because learning among
no data will deprecate the utility of data-hungry machine
learning methods. Since the field of artificial olfaction lacks
large high-quality training datasets, we observe that it is
important to understand how to use frequentist methods to
construct an initial model for olfactory tasks that can become
the prior for more sophisticated techniques upon gathering
adequate data.

History,
Hi-1 = ((I, 1), (I2, J2),.. ., (Tt-1,J4-1))

.

Leader strategy, Follower t strategy,
It = (Hi-1) Ji(Hi-1)

Expected leader payoff
at round t

Figure 12. Illustration of the a Stackelberg game at round
t between leader and follower ¢, both of whom observe his-
tory of play H;_;. The dotted line indicates that leader and
follower ¢ play simultaneously.

9.3 How Behavior & Regret Influence Adaptability

Throughout the text, [133] builds much of her framework
on the concept of minimizing regret. While this is not a new
term, she postulates it in some in some new ways. For ex-
ample, she pairs regret with model complexity in order to
select the least complex model as a function of behavior. She
alludes to the paper of Vapnik and Chervonenkis [184] in
defining regret as general principle calculated by the differ-
ence between the action an agent took (or will take) and the
action it should take under the optimal policy. She makes
another great case for providing data adaptability by specify-
ing a scenario where the environment may be mis-specified.
She defines a mis-specified environment as one that is truly
stochastic, but not observed as such by the learning agent.
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The point is not explicitly made, but one can imagine that
an agent may interpret the environment as stochastic due
to its lack of observability, but it is in fact adversarial and
the agent is being deceived, perhaps intentionally. This sce-
nario would obviously constitute a large amount of regret
and the author indicates that one can bound the problem
through second-order-bounding, a process also pursued by
[14][15][18].

Muthukumar posits two bandit models in Chapter 3 - one
simple model and one complex model. She compares the
tradeoff in regret between both algorithms over different
model selection methods: OSOM (Optimistic Selection of
Models), OFUL (Optimism in the Face of Uncertainty Learn-
ing) [12], and UCB (University of California at Berkeley)
[132]. Ultimately, the author rules that the simple model,
a mixture of K-arm bandits, can approximate the complex
model, a contextual bandit model with sufficient accuracy
while also sufficiently bounding the the regret?.

The potential confusion between stochastic and adversar-
ial environments is worthy of focus for a moment. In Chapter
1, the author specifies that the detection of adversarial and
stochastic behaviors favor frequentist approaches, but that
the detection of cooperative and competitive behaviors favor
Bayesian methods. This augments the concerns in section 3.1
above, where a pure frequentist approach may be insufficient
for capturing the information needed to produce a minimum-
regret model. She makes a statement on page 141 that she
assumes all other agents are using frequentist principles for
their inference. This seems dangerous and causes some sus-
picion of fragility in the framework she is proposing, as this
assumption cannot be guaranteed in an unknown environ-
ment. She provides a thorough comparison of Bayesian and
frequentist methodologies for her final single-agent model,
but it is still unclear if the model would minimize regret
under the scenario where other agents are not exuding fre-
quentist strategies. Regardless, her framework is helpful from
an adaptive learning perspective because adaptive learning
inevitably takes strong influence from frequentist principles.

9.4 Last-Iterate Divergence

The author discusses Stackelberg games [26], equilibria [30],
and commitments [27] at great length. The modeling of a
Stackelberg game frames the final model that the author
proposes for a single agent learner in an unknown environ-
ment. A Stackelberg game models a one-shot interaction
between two agents: a leader and a follower. In this context,
the leader is a data generator and the follower is a learner.
The follower can learn the behavior (the commitment) of
the leader from simply observing the leader’s actions. The
effectively reveals its strategy to the learner in this manner.
Typically, Stackelberg games require that the leader commits

2The proofs for the bounds of regret on both simple and complex models
can be found on pages 116 and 118 of the dissertation, respectively.



to a pure strategy, but the author postulates that a mixed
strategy can be employed here. Figure 12 shows a diagram of
this leader - follower interaction. Muthukumar argues that
this model of commitment paired with regret minimization
significantly benefits the leader because the leader possesses
perfect knowledge of its own utility function; it uses this
power to maximize its expected reward through exploitation
of information asymmetry.

At some point, the leader’s commitment to a certain behav-
ior will build “credibility” among the follower, or a reputation
of acting in a specific way. The follower will then begin mak-
ing decisions at time t based on the history acquired at time
, modeling its own policy after . The leader is then incen-
tivized to deceive the follower’s learning process once this
credibility is realized and begin deviating from its historical
strategy. It is thus in the leader’s best interest to incorpo-
rate some randomization into their behavior to build more
robust credibility. Put differently, the leader’s slight devia-
tion to a higher regret behavior (through deception) may
actually manifest the true no-regret behavior if the follower
continues to be deceived because the leader may coerce the
follower into a non-optimal strategy.

Here, the author completes her discussion on single-agent
learning. Her arguments are well-structured and she pro-
vides significant mathematical proof. However, one of her
concluding comments is that the above framework will hold
true for “novice” and “unintelligent” followers. From one
level of analysis, it should be defined what constitutes a
“novice” follower. In this sense, one agent may “follow” an-
other agent in its actions under certain scenarios, especially
if the latter agent truly does have perfect information and the
former is largely exploratory. However, the conditions under
which these events occur do not seem generalizable to the
degree that the author promotes. Furthermore, the author ar-
gues that Bayesian methodology would hold minimum value
here because a sufficient number of data samples will “drown
out” the effect of a prior (page 138). Is not the methodology
of Bayesian learning to consistently update the prior with
a posterior assessment that reflects new knowledge? The
footnote on page 138 slightly relaxes her stance in this regard
where she suggests that there is strong evidence to support
that Bayesian and frequentist methodologies complement
each other in problems such as this and multi-arm bandits.

The rest of the text is devoted to extrapolating this learner
to “two-sided” learning in unknown environments. While
Muthukumar concludes the previous section showing her
final model of a no-regret one-sided learner in an unknown
environment, she shows how multiple learners employing
this same strategy together provide divergent results. We can
consider the scenario of a single learner above exuding last-
iterate (time-average) convergence to its solution. Through
an extensive series of proofs, the author shows that the no-
regret and last-iterates properties show strong adversarial
tendencies toward one another such that no-regret strategies
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actually imply last-iterate divergence in two-sided learning 3
(page 235). In both the deterministic and stochastic cases, one
can observe that the multiplicative weights exhibit highly
volatile behavior, even with the optimal no-regret rate . The
author cites stochasticity inherent in player’s realizations as
a critical reason behind this divergence [3]. She notes:

“The primary distinction in our work (as well as the settings
of An et al,, Shieh et al. and Blum et al.), is that the mani-
festation of the uncertainty is itself random. Thus, a unique
component of our results involves directly reasoning about the
stochasticity of the follower response.”

