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Preface

Not so long ago, at a Master thesis fair, a Master student asked me if
it is OK to do a Master thesis in computational fluid dynamics (CFD)
even if it isn’t your number one interest. He reasoned that, because
I was doing a PhD in CFD, it must be my number one interest,
and I must’ve always known that I wanted to do CFD, as if it had
been my calling from birth. My answer was disappointing: no, CFD
isn’t my number one passion, I told him (more a means to a very
noble end, but we’ll come back to that throughout this book), and I
hadn’t always known I would want to do a PhD. What, then, sparked
my interest in CFD and computational drug delivery? Which road
brought me here? (He didn’t end up asking me that, but I told him
nonetheless.) Here is a short summary of what I said:

In 2018, in the first year of my Master in Biomedical Engineering,
I took up an elective course at the Faculty of Pharmaceutical Sciences
focusing on drug delivery, taught by professor Stefaan De Smedt.
He taught me about using nanoparticles for targeted drug delivery,
the enhanced permeation and retention effect, and the blood-brain
barrier, among many other things. The topic fascinated me so much
that, by the time I had to choose my own Master thesis topic, this
interest led me to prof. Charlotte Debbaut, who had an active topic
in the domain of targeted drug delivery (we would later re-name it to
locoregional drug delivery, since it is probably a more apt name for
the subject). Even though I was very stressed throughout and had
to spend many weekends alone at Blok B, running my simulations,
I thoroughly enjoyed my Master thesis research. More than CFD
specifically (again, a means to an end), I thought the concept of using
simulation for pre-operative planning was very cool, even though the
full implications of that concept still eluded me (they probably still
do). And so, when Charlotte asked me to stay on for a PhD, I was
captivated. I went through the typical doubts that one has at the
end of their studies, but eventually, in the summer of 2019, I decided
to go for it. In September 2019, I joined the BioMMedA (although
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it was capitalized differently at the time) lab and started my PhD.
And I guess they say, the rest is history?

Of course, a PhD cannot be completed without the help of many,
many people. And so I wanted to use this preface to thank all the
people involved in the scientific side of the PhD. Of course, my main
thank you in this preface has to go out to my promotors, Charlotte
Debbaut and Geert Maleux. Without Charlotte, it should be clear
from the story above that I would not be here. She introduced me
to the subject, encouraged me to stay on, gave me all the freedom in
the world to explore what I felt needed to be explored, and provided
feedback to every single line of scientific text that I’ve written in the
past five years. For that, I am incredibly grateful. At the side of
UZ Leuven, Geert provided me with clinical insights that steered the
direction of this project, gave us crucial data that made our research
so novel, and supported and provided feedback throughout the multi-
year process. Of course, to Geert, I am similarly grateful.

Luckily, I had the opportunity to collaborate with many differ-
ent people on this topic, something that I don’t take for granted,
and something I will think back on fondly in the years to come. To
my Dutch colleagues of the ULTIMO project (past and present), Jan
van der Hoek, Romaine Kunst, Erik Groot Jebbink, Tristan Vlog-
man, Kartik Jain, Tess Snoeijink, Anne van den Brekel, Frank Nijsen:
I’m glad we had the pleasure to exchange thoughts on a regular basis,
visit each other’s labs and that we could use your very relevant exper-
imental data to validate our models. To Unai Lertxundi, my Basque
counterpart: it’s a shame your internship wasn’t a bit earlier in my
PhD process, as I would’ve had more time to help you (and your inter-
esting ideas and work would have guided my own work, for sure). To
Jorge Aramburu and Raúl Anton: your enthusiasm during the meet-
ing we had during one of my first months led me to believe that I could
actually do this, for which I’m very grateful. To my colleagues at UZ
Gent and UZ Leuven, Elisabeth Dhondt, Laurens Hermie, Luc De-
freyne, Peter Vanlangenhove, Lawrence Bonne, Chris Verslype (and
again, Geert, of course): I’m indebted to you because of all your rel-
evant insights, your help during data transfer, and your willingness
to provide me with feedback despite your busy schedules. To Jurgen
Deviche: your help with the experimental set-up was not only useful
but crucial. To Saskia Claessens: thank you for all your necessary
help with all things administration and my on-boarding. To Nat-
alie Van den Ende from UZ Leuven, and Hélène De Naeyer, Lieselot
Burggraeve and other colleagues from HIRUZ: I could not have com-
pleted the administrative side of data transfer (and, by extension, my
x



research) without your help. To my UGent-colleagues at TechTrans-
fer, including but not limited to Alessandro Biondi, David Aubert
and Katia Stevelinck: it was incredibly fascinating to experience the
valorization side of research, so I want to specifically thank you for
your relevant work. To my UGent-colleagues at IOF, Eline Soetens
and Celine Vanhaverbeke: thank you for all your time and insights
during my search for follow-up funding. To Klaus Bacher and Brent
van der Heyden: thank you for your incredibly relevant input regard-
ing the side of medical radiation physics (you made me realize I do not
know enough about this). To Pascal Verdonck: thank you for lighting
the spark in my 3rd Bachelor that eventually brought me to Biomed-
ical Engineering. To my jury members, Jorge Aramburu, Annelies
Coene, Liesbet Geris, Peter Vanlangenhove, and chair, Joris Deg-
roote: thank you for spending your time to go through this work and
for providing your insightful comments. To my fellow members of the
Youngster National Committee on Biomedical Engineering, including
(but not excluded to) Andrea Menichetti, Dries Hendrikx, Jonathan
Dan, Virginie Otlet, and especially Alexandra Tits and Sophie Bek-
isz: thank you for your amazing efforts to make our National Days
happen, and making me feel part of a team! Finally, to my own col-
leagues at BioMMedA and Medisip, who I feel each contributed to my
research in their own way: Ghazal Adeli Koudehi, Amith Balasub-
ramanya, Lise Gheysen, Mathias Peirlinck, Patrick Segers, Annette
Caenen, Pieter van Mierlo, and my co-inventors Jolan Heyse and Saar
Vermijs: thank you to each of you for providing pieces of the puzzle
(in research, sometimes even the smallest of comments can lead to
big, interesting detours). Of course, to my other colleagues, if you’re
looking for your name, you’ll find that in the back!

Throughout the years, it was my absolute honor to be able to
guide and supervise many Bachelor and Master students at both the
Faculties of Engineering and Medicine as they navigated their own
specific sub-topics within this broad topic. In fact, supervising them
was by far my proudest work. My thank you to them is for their
interest in the topic, their motivation and critical attitude, and their
ability to come up with their own novel methods and insights, which
steered my own research in new and exciting directions: Matthias,
Heather, Marthe, Laura, Vic, Ekaterina, Danaë, Julie, Luca, Braïm,
Gilles, Amaryllis, Charlotte C. and Rosario for your innovative ex-
perimental work; Thibault and Marius for your segmentation work;
Rosario (again), Nathalie, Inten, Tibo, Casper, Gaël, Elien, Noah,
Lucas, Charlot, Jana Z., Marthe (again), and Rune for your compu-
tational work. (Of course, the same goes for the students who did
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not work on the liver topic: Lieve, Laurens, Veerle, Jana P., Kenzo,
Louise, Robbe, Elise, Kaat and Elke; you helped me broaden my
horizons significantly beyond the domain of the liver.)

The work you will find below is not only the result of the thoughts
I had and the person I became between 2019-2024, but also of the
collaboration with all the people mentioned above, from student to
professor and everything in-between; people who steered my research
in both obvious and more subtle ways, giving critical remarks that
led to further thinking, developing methods that I would not have
developed on my own, cheering me on, inspiring me.

And so, thinking it over, I should’ve told that Master student:
no, CFD isn’t my number one passion - but working on a state-of-
the-art project that, if successful, could help people around the world
and doing that together with loads of interesting, smart people? Oh,
there are worse things to be passionate about.
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Abbreviations and symbols

The following list summarizes the most commonly used abbreviations
and symbols in this dissertation.

Abbreviations

2D Two-dimensional
3D Three-dimensional
CFD Computational fluid dynamics
CT Computed tomography
PET Positron emission tomography
SPECT Single photon emission computer tomography
MRI Magnetic resonance imaging
PHA Proper hepatic artery
RHA Right hepatic artery
LHA Left hepatic artery
(C)PRM (Composite) Particle Release Map
(C)PRG (Composite) Particle Release Grid
GPR Gaussian Process Regression
LHS Latin hypercube sampling
SA Sensitivity analysis
ADOE Adaptive design of experiments
RDOE Rigid design of experiments
PNEF Particle non-exit fraction

Symbols

u⃗ Fluid velocity vector [m/s]
ρ Density [kg/m3]
⃗⃗τ Shear stress tensor [Pa]
f⃗ Fluid forces [N]
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ABBREVIATIONS AND SYMBOLS

µ Viscosity [kg/m·s]
γ̇ Shear rate [s−1]
µ0 Minimum viscosity [kg/m·s]
µ∞ Asymptomatic viscosity [kg/m·s]
τ0 Apparent yield stress [Pa]
λ Shear stress modifier [s−1]
dp Particle diameter [m]
ρp Particle density [kg/m3]
mp Particle mass [kg]
F⃗G Gravitational force [N]
F⃗D Drag force [N]
CD Drag coefficient
u⃗p Particle velocity vector [m/s]
Rep Particle Reynolds number
F⃗P Pressure gradient force [N]
F⃗V Virtual mass force [N]
CV Virtual mass coefficient
Qb Branch flow [ml/min]
Qh,b Healthy contribution of the branch flow [ml/min]
Qt,b Tumor contribution of the branch flow [ml/min]
Vs Segmental volume [ml]
Qs Segmental flow [ml/min]
kh Healthy perfusion parameter [1/min]
kc Tumor perfusion parameter [1/min]
BFb Branching factor
Qt Tumor flow [ml/min]
Vt Tumor volume [ml]
TPP Tumor perfusion percentage [%]
(T )CFx (Truncated) cell fraction for outlet x [%]
FF Flow fraction to outlet x [%]
(T )EFx (Truncated) exit fraction for oulet x [%]
IPS Index of Particle Spread [%]
UIPS Uniformity Index of Particle Spread [%]
Nplane Plane grid cells
Nparticle Particle grid cells
U Grid cell particle percentage for uniform particle distri-

bution [%]
pij Grid cell particle percentage [%]
tIPS Time-dependent Index of Particle Spread [%]
WIPS Particle-Weighted Index of Particle Spread [%]
Nburst Number of particle grid cells during a specific injection

burst
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ABBREVIATIONS AND SYMBOLS

Pb Number of particles present in a specific injection burst
Ni Fraction of particles exiting outlet i [%]
PEPb,i Particle exit percentage in outlet i of batch b [%]
TFi Tumor flow percentage in outlet i [%]
TDb Tumor dose of batch b [%]
Db,i Difference in particle exit percentage for a simulation of

batch b compared to the baseline batch for outlet i [%]
Dave Average difference in particle exit percentage compared

to the baseline batch over all outlets [%]
Dmax Maximum difference in particle exit percentage

compared to the baseline batch over all outlets [%]
Ddose Difference in tumor dose compared to baseline batch [%]
∆PEPb,i Minimum-maximum range in particle exit percentage for

a specific outlet i in simulation batch b [%]
∆∆PEPi Similarity in sensitivities for outlet i [%]
∆TD Minimum-maximum range in tumor dose [%]
k(xi, xj) Gaussian Process Regression model kernel for input

points xi and xj

Si First-order sensitivity index of parameter i [-]
STi Total-order sensitivity index of parameter i [-]
V [Y ] Variance of output parameter Y
Ninit Initial number of samples for initialization of the ADOE
B Number of bins considered in the ADOE
e Error of the surrogate model [%]
xnominal Nominal value for a certain input parameter
xsample Sampled value of an input parameter
γ Tumor coverage [%]
τ Tortuosity [-]
Lcenterline Sum of the Euclidian distances between each successive

point of the centerline [m]
Lrectilinear Euclidian distance between start and end of the center-

line [m]
κ Curvature [1/mm]
C Vascular cost [-]
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Graphical Abstract

Figure 1: Graphical abstract.
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Summary

Transarterial therapies, such as transarterial radioembolization
(TARE) and chemoembolization (TACE) are the preferred methods
of treatment at the unresectable intermediate stage of hepatocellular
carcinoma (HCC), the most common form of primary liver cancer.
During these catheter-directed therapies, microspheres are injected
superficially or selectively in the hepatic arteries with the goal of
locally embolizing the tumor tissue, which is mainly fed arterially.
However, the treatment outcomes (mean survival times) of TARE
and TACE are highly heterogeneous, with many patient-specific
aspects, such as commonly varying hepatic arterial anatomies and
tumor size(s) and location(s), complicating treatment execution.
Additionally, both computational, experimental and clinical studies
have shown that several clinical injection parameters (e.g. injection
location, injection flow rate, catheter type), which typically vary
in clinical practice, can have a large impact on the downstream
microsphere distribution.

In this PhD thesis, we aim to develop and use computer
models to quantify the impact of injection parameters on
the microsphere distribution, and develop a pre-operative
planning framework to improve health outcomes of transar-
terial therapies.

Part I: Clinical Rationale and State-of-the-Art in Modeling
of Transarterial Therapies consists of Chapters 1, 2 and 3.
Chapter 1 serves as a short introduction. In Chapter 2, the clinical
background of transarterial therapies and the clinical rationale of this
dissertation is discussed. Importantly, we identify the current chal-
lenges of transarterial therapies. Next to variable health outcomes
and governing uncertainties regarding the impact of specific injection
parameters (as discussed above), there is also a lack of reliable, non-
invasive pre-treatment planning tools. Current pre-treatment meth-
ods to assess the suitability of these injection conditions are lacking in
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either reliability or repeatability. When a pre-treatment injection of
low-dose radioactive particles is done, this has several disadvantages:
(1) it is an invasive procedure, (2) it is not always fully reliable be-
cause injection conditions (such as microsphere properties and injec-
tion location) can still change between pre-treatment and the actual
treatment, and (3) it does not allow to extensively finetune various
injection parameters. Ideally, we would be able to assess the suit-
ability of current injection conditions repeatably, non-invasively and
reliably. As such, we define the governing clinical questions informing
this PhD dissertation as: (1) Can we reliably predict the tumor dose
before the procedure? and (2) Can we decrease variable outcomes in
TARE and TACE by pre-operative optimization?

The clinical questions inspire the more specific sub-goals of this
dissertation, where we aim to use computer models to predict the tu-
mor dose and pre-operatively, non-invasively and reliably assess the
suitability of specific injection conditions. Chapter 3 begins with an
overview of different model types that are used in the state-of-the-art
in the context of transarterial therapies, from complex fluid-structure
interaction models to computational fluid dynamics (CFD) models
to lumped 0D models. Currently, mostly CFD has been used, and
multiple CFD studies have already given insight into the impact of
clinical injection parameters: cross-sectional injection position, axial
injection position, catheter direction, catheter type, injection flow
rate and microsphere type, albeit that these studies have some limit-
ations. Specifically, most of the early CFD analyses were carried out
in simplified, planar geometries. While the focus has shifted to CFD
analysis of patient-specific geometries, which are much more realistic,
they are also computationally more complex, and may require sim-
plification of the computational approach. Additionally, CFD models
also behave differently than real-world systems, which is crucial when
evaluating reliability of the these models. Typically, three important
principles determine model reliability: (1) verification, (2) valida-
tion, and (3) uncertainty quantification (VVUQ). In vitro validation,
which allows bench testing, has only been performed on simplified,
planar geometries. In vivo validation has also been very limited. Ad-
ditionally, uncertainty quantification and global sensitivity analysis of
a wide range of clinical and numerical parameters has also been lack-
ing in this domain, with only variations of 2 parameters at the same
time being considered so far in 1 patient-specific geometry. Again
here, computational cost is an important limiting factor.

Considering the above, we aim to address these limitations of
the state-of-the-art in this PhD dissertation by developing (i) effect-
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ive strategies to reliably cut down computational cost of patient-
specific 3D CFD simulations (focus of Part II), (ii) uncertainty quan-
tification techniques of numerical and clinical parameters in patient-
specific geometries (focus of Part III), (iii) validation techniques in
patient-specific geometries (focus of Part IV), and (iv) a computa-
tional framework for pre-operative planning, considering (but not
limited to) the tumor dose as calculated with CFD (focus of Part V).

Part II: Simplification Strategies for CFD Modeling of
Transarterial Therapies consists of Chapters 4, 5 and 6. The
aim is to develop and evaluate reliable simplification strategies
for our CFD models of transarterial therapies to reduce the
computational cost. In Chapter 4, the hybrid particle-flow model
as the result of a novel truncation algorithm for the downstream
vessels is introduced. The original patient-specific hepatic arterial
geometry (Geometry 1, 48 outlets) was moderately and severely
truncated at two different levels, resulting in two additional arterial
trees: Geometry 2 (38 outlets) and Geometry 3 (17 outlets).
In each geometry, 1 planar injection and 3 catheter injections
were simulated, with the injection location superficially in the
proper hepatic artery (PHA) (before the first bifurcation). For
the truncated geometries, it was assumed that, downstream of the
truncated outlets, particles distributed proportionally to the blood
flow (hybrid particle-flow model). For the planar injections, the
median difference in outlet-specific particle distribution between
Geometry 1 and 2 was 0.0442% and 0.211% between Geometry 1
and 3, clearly indicating the impact of truncation. Studying the
3 catheter injections, the maximum (of all 3 injections) median
difference in particle distribution between Geometry 1 and 2 was
0.0647% and 0.240% between Geometry 1 and 3, again showing
the impact of truncation. However, with these limited differences,
the results indicated that the hepatic arterial tree can be reliably
severely truncated. Interestingly, using just flow distribution as a
surrogate for particle distribution in the entire tree was considerably
less accurate than using the hybrid model, with reported maximal
outlet-specific differences of ∼6% (which were significantly higher
than the maxima for the catheter injections (∼3.5%) and for the
planar injection (∼2%)).

In Chapter 5, the hybrid particle-flow model with the same levels
of moderate and severe truncation is verified for selective injection in
the right and left hepatic arteries, after the first bifurcation. Up-
stream truncation is also investigated, with truncation lengths of 20-
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80 mm before the catheter tip. Severe truncation gave maximum dif-
ferences in particle distribution of ∼4-11% and ∼8-9% for down- and
upstream truncation, respectively. For moderate truncation, these
differences were only ∼1-1.5% and ∼0.5-2%, indicating that severe
truncation is much less reliable here than for superficial injection.
Additionally, in each simulation, particle cross-sectional spread was
quantified for 5-6 axial planes from the catheter tip to the outlets.
Considering all particles, spread increased downstream of the tip to
80-90% of the cross-section. However, spread was found to be much
lower at specific time points, indicating high time-dependency. In-
terestingly, these time-dependent spread measures could show where
differences might arise between flow and particle modeling, and if
particle-flow alignment could be improved in the future.

From these two chapters, we conclude that combining domain
truncation with hybrid particle-flow modeling is an effective method
to reduce computational complexity, but that moderate truncation
is more reliable than severe truncation (especially for selective injec-
tion).

Next, in Chapter 6, we identify five simplification strategies:
severe truncation, and additionally, steady flow modeling, moderate
and severe grid coarsening, and reducing the number of flow cycles.
We evaluated whether they can be used to (1) accurately predict the
CFD output (i.e. the particle distribution, as before, and the tumor
dose) and (2) estimate the sensitivity of the output towards a spe-
cific injection parameter (injection flow rate). For both accuracy and
sensitivity purposes, grid coarsening was shown to be the most reli-
able simplification strategy, allowing to predict the tumor dose with
only a maximal deviation of 1.4%, and a similar sensitivity (deviation
of 0.7%). The steady strategy performed the worst, with a maximal
deviation in the tumor dose of 20% and a difference in sensitivity of
10%. Additionally, coarsening the grid decreased the computational
time by roughly 45%.

From Chapters 4, 5 and 6, we conclude that moderate
truncation of the downstream vessels (in combination with the
hybrid particle-flow model) is the most reliable strategy when the
focus is on accurately predicting the tumor dose. If the focus
is on quantifying sensitivity towards a specific input parameter,
grid coarsening is also a viable option, allowing to significantly
reduce the computational time. However, to allow uncertainty
quantification and global sensitivity analysis (which often require
hundreds or thousands of simulations), we require new strategies to
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even further reduce computational cost. This is the focus of Part III.

Part III: Uncertainty Quantification of Clinical and Numer-
ical Parameters consists of Chapters 7 and 8. The goal is to
quantify the uncertainty on the tumor dose prediction due to un-
known catheter tip position and unknown boundary conditions. In
Chapter 7, we quantified the uncertainty of the tumor dose to-
wards the uncontrollable but important parameter of catheter tip
location. To cheaply repeat similar simulations, we used a simplified
CFD model, where a catheter injection was mimicked by simulating
a planar injection and calculating which release positions within the
axial cross-section led to tumor deposition (low fidelity CFD modeling
approach). By then sampling 50 random catheter release positions
across the axial cross-section, the tumor dose range resulting from
an unknown (or uncontrollable) catheter tip position was calculated,
showing a variation of ∼15%. While this novel low fidelity approach
allowed uncertainty quantification in the tumor dose, the strategy of
simplifying the CFD model by a planar injection is limited in applic-
ability, stressing the need for more broad simplification strategies.

Hence, in Chapter 8, we build a surrogate Gaussian process
regression (GPR) model trained on a minimal number of 3D
CFD simulations of drug transport to easily perform uncertainty
quantification and sensitivity analysis. As an example case, we
determined the sensitivity of the tumor dose towards the inflow
waveform shape, extracting three shape parameters from our input
waveform (peak systolic flow rate, heart rate, systolic duration ratio)
and defined our 3D input space by varying them within 75%-125%
of their nominal values. To cheaply fit our GPR, we developed an
adaptive design of experiments (ADOE) algorithm, which initially
used 100 Latin hypercube sampled points in 3D input space to
define the initial design of experiments (DOE). Based on this DOE,
we fit a GPR, and used this to determine the sensitivity indices
for each parameter with Sobol’s variance-based method. Next, in
each of 27 equivolume bins which divide our 3D input space, we
determined the most uncertain predictions of the current GPR,
computed their true values using CFD, and added these points to
the DOE. We continued to add batches of 27 points to the DOE
until the Sobol indices stabilized. We tested our ADOE algorithm
on the exemplary Ishigami function and showed that we could
reliably obtain Sobol’s indices with an absolute error <0.1 (which
was enough for our purposes). Finally, applying the ADOE to our
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waveform, we found that the first-order sensitivity indices were
0.0550, 0.0191 and 0.407 for the peak systolic flow rate, heart rate,
and the systolic duration parameters, respectively, based on 181
CFD simulations (initial DOE of 100 simulations). This showed
that we can reduce uncertainty on the tumor dose prediction most
by accurately measuring the duration of systole. Hence, the ADOE
allows reliable sensitivity analysis with a relatively limited number
of complex model evaluations. In the future, we can use this to
identify the highest-impact numerical input parameters to diagnose
our model, and find the most important clinical parameters for
pre-operative optimization.

Next to uncertainty quantification, the final important principle of
VVUQ is validation. Part IV: Validation consists of Chapter
9, where we focus on in vitro validation. The aim is to illustrate
the feasibility of patient-specific in vitro validation, which is a
significant advancement over the generalized, planar geometries
used in literature. In Chapter 9, an in vitro set-up was built
by means of an experimental flow circuit in which a 3D-print of
a patient-specific hepatic arterial geometry was mounted. Water
flowed down from an elevated reservoir through the 3D-print, to
polyvinyl chloride (PVC) connecting tubes with tunable resistances
leading into 10 collecting reservoirs. The outflows to each reservoir
were set manually by iteratively adapting the resistances at the
PVC tubes until all outflows matched the computational boundary
conditions (< 5% error margin). Non-radioactive SIR-Spheres were
injected and the distribution over the 10 reservoirs was calculated by
filtering the reservoir particle-water mix and measuring the particle
weight. The high similarity between experimental and theoretical
flow distribution (0.407% difference per reservoir on average) showed
that the implementation of the outlet BCs through tuning of the
resistances was successful. Moreover, the average difference for a
reservoir between numerical and experimental particle distribution
was 2.73% (min: 0.394% - max: 6.47%) and 2.97% (min: 1.21%
- max: 6.17%) for the 2 performed injections. This in vitro
validation set-up confirmed that flow distribution was far from a
perfect surrogate for the particle distribution. While we showed the
possibility of using a patient-specific hepatic arterial geometry and
implement patient-inspired BCs in an in vitro set-up, we conclude
that the current set-up should still be improved by developing
among others more robust particle measurement methods.
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Finally, we introduce a framework for the pre-operative planning
tool, considering what we learnt before regarding uncertainty
on the tumor dose prediction. Part V: Valorization consists
of Chapter 10. In Chapter 10, we showcase a pre-treatment
planning framework which not only considered the tumor dose
range, but also considered the trade-off between the target specificity
(higher for selective injection) and vascular accessibility (typically
more difficult for selective injection). As a patient-specific case
study, we identified four relevant injection locations to compare
using the proposed framework: superficially (in the PHA), select-
ively in the right hepatic artery (RHA) and left hepatic artery
(LHA), and super-selectively in the RHA, which perfuses most of
the tumor tissue. A tumor coverage of 100% was only reached
for superficial PHA injection. Regarding accessibility, even for
the most distal injection locations (selective LHA injection and
super-selective RHA injection), the diameter was still >4 mm and
not considered a limiting factor. Selective injection in the LHA
had the lowest accessibility, with high tortuosity and curvature
values due to the bend after the first bifurcation. Regarding the
tumor dose ranges for all scenarios, the minima were relatively
constant (i.e. within the range 25.7%-38.6%), but the maxima
varied significantly between 50.5%-81.9%, with the maximum
reached for super-selective RHA injection. Combining all decision
criteria in our framework, selective RHA injection seemed most
optimal, with high tumor coverage (69.6%), a similar median tu-
mor dose compared to other scenarios (48.7%) and high accessibility.

