

I'm not a robot
reCAPTCHA

I am not a robot!

Krejcie morgan table sample size. Morgan table for sample size. Morgan chart sample size. Morgan sample size.

Sample Size Table* From The Research Advisors There are various formulas for calculating the required sample size based upon whether the data collected is to be of a categorical or quantitative nature (e.g. is to estimate a proportion or a mean). These formulas require knowledge of the variance or proportion in the population and a determination as to the maximum desirable error, as well as the acceptable Type I error risk (e.g., confidence level). But why bother with these formulas? It is possible to use one of them to construct a table that suggests the optimal sample size – given a population size, a specific margin of error, and a desired confidence interval. This can help researchers avoid the formulas altogether. The table below presents the results of one set of these calculations. It may be used to determine the appropriate sample size for almost any study. Many researchers (and research texts) suggest that the first column within the table should suffice (Confidence Level = 95%, Margin of Error = 5%). To use these values, simply determine the size of the population down the left most column (use the next highest value if your exact population size is not listed). The value in the next column is the sample size that is required to generate a Margin of Error of $\pm 5\%$ for any population proportion. However, a 10% interval may be considered reasonably large. Should more precision be required (i.e., a smaller, more useful Margin of Error) or greater confidence desired (0.01), the other columns of the table should be employed. Thus, if you have 5000 customers and you want to sample a sufficient number to generate a 95% confidence interval that predicted the proportion who would be repeat customers within plus or minus 2.5%, you would need responses from a (random) sample of 1176 of all your customers. As you can see, using the table is much simpler than employing a formula. Professional researchers typically set a sample size level of about 500 to optimally estimate a single population parameter (e.g., the proportion of likely voters who will vote for a particular candidate). This will construct a 95% confidence interval with a Margin of Error of about $\pm 4.4\%$ (for large populations). Since there is an inverse relationship between sample size and the Margin of Error, smaller sample sizes will yield larger Margins of Error. For example, a sample size of only 100 will construct a 95% confidence interval with a Margin of Error of almost $\pm 13\%$, too large a range for estimating the true population proportion with any accuracy. Note that all of the sample estimates discussed present figures for the largest possible sample size for the desired level of confidence. Should the proportion of the sample with the desired characteristic be substantially different than 50%, then the desired level of accuracy can be established with a smaller sample. However, since you can't know what this percentage is until you actually ask a sample, it is wisest to assume that it will be 50% and use the listed larger sample size. The number of sub-groups (or "comparisons" groups) is another consideration in the determination of a sufficient sample size. Since the parameter must be measured for each sub-group, the size of the sample for each sub-group must be sufficiently large to permit a reasonable (sufficiently narrow) estimation. Treat each sub-group as a population and then use the table to determine the recommended sample size for each sub-group. Then use a stratified random sampling technique within each sub-group to select the specific individuals to be included. If you would like to calculate sample sizes for different population sizes, confidence levels, or margins of error, download the Sample Size spreadsheet and change the input values to those desired. Download the spreadsheet by clicking on the download button: Note: The spreadsheet was designed for a 17" monitor, so you may have to resize it ("Zoom" it out). The formula used for these calculations was: This formula is the one used by Krejcie & Morgan in their 1970 article "Determining Sample Size for Research Activities" (Educational and Psychological Measurement, #30, pp. 607-610). * Copyright, 2006, The Research Advisors (), All rights reserved. 1. Pandis N, Chung B, Scherer RW, Elbourne D, Altman DG. CONSORT 2010 statement: extension checklist for reporting within person randomised trials. BMJ.