Other work proposed by [118] has been recently estab-
lished showing last-iterate convergence with no-regret learn-
ing under certain constraints [40]. In my review of Lei’s work,
it does not seem immediately apparent that what his paper
postulates conflicts with what Muthukumar’s suggestions
above about the impossibility of the convergence. Both ap-
ply no-regret learning, but the former documents a specific
case over Min-Max optimization while the latter’s is tailored
specifically to mixed strategies.

9.5 Evidential Uncertainty

With very small datasets, it can be easy to overfit any sta-
tistical model as the sample distribution is at a large risk
of not reflecting the entire population. We have a strong
interest in hedging against overfitting the models proposed
above to show the honesty of our results. Given the nature
of our application, acquiring thousands or millions of data
points is not yet practical due to the stage of our product
development, funding, and scientific validation. To allevi-
ate this risk of overfitting, we go beyond simply training
a machine learning model by also quantifying the model’s
uncertainty using a concept called evidential deep learning.
In machine learning, models are trained to learn the average
correct answer for a given input, but they do not model any
noise or uncertainty in the input whilst doing so. There are
two types of uncertainty that can be modeled: aleatoric and
epistemic uncertainty. Aleatoric uncertainty refers to inher-
ent randomness present in the data that can be the result of
sensor variations (drift, heating, saturation, etc.).

Epistemic uncertainty addresses uncertainty in missing
data or, more precisely, how well the distribution of the sam-
ple population and training data probabilistically relates to
the distribution over the entire population which is typically
unknown or difficult to measure, hence the need for a sta-
tistical model. Evidential deep learning (EDL), or evidential
uncertainty modeling, is a method for modeling epistemic
uncertainty within a machine learning model through the

3In a publication that occurred after her publishing of this dissertation, the
author claims to show that it is impossible to employ a mixed strategy with
no-regret learning and achieve convergence. See reference [135]

4Regret rates are defined on a continuous scale between 0 and 1, where 0
indicates full regret and 1 indicates no regret (e.g. we execute the optimal
move according to the optimal policy every move).



construction of belief masses—probability vectors represent-
ing evidence of data supporting any one class. These belief
masses are different than classification probabilities or out-
put logits typically seen from softmax or sigmoid layers in
regular machine learning models in that belief masses give
the model the ability to effectively say, “I don’t know”. EDL
extrapolates from Sutton’s method of learning to predict
from temporal differences [176] and is heavily inspired by
Dempster-Schafer Theory of Evidence (DST), a hypothesis
for generalizing the Bayesian theory of subjective probabili-
ties. The Dirichlet distribution—the probability density func-
tion for the prior of the multinomial distribution—models
belief masses for a multi-class problem; in this case, we are
attempting to predict two classes and the binomial-variant
of the Dirichlet distribution is simply the Beta distribution.

Under the Subjective Logic Framework [164], the assign-
ment of belief masses infer that the belief of the truth can
be on any of the possible given states or classes, giving an
overall uncertainty mass u over K possible states that sum
to 1 in accordance to the following:

K
U+Zbk=l
k=1

Where the uncertainty mass u is a positive definite value,
K is any number of states greater than 1, e is a positive
definite value indicating the evidence derived from the k*"
class, and bk represents the belief of class K according to the
following:
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The uncertainty mass u is quantified as the number of
classes over the sum of the aggregate evidence S, defined
below:

br =

K
S = Z(e,- +1) (6)
k=1

In short, for both classification and regression, evidential
learning simultaneously assesses uncertainty about both the
data and the model. EDL learns to approximate aleatoric
uncertainty from the data and epistemic uncertainty from
the model. For any input, the network is trained to predict
the parameters of an evidential distribution of which models
a higher-order probability distribution over the individual
likelihood parameters associated with both the data and
model [7]. This concept is more concisely represented in
Figure 13. EDL applies to adaptive learning and machine
olfaction in that, given the low quantity of data available for
training olfactory models, EDL methods can be applied over
smaller datasets to help control the amount of bias learned
by a model.
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Figure 13. Evidential learning simultaneously learns a con-
tinuous target along with aleatoric data and epistemic un-
certainty from the model. Figure and caption adapted from
[7] and used under the Creative Commons License.

9.6 Application to Adaptive Learning

In general, concepts in game theory share collinear goals
with concepts in reinforcement learning, and this paper is
no exception. A natural extension of the author’s paper
would be to align her methods with a simple Q-learner and
assess their collaboration in navigating unknown environ-
ments. Additionally, in the conclusion of section 3.3 above,
the author showed that the stochasticity of follower response
played a critical role in the last-rate divergence. So an im-
mediately obvious appendage to the work here would be
to see if there is a way one can build an auxiliary model to
approximate > the noise of the response of the follower in
order to discourage divergence from occurring as quickly.

Finally, the paper’s concepts do seem to allow for some
organic cooperation with inductive logic programming. In
many areas, the author alludes to a set of rules that govern
learning behavior. She regularly begins the evaluation of her
models with simple games that could show strong affinity for
the techniques proposed by Copper et al. with their frame-
work for the learning of simple games [47]. Muthukumar’s
specific contributions toward learning adversarial behavior
and inferring the unobservable could hedge against the pred-
icate explosion concerns proposed by Minton [132] that exist
among today’s rule-based game playing.

10 Swarm Intelligence

A swarm is a group of agents ideally working toward a col-
lective goal - a multi-agent network. The work of Craig

SWe note “approximate” because Muthukumar already suggests in her 2022
publication that it is allegedly impossible to fully characterize this response
while employing no-regret learning and mixed strategy behavior. So perhaps
an approximation can occur, and, hypothetically, perhaps there are methods
that can be developed to discourage divergence as quickly such that a learner
has time to deploy a new strategy.


http://creativecommons.org/licenses/by/4.0/

Reynolds in 1987 [157] with his Boids algorithm showed
how complex behavior could arise within groups of simple
particles obeying only a handful of simple rules. His work
extended, in a way, the cellular automata concept proposed
in Conway’s Game of Life in 1970 [77]. These works in-
centivized more research into swarm intelligence and the
computer simulation of social interactions among artificial
agents. Muthukumar’s work in [133] highlights four distinct
behaviors that appear in multi-agent game theory: competi-
tive, cooperative, adversarial, and stochastic. Throughout the
survey, we leverage her taxonomy by grouping our observed
behaviors into the same four classes and provide evidence
to support many of her game theoretic points but in the
context of reinforcement learning and active sensing. [200]
emphasize the collaboration that groups of proximal policy
optimization (PPO) agents foster in multi-agent games.