To conclude, in Part VI: Conclusions, which consists of Chapter
11, limitations of the computational approach, such as the model-
ing of the catheter as thin-walled and the catheter fluid as blood,
are first discussed. Next, we identify key results. These include
(1) the introduction of the hybrid particle-flow model as a reliable
simplification strategy for accuracy purposes, (2) grid coarsening as
the optimal strategy for simplification for sensitivity purposes, (3)
converting tumor dose values into tumor dose ranges given uncer-
tain clinical parameters such as catheter tip position, (4) showing
that specific surrogate models can help reduce computational com-
plexity of performing sensitivity analysis, (5) using a patient-specific
in vitro flow circuit to highlight important differences between flow
and particle distribution, and (6) developing a multi-objective pre-
operative framework, which maximizes tumor dose under specific con-
straints, such as limited vascular access. Next, future work building
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on our results is suggested. Aside from verifying the current results
for more patient-specific geometries, we suggest focusing more on in
vivo validation using SPECT- and PET-CT scans, using the cur-
rent in vitro validation methods mainly for bench testing novel cath-
eter types, expanding current uncertainty quantification techniques
to wider ranges of parameters, and using our novel spread measures
to investigate whether novel catheter types can promote particle-flow
alignment. Finally, we advise the future steps that will likely need
to be undertaken to bring these CFD simulations to clinical practice.
We suggest simulating to health end-points (such as the radioactive
dose delivered to the tumor, which can be measured with in vivo ima-
ging), quantifying inter-subject variability to determine under which
circumstances patient-specific geometries need to be used, and using
deep learning or other surrogate models to advance towards (near-)
real-time predictions.

As a final note of this dissertation, we remark that studies in this
field have focused on two methods for improving health outcomes of
transarterial therapies: (1) through optimizing injection conditions
and then tightly controlling these peri-operatively (school of control),
or (2) through promoting mixing of the microspheres with the blood
to lessen the impact of these injection conditions (school of mixing).
This dissertation considers that while we cannot know which strategy
will prove optimal in the future, both strategies have merit, and could
be combined: since tight control of all injection parameters might not
be possible, the consideration of uncertain tumor dose ranges (as in
this dissertation) could become crucial, and is probably the most rel-
evant development in this work. However, if these uncertainty ranges
become too large, the novel spread measures we developed can help
identify whether promoting particle-flow mixing is a viable strategy
to lessen the impact of these injection conditions (and hence, the size
of the uncertainty range). This combination strategy can be named
as a novel, third method for improving health outcomes of transarter-
ial therapies: (3) because full control of injection conditions is likely
impossible, we are forced to consider the governing uncertainties on
the tumor dose prediction (uncertainty quantification), and use novel
solutions, such as novel catheter types, to decrease the uncertainty
ranges as much as possible (uncertainty mitigation). This third ap-
proach can be named the school of uncertainty quantification and
mitigation). In that sense, our pre-operative workflow to optimize
injection conditions under governing uncertainties might be a good
starting point for future endeavors.
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Samenvatting

Transarteriële therapieën, zoals transarteriële radio-embolisatie
(TARE) en chemo-embolisatie (TACE) zijn de voorkeursbehan-
delingen tijdens het niet-resectabele, intermediaire stadium van
hepatocellulair carcinoom (HCC), de meest voorkomende vorm van
primaire leverkanker. Tijdens deze kathetergestuurde transarteriële
therapieën worden microsferen oppervlakkig of selectief in de
leverslagaders geïnjecteerd met als doel het tumorweefsel, dat
voornamelijk arterieel wordt gevoed, lokaal te emboliseren. De
behandelingsresultaten (gemiddelde overlevingstijd) van TARE
en TACE zijn echter zeer heterogeen, met veel patiënt-specifieke
aspecten, zoals de slagaderanatomie van de lever en de grootte
en locatie(s) van de tumor(en), die de procedure complex maken.
Daarnaast hebben zowel computationele, experimentele als klinische
studies aangetoond dat klinische injectieparameters (bv. injectie-
locatie, injectiesnelheid, kathetertype), die sterk kunnen variëren
in klinische praktijk, een grote invloed hebben op de verdeling van
microsferen in de slagaderboom.

In dit proefschrift willen we computermodellen ontwikkelen
en gebruiken om de invloed van injectieparameters op de
microsfeerdistributie te kwantificeren en een preoperatieve
planningstool ontwikkelen om de gezondheidsresultaten van
transarteriële therapieën te verbeteren.

Deel I: Klinische rationale en meest relevante ontwikkelin-
gen in het modelleren van transarteriële therapieën bestaat
uit Hoofdstukken 1, 2 en 3. Hoofdstuk 1 dient als korte intro-
ductie. In Hoofdstuk 2 wordt de klinische achtergrond van transar-
teriële therapieën en de klinische rationale van dit proefschrift be-
sproken. Belangrijk is dat we de huidige uitdagingen van transar-
teriële therapieën duiden. Naast variabele gezondheidsuitkomsten en
heersende onzekerheden over de invloed van specifieke injectiepara-
meters (zoals hierboven besproken), is er ook een gebrek aan bet-
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rouwbare, niet-invasieve methoden voor het plannen van de behan-
deling. De huidige TARE-voorbehandeling om de geschiktheid van
injectiecondities te beoordelen is niet helemaal betrouwbaar of her-
haalbaar. Wanneer tijdens deze voorbehandeling een injectie van laag
gedoseerde radioactieve microsferen wordt gedaan, heeft dit verschil-
lende nadelen: (1) het is een invasieve procedure, (2) het is niet altijd
volledig betrouwbaar omdat de injectieparameters (zoals microsfeer-
type en injectielocatie) nog kunnen veranderen tussen de voorbehan-
deling en de daadwerkelijke behandeling, en (3) het laat niet toe om
verschillende injectieparameters uitgebreid te optimaliseren. Idealiter
zouden we de geschiktheid van de huidige injectieparameters herhaal-
baar, niet-invasief en betrouwbaar kunnen beoordelen. Als zodanig
definiëren we de klinische rationale die ten grondslag ligt aan dit
proefschrift als volgt: (1) Kunnen we de tumordosis vóór de proced-
ure betrouwbaar voorspellen? en (2) Kunnen we variabele uitkomsten
in TARE en TACE verminderen door preoperatieve optimalisatie?

De klinische vragen inspireren de meer specifieke subdoelen van
dit proefschrift, waarbij we computermodellen willen gebruiken om de
tumordosis te voorspellen en preoperatief, niet-invasief en betrouw-
baar de geschiktheid van specifieke injectiecondities te beoordelen.
Hoofdstuk 3 begint met een overzicht van verschillende modeltypen
die worden gebruikt in de context van transarteriële therapieën, van
complexe vloeistof-structuur interactiemodellen via computationele
vloeistofdynamica (CFD) tot 0D-modellen. Momenteel wordt vooral
CFD gebruikt en hebben meerdere CFD-studies al inzicht gegeven
in de invloed van klinische injectieparameters, zoals injectiepositie
(in het vlak), axiale injectiepositie, katheterrichting, kathetertype,
injectiesnelheid en microsfeertype. Deze studies hebben echter hun
beperkingen. Zo werden de eerste CFD-analyses vooral uitgevoerd
in vereenvoudigde, vlakke geometrieën. Hoewel de aandacht is ver-
schoven naar CFD-analyse van patiënt-specifieke geometrieën, die
veel realistischer zijn, zijn ze rekenkundig ook complexer en moet de
computationele aanpak mogelijk worden vereenvoudigd. Daarnaast
gedragen CFD-modellen zich ook anders dan systemen in de fysieke
wereld, wat van cruciaal belang is bij het beoordelen van de betrouw-
baarheid van deze modellen. Typisch bepalen drie belangrijke prin-
cipes de betrouwbaarheid van een computermodel: (1) verificatie, (2)
validatie en (3) onzekerheidsanalyse (VVUQ). Op vlak van validatie
is in vitro validatie alleen uitgevoerd op vereenvoudigde, vlakke geo-
metrieën. Daarnaast is in vivo validatie is ook zeer beperkt in de lit-
eratuur. Bovendien ontbrak het in dit domein ook aan onzekerheids-

xxxvi



en gevoeligheidsanalyse van een breed scala aan klinische en numer-
ieke parameters. Tot nu toe werden slechts variaties van 2 parameters
tegelijkertijd beschouwd in 1 patiënt-specifieke geometrie. Ook hier
is de computationele kost van een computermodel een belangrijke
beperkende factor.

Met het oog op het bovenstaande willen we in dit proefschrift
deze beperkingen in de huidige stand van zaken aanpakken door (1)
effectieve strategieën te ontwikkelen om de computationele kosten
van patiënt-specifieke 3D CFD simulaties betrouwbaar te verlagen
(focus van Deel II), (2) technieken voor onzekerheidsanalyse van nu-
merieke en klinische parameters in patiënt-specifieke geometrieën te
ontwikkelen (focus van Deel III), (3) validatietechnieken in patiënt-
specifieke geometrieën te ontwikkelen (focus van Deel IV), en (4) een
workflow te ontwikkelen voor pre-operatieve optimalisatie van de uit-
voering van transarteriële therapieën, rekening houdend met (maar
niet beperkt tot) de tumordosis zoals berekend met CFD (focus van
Deel V).

Deel II: Vereenvoudigingsstrategieën voor CFD-modellen
van transarteriële therapieën bestaat uit Hoofdstukken 4,
5 en 6. Het doel is om betrouwbare vereenvoudigingsstrategieën
te ontwikkelen en te evalueren voor onze CFD-modellen van
transarteriële therapieën om zo de totale rekenkost te verlagen.
In Hoofdstuk 4 wordt het hybride microsfeer-stromingsmodel
geïntroduceerd als het resultaat van een nieuw truncatie-algoritme
voor de stroomafwaartse vaten. De oorspronkelijke patiënt-specifieke
arteriële geometrie van de lever (Geometrie 1, met 48 uitlaten) werd
op matig en ernstig niveau getrunceerd, wat resulteerde in twee
extra arteriële vaatbomen: Geometrie 2 (38 uitlaten) en Geometrie
3 (17 uitlaten). In elke geometrie werden 1 planaire injectie en 3
katheterinjecties gesimuleerd, met de axiale injectielocatie in de
arteria hepatica propria (PHA) (voor de eerste bifurcatie). Voor
de getrunceerde geometrieën werd aangenomen dat de microsferen
zich stroomafwaarts van de getrunceerde uitlaten evenredig met
de bloedstroom verspreidden (hybride microsfeer-stromingsmodel).
Voor de vlakke injecties was het mediane verschil in uitlaat-specifieke
microsfeerverdeling tussen Geometrie 1 en 2 0,0442% en 0,211%
tussen Geometrie 1 en 3, wat duidelijk de invloed van truncatie aan-
geeft. Bij bestudering van de 3 katheterinjecties was het maximale
(van alle 3 injecties) mediane verschil in microsfeerverdeling tussen
Geometrie 1 en 2 0,0647% en 0,240% tussen Geometrie 1 en 3, wat
opnieuw de invloed van trunceren aantoont. Met deze beperkte
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verschillen gaven de resultaten echter aan dat de arteriële boom in
de lever tot op ernstig niveau kan worden getrunceerd. Interessant
genoeg was het gebruik van alleen de stromingsdistributie als
surrogaatmodel voor de microsfeerverdeling in de gehele arteriële
vaatboom aanzienlijk minder nauwkeurig dan het gebruik van
het hybride model, met maximale uitstroom-specifieke verschillen
van 6% (die aanzienlijk hoger waren dan de maxima voor de
katheterinjecties (3,5%) en voor de planaire injectie (2%)).

In Hoofdstuk 5 wordt het hybride microsfeer-stromingsmodel
met dezelfde niveaus van matige en ernstige truncatie geverifieerd
voor selectieve injectie in de rechter- en linkertakken van de arteria
hepatica propria (na de eerste bifurcatie). Stroomopwaartse truncatie
wordt ook onderzocht, met truncatielengtes van 20-80 mm voor de
katheterpunt. Ernstige truncatie gaf maximale verschillen in micros-
feerverdeling van 4-11% en 8-9% voor respectievelijk stroomafwaarts
en stroomopwaarts trunceren. Voor matige truncatie waren deze ver-
schillen slechts 1-1,5% en 0,5-2%, wat aangeeft dat ernstige truncatie
bij selectievere injectie veel minder betrouwbaar is dan bij opper-
vlakkige injectie. Bovendien werd in elke simulatie de verspreiding
van de microsferen in de doorsnede gekwantificeerd voor 5-6 door-
sneden tussen de katheterpunt en de uitlaten. Rekening houdend
met alle microsferen nam de spreiding stroomafwaarts van de kath-
eterpunt toe tot 80-90% van de volledige doorsnede. De verspreiding
bleek echter veel lager te zijn op specifieke tijdstippen, wat duidt
op een hoge tijdsafhankelijkheid van de verspreiding. Interessant is
dat deze tijdsafhankelijke spreidingsmaten kunnen laten zien waar
verschillen kunnen ontstaan tussen de bloedstroming en de micros-
ferenverdeling, en of de overeenkomst tussen stromings- en microsfer-
enverdeling in de toekomst kan verbeterd worden.

Uit deze twee hoofdstukken concluderen we dat het combineren
van truncatie met het hybride microsfeer-stromingsmodel een
effectieve methode is om de complexiteit van de modelleringsaanpak
te verminderen, maar dat gematigde truncatie betrouwbaarder is
dan ernstige truncatie (vooral voor selectieve injectie).

Vervolgens identificeren we in Hoofdstuk 6 5 vereenvoudi-
gingsstrategieën: ernstige truncatie, aangevuld met modellering van
constante stroming, matige en ernstige vereenvoudiging van het
numerieke raster, en vermindering van het aantal stromingscycli.
We evalueren of deze strategieën kunnen worden gebruikt om (1) de
CFD-resultaten nauwkeurig te voorspellen (de microsfeerverdeling,
zoals voorheen, en de tumordosis) en (2) de gevoeligheid van die
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resultaten tegenover een specifieke injectieparameter (injectiedebiet)
te schatten. Voor zowel nauwkeurigheid als gevoeligheid bleek ras-
tervereenvoudiging de meest betrouwbare vereenvoudigingsstrategie
te zijn, die het mogelijk maakte de tumordosis te voorspellen
met slechts een maximale afwijking van 1,4% en een vergelijkbare
gevoeligheid (afwijking van 0,7%). De strategie die gebruik maakte
van constante stroming presteerde het slechtst, met een maximale
afwijking in de tumordosis van 20% en een verschil in gevoeligheid
van 10%. Bovendien verminderde het vereenvoudigen van het raster
de rekentijd met ongeveer 45%.

Uit Hoofdstukken 4, 5 en 6 concluderen we dat gematigde
truncatie van de stroomafwaartse vaten (in combinatie met het
hybride microsfeer-stromingsmodel) de meest betrouwbare strategie
is als de nadruk ligt op nauwkeurigheid. Als de focus ligt op
gevoeligheid, dan is rastervereenvoudiging ook een acceptabele optie
waarmee de rekentijd aanzienlijk verkort kan worden. Maar om
onzekerheidskwantificatie en globale gevoeligheidsanalyse mogelijk
te maken (waarvoor vaak honderden of duizenden simulaties nodig
zijn), hebben we nieuwe strategieën nodig om de rekenkosten nog
verder te verlagen. Dit is de focus van Deel III.

Deel III: Onzekerheidsanalyse van klinische en numerieke
parameters bestaat uit Hoofdstukken 7 en 8. Het doel van
dit deel is om de onzekerheid te kwantificeren op de voorspelling
van de tumordosis als gevolg van onbekende positie van de kathet-
erpunt en onbekende randvoorwaarden. In Hoofdstuk 7 kwanti-
ficeerden we de onzekerheid op de tumordosis veroorzaakt door de
oncontroleerbare locatie van de katheterpunt in het vlak. Om soort-
gelijke simulaties goedkoop te kunnen herhalen, gebruikten we een
vereenvoudigd CFD-model, waarbij een katheterinjectie werd nage-
bootst door een vlakke injectie te simuleren en te berekenen welke af-
gifteposities binnen de axiale doorsnede leidden naar de tumor (lage
fidelity-aanpak). Door vervolgens 100 willekeurige posities voor de
katheterpunt in de axiale doorsnede na te bootsen, werd het tu-
mordosisbereik als gevolg van een onbekende (of oncontroleerbare)
positie van de katheterpunt berekend, met een totale variatie van
15%. Hoewel deze nieuwe lage fidelity-aanpak het mogelijk maakte
om de onzekerheid in de tumordosis te kwantificeren, is de strategie
om het CFD-model te vereenvoudigen door een vlakke injectie slechts
beperkt toepasbaar, en moeten we op zoek naar een breder toepas-
bare vereenvoudigingsstrategieën.

xxxix



Samenvatting

Daarom bouwen we in Hoofdstuk 8 een surrogaat Gaussiaans
proces regressiemodel (GPR) dat is gefit op een minimaal aantal 3D
CFD simulaties van microsfeertransport om eenvoudige onzekerheids-
en gevoeligheidsanalyses uit te voeren. Als voorbeeldcasus bepaalden
we de gevoeligheid van de tumordosis tegenover de vorm van de
stroomsnelheidsgolf aan de inlaat van de arteria hepatica propria.
We definieerden onze 3D-inputruimte door drie vormparameters
uit onze stroomsnelheidsgolf te extraheren (systolische piekdebiet,
hartslag, systolische duur) en deze 3 parameters te variëren binnen
75-125% van de nominale waarden. Om ons surrogaatmodel
goedkoop te kunnen fitten, ontwikkelden we een algoritme dat
werkt met een adaptieve statistische onderzoeksplanning (ADOE).
Aanvankelijk werden 100 punten in de 3D inputruimte bepaald door
de initiële statistische onderzoeksplanning (DOE) te definiëren aan
de hand van Latin hypercube sampling. Op basis van deze DOE
gebruikten we de huidige GPR om de gevoeligheidsindices van elke
input parameter in te schatten met de variantie-gebaseerde methode
van Sobol. Vervolgens bepaalden we in elk van de 27 equivolume bins
die onze 3D inputruimte verdelen, de meest onzekere voorspellingen
van de huidige GPR, berekenden we hun werkelijke waarden met
CFD en voegden we deze punten toe aan de DOE. We gingen door
met het toevoegen van reeksen van 27 punten aan de DOE totdat de
Sobol-indices gestabiliseerd waren. We testten ons ADOE-algoritme
op de voorbeeldfunctie van Ishigami en toonden aan dat we
betrouwbaar Sobol-indices kunnen verkrijgen met een absolute fout
<0,1 (wat voldoende was voor onze doeleinden). Tot slot, bij het
toepassen van ADOE op onze stroomsnelheidsgolf, vonden we de
eerste-orde gevoeligheidsindices na 181 CFD simulaties (initiële
DOE van 100): 0,0550 voor het systolisch debiet, 0,0191 voor de
hartslag, en 0,407 voor de systolische duur. Dit toonde aan dat
we de onzekerheid op de voorspelling van de tumordosis het meest
kunnen verminderen door de duur van de systole nauwkeurig te
meten. De ADOE maakt dus een betrouwbare gevoeligheidsanalyse
mogelijk met een relatief beperkt aantal complexe modelevaluaties,
die we kunnen gebruiken om de numerieke inputparameters met de
grootste impact te identificeren om ons model te diagnosticeren. We
kunnen ze ook gebruiken om de belangrijkste klinische parameters
voor pre-operatieve optimalisatie te identificeren.

Naast onzekerheidsanalyse is validatie het laatste, belangrijke
principe van VVUQ. Deel IV: Validatie bestaat uit Hoofdstuk
9, waar we focussen op in vitro validatie. Het doel is om de
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haalbaarheid van patiënt-specifieke in vitro validatie te illustreren,
wat een aanzienlijke vooruitgang is ten opzichte van de algemene,
vlakke geometrieën die in de literatuur worden gebruikt. In
Hoofdstuk 9 werd een in vitro opstelling gebouwd door middel
van een experimenteel stromingscircuit waarin een 3D-print van
een patiënt-specifieke arteriële levergeometrie werd gemonteerd.
Water stroomde van een verhoogd reservoir door de 3D-print naar
beneden, naar verbindingsbuizen van polyvinylchloride (PVC) met
instelbare weerstanden die naar 10 verzamelreservoirs leidden. De
uitstroom naar elk reservoir werd handmatig ingesteld door iteratief
de weerstanden ter hoogte van de PVC-buizen aan te passen totdat
alle uitstromen overeenkwamen met de randvoorwaarden opgelegd in
het computermodel (< 5% foutmarge). Niet-radioactieve SIR-sferen
werden geïnjecteerd en de verdeling over de 10 reservoirs werd
berekend door het microsfeer-watermengsel van het reservoir te
filteren en het toegevoegd gewicht van de microsferen te meten.
De grote overeenkomst tussen de experimentele en theoretische
stroomverdeling (gemiddeld 0,407% verschil per reservoir) toonde
aan dat de implementatie van de uitlaatstromen door het afstemmen
van de weerstanden succesvol was. Bovendien was het gemiddelde
verschil voor een reservoir tussen de numerieke en experimentele
microsfeerverdeling 2,73% (minimum: 0,394% - maximum: 6,47%)
en 2,97% (minimum: 1,21% - maximum: 6,17%) voor de 2
uitgevoerde injecties. Deze in vitro validatieopstelling bevestigde
dat de stromingsverdeling verre van een perfecte surrogaat was voor
de microsfeerverdeling. Terwijl we in dit hoofdstuk de mogelijkheid
illustreerden om een in vitro opstelling te ontwikkelen met een
patiënt-specifieke arteriële geometrie en patiënt-geïnspireerde
randvoorwaarden, concluderen we dat de huidige opstelling nog
verbeterd zal moeten worden door o.a. robuustere meetmethoden
voor de microsfeerverdeling te ontwikkelen.

Ten laatste introduceren we een workflow voor de pre-operatieve
planningstool, rekening houdend met de eerder geïllustreerde
onzekerheid op de voorspelling van de tumordosis. Deel V: Valor-
isatie bestaat uit Hoofdstuk 10. In Hoofdstuk 10 ontwikkelden
we een workflow voor het plannen van de behandeling dat niet alleen
rekening hield met het tumordosisbereik, maar ook met de afweging
tussen doelspecificiteit (hoger voor selectieve injectie) en vasculaire
toegankelijkheid (doorgaans moeilijker voor selectieve injectie).
In een patiënt-specifieke casus identificeerden we vier relevante
injectielocaties om te vergelijken met behulp van de workflow:
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oppervlakkig in de arteria hepatica propria (in de PHA), selectief
in de rechtertak van de PHA (RHA), selectief in de linkertak van
de PHA (LHA), en superselectief in de RHA, die het grootste deel
van het tumorweefsel doorbloedt. Een tumorbedekking van 100%
werd alleen bereikt bij injectie van PHA aan de oppervlakte. Wat
toegankelijkheid betreft, was zelfs voor de meest distale injectielo-
caties (selectieve LHA-injectie en superselectieve RHA-injectie) de
diameter nog steeds >4 mm en werd deze dus niet als beperkende
factor beschouwd. Selectieve injectie in de LHA had de laagste
toegankelijkheid, met hoge tortuositeit en kromming vanwege de
bocht na de eerste bifurcatie. Wat betreft de tumordosisbereiken
voor alle scenario’s waren de minima relatief constant (d.w.z.
binnen het bereik van 25,7-38,6%), maar de maxima varieerden
aanzienlijk tussen 50,5-81,9%, waarbij het maximum werd bereikt
voor superselectieve injectie in RHA. Door alle beslissingscriteria in
onze workflow te combineren, leek selectieve RHA-injectie het meest
optimaal, met een hoge tumordekking (69,6%), een vergelijkbare
mediane tumordosis vergeleken met andere scenario’s (48,7%) en
een hoge toegankelijkheid.