Required Sample Size! from: The Research Advisors												
Population Size	Confidence = 95.0%						Confidence = 99.0%					
	0.05	0.035	0.025	0.01	0.05	0.035	0.025	0.01	0.05	0.035	0.025	0.01
10	10	10	10	10	10	10	10	10	10	10	10	10
20	19	20	20	20	19	20	20	20	20	20	20	20
30	28	29	29	30	29	29	29	30	30	30	30	30
50	44	44	44	50	44	44	44	49	49	49	50	50
75	63	69	72	74	67	73	73	75	75	75	75	75
100	80	89	94	99	87	93	96	99	99	99	99	99
150	108	126	137	148	122	135	142	149	149	149	149	149
200	132	160	177	196	154	174	186	198	198	198	198	198
250	152	190	215	244	182	211	229	246	246	246	246	246
300	171	211	241	274	204	234	270	295	295	295	295	295
400	196	265	318	384	250	309	348	391	391	391	391	391
500	217	305	377	475	285	365	421	485	485	485	485	485
600	234	340	432	565	315	416	490	579	579	579	579	579
700	248	370	481	653	341	462	554	672	672	672	672	672
800	266	396	526	739	363	480	610	813	813	813	813	813
900	284	429	568	832	383	544	722	957	957	957	957	957
1,000	278	440	566	906	399	575	727	943	943	943	943	943
1,200	291	474	674	1067	427	636	827	1119	1119	1119	1119	1119
1,500	301	515	759	1297	497	711	959	1376	1376	1376	1376	1376
2,000	322	563	863	1655	498	808	1141	1785	1785	1785	1785	1785
2,500	340	611	968	1994	534	910	1324	2090	2090	2090	2090	2090
3,500	346	641	1068	2565	588	977	1510	2890	2890	2890	2890	2890
5,000	357	678	1176	2298	588	1066	1734	3942	3942	3942	3942	3942
7,500	365	710	1175	4211	610	1147	1960	5165	5165	5165	5165	5165
10,000	370	727	1332	4899	622	1193	2098	6239	6239	6239	6239	6239
25,000	378	740	1448	10000	655	2297	3997	23465	23465	23465	23465	23465
50,000	382	772	1491	8056	655	2300	4000	23465	23465	23465	23465	23465
75,000	386	776	1506	8514	655	2300	4263	23465	23465	23465	23465	23465
100,000	383	778	1513	8762	659	2300	4285	23465	23465	23465	23465	23465
250,000	384	782	1527	9248	662	1347	2626	15555	15555	15555	15555	15555
500,000	384	783	1532	9423	663	1350	2640	16095	16095	16095	16095	16095
1,000,000	384	783	1534	9541	663	1352	2641	16117	16117	16117	16117	16117
2,500,000	384	784	1536	9567	663	1353	2651	16147	16147	16147	16147	16147
5,000,000	384	784	1538	9594	663	1354	2652	16160	16160	16160	16160	16160
10,000,000	384	784	1537	9603	663	1354	2654	16184	16184	16184	16184	16184
25,000,000	384	784	1537	9603	663	1354	2654	16188	16188	16188	16188	16188

Copyright © The Research Advisors (2006). All rights reserved.

Table 1: History learners' responses with regard to a community-centred learning environment

	1		2		3		4		5		Mean	SD
	Rarely		Sometimes		Frequently		Usually		Almost always			
	F	%	F	%	F	%	F	%	f	%		
Q. 58	35	5.0	117	16.9	43	6.2	119	17.1	376	54.2	3.99	1.321
Q. 62	62	8.9	126	18.2	59	8.5	135	19.5	309	44.5	3.73	1.414
Q. 68	84	12.1	102	14.7	54	7.8	151	21.8	302	43.5	3.70	1.451
Q. 71	49	7.1	126	18.2	55	7.9	213	30.7	249	35.9	3.70	1.311
Q. 75	221	31.8	115	16.6	68	9.8	111	16.0	174	25.1	2.86	1.614
Q. 76	376	54.6	102	14.7	54	7.8	80	11.5	76	11.0	2.09	1.440
Q. 78	313	45.1	117	16.9	59	8.5	55	7.9	146	21.0	2.43	1.608
Q. 83	125	18.0	262	37.8	73	10.5	117	16.1	112	16.1	2.75	1.366
Q. 84	118	17.0	273	39.3	58	8.4	125	18.0	112	16.1	2.77	1.367
Q. 85	68	9.8	197	28.4	75	10.8	176	25.4	173	24.9	3.27	1.367
Q. 86	92	13.3	217	31.3	76	11.0	155	22.3	149	21.5	3.08	1.391
Q. 87	42	6.1	194	28.0	68	9.8	193	27.8	190	27.4	3.43	1.316
Q. 88	141	20.3	259	37.3	64	9.2	95	13.7	128	18.4	2.72	1.417
Q. 90	112	16.1	182	26.2	67	9.7	120	17.3	209	30.1	3.19	1.505