The research of [169], [75], and [93] demonstrate many
principles of adaptive learning through the tracking of odor
plumes, an extremely dynamic and high degree-of-freedom
(DoF) task. They illustrate how RL agents learn to maintain a
statistical estimate of a scent trail trajectory analogous to the
method in which rodents and other terrestrial animals track
scent trails. They also establish some theoretical limits on
how quickly these scents can be tracked due to fundamental
geometric constraints.

10.1 Reinforcement Learning

Reinforcement learning is a single-agent reward-based ma-
chine learning model for control problems. A reward signal
is defined for a specific task and an agent learns to maxi-
mize this reward signal as it explores its environment and
exploits actions. Careful consideration is given to the design
of this reward signal to ensure the agent learns the appropri-
ate behaviors. Imitation learning and inverse reinforcement
learning fall under the broader category of reinforcement
learning. In their paper, Abbeel and Ng describe inverse rein-
forcement learning (IRL) as the task of determining a reward
function based on the observed behavior of an ’expert’ [2].
On the other hand, Huang et al. define imitation learning
(IL) as the process of deriving a policy from expert behavior
demonstrations [89]. Although both IL and IRL concepts can
be related to the proposed method, they assume the model
being imitated exhibits perfect expert behavior. However,
in extremely dynamic environments, leveraging a model
that exhibits expert behavior is not pragmatic. A policy’s
behavior is largely unobservable and, therefore, cannot be
considered expert behavior for imitation. IRL necessitates
traditional model-based reinforcement learning to approx-
imate the reward function, and imitation learning can be
similarly approached using traditional methods for deter-
ministic agents, as shown in [43].
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Each of the above single-agent flavors of reinforcement
learning can be extrapolated to support multi-agent rein-
forcement learning. Reinforcement learning aligns with ol-
factory applications because the lack of existing training sets
and the dynamism of olfactory navigation will warrant on-
line learning backed by reinforcement learning techniques.

10.2 Multi-Agent Reinforcement Learning

Multi-agent reinforcement learning (MARL) is sometimes
referred to as swarm intelligence. While not typically empha-
sized as a MARL method, [75] demonstrate how a process
called co-training can be extended to support MARL, and we
elaborate on their methods here. Swarms can be considered
as homogeneous, where each agent is identical, or heteroge-
neous, where there are many types of different agents within
the swarm. Regardless of whether the swarm is homoge-
neous or heterogeneous, different emergent behaviors arise,
and we show how swarm behaviors can be “tuned” based on
their heterogeneity, with a focus on the selection of different
agents to produce desired collective behavior not unlike the
manner in which different activation functions can elicit dif-
fering behaviors from a neural network. [200] demonstrate
the effectiveness of multiple agents in solving multi-agent
games, and we extend much of their philosophy here.

The work of [93] provides an analysis on how deep RL
optimizes multi-agent cooperation. They demonstrate the
effectiveness of neural networks to enable cooperative infor-
mation exchange between agents and how global decisions
are made as a function of local agent behaviors. [93] focuses
on homogeneous swarms where all agents are of the same
type. Research from [73] builds off many of their same prin-
ciples but extend them to investigate heterogeneous swarms
and the effects of how different agent policies can calibrate
global behavior. [75] provides evidence of swarm collabora-
tion proving especially useful in environments of extreme
uncertainty and the estimation of uncertainty is of high im-
portance in plume tracking. Their work draws inspiration
[66] and [175] where they emphasize how the evolutionary
search space can be factored into logical overlapping sub-
spaces to make optimization easier. Furthermore, [75] and
[73] illustrate that even simple tabular policies can provide
compelling performance within swarms, as tabular policies
limit dimensionality and allow the swarm to build up in
complexity rather than the agent.

10.3 Co-training and Co-regularization

In 1998, Blum and Mitchell demonstrated the tractability
of co-training methodology, assuming that instances from
different views are conditionally independent when the co-
trainer’s classifier makes useful predictions on unlabeled
data [23]. Brefeld and Scheffer later improved upon earlier
work by Nigam and Ghani by combining a naive Bayes clas-
sifier with a support vector machine in their co-training
algorithm [27, 141].



Subsequent efforts aimed at developing a more robust co-
regularization function were presented by Sindhwani [167]
and Wang [189], both of whom attempted to encode predic-
tion dependencies among views into one co-regularization
term. However, optimizing the resulting objective function
proved challenging and diverged from the core principles of
co-training. Most attempts to address the technical complex-
ities of co-training focused on two-view cases and lacked
clear performance metrics.

Dai et al. advanced the field by employing pseudo labels
and abductive learning to enhance the classification of unla-
beled data, incorporating neighboring graphs [50]. Ma et al.
introduced SPaCo, which established a more generalizable
objective function and self-paced learning technique over a
pseudo-supervised co-training algorithm, although it was
limited to two-view scenarios [123]. Building on this, Ma
et al. integrated additional methods into SPaCo, resulting
in SPaMCo, which provided resilience against false nega-
tive samples, supported multi-view cases, and improved co-
regularization [122]. SPaMCo expanded the applicability of
co-training beyond the two-view context.

Following this, Huang et al. demonstrated multi-view co-
training in clustering, building on Chang’s work [91, 198],
while Zheng et al. achieved similar results with image seg-
mentation [203]. Wang et al. introduced the concept of self-
paced and self-consistent co-training for image segmenta-
tion soon after [187]. Research applying co-training with
multi-view or self-paced aspects to swarm intelligence has
been limited. Wang et al. explored how two "dueling" mod-
els can collaboratively achieve strong performance, but did
not utilize co-training, instead suggesting the separation
of state-value and action functions [190]. Akella and Lin
demonstrated the use of co-training to train a reinforcement
learning agent to select actions by learning a temporal policy
[5]. Wu et al. proposed using a Q-learning agent to learn a
policy for data selection, which then automatically trains
co-training classifiers [197]. Here, RL was used to train a
supervisor over a classification problem, but the RL-based
agent itself was not trained using co-training.

Song et al. showed how co-training can enable an RL agent
to learn policies in environments with multiple state-action
representations [171]. This work aligns closely with the re-
search by France et al. [75], which combines RL with co-
training, but does not include the self-paced element present
in our approach. In their work, co-training begins by select-
ing trajectories that are confidently rewarded according to
the optimal policy. Rewarded instances with loss values less
than a certain threshold from the observations of each agent
are considered confidently rewarded and are selected for the
next co-training iteration’s training pool. Similarly, unre-
warded trajectories are added to the training pool for each
agent by sampling values with losses greater than the thresh-
old. When the age parameters are properly tuned and the
self-paced training is well-controlled, trajectories selected
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for the training pool of agent 1 will have a higher probability
of being selected for the training pool of agent 2, and vice-
versa. This use of co-training with RL agents under extreme
ambiguity can be easily mapped to olfaction tasks such as
scent-based navigation. Cooperation among multiple robots
has proven effective in scent-based navigation [61] and co-
training a shared RL policy could add robustness and speed
to the task. Since there is little labeled olfaction data, the
use of co-training to learn from pseudo-labels and pseudo-
rewards seems especially tractable in adaptive learning for
scent-based navigation.