Tot slot, in Deel VI: Conclusies, dat bestaat uit Hoofdstuk 11,
worden limitaties van de computationele aanpak, zoals de model-
lering van de katheter als dunwandig en de kathetervloeistof als
bloed, eerst besproken. Vervolgens herhalen we de belangrijkste res-
ultaten. Deze omvatten (1) de introductie van het hybride microsfeer-
stromingsmodel als een betrouwbare vereenvoudigingsstrategie voor
nauwkeurigheidsdoeleinden, (2) het identificeren van rastervereen-
voudiging als de optimale strategie voor vereenvoudiging voor gevoe-
ligheidsdoeleinden, (3) het omzetten van tumordosiswaarden in tum-
ordosisbereiken gegeven onzekere klinische parameters, zoals de pos-
itie van de katheterpunt, (4) het aantonen dat specifieke surrogaat-
modellen kunnen helpen bij het verminderen van de computationele
complexiteit van het uitvoeren van gevoeligheidsanalyses, (5) gebruik
van een patiënt-specifiek in vitro stromingscircuit om belangrijke
verschillen tussen stroming en microsfeerdistributie te kwantificeren,
en (6) het ontwikkelen van een multi-objectief preoperatieve work-
flow, dat de tumordosis maximaliseert onder specifieke beperkingen,
zoals beperkte vasculaire toegang. Vervolgens wordt toekomstig werk
voorgesteld dat voortbouwt op onze resultaten. Naast het verifiëren
van de huidige resultaten voor meer patiënt-specifieke geometrieën,
stellen we voor om ons meer te richten op in vivo validatie met behulp
van SPECT- en PET-CT-scans, de huidige in vitro validatiemethoden
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voornamelijk te gebruiken voor het testen van nieuwe kathetertypen,
de huidige technieken voor het kwantificeren van onzekerheden uit
te breiden naar een grotere en meer diverse verzameling parameters,
en onze nieuwe spreidingsmaten te gebruiken om te onderzoeken of
nieuwe kathetertypen de overeenkomst tussen microsfeer- en strom-
ingsverdeling kunnen bevorderen. Tot slot geven we advies over de
toekomstige stappen die waarschijnlijk genomen moeten worden om
deze CFD-simulaties naar klinische toepassing te brengen. We stellen
voor om te simuleren tot op gezondheidseindepunten (zoals de radio-
actieve dosis geleverd aan de tumor, die kan worden gemeten met
in vivo beeldvorming), de variabiliteit tussen personen te kwanti-
ficeren om te bepalen onder welke omstandigheden patiënt-specifieke
geometrieën moeten worden gebruikt, en deep learning of andere sur-
rogaatmodellen te gebruiken om (bijna) real-time voorspellingen mo-
gelijk te maken.

Als laatste nota van dit proefschrift merken we op dat studies
op dit gebied zich hebben gericht op twee methoden om de gezond-
heidsuitkomsten van transarteriële therapieën te verbeteren: (1) door
de injectiecondities te optimaliseren en deze vervolgens peri-operatief
streng te controleren (school van controle), of (2) door vermenging
van de microsferen met het bloed te bevorderen om de impact van
deze injectiecondities te verminderen (school van menging). In dit
proefschrift wordt gesteld dat, hoewel we niet kunnen weten welke
strategie in de toekomst optimaal zal blijken te zijn, beide strategieën
voordelen hebben en gecombineerd zouden kunnen worden: aangez-
ien strenge controle van alle injectieparameters wellicht technisch
niet mogelijk is, zou het rekening houden met onzekere tumordosis-
bereiken (zoals in dit proefschrift) cruciaal kunnen worden. Dit
is waarschijnlijk de meest relevante ontwikkeling in dit werk. Als
deze onzekerheidsbereiken echter te groot worden, kunnen de nieuwe
spreidingsmaten die we hebben ontwikkeld, helpen identificeren of het
bevorderen van afstemming tussen microsfeer- en stromingsverdeling
een realistische strategie is om de grote impact van deze injectiecon-
dities (en dus de grootte van het onzekerheidsbereik) te verminderen.
We benoemen deze combinatiestrategie als een nieuwe, derde meth-
ode om gezondheidsuitkomsten te verbeteren: (3) wegens gebrek aan
total controle van injectiecondities, trachten we zoveel mogelijk de
heersende onzekerheden in kaart te brengen (onzekerheidsanalyse),
en kunnen we bijvoorbeeld nieuwe kathetertypes gebruiken om de
grootte van onzekerheden te beperken (onzekerheidsvermindering).
Deze nieuwe, derde aanpak kunnen we benoemen als de (school van
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onzekerheidsanalyse en -vermindering). In die zin kan onze pre-
operatieve workflow voor het optimaliseren van injectiecondities on-
der heersende onzekerheden een goed uitgangspunt zijn voor toekom-
stige inspanningen.
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Introduction

1.1 Clinical rationale

Hepatocellular carcinoma, the most common form of primary liver
cancer, is one of highest-mortality cancers worldwide with an expec-
ted incidence of over 1 million people by 2030 [1, 2]. At its inter-
mediate stage, transarterial therapies such as transarterial radioem-
bolization (TARE) and transarterial chemoembolization (TACE) are
typically considered as the primary choices of treatment [3]. During
TARE, a microcatheter is inserted via the femoral artery and ad-
vanced retrogradely to the hepatic arteries perfusing both the healthy
liver parenchyma and the tumor(s) [4]. There, radioactive micro-
particles are infused to selectively embolize the tumor tissue. Usu-
ally, a low-dose pre-treatment injection is done to assess the intra-
and extrahepatic radioactivity spread, and the suitability of the cur-
rent injection conditions [5].

However, TARE is associated with a high variability in execu-
tion, and highly fluctuating clinical outcomes [6, 7]. For example,
the impact of variable clinical parameters (such as catheter type,
microcatheter position, microcatheter tip orientation, etc.) on the
tumor dose is poorly understood. Additionally, these parameters can
still vary between the treatment and the pre-treatment used to assess
tumor dose efficacy, which makes pre-treatment a unreliable tumor
dose predictor [8]. Furthermore, aside from axial injection location,
the current pre-treatment method does not allow to extensively tune
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other impactful injection parameters to patient-specific conditions.
Hence, we want to investigate the possibility of using computational
fluid dynamics (CFD) simulations as a virtual pre-treatment mock-up
of the treatment, which would offer a completely noninvasive solution
and allow extensive iterative finetuning of clinical parameters before
the actual physical intervention, with the ultimate goal of maximiz-
ing the tumor dose and minimizing the spread of radioactivity to the
surrounding healthy tissue.

1.2 State-of-the-art and objectives

Numerical models are being increasingly used in healthcare for med-
ical device design and pre-treatment planning. Importantly, they can
be used to elucidate the impact of clinical injection parameters on the
treatment outcome for both TACE and TARE [9]. Multiple compu-
tational fluid dynamics (CFD) studies have focused on this, showing
among others the high impact of axial and cross-sectional injection
location, injection flow rate and catheter type [10–14].

In the past, these CFD studies have mainly focused on parameter
analysis in simplified geometries [12–14]. While the focus has shifted
to more realistic patient-specific geometries [10, 11, 15], these geomet-
ries make the computational approach more complex. This decreases
the feasibility of using these CFD analyses in daily clinical practice.
Hence, reliable simplification strategies for these patient-specific 3D
CFD models are needed. Additionally, global uncertainty quantifica-
tion and sensitivity analysis for a wide range of input parameters has
also not been performed for CFD models of TARE. This is especially
relevant, as both uncertain or controllable clinical parameters (e.g.
cross-sectional catheter tip position) and uncertain numerical para-
meters (e.g. boundary conditions) will introduce uncertainty on the
output (e.g. tumor dose). However, uncertainty quantification and
sensitivity analysis typically require a high number of simulations,
which even further stresses the need to devise reliable simplification
strategies.

Furthermore, patient-specific in vivo validation of a wide range of
patients is currently lacking [16], and will be needed to translate these
models to clinical practice. Additionally, experimental in vitro stud-
ies have focused on replicating CFD results in simplified geometries,
but not in patient-specific geometries [13, 17]. While in vitro valida-
tion might be a powerful investigative tool, these methods have not
been translated yet to a patient-specific setting.
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Finally, while Kleinstreuer et al. [12] already suggested to use
CFD simulation based on medical images in a pre-operative tool,
they did not yet develop a specific design for this tool. Importantly,
tumor dose is not the only parameter to consider in such a tool, since
vascular accessibility of the tumor-feeding arteries might also be a
limiting factor. Additionally, some clinical parameters might not be
entirely controllable, which might introduce uncertainty on the pre-
dicted output. Hence, there is currently a lack of a specific workflow
for a therapy planning tool that considers both dose maximization,
cost minimization and output uncertainty.

Based on the state-of-the-art as explained above, this PhD dis-
sertation will focus on:

• the development of patient-specific 3D CFD models of transar-
terial drug delivery,

• the implementation of reliable simplification strategies to ac-
curately predict tumor dose,

• quantifying the uncertainty introduced by, and sensitivity to-
wards, both clinical and numerical model parameters,

• the development of patient-specific validation techniques, and

• a workflow for the pre-operative planning tool.

1.3 Structure

The structure of this PhD dissertation is divided in six major parts:

• Part I - Clinical Rationale and State-of-the-Art in Mod-
eling of Transarterial Therapies. Part I explains the clin-
ical context of the dissertation, showing how hepatocellular car-
cinoma is one of the highest-mortality cancers worldwide, but
that transarterial therapies used at its intermediate stage suf-
fer from variable outcomes and an unclear impact of injection
conditions. Furthermore, the role of modeling in healthcare
and therapy planning is explained, outlining how a virtual pre-
treatment planning tool could help to quantify the impact of
clinical injection parameters on the treatment outcome, and
optimize the treatment outcome accordingly. An overview of
the current models (mostly computational fluid dynamics mod-
els) already used to study transarterial therapies is given. The
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state-of-the-art of CFD models will lead to the motivation of
the thesis objectives.

• Part II - Simplification Strategies for CFD Modeling
of Transarterial Therapies: In Part II, effective strategies
to reduce the computational cost of patient-specific 3D CFD
models are discussed. First, this is done by developing and
verifying the hybrid particle-flow model, which reduces the size
of the hepatic arterial tree but still aims to predict intraseg-
mental particle distribution. This hybrid model will be verified
for both realistic superficial and selective injection scenarios.
Additionally, more simplification strategies, such as coarsening
of the grid and reducing the number of flow cycles, are eval-
uated, as well as the possibility of more severe simplification
when the focus is on uncertainty quantification and sensitivity
rather than accuracy.

• Part III - Uncertainty Quantification of Clinical and
Numerical Parameters: Part III will show how we can
use patient-specific 3D CFD models and the simplification
strategies from Part II to quantify the uncertainty on the
tumor dose caused by uncertain input parameters. First,
a low fidelity modeling approach will be used to quantify
the uncertainty on the tumor dose induced by an uncertain
cross-sectional injection position. Second, a surrogate Gaus-
sian Process Regression model will be used to quantify the
sensitivity of the model towards specific shape parameters of
the input waveform.

• Part IV - Validation: Part IV illustrates the development
of a patient-specific in vitro validation technique, where a 3D-
print of a patient-specific hepatic arterial geometry is integrated
in a flow circuit. This set-up is used to underline the difference
between flow and particle distribution, and paves the way to-
wards future validation efforts.

• Part V - Valorization: Part V illustrates how CFD simula-
tions can be integrated into a pretreatment planning workflow
for TARE, considering the uncertainty on the tumor dose pre-
diction, as well as quantifying vascular accessibility of specific
injection locations.
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2
Clinical Rationale

In this chapter, the clinical rationale for this PhD dissertation is mo-
tivated. First, a brief overview is given of the liver function and liver
anatomy, with a special focus on the functional segmental anatomy
of the liver and the anatomy of the hepatic arterial vasculature, due
to their high relevancy in this dissertation. Second, the epidemiology,
risk factors and prevention, diagnosis and treatment options of hep-
atocellular carcinoma (HCC), the most common form of primary liver
cancer, is discussed. Third, we zoom in on transarterial chemo- and
radioembolization procedures, which are typically the treatments of
choice at the intermediate, unresectable stage of HCC. We discuss
their methods of action, but also the current challenges with transar-
terial drug delivery, which will lead us to the clinical rationale and
motivation for this dissertation.

This chapter is partly based on the book chapter Numerical mod-
elling in support of locoregional drug delivery during transarterial
therapies for liver cancer from the book Modelling of mass transport
processes in biological media (C. Debbaut and T. Bomberna, Elsevier,
2022) [23] and the Master thesis dissertation Targeted drug delivery
for liver cancer: modelling the impact of cancer burden on the particle
distribution in a patient-specific cirrhotic liver (T. Bomberna, UGent,
2019) [25].
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2. Clinical Rationale

2.1 Liver Function and Anatomy

The liver is the largest organ in the body and makes up around 2.5%
of the body weight [26]. Crucially, the liver carries out important bod-
ily functions such as maintaining homeostasis, detoxification, glucose
synthesis and storage, hormone metabolism, support of the immune
system, etc. [27]. In this section, a short overview of the healthy liver
microanatomy, macroanatomy and vascular supply is given. Special
attention is spent on the hepatic arterial anatomy due to its relevance
in this dissertation.

2.1.1 Vascular Supply
The liver has a double afferent blood supply: the hepatic artery car-
ries high-pressure, oxygen-rich arterial blood to the liver, while the
portal vein carries low-pressure nutrient-rich venous blood to the liver
[28, 29]. Normally, blood flow to the liver is about 20-25% of the
cardiac output (1–2 L/min) [29, 30]. In healthy liver parenchyma,
roughly 25% of the blood supply comes from the hepatic arteries,
while the remainder comes from the portal vein [31]. In cirrhotic
livers, distinct changes in the microvasculature result in portal hy-
pertension, reducing flow through the portal vein [28, 32]. However,
with decreased portal venous flow, the hepatic arterial blood flow can
act as a buffer and increase, which is known as the hepatic arterial
buffer response [28, 33]. Blood drains from the liver via the efferent
hepatic veins to the inferior vena cava [34].

Crucially, while healthy liver parenchyma has a double afferent
blood supply, liver tumors are mostly fed with arterial blood. This
allows selective targeting of liver tumors by injecting embolizing ma-
terial in the arterial feeders of the tumor, whilst still allowing perfu-
sion of the healthy parenchyma via the portal vein [35].

2.1.2 Microanatomy
The hepatocytes carry out most of the liver functions and make up
most of the parenchymal volume [27, 36]. These hepatocytes are
arranged in liver lobules, which are small functional units organized
around the central hepatic veins [37]. As is shown in Figure 2.1, blood
enters via branches of both the portal vein and hepatic arteries at the
corners of each lobule, flows through the lobule via the sinusoids and
is then drained from the liver via the central hepatic veins [38].

2.1.3 Segmental Anatomy
Anatomically, the liver consists of four lobes: two main lobes (the
right and left lobe), and two additional lobes (the caudate lobe, re-
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2.1. Liver Function and Anatomy

Figure 2.1: Blood from the portal vein and hepatic arteries mixes in the
sinusoids, flowing to and draining in the central vein. From [39].

ferred to as Segment I below, and the quadrate lobe, referred to as
Segment IV below) [40]. In the early 80s, Couinaud developed a
functional division system which divides the liver into eight hepatic
segments [41]. As can be seen in the schematic in Figure 2.2, the left
lobe is divided in a medial section (which consists of Segment IV)
and a lateral section (Segments II and III). The right lobe is divided
in an anterior section (Segments V and VIII) and a posterior section
(Segments VI and VII) [42]. Segment I is an independent segment.

Bismuth [43] reiterated the relevance of specific vascular struc-
tures (the hepatic veins and portal vein bifurcation) to help identify
the eight hepatic segments, as illustrated in Figure 2.3. The middle
hepatic vein (indicated with a red line in Figure 2.3) divides the liver
into its right and left lobes. The right hepatic vein (indicated with
a green line in Figure 2.3) is considered as the division line between
the anterior (Segments V, VIII) and posterior (Segments VI, VII)
sections. The division of the left lobe into the lateral (Segments II,
III) and medial (Segment IV) sections can be made by drawing a
line (indicated in blue in Figure 2.3) from the confluence of the left
hepatic vein and the middle hepatic vein at the inferior vena cava
(abbreviated as IVC in Figure 2.3) to the falciform ligament (indic-
ated in panels 5 and 6 of Figure 2.3). Furthermore, the plane passing
through the portal vein bifurcation is used as the reference plane in
the axial direction; segments located above the portal vein bifurcation
are the superior Segments II, VII and VIII (and IV), while segments
lying below the portal vein bifurcation are the inferior Segments III,
V and VI (and IV).

While useful, Couinaud’s classification system is not always ad-
hered to. In the past four decades, a leap in imaging and other tech-
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2. Clinical Rationale

Figure 2.2: Segmental anatomy of the liver, with all 8 segments indicated
on contrast-enhanced CT and SPECT-CT for 3 axial planes. A 3D recon-
struction of the 8 hepatic segments and the location of the 3 axial planes is
also given. From [42].

nological developments have lead to easier visualization of, easier ac-
cess to, and easier interpretation of patient-specific anatomies, as well
as increasingly changing patient populations that are being investig-
ated and operated on (e.g. patients with more advanced disease)
[44]. Unsurprisingly, this has led to increased findings of apparent in-
consistencies and discrepancies with Couinaud’s classification of the
eight hepatic segments [45]. Of course, anatomic variability exists,
but not all discrepancies can be explained this way [46]. Notably,
Fasel et al. [46] found that on average 20 downstream portal vein
vascular territories exist, instead of Couinaud’s 8. Depending on the
observer, these territories can be grouped in 8 or more segments [46]
[47]. Hence, next to anatomic variability between patients, there is
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Figure 2.3: The middle hepatic vein (red line) divides the liver into the
right and left lobe. The right hepatic vein (green line) divides the right lobe
in its anterior and posterior section; the connection between the confluence
of the inferior vena cava (IVC) and the left hepatic vein and the falciform
ligament (blue line) divides the left lobe in its medial and lateral sections.
From radiologyassistant.nl.
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2. Clinical Rationale

also an observer-dependent effect that does not necessarily contra-
dict Couinaud’s original classification, but indicates that Couinaud’s
system might be a general interpretation of a more complex reality
[46].

2.1.4 Hepatic Arterial Anatomy
Knowledge of the normal hepatic arterial anatomy and its most com-
mon variants is important for transcatheter hepatic intervention, such
as transarterial embolization. Hence, Michels [48] developed a classi-
fication system based on 200 cadavers, resulting in 10 types of hep-
atic arterial anatomies [49], that still serves as the standard [29]. The
normal type (I), which occurs in approximately 55-75% of cases, con-
sists of the common hepatic artery (CHA) branching off into the right
and left hepatic artery (RHA, LHA), which perfuse the right and left
lobe of the liver, respectively [29, 50]. As can be seen in a simpli-
fied visualization of the Michels Type I standard anatomy in Figure
2.4, the CHA itself originates from the celiac trunk (CT), which is a
short vessel arising from the aorta. After the gastroduodenal artery
(GDA) splits off from the CHA, the CHA is denoted as the proper
hepatic artery (PHA), from which both the RHA and LHA emerge
(in Michels Type I) [49]. Notably, in Type II and other variants of
the Michels classification, the RHA and LHA can also emerge from
other origins (not the PHA or CHA), such as the aorta or the super-
ior mesenteric artery (SMA, which branches off the aorta), as either
substitute or accessory vessels [31].

Inside the liver, the LHA and RHA branch into segmental arteries
perfusing each hepatic segment. Typically, there also intercommu-
nicating arcades present which still connect the LHA and RHA after
the PHA bifurcation [42]. According to conventional vascularization,
the LHA divides into the Segmental II artery and the Segmental III
artery. In the right lobe, the RHA splits into a posterior and anterior
branch. The posterior branch splits into a superior branch perfus-
ing Segment VII and an inferior branch perfusing Segment VI, while
the anterior branch splits into the superior branch perfusing Segment
VIII, and an inferior branch perfusing Segment V (see Figure 2.2 for
an indication of the location of the segments). As mentioned before,
vascularization is subject to many anatomical variations occurring
between patients [49]. Additionally, for the two additional lobes, Seg-
ment IV can be arterially fed from both the LHA or directly from the
PHA. Segment I, also known as the caudate lobe, is an independent
segment, and can be independently perfused by the RHA, LHA or
both [49]. Even though the Michels classification is the most widely
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2.2. Liver Cancer

Figure 2.4: In the most standard hepatic arterial anatomy (Michels Type
I), the common hepatic artery (CHA) emerges from the celiac artery or
celiac trunk (CT). After the gastroduodenal artery splits off from the CHA
(not indicated in the figure), the right hepatic artery (RHA) and left hepatic
artery (LHA) emerge, perfusing the liver. The portal vein (PV) is also
visible; the other vessels are less important here. From [50].

used, there are limitations, such as hepatic arteries showing vary-
ing courses or originating from rarer origins. For example, Chung et
al. [51] reported aberrant right or left hepatic arteries (not included
by Michels) in 15-16% of patients in a large cohort that underwent
chemoembolization.

2.2 Liver Cancer

Global cancer incidence is expected to double by 2035, putting strain
on healthcare systems and healthcare financing worldwide, and in-
creasing the need for efficient and effective cancer care pathways [52].
HCC is the most common form of primary liver cancer and it is one of
the leading causes of cancer-related deaths worldwide [2]. The World
Health Organization estimates that by 2030, over 1 million people
will die of liver cancer each year [1]. Alarmingly, HCC is also the
fastest rising cause of cancer-related mortality [1].
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2.2.1 Epidemiology of HCC
HCC occurs more in men than in women with a ratio that typically
varies between 2 and 4 among populations [53]. As can be seen in
Figure 2.5, in countries such as Vietnam, South Korea, Singapore,
Portugal, Spain and France the ratio is remarkably high (even as
high as 5 in Portugal) while, in countries such as Colombia, Mexico
and Chile this ratio is much lower (well below 2, even as low as 1.1
in Colombia and Mexico). This discrepancy between genders is not
well understood and may be attributed to several factors, such as
hormones, epigenetics, immune response and sex-specific exposure to
risk factors (e.g. smoking and excessive alcohol intake).

Figure 2.5: Age-adjusted incidence rate of HCC per 100,000 persons in
2012. Clearly, the incidence rate is much higher in men, and the men:woman
incidence ratio fluctuates significantly between countries. From [1].

Figure 2.6 displays the worldwide age-adjusted incidence rates of
liver cancer. There is a distinct geographical pattern visible [54].
Countries with the highest incidence are located in East and South-
East Asia (e.g. China, South Korea, etc.) and Western and Central
Africa (e.g. Senegal, Gambia, etc.) [55]. The incidence for China
is notably high, while the incidence in Canada or Northern Europe
is particularly low [2]. The geographic pattern displayed in Figure
2.6 matches the distribution of infection with the Hepatitis B Virus
(HBV) and Hepatitis C Virus (HCV) around the world. A strong link
exists between HCC and HBV and HCV infections since HCC reg-
ularly develops from the cirrhotic liver, which, in itself, can develop
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from hepatitis infection [1] (as discussed more in detail in Section
2.2.2).

Figure 2.6: Age-standardized incidence rates for liver cancer per 100,000
persons in 2020. Incidence in (South-) East Asia and Western and Central
Africa is high, while in Northern Europe, Canada and Oceania, it is partic-
ularly low. From [54].

2.2.2 Risk Factors and Prevention of HCC
The main risk factors associated with the onset of HCC are HBV
infection, HCV infection, excessive alcohol intake, and non-alcoholic
fatty liver disease (NAFLD) [56]. Factors such as HBV and HCV
infection are expected to decrease because of widely promoted vac-
cination programs. However, incidence by the mycotoxin aflatoxin
B1, a food carcinogenic found more often under warm and humid
conditions [57], is expected to increase because of climate change
[53]. In 80-90% of the cases, HCC develops from liver cirrhosis [1,
58]. Cirrhosis in itself can be caused by hepatitis infection, smoking,
excessive alcohol abuse, etc. and then progress onward to HCC [2].
Prevention measures vary for each risk factor, as discussed below.

Although HBV infection accounts for about 50% of all reported
HCC cases and steps have been made towards treating HBV infection
as the global burden that it represents, full control over the infection
is still unimaginable [3]. To that end, measures need to be implemen-
ted in all corners of society. On the one hand, the goal must be to
increase global health and halt the virus from spreading. This can be
done, for example, by the overall improvement of sanitation and liv-
ing conditions and educating people about the risks of HBV. On the
other hand, integration of the HBV vaccine into the global routine
immunization program is necessary. Additionally, effective antiviral
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agents need to be introduced to treat HBV patients who are already
in the chronic stage of the disease [59].

For HCV, infection is mainly caused by intravenous drug use and
sexual transmission. Blood transfusion was a significant problem in
the past, but this risk has been reduced by the introduction of anti-
HCV testing in blood samples [60].

Chronic alcoholic liver disease (ALD) is, of all the risk factors
mentioned in this section, probably the one that benefits most from
public awareness programs. Especially in the Western world, excess-
ive alcohol intake is a growing problem [60]. An accompanying issue
is that patients who develop HCC from ALD are often diagnosed
relatively late, because they are often unaware of the risks associ-
ated with high alcohol consumption (while patients with hepatitis
infection tend to be diagnosed earlier on). The more the disease has
progressed at the stage of diagnosis, the less likely chance of survival
becomes [61].

For non-alcoholic fatty liver disease (NAFLD), obesity and dia-
betes are key influencing factors in the development into HCC. There-
fore, physical exercise, strict diets and weight loss (surgery) are im-
portant prevention measures in these specific cases. Chemopreventive
drugs are aimed at decreasing obesity-related inflammation and in-
sulin resistance, but these are still under research [61].

2.2.3 Diagnosis of HCC
Clinical presentation for HCC varies from asymptomatic patients to
patients displaying symptoms such as jaundice, weight loss, palpable
mass, diarrhea, hepatic encephalopathy (impairment of conscious-
ness), ascites, pain in the right upper quadrant [62]. Early diagnosis
is important to increase survival chances. A guideline for the steps
that need to be taken in order to timely and properly diagnose HCC
is given in Figure 2.7 [63].

At a certain minimal size, lesions are generally hard to assess,
particularly if they are less than 1 cm. For these small lesions, sur-
veillance by ultrasound every three or six months is recommended to
check whether the lesion is stable or enlarging [63, 64].