Source: BB Moreeng, 2009. Structuring of a Powerful Learning Environment for the teaching and learning of history in the Further Education and Training Band in the Free State Schools, p. 198.

Morgan sample size

Sample Size Table* From The Research Advisors There are various formulas for calculating the required sample size based upon whether the data collected is to be of a categorical or quantitative nature (e.g. is to estimate a proportion or a mean). These formulas require knowledge of the variance or proportion in the population and a determination as to the maximum desirable error, as well as the acceptable Type I error risk (e.g., confidence level). But why bother with these formulas? It is possible to use one of them to construct a table that suggests the optimal sample size – given a population size, a specific margin of error, and a desired confidence interval. This can help researchers avoid the formulas altogether. The table below presents the results of one set of these calculations. It may be used to determine the appropriate sample size for almost any study. Many researchers (and research texts) suggest that the first column within the table should suffice (Confidence Level = 95%, Margin of Error = 5%). To use these values, simply determine the size of the population down the left most column (use the next highest value if your exact population size is not listed). The value in the next column is the sample size that is required to generate a Margin of Error of $\pm 5\%$ for any population proportion. However, a 10% interval may be considered reasonably large. Should more precision be required (i.e., a smaller, more useful Margin of Error) or greater confidence desired (0.01), the other columns of the table should be employed. Thus, if you have 5000 customers and you want to sample a sufficient number to generate a 95% confidence interval that predicted the proportion who would repeat customers within plus or minus 2.5%, you would need responses from a (random) sample of 1176 of all your customers. As you can see, using the table is much simpler than employing a formula. Professional researchers typically set a sample size level of about 500 to optimally estimate a single population parameter (e.g., the proportion of likely voters who will vote for a particular candidate). This will construct a 95% confidence interval with a Margin of Error of about $\pm 4.4\%$ (for large populations). Since there is an inverse relationship between sample size and the Margin of Error, smaller sample sizes will yield larger Margins of Error. For example, a sample size of only 100 will construct a 95% confidence interval with a Margin of Error of almost $\pm 13\%$, too large a range for estimating the true population proportion with any accuracy. Note that all of the sample estimates discussed present figures for the largest possible sample size for the desired level of confidence. Should the proportion of the sample with the desired characteristic be substantially different than 50%, then the desired level of accuracy can be established with a smaller sample. However, since you can't know what this percentage is until you actually take a sample, it is wiser to assume that it will be 50% and use the listed larger sample size.