10.4 Evolutionary Algorithms

Proposed by Marco Dorigo in his 1992 PhD thesis, ACO is
another evolutionary optimization technique drawing inspi-
ration from the manner in which ants collaborate to locate a
food source. Ants lay pheremones throughout their search in
order to direct other ants of the colony to resources within
the environment. Each ant represents an agent exploring the
search landscape. As each ant of the colony finds a better so-
lution, it lays a "pheremone" signal to direct the search of the
others toward the food source, or optimization point. This
signal decays as evolution continues to filter out weaker so-
lutions, just as a real pheremone signal decays. In theory, this
process continues until a global optimal solution is found.

Most swarms intend to elicit cooperation among all agents
within the network to maximize a reward. This intuitively
suggests that all agents should be of the same type to facili-
tate a larger hivemind with a unanimous policy. However,
strategically selecting adversarial agents within the swarm
can act as a "checks-and-balances" mechanism in order to
prevent overfitting of the underlying RL policy. For example,
the research of [75] cites that some classes of temporal differ-
ence learners are more cooperative in reward-seeking tasks
than others. This underscores much of the evidence provided
by [133] in how competitive behavior can look similar to
cooperative behavior in early stages of games, and how sto-
chastic behaviors can evolve into adversarial ones as games
progress. The use of PSO helps generalize all behaviors of
the swarm collectively such that all agents are contributing
to one single policy.

PSO optimizes a swarm of particles contingent on very
simple rules. For each jth particle within the swarm, PSO is
optimized according to the following objective function:

t+1 t t t t t
v;  =wo; + Clul(pbest _pi) + czuZ(pglobal - P,)

™)

where 0!*! is the updated velocity for the i*h particle, w is
the inertia weight, vl.t is the particle’s current velocity, ¢; and
¢y are acceleration coefficients, and u; and u, respectively
denote the cognitive and social weights at time t. g; and
p! denote the positions of the global best and current i
particle at time t respectively, which in the case of [73] are



Algorithm 1 Particle Swarm Optimization

Create and initialize each RL agent
repeat
for all p; € Pdo
Evaluate agent policy fitness f(p;)
if f(Pz) < f(pbest) then

Pbest = Pi
end if

Evaluate global policy fitness f(ppest)
if f(pt) < f(pglobal) then

Pglobal = Pi
end if
Update velocity for each particle p;
r < Random(0, 1)
if r <= 0,,inq then
A\ 0
end if
if r > oing then
Vi = WV; + c1u1 (Pbest — Pi) + C2U2(Pglobal — Pi)
end if
pi=pitVv;
end for
until PSO criterion met or convergence

each the global best RL agent and the current agent being
updated.

Algorithm 1 demonstrates the logic behind which the
above velocity updates occur. The inertia weight determines
the magnitude of change that a particle’s previous velocity
should have on its updated velocity. The cognitive weight
indicates helps regularize each agent’s position relative to its
previous position and the social weight helps regularize each
agent’s position globally among the others. c¢1 and c2 are
commonly referred to as trust parameters [63], where the
former expresses how much confidence a particle has in itself
and the latter expresses how much confidence the particle
has with respect to its neighbors. A variant of parameter-
efficient fine-tuning (PEFT) [151] can be employed to find
the optimal values for these parameters.

10.5 Factoring the Search Space

Factored evolutionary algorithms (FEA) are a type of co-
operative co-evolutionary algorithm that form overlapping
subpopulations, known as ’factors, to optimize subsets of
variables for a common objective function. These subpopula-
tions act as subproblems of the main optimization function.
FEA was formally defined by Strasser et al., who emphasized
the importance of selecting an appropriate factor architec-
ture [175]. This definition builds on the original concepts of
overlapping swarm intelligence (OSI) introduced by Pillai in
[150] and Haberman in [83]. In their 2011 work, Pillai and
Sheppard demonstrated the effectiveness of OSI in training
artificial neural networks, where each swarm represented
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a unique path from an input node to an output node. A
global perspective of the neural network was maintained
using a common vector of weights, which was compiled
from the highest fitness particles in each swarm. Our work
closely aligns with the OSI model. Pillai and Sheppard also
showed that OSI outperformed several alternative cooper-
ative co-evolutionary PSO-based methods and backpropa-
gation. Fortier et al. expanded this by defining Distributed
OSI where swarms could communicate values to enhance
competition. Butcher et al. built on this by illustrating how in-
formation sharing and conflict resolution could be achieved
through an actor model, using Pareto improvements via this
communication [36, 37]. Both Meerza [127] and Wang [187]
applied PSO to reinforcement learning but did not formalize
the factored approach. [75] illustrates how to combine co-
training and search-space factoring for multi-agent learning.
Factoring of the search space holds promise for swarm
intelligence because a factored policy could constrain each
agent to optimize a certain sub-task. In olfaction, this could
mean one agent is required for surveying one area of the
environment for evidence of a target chemical.

10.6 Impact of Agent Design on Swarm Functionality

Swarms are a hivemind of their constituent parts, effectively
being a behavioral weighted average of all agents within the
swarm. However, the intelligence of a swarm can be much
greater than the sum of the intelligence of its constituent
particles if the swarm is designed correctly. Effective swarm
design comes down to effective agent design as well as ef-
fectively designing the rules and protocol for inter-agent
interaction. Very simple agents working collaboratively can
elicit extremely intelligible results.

The 2022 work of Dong, et al. in [59] illustrates this con-
cept well. In their manuscript, they define how simple agents
governed by a well-defined protocol can more easily adapt to
complex environments than complex agents specially-tuned
for different environments. They posit that a practical agent
must be resource-conservative and function with bounded
memory and computation. Due to this, it becomes infeasible
for an agent to maintain a lengthy history of state-action
pairs that result in certain rewards. To reconcile this, [59]
suggests the use of agent states that is leveraged to produce
all of its actions. An agent state is an amalgamation of the sit-
uational state S;, the epistemic state P;, and the algorithmic
state Z;. The situational state is meant to acquire salient in-
formation about the agent’s current status in its environment.
The epistemic state stores information relating to the agent’s
knowledge of the environment. The algorithmic state records
information unrelated to the environment, like time-related
metrics from the agent’s internal clock or internal random
seeds. This can be surmised in the following equation:

X = (St, P, Zt) (8)



However, X; must be updated incrementally since it rep-
resents all of the agent’s historical knowledge. It can be
updated according to the following rule:

X1 = f(Xt,At, Or41, Ut+1) (9)

where f represents the agent state update function, Uy
represents algorithmic randomness, A; represents the action
taken at time ¢, and O;4; designates the observation resulting
from the action taken at time ¢ subject to the update function
and algorithmic randomness at time ¢. At any time ¢, the
agent can be seen as executing some policy 7; (|H;) for which
action selections depend on the history of agent states H;
conditional on the situational state S;.