For lesions larger than 1 cm, the first attempt at a diagnosis is
made with non-invasive imaging. The European Association for the
Study of the Liver (EASL) guidelines indicate that the specificity of
a positive diagnosis by imaging is lower in non-cirrhotic patients, be-
cause alternative diagnoses than hepatocellular carcinoma are seen
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Figure 2.7: Diagnostic algorithm for HCC. For small lesions, regular ul-
trasound is recommended. For larger lesions, non-invasive imaging (CT,
MRI) are typically used, and if they are not sufficient, an invasive biopsy
can be considered. From [63].

more commonly [65]. Hence, in non-cirrhotic patients, a histological
confirmation of the pathology is needed (see below). As for non-
invasive imaging in cirrhotic patients, the two imaging modalities
that are mostly used to diagnose HCC are four-phase CT contrast
(unenhanced, arterial, venous and delayed phase) or dynamic con-
trast enhanced MRI [63, 65]. Since tumors are mainly fed by the
arterial system, the presence of a tumor can be identified on each
of these modalities by bright spots in the arterial phase, followed by
washout of contrast in the delayed or venous phase. A typical ex-
ample of a contrast MRI that confirms the presence of such a tumor
is given in Figure 2.8 [66]. The advantages and disadvantages of these
two modalities are well-known: while MRI provides the better con-
trast, it also more expensive and prone to artefacts than CT. Which
modality is used for the first round of diagnosis, is up to the clinician.
In the cases where one of these imaging modalities does not provide
enough information for diagnosis, the other modality (CT/MRI) can
be used.

If atypical features for the cancer are found, or if the CT/MRI
studies give discordant findings, then an invasive liver biopsy must
be performed to make a final diagnosis [63]. If the biopsy returns
negative, then regular surveillance is opted to check any changes in
the cancer. If the biopsy returns positive, then a fitting treatment
based on the specific case must be considered.

2.2.4 Treatment Options for HCC
One of the most important factors in treating HCC is evaluating to
what stage the cancer has developed. To this end, the Barcelona
Clinical Liver Cancer (BCLC) staging system has been introduced,
to quantify the prognosis of the disease and adapt the treatment
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Figure 2.8: Example of a contrast MRI at the (a) arterial phase, where
the arrow clearly indicates a bright zone, and (b) the venous phase, when
most of the contrast has been washed out. From [66].

accordingly [3]. As is clear from Figure 2.9, the BCLC staging system
is divided in four subcategories, ranked A to D according to severity
of the condition.

Very early-stage HCC is difficult to diagnose since it is presented
by only a single nodule with a diameter less than 2 cm. Early-stage
HCC is characterized by a larger nodule or 3 smaller nodules, with
each less than 3 cm in diameter. For patients with a single nodule,
the preferred treatment is surgical resection. However, it is import-
ant to consider the functional capacity of the remaining liver volume
after the procedure. If patients with cirrhosis are presented with no
portal hypertension and normal bilirubin levels, then this is a good
predictor for sufficient hepatic reserve and resection presents itself as
a valid option. Although survival rates are generally high here, recur-
rence rates are also significant since the tumor mass was surgically
removed but the underlying chronic condition was not addressed. If
resection is not an option, transplantation may be opted. The down-
sides of transplantation are well-known: along with a need for immun-
osuppressive therapy, there is organ scarcity and generally very long
waiting lists. If transplantation is not possible, then radio-frequency
ablation may be considered. In the rarer non-cirrhotic cases, patients
usually have a well-preserved liver function and and a lower risk of
re-occurrence than patients with cirrhosis. Therefore, in these cases,
transplantation is often not necessary and either ablation or resection
is preferred [3, 66].

The intermedium stage (B) of HCC, which is characterized by
large or multifocal lesions, transarterial therapies, such as transar-
terial chemoembolization (TACE) and transarterial radioemboliza-
tion (TARE) are a valid option. For these transarterial therapies,
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Figure 2.9: Clinical algorithm based on the BCLC algorithm. At the
(very) early stage, ablation, resection and transplantation are considered.
At the intermediate stage, transarterial chemoembolization or radioembol-
ization are valid options (radioembolization not shown in the figure). At
the advanced stage, mostly systemic therapies are viable. From [67].

catheters are retrogradely advanced via the femoral artery towards
the hepatic arterial bed, where microspheres are locally injected to
selectively embolize tumor tissue (see Figures 2.10 and 2.11 for illus-
trations of the principle). In the case of TACE, these microspheres
damage the tumor tissue through a combined chemotherapeutic and
embolic effect. In the case of of TARE (not shown in Figure 2.9,
but can be considered at the same stage as chemoembolization), the
microspheres are typically smaller in diameter, and tumor tissue is
damaged mainly through the spread of radioactivity [4].

Advanced stage HCC (C) presents itself with extrahepatic spread
and vascular invasion and is usually treated with administration of
the oral chemotherapeutic drug sorafenib. As of recently, advance-
ments have been made in discovering new systemic therapies that
improve on or parallel the efficacy of sorafenib. Lenvatinib was ap-
proved by the FDA as front-line therapy alongside sorafenib in 2018.
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Regorafenib and other systemic drugs been approved as a suitable
second-line treatment [67]. TACE may also be considered in this
scenario, but this must evaluated on a patient-specific basis [3, 66].

For patients with end-stage HCC (D), none of the therapies men-
tioned above work. The one-year survival rate is below 10% [3, 66].
Considering the above, it is important to re-iterate that early dia-
gnosis is key, and that properly mapping the progression of the dis-
ease is also essential to explore the patient’s options and increase
their chances for survival.

2.3 Transarterial Chemo- and Radioembolization

For the remainder of the dissertation, we will focus on transarterial
therapies (TARE, TACE) typically considered at the intermediate
stage of HCC. During transarterial drug delivery, drug particles are
not injected intravenously, but in the feeding arteries of the organ
of interest. This makes transarterial treatments stand out from typ-
ical chemotherapeutic cancer treatments, because drug particles flow
directly to the organ (locoregional drug delivery), instead of passing
through the whole circulatory system. However, while this already
minimizes the possible scope of side-effects, it is still possible that
drug particles flow from the feeding arteries of the organ to healthy
tissue within or surrounding the organ, instead of the tumor mass
within the organ. Therefore, for both TACE and TARE, minimizing
(or, preferably, eliminating) the delivery of drugs to the surround-
ing healthy parenchyma is of crucial importance to obtain optimal
treatment outcomes.

2.3.1 Chemoembolization
The idea behind chemoembolization is to simultaneously occlude the
feeding arteries of the tumor with an embolizing agent and inject
a chemotherapeutic drug. This process is visualized in Figure 2.10.
The vascular occlusion should increase the dwell time and concen-
tration of the chemotherapeutic drug in the embolized tumor tissue
[68, 69]. There are two distinct ways to deliver these two particles.
Either the chemotherapeutic agent (e.g. doxorubicin, typically emul-
sified with Lipiodol (Guerbet, France)) and the embolizing micro-
sphere (e.g. polyvinyl alcohol microspheres) are administered sep-
arately (conventional TACE, or cTACE), or these two agents are
combined in a particle that holds the two together [70]. This lat-
ter method is known as DEB-TACE (DEB stands for drug-eluting
beads). These drug-eluting beads consist of polymeric microspheres
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in which typically a solution of doxorubicin is injected. As the beads
occlude the feeding arteries of the tumor, doxorubicin is slowly re-
leased and diffuses radially in the embolized tissue, its concentration
gradually decreasing with distance [71]. Comparison between these
two methods shows similar to better results for DEB-TACE than for
conventional TACE [72]. The main take-away is that tumor nec-
rosis occurs because of the combined pharmacological effect of the
two agents: both the chemotherapeutic drug as the embolizing agent
add to the overall therapeutic response. Different commercial micro-
sphere carriers are available, but this is discussed more in detail in
2.4.1.4.

Figure 2.10: Principle of chemoembolization, where drug-loaded micro-
spheres are injected in the hepatic artery to selectively embolize and chemo-
therapeutically damage the tumor. Adapted from [4].

2.3.2 Radioembolization
The principle of TARE is both deceptively similar and dissimilar to
TACE. The two processes are alike in the way that they both require
catheterization and injection of embolic particles in the feeding ar-
teries of the tumor. However, they differ in the way the tumor tissue
in damaged: in TARE, the embolic effect is much less important. In-
stead, the main pathway by which the tumor mass is fatally damaged,
is by a very local delivery of radiation (see Figure 2.11). Yttrium-90
(or a different type of radiotracer) embedded in small microspheres, is
injected in the hepatic arteries and emits a high-intensity, short-lived
beta-radiation. These beta-particles cause damage by ionizing water
molecules and creating free radicals that destroy DNA molecules. For
this damage to be maximal, blood flow and adequate perfusion of this
area is desired, which makes for a huge difference with TACE, where
perfusion is halted and ischemia occurs [73]. As mentioned above,
the different microsphere types which are commercially available are
discussed in 2.4.1.4.

The procedure of TARE is relatively complicated since extra
cautionary steps are required because of the small size of the
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Figure 2.11: Principle of radioembolization, where radioactive micro-
spheres are injected in the hepatic artery to selectively irradiate the tumor
tissue. Adapted from [4].

microspheres, which may lead to extrahepatic radiation spread to
the lungs. These pre-treatment steps include angiography, therapy
simulation with Technetium-99m macro-aggregated (Tc-99m-MAA)
particles, and dose calculations. First, the pre-treatment an-
giography should help to assess the patient-specific vasculature of
the tumor. Locating and identifying the feeding arteries of the tumor
in this step is crucial: if one of the feeding arteries is missed, this
artery will not be targeted and the procedure will be incomplete.
In some cases, vessels like the GDA are pre-emptively embolized to
prevent flow of microspheres (and, by extent, radiation) in these
areas [74, 75]. Second, to quantify both the intra- and unwanted
extrahepatic spread of radioactivity, a pre-treatment scout scan
is performed to determine among others the lung shunt fraction
(which must be below 20 percent at all times) [5]. This screening is
done by labeling macro-aggregated albumin (MAA) particles with
Technetium-99m (Tc-99m) and injecting them in the hepatic artery
(as explained above, vessels leading to extrahepatic tissue (e.g. the
GDA) are embolized, or the catheter tip is placed beyond their
origin). Then, the lung shunt fraction is determined by measuring
lung dose. Only if the patient passes this first test, it can be assured
that radiation to the lungs will be minimal, and treatment can
proceed. Finally, the amount of activity that must be administered
to reach the desired dose in the tumor, all while taking into account
that dose limit for healthy liver tissue is about 40-50 Gy. The
preferred dosimetric approach is patient-specific and makes use of
information obtained from SPECT-CT scans after Tc-99m-MAA
injection. An example of a SPECT/CT fusion image is given in
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Figure 2.12. To calculate the optimal dose, the partition model can
be used (see 2.4.3.1). In the partition model, the healthy liver tissue,
tumor mass and lungs are considered as compartments (the masses
of each compartment can be calculated using CT scans) and the
fractional uptake of activity in each compartment can be determined
using the Tc-99m SPECT scans from before. If such personalized
approach is not available, the administration activity can also be
calculated using generalized, empirical formulas as prescribed by the
manufacturers, but this approach is considerably less accurate (e.g.
body surface are method, see 2.4.3.1).

The overall success of the treatment depends on the execution
and integration of all of these steps [73, 74]. After the treatment, the
treatment response is typically assessed using PET/CT scans [5].

Figure 2.12: (a) SPECT/CT image showing bright hotspots with Tc-99m-
MAA deposition (b) Triple-phase CT. From [75].

Possible complications of TARE include gastrointestinal com-
plications (due to non-target radiation) [76, 77]. With regards to
side-effects, the post-embolization syndrome is much less common in
TARE because the endpoint of injection is not total flow obstruction,
contrary to TACE [78]. However, TARE procedures are complicated
by the possible delivery of higher-than-acceptable radioactive doses
to the surrounding healthy parenchyma and the lungs [79].

In the past, several studies have claimed no superiority of TACE
over TARE, or vice versa [78], which has been shown via several ran-
domized controlled trials [80, 81]. However, a recent UGent-UZ Gent
study showed superior survival for TARE compared to DEB-TACE
in patients with early or intermediate HCC [82]. These discrepant
findings might be due to the fact that TARE is a highly technical
procedure, as outlined above, or due to poor patient selection [7].
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2.4 Current Challenges with Transarterial Therapies

Despite their wide clinical use, transarterial therapies such as TARE
and TACE are not perfect. In the current section, we identify three
current challenges hindering TARE: variable clinical outcomes, an
unclear impact of variable injection parameters, and issues with pre-
treatment or peri-treatment optimization.

2.4.1 Uncertainty Regarding Injection Parameters
Clinically, the execution of these transarterial therapies depends on
the implementation of a wide range of injection parameters, which
may significantly impact the near-tip hemodynamics, the downstream
microsphere distribution, and the treatment outcome, and hence, lead
to variable outcomes. Below, we discuss the impact of several of these
injection parameters (catheter type, microsphere type, injection flow
rate and injection location) as identified by experimental and clinical
studies.

2.4.1.1 Injection Location
The injection location is typically determined by two coordinates: the
axial position of the catheter tip along the artery, and the position
of the catheter tip within the artery cross-section (for a given axial
location).

For the axial injection location, Jiang et al. [8] compared seg-
mental activity for the pre-treatment injection of Tc-99m-MAA mi-
croparticles and post-treatment SPECT imaging of Yttrium-90 radio-
tracers and found that 24 of the 31 discrepancies could be explained
by a slight shift in catheter position. Additionally, Aramburu et
al. [83] investigated the impact of axial injection location for the
balloon-occluding microcatheter (BOMC), placing the BOMC tip at
different axial locations in a planar phantom with water as the cir-
culating fluid. Importantly, the phantom also contained collateral
arteries, which connected different segmental arteries (both tumor-
feeding and non-tumor-feeding segmental arteries). After injecting
dye, they noted some catheter positions led to ineffective occlusion
because of the collaterality, while others more were successful.

To study the impact of the cross-sectional injection location,
Richards et al. [84] injected propylene microspheres (diameter:
106-125 µm, density: 900-1100 kg/m3) in a steady water flow in
a simplified planar branching geometry. They used an injection
tube to perform targeted injections at the level of the inlet. With
their injection method, they concluded a strong positive correlation
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Figure 2.13: Advancing the axial position of the balloon-occluding mi-
crocatheter (indicated with the blue box) towards the tumor-bearing seg-
ments (in red) leads to a distinctly different dye distribution. From [83].

27



2. Clinical Rationale

between cross-sectional injection location and outlet particle
distribution.

2.4.1.2 Catheter Type
With regard to injection devices, several commercial catheter types
exist. The most common type is the standard end-hole microcath-
eter (SMC), which is offered by several companies: the Progreat
Microcatheter by Terumo Interventional Systems (Japan) [85], the
DraKon Microcatheter by Guerbet (France) [86], the Direxion Mi-
crocatheter by Boston Scientific (United States) [87], etc. Typically,
transarterial therapies carried out using the SMC are seen as flow-
directed therapies, meaning that they rely on tumor-directed flow to
carry microspheres downstream to the target tissue [88].

Next to the SMC, alternate catheter types have been developed
and used for liver-related transarterial embolization procedures,
which can alter the flow and pressure in the downstream com-
partment [88]. Importantly, progressive embolization of tumor
tissue can increase the resistance (pressure) at the downstream
tumor site and eventually lead to flow reversal. This can direct the
microspheres back towards the vascular compartments upstream
of the catheter tip and cause non-target embolization. In order to
address the potential risk of backwards flow of embolic microparticles
(reflux), several anti-reflux designs were conceptually developed and
commercialized.

First, the anti-reflux catheter (ARC) as developed by Trisalus Life
Sciences (formerly known as Surefire Medical Inc., United States)
contains a flexible funnel-shaped tip, which can be expanded or con-
tracted dynamically to vary the degree of obstruction of the artery
[89, 90].

Second, for the balloon-occluding catheter (BOMC), an occlud-
ing balloon is mounted on the catheter wire before the catheter tip,
enabling a complete obstruction of the blood flow through the artery
in a static manner [88]. Commercially available examples are the Oc-
clusafe Temporary Occlusion Balloon Catheter (Terumo, Japan) [85]
and Sniper Balloon Microcatheter (Embolx, United States)) [91].

Blocking the backwards passage of embolic particles by means
of the expanded ARC or the fully-occluding BOMC can prevent,
or at least decrease, the risk of upstream non-target embolization.
However, the upstream and downstream vascular compartments are
not fully disconnected, as collateral connections typically still ex-
ist between the two compartments (such as the hepatoenteric and
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extrahepatic arteries) [88]. Hence, as the blood flow in these con-
nections is oriented away from the hepatic artery, this may lead to
non-target microsphere flow. Luckily, these therapies are not purely
flow-driven anymore. It has been shown that a significant decrease
in the arterial pressure in the vascular compartment downstream of
the catheter tip is obtained due to the pressure drop over the ARC
and BOMC [88, 90]. Due to this pressure drop, blood flowing to
the downstream vascular connections (e.g. these hepatoenteric or ex-
trahepatic arteries) may reverse towards the lower-pressure hepatic
artery, washing out particles towards the tumor site and decreasing
the chance of non-target downstream embolization. The nature of
this effect is ambiguous because progressive embolization can again
lead to higher vascular resistance and pressures at the tumor site;
this in turn can direct embolic microparticles towards the non-target
compartments that are downstream of the catheter tip and increase
the chance of non-target downstream embolization. Therefore, blood
pressure changes resulting from tip expansion or balloon inflation
should be monitored, and the procedure should preferably be hal-
ted when flow stasis or reversal occurs [88]. Nonetheless, the ARC
and BOMC can play crucial roles in decreasing both upstream as
downstream non-target embolization.

Figure 2.14: After expansion of the balloon, the pressure drop in the
vascular compartment can reverse hepatofugal flow into hepatopetal flow
[88].
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2.4.1.3 Injection Flow Rate
Caine et al. [92] injected dye-containing saline solution in a silic-
one vascular phantom with constant flow rates of 5-30 mL/min into
pulsating blood-mimicking flow with a viscosity of 4 cP. They found
that there was a higher agreement between injection solution distri-
bution and overall BMF distribution in the phantom for higher in-
jection flow rates, with the ratio between the two fluid distributions
approached more or less one for flow rates higher than 10 mL/min.
Increasing the volume percentage of more viscous contrast agent in
the injectate saline fluid necessitated the increase of the injection flow
rate to reach a similar injectate and BMF fluid distribution, show-
ing the impact of not only injection flow rate but also injection fluid
properties.

2.4.1.4 Microsphere Type
The characteristics of microparticles typically used for TARE and
TACE treatment differ significantly. Microsphere-based TACE allows
for the release of the chemotherapeutic agent (initially attached to
the embolization particles) in a controlled and sustained manner that
focuses the delivery towards the tumor tissue in order to prevent the
widespread toxicity associated with systemic chemotherapy. A wide
range of TACE microspheres is commercially available, varying in
size (reported range: 70-900 µm): e.g. HepaSphere (Merit Medical,
United States) [93], Oncozene or Embozene TANDEM (CeloNova
BioSciences Inc., USA), LifePearl (Terumo European Interventional
Systems, Belgium) [85], etc. [94]. The range of commercially avail-
able diameters for TACE microspheres varies between 70-900 µm [94,
95], although the choice of microspheres depends on the institution,
operator, patient-specific conditions, etc [94]. It has been shown that
smaller microspheres (< 100 µm) lead to more distal penetration and
more effective embolization in animals, emphasizing the impact of
microsphere characteristics on the treatment outcome [94].

Currently, different microsphere types (with different sizes, dens-
ities) and different radionuclides (with different penetration depths,
half-lifes) are availble to use for TARE. For the Y-90 radionuclide, two
microsphere types are commercially available: the SIR-Spheres (Sir-
tex Medical, Australia) [96], which are resin-based (diameter range:
20-60 µm), and TheraSpheres (Boston Scientific, USA) [97], which
are made of glass (diameter range: 20-30 µm) [42]. The SIR-Spheres
are much lighter than the TheraSpheres (density of 1600 kg/m3, com-
pared to 3600 kg/m3), but also have a considerably lower radioactivity
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per sphere (50 becquerel (Bq) compared to 2500 Bq), thus requiring
a higher dose of SIR-Spheres for a similar therapeutic effect. Both
types of microspheres are loaded with the beta-emitter Yttrium-90
(Y-90) [74].

An important note to make here is that two different microparticle
types are typically used to treat patients with TARE: one type for the
pre-treatment scout scans (i.e. Tc-99m-MAA, diameter range: 30-90
µm), followed by the actual treatment using SIR- or TheraSpheres
(or other micospheres) [42]. Knowing that there are differences in
microparticle characteristics (i.e. microparticle size, density) between
both particle types, this may not be the ideal set-up, as the use of
Tc-99m-MAA particles may result in a different particle distribution
compared with the actual treatment microspheres. Hence, the scout
scans may possibly lead to inaccurate predictions of the treatment
microsphere activity.

Recently, QuiremSpheres (manufactured by Quirem Medical
BV, The Netherlands) [85], embedded with Holmium-166 (Ho-166),
have emerged as an interesting alternative to standard TARE
microspheres. Ho-166 is both radioactive and slightly paramagnetic.
This magnetic property allows the spheres to be visualized using
magnetic resonance imaging (MRI), which offers the added advant-
age of being usable for both pre-treatment scout scans and actual
treatments. The diameter range of QuiremSpheres is 15-60 µm,
their density is 1400 kg/m3, and the activity per microsphere lies
between 67 and 400 Bq (i.e. slightly higher than SIR-Spheres, but
significantly lower than TheraSpheres) [98]. Herein, the added value
is that QuiremSpheres can be used both for the pre-treatment scout
dose and the actual treatment, minimizing previous discrepancies in
microparticle characteristics between treatment and pre-treatment
[99].

2.4.2 Variable Outcomes
Importantly, the reported mean survival time after TACE ranges
from 3.4 to 31 months (median of 14 months) in prospective studies
[100]. For TARE, survival times typically vary between 7-27 months
[6]. With regards to the varying clinical success for TARE, it has
been shown that high tumor uptake of radiating microspheres is in-
strumental to a positive survival advantage [101]. The considerable
variation in survival times could be partly explained by the lack of
procedure standardization, and the fact that TARE is a highly tech-
nical procedure that is preferably executed in experienced medical
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centers [7]. This underlines how positive clinical response depends on
proper execution of the treatment. However, it is currently unclear
to which extent the above-mentioned heterogeneity and uncertain-
ties in treatment execution (as discussed in 2.4.1) impact the micro-
particle flow, downstream distribution and, by extent, the treatment
response.

2.4.3 Issues with Pre-Treatment or Peri-Treatment
Optimization

Due to highly patient-specific nature of each TARE or TACE case
(patient-specific tumor size and location, patient-specific hepatic ar-
terial geometry, etc.) [49], it is currently difficult to know the optimal
implementation of each injection parameter a priori. As shown by
experimental and clinical evidence, these injection parameters can
impact the treatment outcome, and TARE and TACE both suffer
from varying, suboptimal outcomes. However, medical images do
not show how the injected embolizing agents will distribute down-
stream of the catheter tip, whether an alternative injection location
might offer a better outcome, etc. Hence, a pre-treatment assessment
of the effectiveness of the proposed injection conditions, and whether
these conditions can be improved, is useful. Several types of pre-
treatment assessments already exist, as listed below, although they
are imperfect.

2.4.3.1 Pre-Treatment Dosimetry
As already explained, a pre-treatment injection of low-dose (i.e. non-
therapeutic) radioactive Tc-99m-MAA microparticles to mimic Y-90
microparticle distribution is already routinely done for TARE. Sev-
eral methods are available to calculate the optimal injection activity
based on the Tc-99m-MAA microparticle distribution. As can be
used for SIR-Spheres, the body surface area method calculates the
administration activity based on the patient’s height and weight, as
well as the volumes of cancerous and non-cancerous liver tissue [79,
102]. Alternatively, the partition model estimates the dose in three
compartments (healthy liver, tumor and lungs) based on the liver
mass, tumor mass, the lung shunt fraction and simulated activities in
each compartment [79, 103]. These simple methods do not consider
that microspheres might not distribute uniformly within one com-
partment, or that compartments themselves are not heterogeneous
pieces of tissue. Hence, computationally more expensive voxel-based
methods consider tissue heterogeneity by dividing the volume of in-
terest in small voxels, where different properties can then be derived
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from medical images and prescribed to each voxel, to better repres-
ent the heterogeneous composition of the volume of interest. Then,
based on the simulated radioactivity in each voxel, the 3D dose dis-
tribution can be determined [104]. An example of a commercially
available voxel-based dosimetry method is MIM SurePlan Liver Y90
(collaboration between MIM Software Inc. and Sirtex Medical) [105].

In this context of pre-treatment dosimetry, it is also important
to consider that the use of Tc-99m-MAA microparticles to simulate
Y-90 microparticle distribution is already imperfect. This is because
the properties of these microparticles differ from the ones actually
used for treatment [106]. Additionally, the choice of injection loca-
tion also often changes in-between pre-treatment and treatment itself,
thereby not really offering a reliable assessment of the therapeutic
suitability of the current injection location. For example, Jiang et
al. [8] compared segmental activity for the pre-treatment injection
of Tc-99m-MAA microparticles and post-treatment SPECT imaging
of Yttrium-90 radiotracers and found significant differences in 31 out
of 81 treatments. This makes pre-treatment far from optimal be-
cause the implementation of injection parameters should be as sim-
ilar as possible between pre-treatment and treatment. Finally, this
pre-treatment injection does not enable the interventional radiologist
to compare many injection parameters against each other, since this
method still requires physical intervention (i.e. injection of low-dose
radioactive particles, medical imaging, etc.), which can be harmful
for the patient.