First half-split					Second half-split				
Sample	N	Mean	SD	SEM	Sample	N	Mean	SD	SEM
1	10	338.00	129.00	40.79	38	240	246.86	147.18	9.50
2	20	241.10	166.29	37.18	39	245	250.04	143.44	9.16
3	30	247.53	139.57	25.48	40	250	253.19	148.98	9.42
4	40	267.45	152.65	24.14	41	255	252.68	148.64	9.31
5	50	237.86	159.32	22.53	42	260	258.90	139.93	8.68
6	60	256.18	147.59	19.05	43	265	250.04	149.70	9.20
7	70	241.54	141.84	16.95	44	270	258.39	146.05	8.89
8	80	228.20	147.41	16.48	45	275	257.18	144.70	8.73
9	90	258.89	151.25	15.94	46	280	262.11	145.06	8.67
10	100	253.79	138.91	13.89	47	285	247.39	141.93	8.41
11	105	250.55	148.14	14.46	48	290	244.36	149.45	8.78
12	110	228.98	140.55	13.40	49	295	244.22	147.31	8.58
13	115	249.13	135.03	12.59	50	300	248.69	143.48	8.28
14	120	268.83	138.65	12.66	51	305	248.51	145.96	8.36
15	125	258.04	143.29	12.82	52	310	245.42	142.41	8.09
16	130	244.76	139.77	12.26	53	320	241.54	141.06	7.89
17	135	257.89	151.93	13.08	54	330	249.58	149.25	8.22
18	140	256.84	147.34	12.45	55	340	251.13	147.23	7.98
19	145	253.63	147.70	12.27	56	350	252.54	147.62	7.89
20	150	247.93	145.03	11.84	57	360	305.10	147.03	6.58
21	155	251.81	151.04	12.13	58	370	250.29	144.08	7.49
22	160	254.04	146.08	11.55	59	380	246.26	141.94	7.28
23	165	260.06	141.32	11.00	60	390	248.88	144.87	7.34
24	170	242.75	144.65	11.09	61	400	249.54	144.08	7.20
25	175	250.86	145.38	10.99	62	410	254.44	142.30	7.03
26	180	244.99	146.27	10.90	63	420	251.26	145.16	7.08
27	185	257.81	137.72	10.13	64	430	248.18	144.90	6.99
28	190	250.66	144.35	10.47	65	440	249.61	142.22	6.78
29	195	253.89	142.73	10.22	66	450	252.38	144.23	6.80
30	200	259.25	143.79	10.17	67	460	253.96	144.04	6.72
31	205	258.39	147.85	10.33	68	470	251.74	144.50	6.67
32	210	261.70	137.78	9.51	69	475	250.09	145.29	6.70
33	215	261.13	148.30	10.11	70	480	251.75	145.40	6.64
34	220	246.07	145.99	9.84	71	490	249.81	145.29	6.56
35	225	245.66	143.94	9.60	72	495	249.71	144.26	6.48
36	230	240.77	145.15	9.57	73	499	250.45	144.62	6.47
37	235	249.20	147.06	9.55	74	500	250.50	144.93	6.46

Should more precision be required (i.e., a smaller, more useful Margin of Error) or greater confidence desired (0.01), the other columns of the table should be employed. Thus, if you have 5000 customers and you want to sample a sufficient number to generate a 95% confidence interval that predicted the proportion who would repeat customers within plus or minus 2.5%, you would need responses from a (random) sample of 1176 of all your customers. As you can see, using the table is much simpler than employing a formula. Professional researchers typically set a sample size level of about 500 to optimally estimate a single population parameter (e.g., the proportion of likely voters who will vote for a particular candidate). This will construct a 95% confidence interval with a Margin of Error of about $\pm 4.4\%$ (for large populations). Since there is an inverse relationship between sample size and the Margin of Error, smaller sample sizes will yield larger Margins of Error. For example, a sample size of only 100 will construct a 95% confidence interval with a Margin of Error of almost $\pm 13\%$, too large a range for estimating the true population proportion with any accuracy.

* Copyright, 2006, The Research Advisors (), All rights reserved. 1.
Pandis N, Chung B, Scherer RW, Elbourne D, Altman DG. CONSORT 2010 statement: extension checklist for reporting within person randomised trials. *BMJ*. 2017;357:j2835. doi: 10.1136/bmj.j2835. [PMC free article] [PubMed] [CrossRef] [Google Scholar]2. Vandebroucke JP, Von Elm E, Altman DG, Gøtzsche PC, Mulrow CD, Poolek SJ. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. *PLoS Med*. 2007;4:e297. doi: 10.1371/journal.pmed.0040297. [PMC free article] [PubMed] [CrossRef] [Google Scholar]3. Chia KS.

“Significant-itis” — an obsession with the P-value.