With this, the methodology of [59] focuses on evaluating
situations subject to their above framework, where rewards
are calculated from situational states instead of a bank of
historical trajectories or predicted trajectories. The set of
situational states is finite which allows bounding of the re-
ward function computation such that it does not require
infinite memory. As a result, they posit that the tracking and
algorithmic protocol of using situational, epistemic, and al-
gorithmic states enables an agent that can accurately reason
about any environment after being initialized according to
the following:

1. an initial situational state Sy € S and an update func-
tion: f:SxAxO =S
2. areward functionr : Sx Ax O = [0,1]

Dong, et al. emphasize the inherent benefit of leveraging
Q-learning and its benefits in constructing the basic agent
design based around this framework.

They argue that modern research in Q-learning has merged
with literature around regret analysis, mathematical align-
ment, and provable efficiency, similar to the points [133]
discusses in her work around game theory. These optimistic
variants of Q-learning agents allow for more efficiency through
carefully chosen step sizes and perturbed action value up-
dates that help sustain their optimistic estimations. This
leads them to define discounted Q-learning for which they
leverage in their experiments. They posit that this variant
of Q-learning is "the first to establish an algorithm with av-
erage regret bounded by a constant multiple of distortion
approaches such asymptotic performance within a tractable
time frame." In other words, the use of agent states within dis-
counted Q-learning enables the agent to operate indefinitely
rather than a predetermined time horizon. The step sizes
of the agent are therefore not dependent on the time hori-
zon, a convention that is typical among most reinforcement
learning agents during training.

Agent states also effect the ability of the agent to plan.
With the use of their framework, the effective planning hori-
zon increases with time and the agent consequently opti-
mizes its performance over arbitrarily long horizons. They
note that the effective planning horizon scales with t1/5 and
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this rate leads to their regret bound. This regret bound is
dependent on the variability initiated by a fixed situational
state update function. In effect, this culminates in the point
that restricting the time horizon based on the quantity of
data gathered may provide more efficient planning.

Furthermore, the use of agent states enables interactions
of simple agents with general environments. The use of a
discount factor helps the agent learn more specifically as
it explores the environment, although "the discount factor
increases over time to generate effective behavior over in-
creasingly long planning horizons.
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Figure 14. Interim and asymptotic performance of temporal
difference control on the famous cliff-walking task as a func-
tion of learning rate. The solid circles mark the best interim
performance of each method. Taken from Sutton & Barto in
[177] under the Creative Commons License.

10.7 Expected vs Maximum Rewards

Q-learning is an off-policy temporal difference (TD) algo-
rithm that directly approximates the optimal action-value
function, regardless of the policy being followed [192]. It
learns a policy that selects the next state-action pairs to max-
imize reward, making it one of the most widely used TD
algorithms in reinforcement learning due to its computa-
tional efficiency and effective reward approximation. The
update rule for each Q-value for Q-learning is as follows,

Q*(s,a) = Q(s,a)+a |R(s,a,s") +y max Q(s’,a") = Q(s, a)]
(10)

Another temporal difference candidate, Expected SARSA,
can be tuned as either an on-policy or off-policy method.
By design, Expected SARSA works similar to Q-learning,
but instead of learning to always greedily select the action
that leads to the maximum reward, it learns to always select
the action that leads to the expected reward. In general, Ex-
pected SARSA starts training in a fashion similar to SARSA,
where it alters the policy it is learning from as it explores.
As training matures and the agent’s policy increases in con-
fidence, Expected SARSA can begin building an off-policy


http://creativecommons.org/licenses/by/4.0/

model that, from historic action selections and rewards, al-
ways indicates the action that will lead to the average reward
among all actions. The update rule for Expected SARSA is
shown below.

Q*(s,a) = Q(s,a) + a |R(s,a,s") + Y Z Q(si, a;) — Q(s, a)l
n=

(11)

The 2023 study by [75] demonstrates that training a swarm
involves co-training a set of policy learners iteratively through
the exchange of pseudo-rewarded trajectories. Initially, the
rate of pseudo-reward application to trajectories is erratic,
resembling random assignment of rewards to state-action
pairs. An agent aiming for the average reward can better
approximate the hidden true reward of an environment com-
pared to an agent always seeking the maximum reward, like
a Q-learner. During the early stages of training, when reward
assignment confidence is low, a Q-learner maximizes a lossy
policy, whereas an Expected SARSA learner minimizes its
losses by approximating the policy. Although regularization
terms offer some protection, they are not entirely effective.

In most state-of-the-art reinforcement learning research,
where the environment can be directly observed, Q-learning
and its variants balance performance and computational cost
compared to other TD algorithms. However, based on the
evaluation of [75], Q-learner performance depends on the
confidence in observing true rewards for actions. If there is
high confidence that the observed rewards match the ground
truth, a greedy Q-learner is expected to perform better. There-
fore, France et al. hypothesize that Expected SARSA may
outperform Q-learning in swarm learning, where the Ex-
pected SARSA update rule is as follows.

As demonstrated by Ma et al. in their work on image clas-
sification [122, 123], and further supported by France [75],
confidence in reward assignment improves with successive
iterations, leading to more accurate co-training in attribut-
ing rewards to state-action trajectories. Consequently, the
Expected SARSA policy learner can afford to adopt a more
greedy approach. As Sutton and Barto [178] explain, when e
approaches 1, the learner starts selecting actions that yield
the highest cumulative reward, effectively transitioning into
Q-learning. Expected SARSA leverages this by adjusting pol-
icy learning based on correct reward assignment and the
self-paced learning parameter A. Thus, early iterations of
co-training start with a policy resembling SARSA, which
mitigates high loss, and gradually transition to Q-learning as
the policy becomes more refined. This dual capability allows
the algorithm to function as both an on-policy and off-policy
learner.

Particularly at the start of co-training, when the pseudo-
rewards for unrewarded trajectories are highly inaccurate,
Expected SARSA provides smoother learning. Given that the
goal is to accurately infer rewards for unobservable states,
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Figure 15. From [73], simplified representation of hypothet-
ical plume tracking under different policies. The plume is
emitted from left to right, while the agent’s progress moves

right to left.

the increase in computational complexity might be justified.
Expected SARSA allows swarm agents to alternate between
on-policy and off-policy methods while naturally controlling
reward loss.