2.4.3.2 Peri-Operative Imaging Guidance
Peri-operative imaging guidance can be of use (such as the syngo
Embolization Guidance tool, Siemens Healthineers, Germany) [107]).
This tool helps treatment planning at the bedside by automatically
detecting the tumor feeding vessels and hence, selecting the optimal
catheter tip placement. However, such tools do not consider flow-
related phenomena, such as the impact of the catheter tip cross-
sectional location or catheter type on near-tip hemodynamics and
particle distribution, and do not allow to compare different injection
scenarios.

To consider flow-related phenomena, contrast agent can be in-
jected peri-operatively to assess whether current injection conditions
lead to optimal tumor coverage. If enough contrast fluid flows to
the tumor tissue, the current injection location is deemed suitable.
Additionally, contrast agent has the advantage of being easily visu-
alizable, while microspheres are not. Of course, the reliability of this
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assessment is hindered by the fact that the dynamics and mass trans-
port of contrast fluid are not the same as that of small microspheres.
For example, injection of embolizing microspheres can lead to pro-
gressive embolization of the downstream microvessels, which leads to
an increased vascular resistance. This can cause alterations in the
downstream flow distribution to the segments [108] and increased
resistance to microsphere injection, which is not the case for contrast
agent. However, contrast agent can be harmful [109], which makes
this type of peri-treatment optimization even more invasive.

Summarizing the above, various pre-treatment methods already
exist, but all lack in flexible, reliable, non-invasive comparison of in-
jection conditions, and do not allow reliable optimization of treatment
parameters.

2.5 Clinical Questions

Based on the current variable clinical success of transarterial ther-
apies, high patient-specificity, a lack of standardization in procedure
execution, the many variable injection parameters which can impact
the treatment outcome, and a lack of a reliable pre-treatment as-
sessment which allows to noninvasively compare different injection
scenarios and select the optimal injection conditions, we define the
current clinical questions for this dissertation as:

• Question 1: Can we reliably predict the tumor dose before the
procedure, and, use this prediction to adapt treatment paramet-
ers where necessary?

• Question 2: Can we decrease variable outcomes in TARE
and TACE by optimizing the clinical injection parameters pre-
operatively, given a reliable prediction of treatment outcome?

These clinical questions will help define the specific objectives of
this PhD dissertation with regards to the use of computer modeling
to improve treatment planning of these transarterial therapies, as will
be explained in Chapter 3.
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3
State-of-the-art in, and

Challenges with, Modeling of
Transarterial Therapies

During the past years, in silico medicine – which entails the use of
computer modeling for improving the understanding, prevention and
treatment of diseases among others – has grown as a popular alternat-
ive to in vivo and in vitro experimental techniques, partly due to the
continuing increase in computational power at decreasing cost [110]
and the growing availability of patient-specific data. When properly
developed and used, in silico medicine can prove to be a powerful tool
in the advent of personalized medicine. First, we will discuss how in
silico modeling - in general - can aid in therapy planning of transar-
terial therapies. Second, we will give a brief overview of which types
of in silico models exist and have already been applied to transarterial
therapies. Third, we will show which insights regarding the impact
of injection conditions on the microsphere distribution have already
been gained by the use of these models. Finally, we will discuss what
is lacking in the state-of-the-art of these models, based on which we
will define the goals of this PhD dissertation.

This chapter is partly based on the book chapter Numerical mod-
elling in support of locoregional drug delivery during transarterial
therapies for liver cancer from the book Modelling of mass transport
processes in biological media (C. Debbaut and T. Bomberna, Elsevier,
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2022) [23] and the Master thesis dissertation Targeted drug delivery
for liver cancer: modelling the impact of cancer burden on the particle
distribution in a patient-specific cirrhotic liver (T. Bomberna, UGent,
2019) [25].

3.1 The Added Value of In Silico Modeling for
Planning of Transarterial Therapies

It was already stated that the implementation of TACE and TARE
can vary widely in clinical practice [111]. Injection parameters (such
as catheter type and the injection’s location, velocity, and timing)
are chosen depending on the clinician’s preferences and experience,
as there is currently no clear-cut procedure standardization available,
while their exact impact on the treatment outcome is currently still
unclear [10, 12, 112] and likely to be patient-specific. Hence, numer-
ical modeling may help to elucidate the impact that these clinical
parameters have on the particle distribution and treatment outcome,
and distinguish high-impact parameters from low-impact paramet-
ers on a patient-specific basis. Interestingly, numerical models are
completely noninvasive, as they are virtual tools that allow endless
finetuning of injection conditions. Eventually, these models might
be used to inform clinicians on the most optimal implementation of
these clinical parameters for each patient and increase the target-
specificity of the treatment. To this end, Kleinstreuer et al. have
devised a ‘computational medical management program’ (CMMP)
to help achieve optimal locoregional drug delivery [9].

Figure 3.1: The Computational Medical Management Program, envision-
ing a patient-specific workflow from medical image to treatment advice [9].
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The CMMP entails 3 steps: (i) acquiring patient-specific data and
reconstructing patient-specific anatomies, (ii) simulating the therapy
in a virtual environment and determining the ideal injection condi-
tions, and (iii) implementing the proposed conditions in the treatment
to improve patient-specific outcomes [9]. At the moment, the focus
in this field of study has mainly been on steps (i) and (ii), narrow-
ing the use of these computational models to assessing the impact of
certain clinical parameters on the downstream particle distribution
in a number of generalized, patient-inspired or patient-specific geo-
metries. There has been less focus on delineating the precise role
that numerical modeling can play in patient-specific outcome op-
timization. Additionally, there are also disadvantages to computer
modeling, such as computational cost, and the severe need for proper
validation of these models before they can be implemented in clinical
practice.

In the context of computer modeling, there is an important trade-
off between computational complexity and accuracy. More complex
models may result in a higher accuracy, but may come at a compu-
tational cost that is prohibitive for clinical use on a regular basis. In
contrast, while simpler models come at a much lower computational
cost, they may not capture the complex blood flow and particle beha-
vior to its full extent with sufficient accuracy. In this regard, several
key choices need to be made regarding: the overall complexity of
the numerical model, the identification of the modeling parameters
that are important, and the parameters that can safely be neglected.
These choices may lead to discrepancies in modeling approaches and
even in results and interpretation. Below, we will give a brief over-
view of different modeling types from complex to less complex, and
indicate how they have been used to provide insights into transarter-
ial therapies.

3.2 Different Types of In Silico Models

Several types of computer models exist, both for modeling of micro-
sphere infusion in the hepatic arteries and the much broader field of
computer modeling in medicine. Here, we distinguish (from higher to
lower complexity) between fluid-structure interaction (FSI), compu-
tational fluid dynamics (CFD), and reduced-order models (i.e. 0D-
models). While the crux of this work focuses on CFD, the overview
below will also offer a hint of what FSI and reduced-order models
have to offer in the context of hepatic arterial microsphere infusion.
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3.2.1 Fluid-Structure Interaction
Starting with the most complex multiphysics models for TACE and
TARE, FSI models are characterized by the simultaneous modeling of
(blood) flow and/or microsphere transport, and (arterial) wall move-
ment, modeling how the arteries contract and dilate according to the
heart cycle. To inspect the impact of modeling deformable walls on
the particle distribution in a simple geometry, Kleinstreuer and Chil-
dress [113] investigated how each of the 5 outlets of their deformable
geometry could be targeted by placing the catheter tip in a specific
spatial zone at a pre-defined axial injection location. They gener-
ated these spatial targeting zones for 10 intervals during the cardiac
pulse. As a more time-efficient alternative to their computationally
expensive deformable model, Childress and Kleinstreuer [113] pro-
posed using several rigid wall geometries, where the dimensions of
these rigid geometries were either extracted from the diastolic phase
of the cardiac cycle, or time-averaged over the full cycle. The spatial
injection zones were compared for the rigid and flexible cases, and
used to inspect whether the rigid cases could predict the spatial in-
jection zones of the deformable geometry. They noted that the best
match between the deformable and the rigid wall models was found
during diastole – most likely due to the absence of significant changes
in the physical geometry during this phase. Compared over the whole
cardiac cycle, the time-averaged geometry provided the best match
with the deformable model. While differences between rigid and flex-
ible models were still significant, they could be minimized with the
selection of the best-fit rigid model (in this case, the time-averaged
geometry), with a notable cost decrease of rigid over deformable mod-
els of 1:7 [113]. At present, this case study is the only example of
using FSI to model transarterial drug delivery. Hence, it should be
emphasized that the current conclusions only stand for the simplified
geometry that was studied here.

3.2.2 Computational fluid dynamics
Scaling down complexity to pure computational fluid dynamics
(CFD) applications, the walls are typically modeled as rigid, and
the underlying mathematical equations (e.g. conservation of mass
and momentum, see Chapter 4) focus solely on resolving fluid flow.
Because they are computationally less complex than FSI, mostly
these models have been used in TARE modeling. An overview of
how these models have been used so far to quantify the impact of
clinical parameters on the particle distribution is given in Section
3.3. Importantly, CFD simulations can be carried out in 3D, 2D or
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1D geometries, providing information on the spatial distribution of
hemodynamic parameters such as velocity (or flow rate) and pressure
throughout the vessel network. Of course, as the number of spatial
dimensions decrease, the complexity of the numerical problem
decreases, but the representation also becomes less physiological. In
Section 3.3, we will discuss how 3D CFD models have led to specific
insights for TARE (skipping over 2D and 1D models due to a lack of
relevant examples). Below, we discuss how 0D modeling approaches
work and have been used to study TARE.

3.2.3 0D models
Simplifying further to zero-dimensional models, the only remaining
dimension is time. For example, Debbaut et al. [114] introduced a
zero-dimensional (0D) model of blood flow through a healthy human
liver cast. In this model, which was based on transmission line theory,
each blood vessel generation was represented by one tuned P-filter.
As a result, the three hepatic vascular trees (hepatic arteries, portal
veins and hepatic veins) were each represented by a series of these
P-filters. The 0D model was used to determine flow and pressure
distributions throughout the liver, and to estimate the hemodynamic
impact of hypothermic machine perfusion for liver transplantation.
An adaptation of this electrical model was applied to rat livers, and
was then used to study the flow distribution among different liver
lobes in order to investigate the impact of partial hepatectomy pro-
cedures.

Within the context of transarterial liver embolization therapies,
Aramburu et al. [83, 115] posited a 0D-modeling approach using an
electrical representation of an idealized HA geometry to model blood
flow from the PHA to the segmental arteries. This was done by mod-
eling the branching network as nodes interconnected by resistances,
the upstream vasculature as a pressure source and the downstream
vasculature as a pressure source in series with a resistance. They
noted that the 0D-model could be used to assess the redistribution
of blood flow, which can occur after microparticle injection using a
balloon-occluding microcatheter. Despite offering no information on
local flow and particle behavior, these 0D models significantly reduce
the overall modeling complexity and allow fast estimations of flow
(re)distributions.

Of course, hybrid modeling approaches also exist. For example,
0D Windkessel elements can be used to model the downstream vascu-
lature and subsequently implemented as boundary conditions for 3D
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CFD simulations. In Section 3.3 below, we will discuss the insights
into the impact of clinical parameters that have been gained by using
CFD.

3.3 Injection Parameter Analysis using CFD

3D CFD models of TARE can be interpreted as a multiphase problem,
where both a continuous fluid phase (blood) and an interspersed dis-
crete phase (microspheres) traverse the hepatic arterial domain. The
mathematical background of this multiphase model, as well as the
degree of coupling between both phases, are explained in Chapter 4.
Here, we focus on the use of these models to elucidate the impact of
injection parameters such as catheter type, microsphere type, injec-
tion flow rate and injection position. This will give us an insight into
the state-of-the-art of these CFD models, and what these models are
currently lacking, which will inform the objectives of this dissertation.

3.3.1 Cross-Sectional Injection Position
In 2010, Kennedy et al. [13] were the first to model particle traject-
ories in a representative hepatic arterial system with five outlets (see
geometry in Figure 3.2) and noted that the branches through which
particles exited were highly dependent on the release position within
the injection plane. Hence, the injection plane could be divided in
sub-sections, where injection in each sub-section lead to particles exit-
ing through a specific outlet (Particle Release Map (PRM), as shown
in Figure 3.2). Since the PRM clearly showed distinct injection re-
gions for each of the five exit branches, they concluded that particles
could be steered to particular exit branches if the release position of
the catheter tip could be accurately controlled. (However, accurately
controlling the tip in vivo is not a trivial problem, as we will discuss
later in this dissertation, in Chapter 7 among others).

While the study by Kennedy et al. [13] was conducted under
steady flow conditions, Basciano et al. [14] modeled particle trans-
port in the same geometry, but using a realistic pulsatile flow rate
waveform. They derived PRMs for the accelerating zone of their
cardiac waveform and noted that the organized regions present for
the steady-flow simulations were still present for their transient sim-
ulations. In 2012, Kleinstreuer et al. [12] modeled particle release
at peak systole for the same waveform in the same geometry, and
confirmed the distinct particle release regions present for each exit
branch.
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Figure 3.2: The Particle Release Map is a visualization of the axial in-
jection plane, dividing the plane in colored cross-sectional sections. Each
section is associated with an outlet of the geometry, showing how calcula-
tions predict that injection in a specific section will lead to particles exiting
through the specific outlet associated with the spatial injection zone. From
[13].

Figure 3.3: (A) PRM variations over 10 intervals throughout the pulse for
a generalized 5-outlet geometry. Qualitatively, variations are limited. (B)
Overlaying of the 10 PRMs leads to the Composite Particle Release Map.
From [116].
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However, these findings only confirm the appearance of well-
ordered injection regions for a small section of the full cardiac pulse.
Therefore, Childress et al. [116] computed PRMs at ten injection
intervals throughout the cardiac pulse in two simple geometries to
study the variation between intervals. Then, they combined these
ten PRMs in a single Composite Particle Release Map (CPRM). For
their first, 5-outlet geometry (Figure 3.3), there was only limited
overlap between the targeting zones for the different exit branches
at different injection intervals. Hence, it was theoretically possible
to target one exit branch throughout the entirety of the cardiac
pulse without unwanted particle delivery in one of the other exit
branches. For their second, 3-outlet geometry (Figure 3.4), the
variation between the PRMs at different injection timings was much
higher, which caused more overlap between the different targeting
zones in the CPRM. Thus, no clear targeting zones appeared for
each outlet during continuous particle injection throughout the
cardiac cycle. The above illustrates again the high impact of the
choice of geometry on these results.

Figure 3.4: (A) PRM variations over 10 intervals throughout the pulse for
a generalized 3-outlet geometry. Qualitatively, variations are limited. (B)
Overlaying of the 10 PRMs leads to the Composite Particle Release Map.
From [116].

Of course, the impact of release position on particle delivery is
highly geometry-dependent, and that the results of a study in one
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patient-specific case should not simply be generalized. Moreover,
PRMs had not been computed yet for patient-specific geometries.
Additionally, the validation of these PRMs has also been extremely
limited. The only work to validate the precise impact of injection
location on particle distribution was done by Richards et al. [84] in
2012 for a simplified planar geometry. Validation of the PRMs for
the patient-specific complex 3D geometries has not been done yet,
and is likely to be technically challenging.

3.3.2 Axial Injection Position
In an extension to studies that examined the influence of cross-
sectional injection location, several authors have investigated the
impact of the axial injection location on particle distribution. Since
the axial injection location is much easier to control in vivo than
cross-sectional locations, the possible impact of this parameter on
particle distribution is very relevant for clinical optimization and
tumor targeting. In 2016, Aramburu et al. [10] modeled injection
from two axial positions (at the inlet of their geometry, and near
the first bifurcation) for a standard microcatheter (SMC) (see
Figure 3.7). Comparing particle release from the inlet via the
SMC to particle release near the bifurcation via the SMC, the
maximum difference in segmental particle distribution was obtained
for Segment VIII (19.68%). In a different study but in the same
geometry, Aramburu et al. [106] noted that injecting via the SMC
near the bifurcation resulted in a deposition of all particles in the
right lobe. However, retracting the SMC by only 5 mm further away
from the bifurcation resulted in particle deposition in the left lobe
as well; this illustrates the high impact of small variations in axial
catheter position on the particle distribution. It was also shown
that a 5 mm-shift in axial catheter position mattered less for the
injection position at the inlet, as the local flow field likely varied less
from point-to-point for this straight, tubular part of the geometry.

These results imply that axial injection position is an important
parameter to optimize, but that the precise impact of axial catheter
position can fluctuate from one axial location to another, and that
zones near bifurcations are likely to be more prone to high fluctu-
ations in particle distribution due to small shifts in axial catheter
position.

3.3.3 Catheter Direction
Aramburu et al. [15] remarked that while the impact of cross-
sectional injection positions had been previously studied, no
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attention had been given to the microcatheter distal direction,
while this is a clinical parameter that can differ even for the
same cross-sectional injection position. They studied six distinctly
different microcatheter directions (Figure 3.5), and observed that
even for the same cross-sectional injection location, significant
differences occurred in the segmental particle distribution for
different microcatheter directions. For example, for a microcatheter
originating from the top center of the vessel (North, ‘N’, position)
and a tip located near the bottom center of the vessel (denoted
as South, ‘S’, position in Figure 3.5), the particle exit fraction
for Segment VI was 31.72% (N-S position in Figure 3.5). For a
microcatheter originating in the ‘E’ (East) position and with a tip
in the S position (note that, technically, the cross-sectional injection
location is the same), the particle exit fraction for Segment VI was
12.57%. These findings are crucial, and highlight that looking only
at the cross-sectional location is in fact a simplification of reality. To
conclude, microcatheter distal direction seems to play an important
role in (sub)segmental particle distribution, and its effect is currently
under-reported in literature.

3.3.4 Catheter Type
Because of the high impact of the cross-sectional injection position,
Kleinstreuer et al. [9] proposed in 2014 to use an anchored catheter
to stabilize the position of the catheter tip within the bloodstream
and control particle delivery location. The smart microcatheter, as
shown in Figure 3.6, consisted of a reservoir containing the micro-
spheres mixed with the injection fluid, a supply line to the microcath-
eter, and an actuator controlling the cross-sectional position of the
microcatheter tip. The design was conceptualized and patented, but
not yet developed or commercialized. Importantly, Kleinstreuer et al.
[9] also found a considerable impact of catheter presence on the local
flow field, which underlines the importance of explicitly modeling the
catheter in CFD simulations.

In their patient-specific geometry (see Figure 3.7), Aramburu et
al. [10] compared two catheter types, the SMC and ARC (see 2.4.1.2).
The ARC contained an extendable, funnel-shaped tip (see Figure
3.7b), which altered the near-tip hemodynamics (reducing flow ve-
locity inside the catheter and accelerating the bloodstream around
the catheter), and caused recirculation regions after the catheter tip.
They also observed that, for the SMC, particles entered the hepatic
arteries in a laminar way, while, for the ARC, particles spread out
showing a more complex flow behavior (i.e. still laminar, but with
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Figure 3.5: Different microcatheter directions: from points N, S, E, or W
at section X to N, S, E, or W at section Y, where section Y is the injection
plane. There are 28 mm between sections X and Y, and 1.75 mm between
the positions N, S, E, and W and the lumen center. From [15].

large vortices appearing after the catheter tip). For SMC injection
at the inlet, >30% of particles entered the left lobe, while for ARC
injection near the inlet, <2% entered the left lobe. However, due
to the axial extension of the ARC, it is difficult to compare particle
distribution resulting from SMC and ARC injections, since the axial
injection location for the two catheter types is not strictly the same
(see Figure 3.7b). Near the bifurcation, all particles entered the right
lobe regardless of catheter type. Seeking to clarify this phenomenon,
Aramburu et al. (2016a) observed that the expanded funnel of the
ARC physically extended into the RHA, explaining why particles
only deposited in the right lobe (see Figure 3.7b). In the SMC, the
injection velocity was high enough to give particles the necessary mo-
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Figure 3.6: The Smart Microcatheter, containing an actuator to control
the optimal cross-sectional position, which can be identified from CFD sim-
ulations. Adapted from [9].

mentum to cross blood flow streamlines and deposit directly into the
RHA.

In 2017, Aramburu et al. [11] also studied a third catheter type,
the angled-tip microcatheter (ATM, see Figure 3.8A) (Boston Sci-
entific, USA) in the same patient-specific geometry, which is simply
an extension of the SMC with a tip that is able to be oriented in dif-
ferent directions. Four different orientations (upward (U), downward
(D), leftward (L), rightward (R)) were tested. The authors found that
the particles did not necessarily travel towards the branch at which
the tip was pointing. They attributed this result to the complex,
intricate particle pathlines that result from helical flow phenomena
that were present in this arterial vasculature. Additionally, the au-
thors found considerable differences were found in segmental particle
distribution due to tip orientation: e.g. 12% extra particles entered
the left lobe due to the downward orientation of the catheter tip,
compared to the upward tip orientation. However, for their specific
clinical application, the impact was rather low, because the majority
of particles entered the cancerous right lobe anyway (see Figure 3.8B
for the cancer scenario under study), underling the highly patient-
specific nature of their results.

In 2019, Aramburu et al. [117] modeled deployment of a balloon-
occluding microcatheter at two axial injection locations in a patient-
specific hepatic arterial geometry. They used a 0D model to assess
the distribution of blood flow after balloon occlusion, and then used a
3D CFD model to assess the arterial hemodynamics given the current
flow distribution. Importantly, the impact of the balloon catheter
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Figure 3.7: (a) 2D sketch of structure of the patient-specific hepatic artery
(cancer scenarios indicated, tumors show in green) with the inlet and 29
outlets, as well as the segment that each outlet irrigates. (b) Location of
the two catheter types: the standard microcatheter (SMC) and antireflux
catheter (ARC). The outer diameter of the expandable tip (4 mm), thickness
(0.21 mm), funnel-shaped length (10.5 mm) and cylinder-shaped length (2.2
mm) are specified. From [10].

was very large, with both flow (re)distribution compared to a no-
occlusion case, and complex streamlines occurring after the tip for
each injection site.

These important results highlight that there are many different
commercially available designs for microcatheters, which each differ
in how much they vary from the standard design (i.e. the angled-
tip microcatheter is more similar to the standard microcatheter than
the balloon-occlusion catheter) and that CFD simulations are useful
to help determine their impact on local blood flow and downstream
distribution, albeit in a patient-specific way.

3.3.5 Injection Flow Rate
In 2014, Kleinstreuer et al. [12] tested five different catheter injection
volumetric flow rates in their simplified geometry (see Figure 3.9).
These resulted in injection velocities ranging from 1% to 1000% of
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Figure 3.8: (A) The angled-tip microcatheter is embedded in the proper
hepatic artery of a patient-specific geometry. The designcontains a tip that
can be oriented in four different directions (upward, rightward, downward,
leftward), which significantly impacts the downstream particle distribution.
(B) 2D sketch of the patient-specific geometry, with the cancer scenario
under study (tumors restricted to the right lobe). From [11].

the arterial blood velocity (which was assumed uniform at the inlet).
At the lowest injection velocity, particles were injected at a cross-
sectional position that allowed them to follow the bloodstream along
the bifurcation, avoiding exiting through the GDA outlet (located
opposite the injection plane), and exiting instead through the four
daughter vessels (located downstream of the bifurcation). However,
as is clear in Figure 3.9, by increasing injection flow rate, more and
more particles exited through the GDA outlet opposite the injection
plane, as higher inertial forces enabled the particles to cross fluid
streamlines and carry on straightforward paths towards the GDA
outlet. Kleinstreuer et al. [12] also remarked that, for lower injection
flow rates, more particles tended to get stuck in the domain, or get
caught in recirculation regions near the catheter tip.

Aramburu et al. [106] came to a similar conclusion in a different
study in 2016, noting that the discrepancy between particle and flow
distribution throughout the arterial geometry was higher when the
ratio between microsphere velocity and the blood flow velocity was
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Figure 3.9: Clearly, increasing the injection velocity increases the ability
of the microspheres to cross fluid streamlines, for particle inertia effects to
dominate, and impact the microsphere distribution. From [12].
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higher. In another study, Aramburu et al. [15] observed that, for
ratios of microcatheter average velocity to arterial average velocity
well above 2, particles had sufficient inertia to cross fluid flow stream-
lines. Notably, this regime was only valid for the diastolic phase of
the input cardiac waveform of their patient-specific case, because of
the higher relative difference between catheter and arterial flow rate.

Interestingly, Aramburu et al. [11] also compared the spatial dis-
tribution of particles for different injection flow rates (resulting from
a microcatheter oriented in the upwards direction), and concluded
that for the higher injection flow rate (18.5 mL/min compared to 5
mL/min) in their patient-specific geometry, particles traveled in a
more spread-out manner in the lumen cross-section, and closer to the
artery wall (due to tip orientation). This can be seen in Figure 3.10,
where the first column of each Section (A-C) represents the higher
flow rate.

Summarizing the above, catheter injection flow rate has shown
to play a role in both the spatial distribution of particles inside the
vessel lumen, and the degree to which particle distribution mimics
flow distribution.

3.3.6 Microsphere Type
In 2010, Basciano et al. [14] were the first to study the particle tra-
jectories of different commercially available microparticles, namely
SIR-Spheres (diameter: normal distribution of 32 ± 10 µm, density:
1600 kg/m3) and TheraSpheres (diameter: normal distribution of 25
± 10 µm, density: 3600 kg/m3). Visually, the effect on the micro-
particle trajectories is difficult to see (see Figure 3.11), and Basciano
et al. [14] noted that most SIR- and TheraSpheres show similar beha-
vior. However, they observed that the different particle characterist-
ics had a larger impact on the particle trajectories in the decelerating
phase of the cardiac pulse (when less inertial effects were present)
than during the accelerating phase (when the impact of particle dia-
meter was shown to be almost negligible). This can be seen in Figure
3.12, where the average particle distributions bars for the decelerat-
ing phase show a (slightly) larger difference than for the acceleration
phase. Furthermore, the gravitational force also had a larger impact
on the TheraSpheres than on the SIR-Spheres (mainly due to the lar-
ger density of the TheraSpheres). However, the effect of microsphere
type is clearly of a order of magnitude smaller than the injection
timing (comparing differences between the accelerating, peak and
decelerating phases in Figure 3.12) and the cross-sectional injection
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Figure 3.10: Comparing microsphere spread across the cross-section for
three axial sections (A, B, C), seven timepoints (t1 to t7) and two injection
flow rates (’1’: 18.5 mL/min, ’2’: 5 mL/min). The percentages of particle
spread are also denoted in the bottom left corner of each cell. For the same
tip orientation (U, upwards) particles were almost always more spread out
across the cross-section for the higher flow rate (1: 18.5 mL/min) than for
the lower flow rate (2: 5 mL/min). From [11].
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position (for example, from Figure 3.12, selective targeting of daugh-
ter vessel 2 and 3 seems possible using the current position under
study).

Figure 3.11: SIR-Sphere trajectories (in red) compared to Thera-Sphere
trajectories (in blue). While it is visually difficult to see the impact of
microsphere type on the trajectories, Basciano et al. (2010) noted the larger
effect of the gravitational force on the heavier TheraSpheres. From [14].

In 2016, Aramburu et al. [106] also investigated the impact of
microparticle type on the segment-to-segment particle distribution in
their patient-specific geometry (see geometry in Figure 3.8A)). The
two particle types modeled were SIR-Spheres, with a single diameter
of 32 µm and a density of 1600 kg/m3; and 99m-Tc-MAA micro-
particles, with a diameter of 15 µm and a density of 1100 kg/m3.
Aramburu et al. (2017a) noted that a skimming effect could occur
in branches of considerable length, in which the larger particles tend
to travel more centripetally (favoring main branches) and the smal-
ler particles tend to travel more peripherally (favoring side branches).
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Figure 3.12: Comparing SIR-Sphere particle distributions to Thera-
Sphere particle distributions. Clearly, both the timing of the injection (ac-
celerating vs decelerating phase) and the selection of the spatial injection
zone impact the particle distributions significantly. Particle properties also
impact the distributions, but to a lesser degree. Adapted from [14].

They also noted that this effect could be negligible when the particles
had to pass only a limited number of bifurcations to reach their in-
tended destination (i.e. if total branch length was not considerably
high). Therefore, Aramburu et al. [106] concluded that particle dens-
ity and diameter were not critical parameters in terms of segmental
particle distribution when comparing SIR-Spheres and 99m-Tc-MAA
microparticles. Notably, they only studied particle distribution up
to the segmental level, so this work did not consider the influence of
potential intrasegmental events.

3.4 Current Challenges

While computer models of varying complexity (e.g. 0D, 3D) have
been used to elucidate the impact of injection parameters using
TARE, as explained in Section 3.3, significant steps still need to
be made to make these computer models more realistic, prove
their credibility for predicting patient-specific health outcomes,
and to integrate them in a pre-treatment optimization tool. These
challenges with the current state of research are discussed below,
and will inform the thesis objectives as outlined in Section 3.5.

3.4.1 Feasibility of Patient-Specific Computational
Modeling

As shown, 3D CFD models can be used effectively to quantify the
impact of relevant clinical injection parameters on the treatment
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outcome. Since hepatic branching arterial networks are typically
very complex and heterogeneous, running CFD analyses in multiple
patient-specific hepatic arterial geometries is crucial. However, as
more complex geometries and a wider range of clinical parameters
are considered for sensitivity analyses on a patient-specific basis, the
computational cost of these simulations will increase significantly,
leading to high costs, high energy expenditure, and making these
workflows generally unfeasible to be integrated into clinical practice.
Therefore, strategies need to be devised to decrease computational
cost, and make sensitivity analyses for patient-specific cases feasible.

3.4.2 Validation
Notably, CFD models (like all models) behave differently when com-
pared to real-world systems, because some inputs cannot be measured
accurately or because of assumptions that are made during model
construction [118]. Therefore, steps need to be made to assess and
improve model reliability.

Three important principles determine model reliability: (1) veri-
fication, (2) validation, and (3) uncertainty quantification (VVUQ)
[119, 120]. Verification entails assessing whether a computational
model solves the underlying mathematical problem correctly [120]
(for CFD specifically, this relates to the selection of an appropri-
ate grid size, reliable solution convergence criteria, etc.). To check
whether the computational model uses the correct physics, validation
is used to compare the numerical results to real-world experimental
(in vitro, in vivo, ex vivo, etc.) results [120]. These experimental
results can be generated in a controlled lab setting (in vitro), based
on patient data (in vivo), or computed on tissue in an external en-
vironment (i.e. not the body) (ex vivo).

Preliminary in vivo validation has been carried out to show that
CFD can be used to predict the segmental particle distribution [16]
or tumor radioactive dose [121]. However, due to the limited number
of patients on which this was tested in each study (3 or less), it is
not clear whether their accuracy is high enough for clinical practice,
whether the results are easily replicated, and how high the uncer-
tainty is on the computed output. Hence, more extensive in vivo
validation in a larger patient cohort is definitely needed. To our
knowledge, ex vivo validation is very limited in this domain. How-
ever, it can be useful, as it is a much more realistic setting than in
vitro models, and more easily controllable than in vivo experiments.
Additionally, in vitro validation has only been carried out in sim-
plified, planar geometries (as already explained in Section 2.4.1) up
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to the start of this PhD, which severely limits their interpretability.
Hence, transferring in vitro validation to a patient-specific setting is
a crucial step to make these models more usable.

3.4.3 Uncertainty Quantification
Uncertainty quantification relates to uncertainties in input paramet-
ers and how they translate into output uncertainties [120]. This can
not only be done for clinical injection parameters, but also for numer-
ical input parameters, such as boundary conditions. This is especially
important when dealing with inputs that are variable and/or difficult
to measure precisely. For example, it is well-known that boundary
conditions in CFD introduce uncertainty because they are typically
unknown. However, for this application specifically, the clinical para-
meter source of uncertainty, is also not be underestimated. Even if a
specific clinical parameter is predicted by CFD to be very impactful,
and we can determine their optimal value for a given patient-specific
setting, it might not be possible to control this parameter at one
specific, optimized value throughout the procedure. The clearest ex-
ample is that of the catheter tip position, where we might use CFD
simulation to determine the optimal catheter tip position to target
the tumor (as done in Section 3.3.1), but it might be technically very
difficult (or impossible) to control the catheter tip position through-
out the procedure, and so variations in the catheter tip position will
introduce uncertainty on the tumor dose. Hence, uncertainty quan-
tification of both numerical input parameters and clinical injection
parameters is necessary. However, uncertainty quantification typic-
ally requires a higher number of simulations, which is only feasible
of the computational cost of a single simulation is limited. This is
currently not the case, and severely limits the applicability of patient-
specific CFD modeling for transarterial drug delivery.

3.4.4 Model Design
There is still a large gap between using computational models for
investigative purposes (such as discussed in Section 3.3) and using
computational models in clinical tools for preoperative optimization.
In that regard, the CMMP as described by Kleinstreuer et al. [9] is
still a very broad workflow, indicating conceptually how medical im-
ages may be converted into computer models which predict particle
distribution. However, the possibilities of computer modeling and
simulation are plentiful. To be used in the real world, the model
design should be specific and detailed, with clarity on which inputs
are used, which mathematical model is used, and which outputs are

55



3. State-of-the-art in, and Challenges with, Modeling
of Transarterial Therapies

predicted (within a specific credibility level) [122]. Importantly, the
clear definition of inputs and outputs is also needed to enable uncer-
tainty quantification and validation, as stated above.

Alternatively to Kleinstreuer et al. [9], Roncali et al. [123] pro-
posed a more concrete model design (CFDose), where they derived
the radioactivity spread over the liver tissue for a specific patient
based on medical images and simulation. While CFDose is already a
much more specific model design, it is not yet a concrete model design
for preoperative TARE optimization. For example, it (1) lacks cru-
cial information that limits TARE procedures in the clinic, such as
the vascular accessibility of suggested catheter tip locations, (2) does
not perform uncertainty quantification on the output, or (3) does
not consider that some injection parameters (e.g. cross-sectional tip
position) are difficult to control in vivo. Hence, there is a need for
specific model design that can be applied to pre-operatively optimize
TARE procedures and considers all of the crucial aspects mentioned
above.

3.5 Thesis Objectives

Summarizing the considerations above: while the CMMP was pro-
posed as a general workflow for pretreatment optimization [9], both
the patient-specific nature of these 3D CFD simulations, and the
need for a high number of simulations to quantify both numerical
and clinical uncertainty require more specific, feasible strategies to
implement CFD in pretreatment planning, as well as patient-specific
validation strategies.

Hence, the state-of-the-art of CFD studies at the start of this PhD
lack (i) effective strategies to reliably cut down computational cost of
patient-specific 3D CFD simulations, (ii) uncertainty quantification
of numerical and clinical parameters in patient-specific geometries,
(iii) validation techniques in patient-specific geometries, and (iv) a
computational framework for treatment planning.

Based on these remaining challenges, we further specify the ob-
jective of this dissertation in different goals:

• Goal 1: Simplification: Implementing effective strategies
for reliable reduction of the computational cost of our
patient-specific 3D CFD models and verifying their reliability
for particle distribution and tumor dose predictions. This will
be the focus of Part II.
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• Goal 2: Uncertainty Quantification: Using these simpli-
fication strategies to reduce the computational cost of our sim-
ulations enough to allow patient-specific uncertainty quantific-
ation of tumor dose due to uncertain clinical parameters, and
perform sensitivity analysis of uncertain numerical input para-
meters. This will be the focus of Part III.

• Goal 3: Patient-Specific In Vitro Validation: Extension
of the current in vitro validation methods in literature to real-
istic patient-specific hepatic arterial networks. This will be the
focus of Part IV.

• Goal 4: Model Design for Valorization: Development of
a feasible computational framework for TARE planning which
considers both parameter sensitivity analysis and optimization,
as well as other relevant parameters for treatment optimization,
such as vascular accessibility or the uncertainty introduced by
uncontrollable parameters. This will be the focus of Part V.
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The Hybrid Model in

Truncated Hepatic Arterial
Trees

Positioning of the chapter

Patient-specific 3D CFD simulations of intra-arterial blood flow and
drug transport are typically computationally very costly. In the fol-
lowing Chapters 4, 5 and 6, we focus on techniques to cut down
computational cost while still allowing to reliably predict the down-
stream microsphere distribution. Chapter 4 introduces a truncation
algorithm to reduce the size of the physical geometry, which is verified
for both planar and superficial catheter particle injection. Chapter
5 verifies the truncation technique for selective catheter injection of
particles. Chapter 6 evaluates grid coarsening, reduction of the num-
ber of flow cycles, steady flow modeling as alternative simplification
techniques. By the end of Chapter 6, we aim to have a clear view
of which simplification techniques are reliable (and significantly cut
down computational cost), and which techniques are not advised.

This chapter is based on the publication A Hybrid Particle-Flow
CFD Modeling Approach in Truncated Hepatic Arterial Trees
for Liver Radioembolization: A Patient-Specific Case Study (T.
Bomberna et al., Frontiers in Bioengineering and Biotechnology,
2022) [19].
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4. The Hybrid Model in Truncated Hepatic Arterial
Trees

4.1 Introduction

With regards to clinical application, computational complexity of
patient-specific 3D CFD simulations may hinder integration in clin-
ical practice, since large computational times may negatively impact
the potential of technology transfer to the clinical setting. Lower com-
putational times are also necessary for uncertainty quantification and
sensitivity analyses, which typically require a high number of model
evaluations. Additionally, a clear and uniform workflow for these
CFD simulations—including standards for the definition of hepatic
arterial geometries, and inlet and outlet boundary conditions, which
currently vary between computational approaches—is still lacking.
Hence, this study aims to reduce the computational cost of these
CFD approaches, while outlining a clear methodology to define the
hepatic arterial geometry.

The main goal is to evaluate whether the particle distribution
in a complex patient-specific geometry can be estimated by mod-
eling the particle distribution in a truncated, simplified geometry,
and assuming that the particles downstream of the truncated outlets
distribute themselves proportional to the blood flow. This hybrid
particle-flow model should significantly reduce the complexity of the
computational approach, compared to explicit particle modeling in
the full arterial geometry. Additionally, the fitness of the flow distri-
bution (i.e., no explicit particle modeling) as a surrogate for particle
distribution will also be evaluated.

Previously, Lertxundi et al. [124] introduced a segment-based
truncation algorithm to simplify patient-specific arterial geometries,
comparing truncated versions of 3 patient-specific geometries (with 1
catheter tip location for 2 geometries and 2 catheter tip locations for
the other geometry). In their truncation strategy, branches perfusing
the same segment downstream of the tip were grouped, and segments
upstream of the tip were grouped. However, the main limit of this
truncation strategy is that it only quantifies the particle distribution
for the segments downstream of the catheter tip, and does not offer
any information on intrasegmental particle distribution, which might
still be of interest.

Here, the alternative pruning algorithm presented here goes bey-
ond the state-of-the-art by using the hybrid particle-flow modeling
assumption and a novel tumor region growing model. The hybrid
particle-flow model might allow to estimate intrasegmental particle
distribution, even if the intrasegmental branches are not included
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in the hepatic arterial geometry. Additionally, the region growing
model can also inform outlet boundary conditions and identify the
major arterial feeders of the tumor.

During this study, the hybrid particle-flow model for truncated
hepatic arterial geometries will be evaluated for one planar injection
(where particles are released over the entire vessel cross-section) and
three catheter injections (where particles are only released from the
catheter tip) for one patient-specific case.

4.2 Methods

In Section 4.2.1, we discuss the simulations used in this study to
evaluate the suitability of the hybrid particle-flow model in trun-
cated arterial geometries. Details regarding the reconstruction and
discretization of the full-complexity hepatic arterial geometry and the
truncation algorithm are presented in Section 4.2.2. Next, the general
mathematical background behind both multiphase models for blood
and microsphere transport as well as inlet and outlet boundary con-
ditions used throughout this dissertation are explained in Section 4.3.
The specifics of the hybrid particle-flow model are discussed there as
well. Finally, several metrics are introduced which will help compare
the hybrid particle-flow model against the particle distribution in the
full-complexity geometry in Section 4.3.3.

4.2.1 Study Design
In Table 4.1, an overview of the numerical simulations in this study
are presented. In summary, this study considers the same set of sim-
ulations for a full-complexity hepatic arterial geometry (Geometry 1)
and two arterial geometries with different levels of truncation (Geo-
metry 2 & 3; see Section 4.2.2.2): one planar injection at a specified
axial location (Sim. 1–3 in Table 4.1), and three catheter injections
at specific cross-sectional tip locations in this plane (Sim. 4–12 in
Table 4.1).

4.2.2 Geometry Development and Discretization
4.2.2.1 Baseline Geometry and Tissue-Perfusion Modeling
As approved by the Ethical Committee of the University Hospitals
Leuven (UZ Leuven, Belgium), a patient-specific CT-image dataset
of the hepatic arterial vasculature of an HCC patient was obtained by
scanning the patient with a conebeam CT scanner (Philips Medical
Systems, Netherlands) while intra-arterially injecting contrast agent
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Table 4.1: Study design giving an overview of all simulations and their
corresponding geometry, injection type and axial and cross-sectional tip
location.

Simulation Geometry Injection Tip location
1 Geometry 1 Planar Axial Location 1
2 Geometry 2 Planar Axial Location 1
3 Geometry 3 Planar Axial Location 1
4 Geometry 1 Catheter Inlet: Tip Location 1
5 Geometry 2 Catheter Inlet: Tip Location 1
6 Geometry 3 Catheter Inlet: Tip Location 1
7 Geometry 1 Catheter Inlet: Tip Location 2
8 Geometry 2 Catheter Inlet: Tip Location 2
9 Geometry 3 Catheter Inlet: Tip Location 2
10 Geometry 1 Catheter Inlet: Tip Location 3
11 Geometry 2 Catheter Inlet: Tip Location 3
12 Geometry 3 Catheter Inlet: Tip Location 3

into the left and right branches of the PHA. The hepatic arteries were
segmented in Mimics (Materialise, Belgium) based on the contrast
difference between the arterial and venous trees in the arterial phase.
A large tumor nodule (estimated volume: 310 ml) was identified. 3D
reconstructions of the tumor mass and the hepatic arterial tree (with
1 inlet at the PHA level and 48 outlets) can be found in Figure 4.1A.

For CFD purposes, the division of the hepatic artery outlets into
tumor-perfusing outlets and healthy tissue-perfusing outlets is crucial
in order to know which vessels should be targeted for the envisioned
treatment. Therefore, the tumor perfusion percentage (TPP) of each
outlet was determined as the percentage of the tumor volume per-
fused by each outlet (e.g., 0% for solely healthy tissue-perfusing out-
lets). To calculate the TPP of the 48 outlets, an in-house developed
region growing model was used ([125]). First, the centerlines of the
hepatic arterial trees were determined using the open-source Vascu-
lar Modelling Toolkit (vmtk.org). For each artery outlet segment,
the centerline points between the final bifurcation and the outlet sur-
face were labelled as seed points. Second, the hepatic arteries and
tumor mass were included in a voxelated bounding box, consisting
of 100 × 100 × 100 cubic voxels (with a ≈ 1.2 · 10−3 m edge length).
During region growing, voxels were added in the six orthogonal direc-
tions starting from the seed points for each segment, until all voxels
within the tumor were assigned to one of the outlets. Region growing
occurred simultaneously for all branches. As a result, each arterial
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branch was associated with a certain perfusion zone of the tumor
(and, by extension, a certain perfused volume of tumor tissue). Fi-
nally, the tumor volume perfused by each outlet was divided by the
total tumor volume, giving the TPP.

In Figure 4.1B, the tumoral mass is divided in regions to show
how the different segmental arteries contribute to tumor perfusion
according to the tumor region growing model. Generally, the liver
can be divided in eight segments according to Couinaud’s classific-
ation criteria ([41]). For the color code in Figure 4.1B, the liver is
anatomically divided into five sections based on these segments: the
caudate lobe (Segment 1, in yellow), the left lateral section (Segments
2 and 3, in purple), the medial section (Segment 4, in orange), the
right anterior section (Segments 5 and 8, in green), and the right pos-
terior section (Segments 6 and 7, in blue). For the TPPs in Figure
4.1B, the segmental arteries are colored according to the same color
code, but the annotations for Segments 5 and 8 are split because
of the considerable difference in tumor perfusion (2.64% vs. 55.6%;
the Segment 5 artery clearly points away from the tumor, while the
Segment 8 artery points towards the tumor).

Figure 4.1: (A) CT-slice and 3D reconstruction showing the tumor mass
(purple) and hepatic arteries (red). (B) The tumor perfusion model shows
to which degree the segmental arteries I, II and III, IV, V and VIII, and VI
and VII contribute to tumor perfusion (TPPs in %).

4.2.2.2 Truncation Algorithm
The baseline hepatic arterial tree was imported into ANSYS Space-
Claim (Ansys, United States) and manually reconstructed to gener-
ate a solid model. During the truncation process (see below), the
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arterial tree was pruned at three different levels, generating three
solid arterial tree models with varying degrees of complexity. The
full-complexity hepatic arterial tree was denoted as Geometry 1 (48
outlets, no pruning, shown in Figure 4.1A, with schematic illustration
in Figure 4.2A). The diameters of these 48 outlets are given in Table
4.2 (estimations were made using the Fit Centerline and Best Fit
Diameter tools in Mimics (Materialise, Belgium)). The truncation
process is explained in detail below.

First, distal bifurcations containing outlets with TPPs ≤1% (or-
ange branches in Figure 4.2A) were pruned. If the total TPP of
the bifurcations containing one or more of these orange outlets was
>1%, the resulting outlet (i.e., after pruning) was denoted as tumor
(green dotted ellipses in Figure 4.2A); otherwise, the resulting outlet
was denoted as healthy (red dotted ellipses in Figure 4.2A). Outlets
which where impossible to prune due to the lack of cutting space
(i.e., when bifurcation points were located so close to each other that
a proper cut could not be made) were preserved (e.g., branches 2
and 3 in Figure 4.2A,B). In total, the total number of outlets was re-
duced from 48 to 38 outlets in this step. After pruning, some outlets
were located so close to the preceding bifurcation (<5 mm distance
on the centerline) that fluid flow into these pruned outlets would not
be properly developed. Therefore, these outlets were artificially ex-
truded to a total length of 20 mm (e.g., branches 22 and 25 in Figure
4.2B). Hence, the first part of the truncation process resulted in the
second solid model, denoted as Geometry 2 (38 outlets, schematic in
Figure 4.2B). The numbering of the resulting outlets after pruning
was done according to the lowest number of the group of outlets that
were pruned (i.e., if outlets 22, 23 and 24 were pruned into a single
outlet, the resulting outlet was given the number 22). In the next
step of the truncation process, bifurcations containing outlets which
perfused the same tissue type (either healthy or tumor) were pruned
(green and red circles in Figure 4.2B); bifurcations which contained
both were not simplified (e.g., the bifurcation consisting of branches
37–38 and 39–46 in Figure 4.2B). The few remaining outlets with
TPP <1% (orange branches in Figure 4.2B) were pruned according to
the same methodology as before: if the total bifurcation to which the
outlet belonged had a TPP>1%, the resulting outlet was considered
tumor (e.g., the case for branches 30–31, which were pruned and res-
ulted in outlet 29 in Figure 4.2D); if the TPP<1%, it was considered
healthy. Similarly, pruned outlets that were too short (<5 mm on the
centerline) were extended to a total length of 20mm (e.g., branch 6
and 44 in Figure 4.2D). The second step of the truncation process
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resulted in the third and final solid model, denoted as Geometry 3
(17 outlets, Figure 4.2C). In Geometry 3, the remaining branches
with TPPs ≤1% - which could not be pruned in steps one or two -
are considered tumor if the tumor flow contribution in that branch is
>50% of the total flow through that branch (considering that each of
these branches perfuses both the tumor and a fraction of the healthy
tissue), and considered as healthy if the tumor flow contribution is
<50%. A detailed explanation of how the healthy and tumor flow
contributions were determined is outlined in Section 4.3.2.2. As a
result, 8 out of 17 branches in Geometry 3 (i.e., branches 1, 3, 4, 5,
20, 29, 39, and 44) are considered as tumor (green branches in Figure
4.2D); these are the main arterial feeders that feed 98% of the tumor
tissue. Additionally, in these feeders, the tumor flow contribution
ranges from 48 to 94% of the total flow through the feeders.

In Figure 4.2E, three 2D-views of the 3D models of the hepatic
arteries of Geometry 3 are shown, indicating the relative position of
the main arterial feeders to the tumor mass. It can be seen that
the main arterial feeders are either pointing towards the tumor mass,
or are located inside the tumor mass. Importantly, the truncation
algorithm did not allow for truncation of the two most proximal bi-
furcation levels in the arterial tree, since it is assumed that these
bifurcations could play an important role in downstream particle dis-
tribution.

4.2.2.3 Catheter Modeling
The truncation process resulted in three arterial geometries of dif-
fering complexity, with the number of outlets varying from 17 (Geo-
metry 3) to 48 (Geometry 1). For each geometry, the inlet was ex-
truded by 80 mm in SpaceClaim (Ansys, United States). This was
done to account for the entrance length (estimated as ∼80 mm) so
that a computationally straightforward, uniform velocity could be
applied at the extruded inlet, and a physiological parabolic-like ve-
locity profile would develop before the “true” inlet of the geometry.
Next, four versions of the solid model of each geometry were made:
three with catheters embedded in the lumen of the PHA at different
cross-sectional positions (see Figure 4.3B), and one without a cath-
eter (see Figure 4.3A). The catheter was modeled as a thin-walled,
straight tube, with a total length of 80 mm and a representative inner
diameter of 0.7 mm. In total, 12 solid models were made, totaling
3 planar injections in Geometries 1–3 (Sim. 1–3 in Table 4.1) and 9
catheter injections in Geometries 1–3 (Sim. 4–12).
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Figure 4.2: (A) Schematic of Geometry 1. Red branches indicate healthy
branches (TPP = 0%), orange branches indicate branches that perfuse a
small fraction of the tumor (TPP≤1%), green branches indicate branches
that perfuse a significant portion of tumor tissue (TPP>1%). Ellipses indic-
ate which branches of Geometry 1 were pruned. (B) Schematic of Geometry
2; bold indices indicate where arteries were pruned. (C) 3D reconstructions
of Geometries 1 and 2. (D) Schematic of Geometry 3, with the main arterial
feeders denoted in green and the healthy-perfusing branches denoted in red.
(E) 3D model of Geometry 3 (3 views), showing the relative position of the
17 outlets with respect to the tumor mass.

Figure 4.3: Particle injection locations for all simulations (shown here for
Geometry 3). (A) Axial injection location for the planar injection, (B) axial
and in-plane catheter tip locations for the 3 catheter injections.
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Table 4.2: Overview of the sizes and flow fractions for the 48 outlets of
Geometry 1.