10.8 Emergent Behaviors in Swarms

One of the blessings of multi-agent learning is also one of the
curses: Whilst learning, emerging behaviors arise that can
induce alliances, equilibriums, conflicts, and randomness.
Intelligent design of the swarm starts with the selection
and design of the respective agents. Some behaviors do not
manifest until late in learning and training, while others
may arise instantly and then diminish asymptotically. As
Craig Reynolds famously demonstrated in his famous Boids
algorithm [157], simple particles obeying only a handful of
very simple rules can result in very intelligent and complex
behavior.

Emerging behaviors within swarms is still an under-studied
topic. This is partially due to the difficulty in simulating
complex multi-agent systems. A direct consequence of this
is a demonstration of how agent selection can be used to
tune the swarm to favor certain environments. We expect
a homogeneous swarm of identical agents to collectively
demonstrate behavior analogous to that of their constituent
particles. However, this is not always the case, and even
with one particle different from the rest of the swarm can
elicit unexpected behavior. Figure 15 shows visual represen-
tations of how single agents of different policies perform
plume tracking. The bold red, green, blue, and yellow lines
in each of the figures indicate the optimal path under each
agent’s policy with confidence bands bounding states that



result from actions each agent would take from the policy it
learns. While this is meant only as a visual representation
to assess how different each policy is, one can see how each
agent’s preferences result in different behavioral dynamics.
The expected SARSA agent learns to directly navigate to the
source through the shortest path overall, but spends signif-
icant time outside the plume near the source. The greedy
Q-learning agent learns to most accurately follow the tur-
bulence of the plume. One can see that its confidence bands
majorly reside within the plume, but the optimal policy line
does not indicate the shortest path. The ‘n‘-step SARSA plot
is illustrative of its predictive behavior as the policy center
line and confidence bands seem slightly out of phase of the
plume turbulence, but becomes less out of phase as the agent
moves closer to the source.

The work of [75] emphasizes the importance of evolutionary
optimization in their success, and the importance PSO plays
in ensuring a globally consistent policy is developed among
all agents within the swarm. The underlying behavior of
each agent encourages PSO to also resemble performance of
other evolutionary techniques similar to, for example, ant
colony optimization (ACO) [60]. Throughout their analysis,
[73] observe that certain types of agents "lead" the swarm
at different stages of evolution. For example, in their experi-
ments, they see SARSA acquiring more rewards during initial
evolution iterations due to its affinity for more randomized
exploratory action selections in early learning. As evolution
progresses, they see Expected SARSA and n-step SARSA
guiding the swarm due to their ability to filter through noisy
states and "look ahead n steps". Finally, as each agent gets
closer to the end goal and approaches the final stages of
evolution, they observe the greediness of tuned Q-learners
being especially helpful in locating the plume source. Im-
pressive analyses from Johanson, et al. in [98] further these
notions by demonstrating how agents appear to "barter" to
share resources and maximize rewards. Their research em-
phasizes how both micro- and macro-economic behavior can
and should be built into multi-agent systems.

Although these behaviors are not directly programmed
into the swarm, they are implicitly learned through what
is expected to be due to the effectiveness of PSO optimiz-
ing the search landscape as a function of which agents are
maximizing the reward signal. In turn, this seems to suggest
that, in the context of ACO, each agent type is taking turns
guiding the rest of the swarm according to the advantage
its reward function provides, which inadvertently resembles
pheremone broadcast.

In a similar manner to how agents can be designed to
cooperate in a swarm, swarms can be designed to cooperate
with other swarms. The same principles can be applied to
elicit certain behaviors in swarms of swarms. The factors
that influence emergent behavior in single swarms are both
compounded and mixed in swarms of swarms, as some of
these factors are washed out while others are magnified.
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For extremely complex or competitive olfactory navigation
tasks, multi-swarm cooperation could become an even more
important research avenue in olfactory robotics.

10.9 Diffusion & Diffusion Policy

A new and very young field of reinforcement learning called
diffusion policy [41] holds promise for adaptive learning. In
[41], they establish a means for which the use of Gaussian
noise diffusion can be used to construct a policy for train-
ing robots to perform various tasks through reinforcement
learning. From an adaptive learning perspective, modeling
a reward signal according to noise from the most recent
state-action history could be advantageous as the process
enables adaptability to new environmental factors. Plume
tracking as discussed in Section 6 discusses the intricacies
of modeling plumes through different noise conditions. Dif-
fusion policy is attractive here as the diffusion noise could
be modeled in proportion to plume dynamics, which may
encourage more stable learning. Methods such as DifuzCam
from [199] demonstrate how diffusion models can recon-
struct high resolution imagery from a minimalist camera.
An example for this is demonstrated in Figure 16. Extrapo-
lating these principles to olfaction can enable strong signals
to be extracted from high-sensitivity yet high-noise olfac-
tion sensors (like electrochemical sensors). Techniques to
reduce the computational cost in diffusion models, such as
forward-only diffusion from [121] and flow-matching from
[116], could make the idea of diffusion-based methods more
attractive for adaptive learning and real-time robotics appli-
cations.

The use of policy diffusion in general is young, and its use
among olfaction is even more scarce. However, diffusive tech-
niques lend well to various aspects of olfaction such as plume
modeling, olfactory navigation, and low-resource learning.
The concept of diffusion is not exhaustively covered here,
but, as the field of generative Al continues to advance other
realms of machine learning, its effect on adaptive learning
and machine olfaction is worth mentioning.

11 Environment & Simulation

Any sensor-based learning agent needs an environment with
which it can interact and freely learn. This process is typ-
ically modeled in simulation due to the consequences of
leveraging (and crashing) real hardware on prototype mod-
els and the freedom that simulations provide to experiment.
Simulation is a difficult feat with machine olfaction because,
given how young the field is, there are not readily available
open-sourced environments that can be simply downloaded
and used like there are for other sensor disciplines. Any
sensor used in simulation also needs a digital counterpart
that functions as close to the real sensor as possible. Many
olfactory techniques are new and their digital models must



(a) Prototype flat camera (b) Captured image

(d) Reference

(c) Reconstruction

Figure 16. Using (a) a prototype flat camera, (b) a measure-
ment image is captured that is not visually understandable.
(c) An image is reconstructed from the measurements using
text-guided approach. Compare to (d) the reference image
captured with a regular camera. See [199] for further details.
Taken from Yosef, et al. in [199] under the Creative Com-
mons License.

therefore be constructed before simulation can occur. Envi-
ronments such as OpenAl’s Gym [28] and D4RL [76], and
Toyota Research Institute’s Drake [41] can be adjusted to
accommodate machine olfaction sensors, but a digital replica
of the sensor itself must be integrated and the respective
frameworks adapted to accommodate. Multi-agent settings
are difficult to design due to the inherent computational re-
sources needed and the complexity involved in simulating
multiple learners. These difficulties are compounded among
extremely dynamic environments, such as olfactory-based
plume tracking where air conditions are volatile and the
sensor signals are highly sensitive to initial conditions.