Outlet Diameter (mm) Flow fraction (%)
1 3.58 4.07
2 3.23 0.79
3 4.94 4.37
4 4.12 3.45
5 3.39 2.99
6 3.31 0.69
7 3.05 0.62
8 3.08 0.62
9 3.35 0.62
10 3.33 0.62
11 3.6 0.34
12 3.22 0.11
13 3.36 0.11
14 3.26 0.11
15 3.10 1.24
16 2.77 1.24
17 3.25 3.66
18 3.20 1.80
19 3.35 0.33
20 4.08 3.05
21 3.26 0.84
22 3.26 0.23
23 2.29 0.11
24 3.34 0.12
25 3.11 0.50
26 3.48 0.22
27 3.01 0.22
28 3.32 3.63
29 3.40 2.60
30 2.76 1.33
31 3.01 0.26
32 3.02 0.07
33 2.74 0.77
34 2.94 0.07
35 3.35 0.97
36 4.41 8.94
37 3.73 0.82
38 2.85 0.82
39 3.33 13.32
40 2.75 6.03
41 3.25 3.39
42 3.08 2.99
43 2.92 6.00
44 3.69 2.59
45 3.55 3.95
46 3.01 4.32
47 3.81 0.59
48 2.54 3.47
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4.2.2.4 Geometry Discretization
The twelve solid models were imported into ANSYS Fluent Meshing
(Ansys, United States). For all geometries, the minimum and max-
imum size of the surface mesh elements were set as 8 · 10−6 m and
3.5 · 10−4 m, respectively, with a growth rate of 1.2. For the solid
models without catheters embedded in the lumen, the size of the tet-
rahedral volume elements of the arterial body was set to 3 · 10−4 m
(which was determined through mesh sensitivity studies). Three lay-
ers of prism elements were enabled near the walls to better capture
the near-wall fluid behavior, with a growth rate of 1.2. This resulted
in meshes of 6.68 ·106, 6.19 ·106, and 3.97 ·106 elements for Geometry
1, 2 and 3, respectively (Sim. 1–3). For the solid models with cathet-
ers, the arterial body sizing was kept the same, while the tetrahedral
element body sizing of the catheter was set at 7 ·10−5 m (determined
through mesh sensitivity studies). The surface mesh of the catheter
inlet was sized at 3 · 10−5 m. Three inflation layers of prism elements
near the arterial and catheter walls were also enabled. For Geometry
1, the three catheter models resulted in meshes of 9.74 ·106, 9.59 ·106,
and 9.73 ·106 elements (Sim. 4, 7, 10, respectively). For Geometry 2,
the three meshes consisted of 9.08 · 106, 8.94 · 106 and 10.3 · 106 ele-
ments (Sim. 5, 8, 11, respectively); for Geometry 3, the three meshes
contained 6.45 · 106, 6.32 · 106 and 6.45 · 106 elements (Sim. 6, 9, 12).
Next, the twelve meshes were imported into Fluent (Ansys, United
States) to model the flow and microparticle behavior.

4.3 Numerical Model

4.3.1 Multiphysics Flow and Microparticle Model
To model the flow and microparticle distribution in the hepatic ar-
terial geometries, a multiphase approach was employed which con-
siders both the continuous phase (blood) and the discrete phase (mi-
croparticles). The governing equations of conservation of mass and
momentum are given in Equation 4.1 (where u⃗ [m/s] is the velocity
vector) and 4.2 (where ρ [kg/m3] is the density of the fluid, ⃗⃗τ [Pa] is
the shear stress tensor, and f⃗ [N] are the forces acting on the fluid),
respectively:

∇⃗ · u⃗ = 0 (4.1)

ρ(∂u⃗

∂t
+ (u⃗ · ∇⃗)u⃗) = −∇p + ∇⃗ · ⃗⃗τ + f⃗ (4.2)
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Blood is modeled as an incompressible, shear-thinning fluid with
a density of 1060 kg/m3. Generally, as shown in Equation 4.3, shear
stress tensor (⃗⃗τ [Pa]) depends on the blood velocity and apparent
blood viscosity (µ(γ̇) [Pa·s]), which depends on the shear rate (γ̇
[s−1]). The viscosity of blood is modeled with a simplified Quemada
model [126], which considers that viscosity depends on the hematocrit
value and shear rate. In these equations, µ [Pa·s] is the dynamic
viscosity of the fluid, γ̇ [s−1] is the shear rate, µ0 is the minimum
viscosity, µ∞ is the asymptotic viscosity, τ0 [Pa] is the apparent yield
stress and λ [s−1] is the shear stress modifier. These parameters take
the following values adapted from literature: µ0 = 0.00309 Pa·s, µ∞
= 0.002654 Pa·s, τ0 = 0.004360 Pa, and λ = 0.02181 s−1. According
to the simplified Quemada model, viscosity decreases with increasing
shear rate, but is assumed equal to µ0 for higher shear rates for the
sake of computational simplicity, as can be seen in Equation 4.4. The
shear rate can be calculated according to Equation 4.5.

⃗⃗τ = µ(γ̇)[▽u⃗ + (▽u⃗)T ] (4.3)

µ(γ̇) = max{µ0, (√µ∞ +
√

τ0√
λ +

√
γ̇

)2} (4.4)

γ̇ =
√

▽u⃗[▽u⃗ + (▽u⃗)T ] (4.5)

Microparticles are modeled as inert spheres with a diameter (dp)
of 40 · 10−6 m and a density (ρp) of 1600 kg/m3, similar to SIR-
Spheres. The microparticle trajectories throughout the hepatic ar-
terial geometries can be calculated by integrating the force balance
(which equals the product of particle mass (mp [kg]) and particle ac-
celeration (

⃗dup

dt [m/s2])), as given by Newton’s second law in Equation
4.6, twice.

mp
d⃗up

dt
= F⃗D + F⃗G + F⃗P + F⃗V (4.6)

where the following forces acting on the microparticles are con-
sidered: the gravitational force, F⃗G (Equation 4.7; where g⃗ [m/s2] is
the gravitational vector); the drag force, F⃗D (Equation 4.8, where CD

is drag coefficient, u⃗p [m/s] is the particle velocity vector, and Rep is
the particle Reynolds number calculated according to Equation 4.9);
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the pressure gradient force, F⃗P (Equation 4.10); and the virtual mass
force, F⃗V (Equation 4.11, where CV is the virtual mass coefficient).

F⃗G = mpg⃗
(ρp − ρ)

ρp
(4.7)

F⃗D = mp
18µ

ρpd2
p

CDRep

24 (u⃗ − u⃗p) (4.8)

Rep = ρdp | u⃗p − u⃗ |
µ

(4.9)

F⃗P = mp
ρ

ρp
(u⃗p · ∇⃗)u⃗) (4.10)

F⃗V = CV mp
ρ

ρp
((u⃗p · ∇⃗)u⃗ − d⃗up

dt
) (4.11)

4.3.2 Boundary Conditions
4.3.2.1 Inlet Boundary Conditions
For the inlet boundary conditions, a spatially uniform velocity profile
was imposed, while the original geometry inlet was extruded by 80
mm to account for the entrance length needed to let a more physiolo-
gical flow profile develop. At the extruded inlet, a pulsatile waveform
with a period of 0.8 s and a minimum/mean/max inflow velocity of
0.041/0.121/0.260 m/s was prescribed (see Figure 4.4). The wave-
form was derived from an in-house 1D model of the arterial circulation
in humans ([127]) and scaled so that the average inflow equaled the
inflow as determined by the outlet boundary conditions (see below).

Particles were injected every 0.01 s throughout the third cycle
(allowing two prior cycles for flow development). For the planar in-
jections (Sim. 1–3), particles were injected over the entirety of the
axial injection plane (see Figure 4.3A). For the three catheter injec-
tions (Sim. 4–12), particles were injected (together with blood) at
the start of the catheter at the hepatic arterial inlet corresponding to
three different cross-sectional catheter tip locations (see Figure 4.3B).
The particle injection velocity was set at 0.12 m/s (which corresponds
with the mean blood flow velocity around the catheter tip), leading
to a catheter flow rate of 2.77 ml/min.
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Figure 4.4: Inlet flow curve displayed for 1 representative cardiac cycle
of 0.8 s. For the outlet boundary condition methodology, both healthy and
tumoral flow contributions (which is 0 for outlets perfusing 0% of the tumor
mass) are calculated for each outlet (shown here for outlets 46, 47, 48 in
segment VIII).

4.3.2.2 Outlet Boundary Conditions
Since the tumoral mass was mainly peripherally vascularized, it was
considered likely that the arterial feeders of the tumor also, partly,
perfused the surrounding healthy parenchyma. Therefore, the out-
flow of each outlet (denoted here as b) of Geometry 1, Qb [ml/min],
was considered as the summation of two flow terms: the healthy flow
contribution, Qh,b [ml/min], and the tumoral flow contribution, Qt,b

[ml/min]. The healthy flow contribution for each outlet b of Geo-
metry 1, Qh,b, was determined according to the methodology devised
by Aramburu et al. [128]. First, the volumes of each of the eight hep-
atic segments, Vs [ml], were set by scaling the literature-based seg-
mental volumes to match the total liver volume of this patient-specific
case (which was estimated as 1,357 ml in Mimics). Second, the total
segmental arterial flow perfusing each segment s, Qs [ml/min], was
defined as:

Qs = Vs · kh (4.12)

where kh [1/min] is the healthy perfusion parameter, which equals
0.100 1/min (considered the same for all segments and determined by
Aramburu et al. [128]). Third, the total segmental flow was divided
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over the different outlets perfusing one segment. From the CT-scans
and the 3D model, it was derived which of the 48 outlets of Geometry
1 perfused which hepatic segment. Assuming that, within a segment,
the flow split occurs symmetrically along each bi- or trifurcation, the
healthy flow contribution of one arterial outlet, Qh,b, could be determ-
ined from the segmental flow, Qs by considering the intrasegmental
branching fraction BFb(i.e., 1/2 for the first bifurcation, 1/4 for the
second bifurcation, etc.).

Qh,b = Qs · BFb (4.13)

Concurrently, the tumoral flow contribution for outlet b, Qt,b

[ml/min], can be directly determined from the TPP of the region
growing model. Similar to the methodology above, the total tumoral
flow, Qt [ml/min] , can be calculated from the perfusion parameter
for cancerous tissue, kc [1/min], and the tumoral volume, Vt [ml]:

Qt = Vt · kc (4.14)

Aramburu et al. previously theorized that, since the metabolic
demand of tumor tissue is typically higher than that of healthy tissue,
this should be reflected in the perfusion parameter, k. Here, kc was
set equal to 0.415 1/min, over four times higher than the healthy
perfusion parameter, kh (as previously estimated by Aramburu et al.
[128]). Next, since the TPP reflects the fraction of tumoral volume
that was perfused by one outlet, multiplying the TPP [%] with the
total tumoral flow, Qt, gives the tumoral flow contribution of each
branch.

Qt,b = Qt · TPP (4.15)

Finally, as explained before, the total outflow in branch b is the
summation of the healthy and tumoral flow (which equals zero for
healthy-perfusing branches) terms:

Qb = Qh,b + Qt,b (4.16)

The outflow boundary condition methodology is also shown in
Figure 4.4 (for outlets 46, 47 and 48). In Table 4.2, the flow frac-
tions (calculated according to the methodology outlined above) are
given for each outlet in Geometry 1. Once Qb is determined for all
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outlets of Geometry 1, the total inflow through the inlet (through
the principle of mass conservation) is also fixed. The healthy inflow
contribution was 136 ml/min, while the tumoral inflow contribution
was 129 ml/min, giving a total hepatic arterial inflow of 264 ml/min.
This value was used to appropriately scale the inflow waveform, which
was determined previously from the 1D model. The 1D inlet velocity
waveform for 1 cardiac cycle is also shown in Figure 4.4. At the walls,
the “no-slip” boundary condition was employed for the fluid phase.
For the microparticles, the tangential and normal wall restitution
coefficients were set to 1.

4.3.2.3 Solver Settings
For pressure-velocity coupling, the SIMPLE algorithm was used; for
spatial discretization, the gradient least-squares cell-based scheme
was used; for pressure and momentum the second-order and second-
order upwind schemes were used, respectively. The under-relaxation
factors were kept at default (0.3 for pressure, 0.7 for momentum,
1 for density and body forces). The solution was initialized using
a hybrid initialization scheme of 10 iterations. The time step size
was varied between 0.5 · 10−3 s (for the acceleration and decelerating
part of the cycle) and 1 · 10−3 s (for the flatter parts of the cycle).
The maximum number of iterations specified for each time step was
50. Absolute globally scaled residuals lower than 1 · 10−5 were at-
tained during every time step. Importantly, the particle distribution
is sensitive to the total computational time: the more flow cycles are
run, the more particles will exit the domain. To decide on the limit
between convergence of the particle exit fractions and unnecessary
computational time, additional flow cycles were run until <1.5% of
the total injected particles exited in the latest cycle (leading to a
range of simulations running for 9–14 cycles).

4.3.3 Post-Processing
4.3.3.1 Particle Grid Methodology
Particle Release Maps (PRMs) are typically used to visualize the im-
pact of the cross-sectional injection location (for a given axial plane)
on particle fate for a specific injection timing. Combining PRMs
of multiple injection timings to visualize the impact of the cross-
sectional injection location on particle fate throughout the cardiac
cycle yields the Composite Particle Release Maps (CPRMs, as intro-
duced by Childress et al. [116] for simplified arterial geometries). Pre-
viously, Childress and Kleinstreuer [129] also plotted PRMs against
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background reference grids to calculate the number of matching sub-
sections between different PRMs (again for simplified geometries).

Here, we use uniform reference grids to systematically replot the
PRMs and call this the Particle Grid methodology, allowing to com-
pute Particle Release Grids (PRGs) and Composite Particle Release
Grids (CPRGs). The added value of the Particle Grid methodology
is that comparing PRMs for different axial planes is difficult, because
the density of the plane points may vary between different injections,
which may result in unequal comparisons. This is not the case for
PRGs, due to the use of the reference grid. In our Particle Grid
methodology for patient-specific arterial geometries, CPRGs are gen-
erated in three succinct steps: 1) generation of Particle Release Maps
(PRMs), spatially encoding these PRMs into Particle Release Grids
(PRGs) by uniform resampling inside a two-dimensional plane, and
3) combining information of different PRGs, generated at different
injection timings, into one CPRG representing the full cardiac cycle.

First, Particle Release Maps (PRMs) are generated as color-coded
visualizations of the axial injection plane at a specific injection tim-
ing, showing through which outlet a particle, injected at a specific
cross-sectional location, exits (see Figure 4.5A for an example). As
defined in Figure 4.5B, injection positions leading to particles exiting
through one of the main arterial feeders of the tumor are annotated
in green (“tumor”); injection positions leading to particles exiting
through one of the healthy-perfusing branches are annotated in red
(“healthy”); and injection positions leading to particles getting stuck
and not exiting the domain are annotated in black (“no exit”). Next,
Particle Release Grids (PRGs) are generated by plotting PRMs on
a two-dimensional reference grid of equally-sized cells with a spacing
of 1 · 10−4 m (Figure 4.5C). For each grid cell, only particle injection
positions within the cell limits are considered: if all injected particles
within that cell exit through tumor-perfusing branches, the cell value
is denoted as “tumor” (colored in green); if all injected particles
exit through healthy-perfusing branches, the cell value is denoted as
“healthy” (red); if all injected particles remain stuck in the domain,
then the cell value is defined as “no exit” (black); if some injected
particles exit through tumor-perfusing branches and others through
healthy-perfusing branches (or not exiting at all), the cell value is de-
noted as “spatially uncertain” (gray); if no particles were injected, the
grid cell is denoted as “no value” (white) (Figure 4.5B). Note that the
grid spacing must be patient-specific to balance the number of gray
and white cells, as a grid spacing that is too large will result in mostly
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gray cells, and a grid spacing that is too small will result in a large
number of white cells. For time-dependent inflows, multiple injection
bursts occur throughout the injection cycle at specified intervals, and
a PRG can be generated for each injection burst (see Figure 4.5D for
a selection of PRGs at four injection timings). Since the spatial grids
are identical for each burst, PRG cell values can be compared across
different injection timings, resulting in the CPRG cell value. For this
study, the CPRGs were composed based on eight selected injection
timings with a spacing of 0.1 s (1.6-2.3 s) to represent temporal vari-
ation during the full cardiac cycle. The value of the CPRG cells is
defined as follows (Figure 4.5E): if most PRG cells of the selected tim-
ings (>75%) are “tumor” (green), the CPRG cell value is denoted as
“tumor/constant” (green); if most PRG cells (>75%) are “healthy”
(red), the CPRG cell value is denoted as “healthy/constant” (red); if
most PRG cells (>75%) are “no exit” (black), the CPRG cell value
is denoted as “no exit/constant” (black); if <75% but >50% of PRG
cells throughout injection is “tumor”, the cell value is denoted as “tu-
mor/mostly” (yellow); if <75% but >50% of PRG cells is “healthy”,
the cell value is denoted as “healthy/mostly” (orange); if PRG cells
are divided between “tumor”, “healthy” and “no exit” without any
of the above rules applying, then the resulting value is “temporally
uncertain” (pink); however, if PRG cells are divided, but >37.5% of
cells are “no value” (white), then the CPRG cell is denoted as “no
value” (white); and similarly, if >37.5% of the cells are “spatially
uncertain” (gray), the CPRG cell is denoted as “spatially uncertain”
(grey), as well. As a result, merging multiple PRGs into a Com-
posite Particle Release Grid (CPRG) combines spatial and temporal
information on particle fate (Figure 4.5F).

4.3.3.2 Grid-Based Particle Distribution
For the planar injections, the PRGs for all injection timings through-
out the injection cycle can be used to determine the grid-based
particle distribution. For each outlet x, the “cell fraction” (or CFx)
can be determined, which is the number of grid cells associated with
outlet x divided by the sum of the number of cells associated with
one of the 48 outlets and the “no exit” outlets (Equation 4.17).

CFx = #cellx∑48
x=1 #cellx + #cellnoexit

(4.17)

For Geometries 2 and 3, the CF can only be calculated for the
38 and 17 outlets of those geometries, respectively. Therefore, to
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Figure 4.5: Generating Composite Particle Release Grids (CPRGs): (A)
Particle Release Maps show the relation between injection location and
particle fate (green: tumor, black: no exit, red: healthy, gray: spatially
uncertain, white: no value). (B) By defining a reference grid and assigning
each grid cell a color according to the particle fate of the injection positions
within that cell, a Particle Release Grid (PRG) is obtained. (C) PRG for
injection at the start of the cycle (1.6 s). (D) PRGs visualized for four
injection timings (1.6 s, 1.8 s, 2.0 s, 2.2 s). (E) By comparing PRG cell
values for different injection timings, a CPRG is generated (green: “tumor”
for >75% of the timings, red: “healthy” for >75% of the timings, yellow:
“tumor” >50%, orange: “healthy” >50%, black: >75% “no exit”, pink: no
majority fate found, gray: >37.5% “uncertain”, white: >37.5% “no value”).
(F) CPRG generated for the full cycle, based on 8 injection timings (1.6–2.3
s, with a spacing of 0.1 s).

determine the particle distribution at all 48 outlets of the original
geometry, it is assumed that, beyond the truncated outlets of Geo-
metry 2 and 3, particles distribute themselves proportional to the
imposed flow distribution of Geometry 1. The resulting model is a
hybrid particle-flow model, where particle distribution is modeled un-
til the level of the truncated outlets, and the remainder of the particle
distribution is modeled by the flow distribution. As a result, the CFs
for Geometry 2 and 3 are not technically the same “cell fractions” as
for Geometry 1; in these truncated geometries, they are named the
“truncated cell fraction” (or TCF), and can be calculated as:

TCFx = CFx∗ · FFx (4.18)

where FFx is the flow fraction of outlet x (Qx in Eq. 4.19), i.e., the
outflow BC of outlet x in Geometry 1 divided by the outflow BC of the
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upstream, truncated outlet x∗ in Geometry 2 or 3 ( Qx∗ in Equation
4.19). As a simple example, if a trifurcation of equal-flow branches
(x1-x3) in Geometry 1 is simplified into a truncated single branch
(x∗) in Geometry 2, the outflow BC in the truncated single branch
x∗ will be three times the flow in any of the original trifurcation
branches x1-x3; consequently, FFx will be 1/3, and particles exiting
outlet x∗ in Geometry 2 will be assumed to distribute evenly among
branches x1-x3). Hence, FFx can simply be determined as:

FFx = Qx

Qx∗
(4.19)

4.3.3.3 Catheter Particle Distribution
For the catheter injections in Geometry 1, the particle distribution
(also deemed the “exit fraction” (EFx) in Equation 4.20) can simply
be calculated as the fraction of the number of particles exiting
through outlet x over the total number of particles which exit the
catheter (Equation 4.20). Again, the truncated EFs (TEFs) are
calculated by considering that the particles exiting the outlets in
Geometry 2 and 3 distribute proportionally to the flow distribution
(Equation 4.21), with FFx defined as before.

EFx = #particlesx

#particlescatheter−exit
(4.20)

TEFx = EFx∗
FFx

(4.21)

4.4 Results

To determine the impact of geometry truncation on the particle dis-
tribution, the planar and catheter injections in each of the three
geometries are compared. First, the CPRGs are compared in Section
4.4.2.1, both visually and quantitatively (based on the TD distri-
bution for a number of randomly sampled catheter injection loca-
tions). Second, the grid-based particle distribution (i.e., (T)CFs) for
the planar injections (Section 4.4.2.2) and the (T)EFs resulting from
catheter injections (Section 4.4.3) are compared in each correspond-
ing geometry.
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4.4.1 Particle Progression in Domain
The cumulative particle exit fraction (relative to the total number of
injected particles) is plotted in Figure 4.6. Generally, it can be seen
that the particles started exiting from the fifth flow cycle onwards (see
t = 3.2 s and arrows in Figure 4.6). For the planar injections (panel
A in Figure 4.6, 12 flow cycles were needed for Geometry 1 (9 after
the end of the particle injection cycle), 12 for Geometry 2, and 10
for Geometry 3. For the first catheter injection in Geometry 3 (panel
B), only 10 cycles were run, compared to the 12 cycles necessary
for Geometry 1 and 2. For the second catheter injection (panel C), 4
cycles less were needed for Geometry 3 than for Geometry 1 and 2 (10
compared to 14); for the third catheter injection (panels D), 2 cycles
less were needed for Geometry 3 than for Geometry 1 (9 compared
to 11), and 1 cycle less was needed for Geometry 2 compared to
Geometry 1.

Figure 4.6: Cumulative particle exit fractions for Geometries 1–3 (Geo-
metry 3 is the top curve, Geometry 1–2 are the dashed curves) plotted
against flow time (plotted from the start of the fourth flow cycle onward;
2.4 s). (A) Planar injections. (B–C–D) catheter locations 1, 2 and 3, re-
spectively. Globally, particles start exiting starting at the start of the 5th
cycle (3.2 s—see arrow).

4.4.2 Planar Injections
4.4.2.1 Particle Grids
For the planar injections, the CPRGs of the axial injection plane of
each geometry are displayed in Figure 4.7. Visually, there is some
mismatch between the three CPRGs, although the major trends are
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similar for all geometries. At the center of the CPRG, there is a large
green zone. Peripherally, a U-shaped zone of pink and yellow cells
appears. The border is dominated by black or gray cells, while there
are no large zones of orange or red cells.

Figure 4.7: (A) Streamline visualization at peak systole for particle release
at the injection plane for Geometry 1–3 (Sim. 1–3). (B) The CPRGs for the
3 geometries show that particles injected at the center of the cross-section
(green zone) lead to >75% of tumor targeting throughout the cycle. Com-
paring CPRGs, consistency of the major visual trends across all geometries
is visible, with only minor differences.

4.4.2.2 Grid-Based Particle Distribution
Computing the grid-based particle distribution for the planar injec-
tion (Figure 4.8A), the minima, maxima, median and interquartile
ranges of the absolute (T)CF differences between the geometries are
reported in Figure 4.8 (“Geometry 1 vs. 2”: comparing particle dis-
tribution between Geometry 1 and 2, “Geometry 1 vs. 3”: comparing
particle distribution between Geometry 1 and 3, “flow vs. particle:
comparing flow and particle distribution in Geometry 1). The me-
dian difference in outlet-specific (T)CF between Geometry 1 and 2
is 0.04% (with a reported maximum of 0.45% in outlet 48). The
median difference in outlet-specific (T)CF between Geometry 1 and
Geometry 3 is 0.21% (with a maximum of 0.70% reported in the
truncated outlet 42). Comparing the flow distribution and the CF in
Geometry 1, the median outlet-specific difference is 0.40% (maximum
of 1.71% reported in outlet 36).
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Figure 4.8: Boxplots comparing the differences in outlet particle distri-
bution ((T)CF in panel A, (T)EF for panels (B–D) in Geometry 1 and 2
(“Geometry 1 vs. 2”), Geometry 1 and 3 (“Geometry 1 vs. 3”), and the dif-
ferences in flow distribution and particle distribution in Geometry 1 (“flow
vs. particle”). This is done for each of the 4 simulation sets: (A) the planar
injection, and (B–C–D) catheter locations 1–3. For the planar injection, the
error range is clearly much smaller than for the catheter injections (max-
imum of 1.75 vs. 6%).