11.1 "Sim2Real" Gap

No matter how robust the simulation, there is always a "gap"
between simulation and reality. Punctually abbreviated as
the "sim2real gap", this phenomenon characterizes the differ-
ing performance received between simulation and training
and the actual performance received when releasing these
agents to reality. Nothing has more degrees of freedom than
reality, and this problem is exacerbated by the use of machine
olfaction where initial conditions, aerodynamics, and part-
per-quadrillion chemical changes are more appropriately
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modeled by chaos theory versus a high degree of freedom
simulation engine.

There are several core components to adequately simu-
lating a machine-olfaction based robot. The control loop (or
autopilot), learning algorithm, multi-agent interaction, and
each individual sensor must all be appropriately modeled.
The work of Eschmann, et al. in [64] breaks this problem
down well. In their paper, they argue that accurately model-
ing flight dynamics of a drone can be broken down accord-
ing to different kinematic derivatives. The complexity and
uncertainty in modeling grows as the kinematic derivative
grows from position, to velocity, to acceleration, to jerk, snap,
crackle, and pop. Eschmann illustrates how the difficulty and
uncertainty of modeling should be balanced according to the
kinematic access of the simulation and that, to some degree,
higher kinematic derivatives may need to be learned due to
the uncertainty and non-linearity they provide in simula-
tion and their sensitivity to perturbation in initial conditions.
Through the above arguments, they demonstrate the abil-
ity for a quadrotor UAV to learn to fly in 18 seconds, and a
major contribution to this was a high-fidelity simulator that
minimized the delta between simulation and reality. Cur-
riculum learning and a highly optimized simulator enabled
shorter reinforcement learning training times that accurately
translated to real world control.

In light of the above, of equal importance in simulating any
form of sensory control model is the model of the environ-
ment. This can prove to be an especially difficult component
for machine olfaction, where wind plumes, aerodynamics,
and air chemistry highly influence environmental dynam-
ics. The work of [64] is highly influential here because their
work shifts focus toward building a more effective simulator
while abstracting the controls. They partially argue that the
controls and autopilot of the UAV are so non-linear that try-
ing to accurately model them is a fool’s errand because it is
not possible to construct an accurate model. Too much focus
on trying to accurately model such non-linearities can lead
to over-optimization of reward signal and therefore erratic
learning. These results are compounded with a misrepresen-
tation of the environment. Therefore, they found success by
shifting focus in training toward the construction of a higher
fidelity environment and abstracting the control model more.

With regards to machine olfaction, these findings align
with those of [169], where they demonstrate successful olfac-
tory tracking through a rather rudimentary RL model. Both
[64] and [169] use actor-critic reinforcement learning with
relatively simple neural networks to construct the policy.
[169] also emphasizes constructing a robust emulation of
environmental conditions that focus on plume dynamics,
and note this as a factor for their success in plume tracking.

11.2 Environment Design

The work of Samvelyan, et al. in [159] with MAESTRO high-
lights the importance of understanding, not only the agent
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Figure 17. MAESTRO keeps a group of co-players, each
with its own collection of high-regret environments. As
new environments are introduced, the student’s regret is
measured against the relevant co-player and added to that
co-player’s collection. MAESTRO consistently supplies high-
regret environment/co-player pairs to train the student. Fig-
ure adapted from [159] and used under the Creative Com-
mons License.

and its environment disjointly, but their dependencies to-
gether. Different equilibria can be established and/or dis-
rupted in multi-agent scenarios depending on if the inter-
actions are inherently cooperative, competitive, stochastic
or adversarial. [159] show how environments can be de-
signed more effectively (and autonomously) when these de-
pendencies are known. A diagram illustrating the concept
of MAESTRO is shown in Figure 17. They argue that the
choice of co-players significantly influences the outcome of
the game and one way to mitigate this is through self-play.
Self-play is a method that allows agents to freely interact to-
ward accomplishing an objective and letting this interaction
construct the policy and curriculum for which each agent
uses to achieve that objective. Instead of defining the policy
beforehand, self-play introduces a Laissez faire approach to
learning. However, self-play can cause agents to forget how
to play against previous versions of their policy due to po-
tential cycles that occur in the strategy space [78]. Self-play
should therefore be bound and the authors of [159] describe
how to do this through a regret-maximizing teacher that
pairs co-players and environments together appropriately.
From a game theory perspective, the objective of the
regret-maximizing teacher is to choose an environment and
co-player combination for the student. This mention of re-
gret strongly aligns with the work of [133] in multi-agent
game theory. When the co-player is disregarded and only
the environment with the highest regret is selected, this de-
duces the selection of the co-player to one that exhibits a
suboptimal payoff. Similarly, ignoring the environments and
picking the co-player with the highest regret results in an
environment that influences a suboptimal policy. This com-
bination is, in turn, suboptimal, with a low level of regret,
whereas a teacher considering the joint space can find the
optimal co-player environment pair with maximal regret.
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Consequently, treating the environment and co-player inde-
pendently can lead to a suboptimal curriculum. This kind
of overspecialization towards specific environmental chal-
lenges at the cost of overall robustness is often observed in
MARL settings [78].

This co-player/environment pairing combined with self-
play is one key differentiator of MAESTRO. Some works
assume that the interactions between agents are known,
and therefore do not exhibit self-play. In scenarios where
the interactions between agents are not known and must
be discovered, or in the event of agent teaming, one must
draw more off the work from [133] in being able to identify
which agents are cooperative and competitive live. This,
again, points back to the importance of continuous learning,
which is critical in olfaction scenarios.

The use of MAESTRO for environment design for the
works of [169] and [49] could expand their results to reflect
multi-agent scenarios. Intelligent environment design is cru-
cial for olfaction-based navigation (and any other dynamic
sensing scenario).

12 Alignment & Ethical Considerations

Historically, Al systems that surpass human performance in
narrowly defined domains have frequently led to unforeseen
and often detrimental consequences. In computer vision, for
instance, facial recognition technologies with superhuman
accuracy have raised profound concerns regarding surveil-
lance, privacy violations, and algorithmic bias—especially
when deployed without public consent or adequate over-
sight [33, 155]. Similarly, in natural language processing,
large language models have exhibited remarkable fluency,
yet simultaneously facilitated the proliferation of misinfor-
mation, toxicity, and epistemic distortions at scale [18, 193].
In the domain of audition, Al-generated speech has reached
such a degree of realism that it enables the impersonation
of individuals with near-perfect fidelity, thereby eroding the
distinction between authentic and synthetic media [128].

As we extend artificial intelligence into the realm of ol-
faction (particularly in pursuit of capabilities that exceed
human sensory limits) it is essential to anticipate similar
dual-use dilemmas. While superhuman olfactory systems
hold promise for beneficial applications such as environ-
mental monitoring, medical diagnostics, and robotic search-
and-rescue missions, they may equally be repurposed for
invasive monitoring of human physiological states. These in-
clude stress levels, fertility status, or substance use—domains
of bodily privacy for which current legal and ethical stan-
dards offer no clear protection [84]. Just as biometric data like
voice and facial features are now recognized as personally
identifiable information (PII), emerging research suggests
that olfactory signatures, particularly those derived from
breath or body odor [14, 15, 100], may soon warrant similar
classification.
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The ethical complexity deepens when such narrowly su-
perhuman modalities are embedded into unified, multimodal
architectures. Recent advances in olfaction-vision-language
models (OVLMs) [70, 160] integrate chemical sensing with vi-
sual perception and language reasoning, enabling machines
to infer behavioral, physiological, and even psychological
states of individuals with unprecedented resolution. In ad-
versarial or negligent contexts, biased olfactory agents could
mislead users into exposure to harmful substances or fail to
detect spoilage or contamination in sensitive domains such
as food, pharmaceuticals, or cosmetics. Furthermore, inte-
grating olfactory intelligence into large-scale multimodal
foundation models provides machines with yet another sen-
sory axis—granting them increasingly human-like capacities
that can be used for surveillance, manipulation, or discrimi-
natory profiling.

The embodiment of olfaction in robotic systems further
expands the ways in which AI can explore and interpret
the world. This added sensory dimension enhances a robot’s
ability to form rich multimodal representations of its environ-
ment. However, such capabilities also raise serious concerns
about covert behavioral inference, commercial exploitation,
and the targeting or policing of vulnerable communities.
The confluence of modalities does not dilute ethical risk—it
amplifies it.

Existing Al ethics frameworks remain largely centered
on visual, auditory, and linguistic modalities, with fairness
metrics predominantly tailored to social identity attributes
such as race, gender, and dialect. These frameworks are ill-
prepared to contend with sensory modalities like olfaction,
which engage with dimensions of human dignity, consent,
and neurophysiological privacy that are less well under-
stood. There is, as yet, no consensus on what constitutes
explainability in olfactory Al nor established methodologies
for auditing bias in odor classification systems trained on
population-specific scent data.

From an adaptive learning perspective, granting machines
the ability to learn on their own could create machines with
biases that are difficult to control. Research from [38] and
[166] are democratizing the knowledge of embodied Al along
with the access to tools and code to build such systems. A
proliferation of this knowledge is excellent for the scientific
community, but it demands an increased awareness as the
above risks become more accessible. We must not only think
about what happens when algorithms learn on their own,
but what happens when algorithms embodied on robots
that interact with the world learn on their own. Methods
from federated learning as discussed in Section 8.1 delineate
means for controlling updates that are self-learned and con-
textualizing them against a golden database to prevent rogue
behavior. However, any networked system is prone to attack
and even a single event of an agent of a federated learning
system being compromised and untethered from the mas-
ter model could result in a catastrophic outcome. Adaptive
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learning protocols must therefore be extremely robust with
remedies for all possible risks considered before deployment.

In the previous sections, several different methods that
contribute to adaptive learning in dynamic environments
have been discussed, namely multi-modal, multi-agent, and
low-resource learning strategies. Each additional modality
incorporated into a machine learning model allows for ap-
proximation of a larger part of the environment, ruling out
more uncertainty. The issues with this arise in finding cou-
pled samples where all modalities are present for the same
observation. Low-resource learning strategies and meticu-
lous agent selection can allow the system designer to extract
more intelligence from as few of these data points as possi-
ble. The use of multiple agents can, like multiple modalities,
enable faster approximation of different pockets of the envi-
ronment that can then be pieced together. Continuous and
low-resource learning methods can enable each of these
agents to learn with fewer data points more quickly and
adapt to rapidly changing environments, a protocol that is
mandatory for complex tasks like olfaction-based navigation.

Constructing the optimal reward signal can be difficult,
but it is one of the biggest contributors to the success of
any reinforcement learning agent. Reinforcement learning
with human feedback (RLHF) was developed as a way to
help align the reward signal with human preferences. The
foundational work was performed by Ouyang, et al. in [144],
and now RLHEF is heavily used for the training of large lan-
guage models in responding the correct way. Incorporating
humans into the training loop helps to quickly optimize the
policy and shape the reward signal among extreme ambigu-
ity. In this sense, RLHF can be heavily beneficial in adaptive
learning to help ensure controlled, stable gradients in pol-
icy iterations. RLHF is shown to prevent gradient explosion
and catastrophic forgetting to promote faster optimization
of the reward signal [101]. There is little research that cur-
rently exists to support effective strategies for implementing
RLHF in active multi-agent learning, but as large language
models become increasingly integrated with vision, RLHF is
becoming effective in training multi-modal models [101]; we
suspect the same can be extrapolated to olfaction models.

As alluded to above, one problem with the use of RLHF for
olfaction is the fact that humans cannot verify the presence
of many chemical compounds with their own sense of smell.
This makes the scope of RLHF limited here, but a derivative
of RLHF called RL with AI feedback (RLAIF) could benefit
such scenarios. The latter method uses a tuned Al model with
several sensors to act as the feedback critic. We expect to see
several variants of RLAIF to help advance the state-of-the-art
in olfaction models and sensor performance in the future.
Strong considerations regarding model alignment will need
to be addressed in order to ensure that Al models verifying
the truth of olfactory data below human perception is prop-
erly accounted for. Little work exists in this area outside the



aroma descriptor studies of the LeffingWell and GoodScents
datasets which promotes a fruitful area of research.

13 Conclusion

In this survey, we have explored the critical role of adaptive
learning in advancing machine olfaction, a field that cur-
rently lags behind vision, language, and audio intelligence
due to the lack of large, standardized training datasets and
consensual benchmarks [74]. Unlike the well-established cor-
puses for other modalities, olfaction lacks scaled equivalents,
which poses significant challenges for achieving state-of-
the-art performance. We have highlighted the necessity of
active and continuous learning over small datasets to over-
come these challenges and achieve notable benchmarks in
olfactory tasks such as classification and navigation. By dis-
seminating knowledge about machine olfaction and different
gas sensing techniques, we aim to inspire more researchers
across all disciplines to engage with and advance the field.
Our survey underscores the importance of innovative meth-
ods for active, continuous machine learning, which are es-
sential for pushing the boundaries of olfactory robotics and
achieving parity with other modalities of AIl. We hope this
inspires more work in the fields of machine olfaction for Al
and robotics.
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