4.4.3 Catheter Injections
To compare the particle (and flow) distribution after the catheter
injections the three geometries, the median, maximum, interquartile
ranges and outliers of the absolute (T)EF differences between the
three geometries are displayed in Figures 4.8B-C-D. With regards to
the (T)EF per outlet for the first catheter injection location (see Fig-
ure 4.3B), the median difference between Geometry 1 and 2 is 0.06%
(maximum of 2.20% reported in outlet 28). The median difference
between Geometry 1 and 3 is 0.13% (maximum of 1.86% reported
in outlet 29). In Figure 4.9, the streamlines at peak systole during
the particle injection cycle (cycle 3) are shown in several of these
truncated outlets and compared to the hemodynamics in the original
outlets, highlighting the impact of geometry on blood flow for both
planar and catheter injections. The arrows in the panels for Geo-
metry 2 and 3 indicate where outlets were truncated (and thus, where
particle distribution was estimated based on solely flow modeling).
For outlets 17–21 in Geometry 1, the EFs after catheter injection at
Location 1 (Sim. 4) are compared to the TEFs of Geometry 2–3. The
(T)EFs for the remaining outlets 22–27 were not compared visually
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in Figure 4.9B because the difference between geometries were neg-
ligible (<0.10% for each outlet). For the second injection location,
the median difference in (T)EFs between Geometry 1 and 2 is 0.09%
(maximum of 3.32% in outlet 17) and 0.24% between Geometry 1 and
3 (maximum of 3.51% in outlet 17). For the third injection location,
the median difference in (T)EFs between Geometry 1 and 2 is 0.02%
(maximum of 1.53% in outlet 42); the median difference between
Geometry 1 and 3 is 0.14% (maximum of 2.52% in outlet 44). Next,
the particle EF and flow distribution in Geometry 1 are compared.
The median differences between outlet-specific EFs and outflows for
the three catheter locations are 0.55, 0.24, and 0.62%, respectively.
The maximal outlet-specific EF and outflow differences reported for
these catheter injections are 5.97, 6.44, and 5.89%, respectively.

Figure 4.9: (A) The impact of simplifying the hepatic arterial geometry
(Geometry 1–2–3) on the blood streamlines at peak systole. The arrows
indicate where outlets were truncated with respect to Geometry 1, i.e.,
where the downstream flow distribution was used to model the particle
distribution beyond the level of this truncated outlet. (B) The impact of
truncation on particle distribution in outlets 17–21.

4.5 Discussion

With regards to the computational strategy for determining the
particle distribution in the patient-specific hepatic arterial geometry,
four approaches can be outlined: i) modeling the full-complexity
particle distribution in Geometry 1; ii) using the hybrid particle-flow
model in the simplified Geometry 2, or iii) in the much more sim-
plified Geometry 3; and, iv) assuming that the flow distribution is
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an appropriate estimator of the particle distribution. In approaches
(i)-(iii), the microparticle behavior is explicitly modeled (until a
certain level); while, in approach (iv), it is not. Importantly, each
approach impacts the total computational complexity. Below, the
accuracy of the obtained results of each approach are discussed
(compared to the baseline particle distribution in Geometry 1, i.e.,
approach (i)).

4.5.1 Computational Cost
The plots of cumulative exit fraction with respect to flow time in
Figures 4.6A,B show that the advantage of simplifying the hepatic
arterial geometry from Geometry 1 to Geometry 3 with respect to
computational cost and time is twofold. First, the mesh contains sig-
nificantly less mesh elements, so overall computational cost decreases.
Second, more particles also exit the truncated Geometry 3, and less
flow cycles are needed to reach particle exit convergence. By truncat-
ing Geometry 1 to Geometry 2, these advantages are more limited:
the decrease in mesh elements is not so significant (for Catheter Loc-
ation 3 even non-existent), and the same number of flow cycles is
needed to reach convergence (with the exception of Catheter Loca-
tion 3). As an illustrative example of the impact of truncation on the
computational time (determined here explicitly for Catheter Loca-
tion 1), the average flow cycle time was 65 min for Geometry 1, 61.75
min for Geometry 2 and 57.25 min for Geometry 3 (run on a High-
Performance Computing cluster with 384 cores and 250 GB RAM).
Thus, by only considering the decrease in mesh elements, the com-
putational cost of Geometry 3 is ∼12% lower than for Geometry 1.
However, since only 10 flow cycles were needed for Geometry 3 to
reach particle exit convergence, while 12 flow cycles were needed for
Geometry 1, the total estimated computational time was 780 min for
Geometry 1 and 572.5 min for Geometry 3. This indicates a ∼27%
decrease in total computational cost by truncating Geometry 1 to
Geometry 3 for the full simulation.

4.5.2 Planar Injections
The CPRGs of the three geometries (Figure 4.7) show similar global
trends: particles which are injected at the periphery of the cross-
section have more trouble exiting the domain (black cells); the center
of the cross-section is the ideal injection location to target the main
tumor feeders of this liver (green cells); near the east to north-west
periphery, the uncertainty of tumor targeting increases (U-shaped
zone with increasing number of yellow or pink cells). There appear
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to be only a few cells where injection leads to steering particles away
from the main arterial feeders (red or orange cells). Conceptually, this
means that the central green zone would be the preferred injection
location over the more uncertain, U-shaped zone. Visually, these ma-
jor trends seem consistent between geometries, although some minor
differences between the CPRGs are apparent.

The grid-based particle distribution for the planar injections in
Geometry 2–3 shows that the median differences in particle distri-
bution with respect to Geometry 1 are very small (<0.25%) when
truncating the geometry. As seen in Figure 4.8, the median differ-
ence increases slightly when truncating Geometry 2 to Geometry 3
(from 0.04 to 0.21%), illustrating the impact of truncation. Based
on the limited median differences (<0.25%), the limited maximal dif-
ferences (<0.70%) and the preservation of the major trends in the
CPRGs, it can be said that the accuracy loss for a planar injec-
tion after truncating of Geometry 1 to Geometry 3 using the sugges-
ted pruning algorithm is limited for the patient-specific liver studied.
When modeling only the flow distribution in the planar injection, the
median and maximum differences between flow and particle distribu-
tion increase further (to 0.40 and 1.71%, respectively); indicating a
decrease in accuracy that is caused by not modeling the particle dis-
tribution. However, due to limited maximum differences (<2%), it
can be stated that, while modeling the particles has a clear advant-
age over modeling only the flow, the flow distribution is a decent
estimator of the full-complexity particle distribution for the planar
injection considered in this liver. If release maps similar to CPRGs
need to be obtained, CFD simulations can be used to generate the
flow pathlines after planar injection, as shown by Taebi et al. [130].
To estimate only the particle distribution, the CFD simulation would
not even be needed, reducing the simulation time to 0 [112]. How-
ever, it should also be emphasized that the particles in this study
are small, and that fluid-particle differences may increase for larger
particles (i.e., for TACE).

4.5.3 Catheter Injections
With regards to the differences in microparticle behavior for the three
catheter injections (“Geometry 1 vs. 2” and “Geometry 1 vs. 3”
in Figures 4.8B-C-D), the median differences in the outlet-based EF
between Geometry 1 and 2 (<0.10%) and Geometry 1 and 3 (<0.30%)
are still very small for each catheter injection separately. However, for
the maximal outlet-specific differences, some higher outliers (3.50%)
are reported than for the planar injections. Also, the median and
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75th percentile of the difference in particle distribution are always
larger for Geometry 3 than for Geometry 2 (although the maxima
are of a similar order of magnitude), illustrating the impact of trun-
cation. However, these differences are still minor, indicating that
the particle distribution in Geometry 1 can be reliably estimated
by the hybrid-particle flow model using the truncated Geometry 3
(at least for this patient-specific case). It is also clear from Figure
4.8 that for the first and third catheter injection (panels B–D), the
hybrid particle-flow model using Geometry 3 offers a significantly
better estimation of the full-complexity particle distribution than us-
ing just the flow distribution, given the significantly smaller median
and maximum differences for the truncated particle distribution. For
the second catheter injection (panel C), this is still the case, but
the discrepancy is less clear: the median difference in EF between
Geometry 1 and 3 (0.24%) is still less than the median difference in
flow and particle distribution (0.47%), but not as significantly as for
the other injection locations. When using just the flow distribution,
maximal outlet-specific differences of 6% are reported, which are sig-
nificantly higher than the outliers for the catheter injections (3.50%)
and for the planar injection (2%). Especially considering that nu-
merous outlets have low outflows (30/48 outlets in Geometry 1 have
<2% imposed outflows; maximum imposed outflow is 13.3%), abso-
lute outlet-specific differences of 6% are relatively high. These results
show that using the flow distribution as a surrogate for the particle
distribution is considerably less accurate than using the hybrid model,
indicating that flow modeling is preferably combined together with
explicit particle modeling in the first generations of the tree (at least
for catheter injections).

4.5.4 Summary
Summarizing the results of this study, the accuracy loss of the es-
timated particle distribution by truncating Geometry 1 to Geometry
3 is limited, but higher than truncating from Geometry 1 to 2, in-
dicating the impact of truncation. However, truncating Geometry 1
to Geometry 2 does not offer much added value, since the decrease
in computational time is very limited; in that sense, truncating Geo-
metry 1 to 3 offers much more added value due to the limited ac-
curacy loss and higher decrease in computational time. Meanwhile,
the accuracy loss in each geometry is significantly higher when only
the flow distribution is modeled (compared to also explicitly model-
ing the particle distribution). However, using the flow distribution
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as a surrogate for particle distribution is justified for the planar in-
jection due to limited accuracy loss, but less so for the catheter in-
jections. This indicates the importance of explicitly modeling the
particle distribution for catheter injections, at least to the level of
Geometry 3. These findings make sense because particles follow a
select number of blood streamlines after catheter ejection, and will
not mimic the flow distribution initially. However, for planar injec-
tions, particles are spread over the arterial cross-section, and tend to
mimic the flow distribution more. Figure 4.10 shows that particles,
after catheter injection in Geometry 3, have spread out over the en-
tire arterial cross-section by the time they reach the outlets (albeit
non-uniformly). This could partly explain why explicit particle mod-
eling beyond the level of the truncated outlets of Geometry 3 is not
strictly needed, and why hybrid particle-flow modeling may approx-
imate the full-complexity particle distribution well enough (at least
for this patient-specific geometry).

Figure 4.10: Illustration of the spread of particles across the cross-section
by the time they reach the outlets of Geometry 3 (displayed here for Cath-
eter Location 1).

4.5.5 Limitations and Future Work
This study puts forward an important approach to decrease compu-
tational complexity for current CFD simulations of transarterial radi-
oembolization for HCC. We introduced a hybrid particle-flow model,
as the results of this study stress the importance of modeling particle
behavior in the first few generations of the hepatic arterial geometry
(especially for catheter injections), but at the same time allowing to
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truncate the geometry further downstream according to the presented
truncation algorithm. The additional novelty of this work lies in the
consideration of a novel region growing method to determine outflow
boundary conditions; modeling of outflow boundary conditions for
outlets that perfuse both healthy and tumor tissue; and generating
patient-specific CPRGs, which had never been done before (neither
for CPRMs).

Importantly, this study also has several limitations. General lim-
itations regarding the CFD modeling approach are discussed in Sec-
tion 11.1, since the modeling approach was similar throughout the
dissertation. We also note there that all findings reported should
be interpreted with respect to this patient-specific case, and cannot
simply be extrapolated to other patients as of this moment. Below,
we discuss limitations regarding study approach.

First, only one particle type was modeled here, while many dif-
ferent particles types with distinct biophysical properties are com-
mercially available (i.e., larger particles, which might decrease the
accordance between flow and particle distribution and increase the
importance of explicit particle modeling). Conversely, for smaller
particles, particle inertia is lower, and the hybrid particle-flow model
might be an even better fit. Second, only three catheter tip locations
were investigated. While the three tip locations result in similar con-
clusions, we only modeled one axial location, and we assumed that
results would be translatable to other tip and axial injection loca-
tions.

With regard to future work, the appropriate truncation level
should be validated for more distal catheter injection locations, as
it would likely take particles longer to spread over the arterial cross-
section (see Figure 4.10) when injected at more downstream axial
injection locations.

In summary, this work introduces a hybrid particle-flow model for
truncated arterial trees and evaluates the suitability of this model for
a patient-specific HCC case. This alternative approach to CFD mod-
eling of radioembolization of liver tumors should allow to decrease
the computational cost of future CFD simulations.
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5
The Hybrid Model for Selective
Injection and Quantification of

Particle Spread Phenomena

Positioning of the chapter

To reduce the computational cost of patient-specific 3D CFD sim-
ulations of intra-arterial blood flow and drug transport, we showed
in Chapter 4 that the size of the computational geometry can be
reduced by truncating the outlets and assuming that microparticles
follow the bloodstream downstream of the truncation points (hybrid
particle-flow model). While we verified the hybrid particle-flow model
for superficial injection, we will also verify this for selective injection
in Chapter 5. Importantly, we also verify whether microparticles
spread out across the cross-section as they travel downstream, which
might increase the degree to which the particle and flow distribution
agree, with novel space- and time-dependent spread measures. We
will conclude Part II in Chapter 6 with the evaluation of additional
simplification strategies aside from truncation.

This chapter is based on the publication Spatiotemporal Analysis
of Particle Spread To Assess The Hybrid Particle-Flow CFD Model of
Radioembolization of HCC Tumors (T. Bomberna et al, IEEE Trans-
actions on Biomedical Engineering, 2023) [20].
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5.1 Introduction

A popular strategy to reduce model complexity is reduction of the
computational domain. Previously, Lertxundi et al. [124] introduced
a segment-based truncation strategy of the hepatic arteries, which
they illustrated in 3 patient-specific geometries with a fictional cancer
scenario. However, this strategy does not offer any information on
intrasegmental particle distribution. In contrast, we aimed to reduce
the computational domain while still allowing an estimation of the
particle distribution in the full arterial tree, including intrasegmental
events. This greater level of detail has several advantages, including
the possibility to reconstruct simulated patient-specific SPECT/CT
scans based on CFD simulations for validation purposes [121]. Hence,
we previously developed and illustrated a novel truncation strategy
in a patient-specific geometry with a patient-specific cancer scenario.
Our strategy consists of identifying the important arterial feeders
of the tumor using region growing algorithms, and then performing
truncation in different steps by grouping together healthy branches
and grouping together tumor-feeding branches.

Importantly, for the truncated branches, it is assumed that
particles distribute according to the flow distribution downstream of
the point of truncation (‘hybrid particle-flow model’, illustrated for 3
outlets in Fig. 5.1A which are truncated to 1 outlet in Fig. 5.1B-C).
Hence, even though we did not explicitly model microparticle
behavior in these truncated downstream sections of the arterial
tree, the hybrid modeling approach allows an (estimated) particle
distribution in the full-complexity arterial tree, instead of only a
number of segments (as was the case in [124]). The greatest downside
to this truncation strategy is that it is more stringent: a similar
particle distribution is not only wanted in truncated branches, but
also in branches downstream of the truncated branches.

The accuracy of this hybrid surrogate model was validated for
superficial microsphere injection in the PHA. Notably, the hybrid
model performed well, and gave significantly better results than only
modeling the flow distribution. We also hypothesized that a higher
extent of particle spread across the lumen’s cross-section could pro-
mote a more favorable match between flow and particle distribution.
However, when the microcatheter tip is placed more downstream for
more selective injections, two possible complications arise. First, the
length between the catheter tip and the end-points of the (truncated)
vessels decreases, possibly decreasing the extent to which particles
spread across the lumen cross-section, and thereby also the match
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Figure 5.1: (a) Part of the full-complexity hepatic arterial tree with outlets
22-24 indicated. (b) Part of the truncated hepatic arterial tree with out-
lets 22-24 combined into outlet 22*. (c) In the hybrid model, the particle
distribution at outlet 22* is determined with CFD, and then the particle
distribution beyond outlet 22* is determined by the flow distribution going
to o22-24.

between flow and particle distribution in the downstream vessels.
Second, for selective injections, there is limited space for downstream
truncation.

Hence, the goals of this study are threefold. First, the perform-
ance of the hybrid-particle flow model will be re-evaluated for two
selective injection scenarios: in the RHA and LHA. Second, we will
investigate how particle spread occurs across the lumen, and whether
it decreases for selective injection. Third, we will evaluate whether
upstream truncation is a reliable simplification strategy in addition
to the hybrid model.

5.2 Methods

In Section 5.2.1, an overview of the simulations used in this study
is given. Details regarding the up- and downstream truncation al-
gorithm, the meshing process and the particle spread measures are
given in Sections 5.2.2-5.2.7. The mathematical details behind the
multiphase model were previously given in Section 4.3.

5.2.1 Study design
One reference simulation is defined (Sim. 0) where microparticles are
injected superficially in the PHA in the full arterial tree (Geometry
1). In Chapter 4, the downstream truncation algorithm of the full-
complexity geometry (Geometry 1, 48 outlets) was presented in two
steps, resulting in the moderately reduced Geometry 2 (38 outlets)
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and the severely reduced Geometry 3 (17 outlets) (see Fig. 5.2A).
Here, the particle distributions for an RHA and an LHA selective in-
jection scenario will be compared between the same three geometries,
resulting in 6 simulations (Table 5.1, Sim. 1-6). For upstream trun-
cation, three geometries with varying levels of reduction are defined
as well (Fig. 5.2B-C; Table 5.1, Sim. 7-12).

Table 5.1: Study design

Simulation Geometry Outlets Injection scenario
Sim. 0 Geometry 1 48 PHA (Superficial)
Sim. 1 Geometry 1 48 RHA (Selective)
Sim. 2 Geometry 2 38 RHA (Selective)
Sim. 3 Geometry 3 17 RHA (Selective)
Sim. 4 Geometry 1 48 LHA (Selective)
Sim. 5 Geometry 2 38 LHA (Selective)
Sim. 6 Geometry 3 17 LHA (Selective)
Sim. 7 Geometry RU1 6 RHA (Selective)
Sim. 8 Geometry RU2 6 RHA (Selective)
Sim. 9 Geometry RU3 6 RHA (Selective)
Sim. 10 Geometry LU1 13 LHA (Selective)
Sim. 11 Geometry LU2 13 LHA (Selective)
Sim. 12 Geometry LU3 13 LHA (Selective)

5.2.2 Truncation algorithm
The preparation of the patient-specific simulation geometry (based on
conebeam CT-data, as approved by the Ethical Committee of Uni-
versity Hospitals Leuven) and the downstream truncation algorithm
starting from Geometry 1 (48 outlets) was explained in detail in
Chapter 4. In short, the geometry was truncated in two steps. In
the first step, bifurcations which perfused <1% of the total tumor
volume were deemed as ‘healthy’ and pruned; if higher tumor per-
fusion, they were deemed as ‘tumor’ and pruned (Geometry 2, 38
outlets, Fig. 5.2A). In the second step, bifurcations containing all
‘healthy’ branches or all ‘tumor’ branches were pruned until no more
outlets perfusing the same tissue type could be grouped (Geometry 3,
17 outlets, Fig. 5.2A). If the lengths of the pruned outlets were too
short, they were extruded artificially to allow proper flow develop-
ment after bifurcations (avoiding unwanted disturbed flow behavior).
For the upstream truncation, a three-step algorithm was used.

We only performed upstream truncation on Geometry 3 to keep
the total number of simulations manageable; hereby, we assumed that
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the sensitivity of the particle distribution towards upstream trunca-
tion is similar for Geometries 1–2 compared to Geometry 3. First,
the catheter-containing branch was truncated at a centerline length
of 80 mm preceding the catheter tip (similar to the laminar entrance
length). Every side branch branching off the catheter-containing
branch upstream from the tip was kept intact for a length of 25
mm (we noted that shorter lengths can lead to flow reversal at the
outlets). More specifically, if no other bifurcations were present on
the side branch before the 25 mm-mark, the side branch was pruned
at that mark; if other bifurcations arose off the side branch before
the mark, the side branch was pruned before the bifurcation, and
the branch was artificially extruded to 25 mm. For example, for the
RHA injection, the bifurcation where the LHA splits off the PHA
was kept intact, but the entire LHA was reduced to a single branch
of 25 mm (Fig. 5.2B, Geometry RU1), reducing the total number of
outlets from 17 to 6. For the LHA injection, the entire RHA branch
was pruned, reducing the outlets from 17 to 13 (Fig. 5.2C, Geometry
LU1). In the next two steps of the algorithm, the same procedure
was repeated, but with a centerline length of 50 mm (Geometry RU2,
LU2 in Fig. 5.2B-C) and 20 mm (Geometry RU3, LU3, Fig. 5.2B-
C) before the catheter tip, respectively. This impacted the entrance
length, but not the number of outlets.

5.2.3 Geometry and mesh details
The same meshing strategy was employed as in Chapter 4. In total, 6
geometries were developed for each of the 2 injection scenarios, lead-
ing to 12 different meshes. Mesh sensitivity analyses for both sizing
of the catheter and arterial body were run. Target sizes of 7 · 10−5 m
and 3 ·10−4 m were specified for the lumen of the catheter and the ar-
teries, respectively. Parameters of interest were the wall shear stress
and pressure fields, and cross-sectional velocity profiles at the first
bifurcation (threshold of <5% difference in average and 95-percentile
values between successive meshes) and the particle distribution at the
outlets (<1% difference). Both bodies were meshed using tetrahedral
elements; three prism boundary layers were enabled near the walls.
The target size at the catheter inlet was 3 · 10−5 m.

For the RHA models (Sim. 1–3, 7–9), the resulting meshes of
Geometry 1–3 contained 11.2 · 106 elements (48 outlets), 10.6 · 106

elements (38 outlets) and 7.92·106 elements (17 outlets), respectively.
The meshes generated by upstream truncation (Geometry RU1, RU2
and RU3; 6 outlets) contained 4.48 · 106 elements, 3.43 · 106 elements
and 2.19 ·106 elements, respectively. For the LHA models, (Sim. 4-6,
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Figure 5.2: (a) Geometry 1 (baseline geometry), Geometry 2–3 gener-
ated by the first and second step of downstream truncation, respectively.
(b) Geometry RU1-RU3 generated by upstream truncation of Geometry 3;
branches upstream of the catheter tip in the RHA are pruned. (c) Geometry
LU1-LU3 generated by upstream truncation of Geometry 3; branches up-
stream of the catheter tip in the LHA are pruned.

10-12), the meshes of Geometry 1–3 contained 11.1 · 106 elements
(48 outlets), 10.5 · 106 elements (38 outlets) and 7.85 · 106 elements
(17 outlets), respectively. For Geometries LU1-LU3, the meshes con-
tained 4.86 · 106 elements, 3.70 · 106 elements and 2.60 · 106 elements
(13 outlets), respectively.

5.2.4 Numerical approach
Using CFD (Fluent, Ansys, USA) to calculate microparticle traject-
ories and distributions in the bloodstream entails a multiphysics ap-
proach: the continuous phase (blood flow) is solved using the con-
servation of mass and momentum, while the discrete phase (micro-
particles) is solved using Newton’s second law. Blood is modeled
as an incompressible, laminar, non-Newtonian fluid according to the
simplified Quemada model; these equations were explained more in
detail in Chapter 4.

For the boundary conditions, a time-dependent flow rate wave-
form with a period of 0.8 s was imposed at the inlet; the minimum-
maximum volumetric flow rate was 88.1–566 ml/min (see Chapter 4
96



5.2. Methods

for the waveform shape). The volumetric catheter flow rate was set
at 2.77 ml/min, so that the catheter flow velocity roughly correspon-
ded with the mean velocity of the pulsatile blood flow signal at the
inlet (∼0.12 m/s).

At the outlets, outflow fractions were determined according to
the volume and type of tissue perfused by each outlet. For cancerous
tissue, the perfusion volume of each arterial outlet of Geometry 1 was
determined through region growing. For healthy tissue, the perfusion
volume of each hepatic segment (as described in [128]) was scaled to
the patient-specific parenchymal volume, and the segmental volumes
were then distributed across all outlets perfusing the same liver seg-
ment (assuming the flow split across an intrasegmental bifurcation is
symmetric). Both the inlet and outlet boundary condition methodo-
logy were explained more in detail previously. Transient simulations
were run for multiple cardiac cycles, and the simulation was stopped
when <1.5% of the total number of injected particles exited in the
latest cycle. The number of flow cycles necessary for each simulation
is noted in Section 5.3.1. The time step size varied between 0.5-1 ms.
For each time step, absolutely scaled residuals of at least 10−5 were
reached. Solver settings were identical as before.

5.2.5 Post-processing of particle distributions
The particle distribution of all 48 outlets of Geometry 1 was calcu-
lated as the number of particles exiting through each outlet, divided
over the total number of exiting particles for Geometry 1. However,
for Geometry 2–3, the hybrid particle-flow model was used, leading
to the following assumption: if outlets x, y and z of Geometry 1 are
truncated and represented by outlet x* of Geometry 2 or 3, then the
particle distribution at outlet x* can be multiplied with the flow per-
centage to outlets x, y and z, respectively, to give the (estimated)
particle distribution at outlets x, y and z, even if the truncated do-
main does not physically contain outlets x, y and z (Fig. 5.1). This
method allowed us to compare the full particle distribution at all 48
outlets for all geometries.

When reporting on differences in particle distributions between
geometries, we reported absolute percentual differences (i.e. if 5% of
particles exit through outlet x in Geometry 1, and 6% exit through
the same outlet in Geometry 2, then the difference is 1%). Import-
antly, for comparison we only considered the outlets through which
particles flowed (i.e. for LHA injection we dismissed the RHA out-
lets through which 0% of particles flow, and vice versa). Hence, for
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RHA injection, we calculated the absolute percentual differences for
21 outlets in total, and reported on the median and maximum dif-
ferences; while for LHA injection, we reported on the median and
maximum differences of 27 outlets.

5.2.6 Global spread indices
The maximum spatial spread of microparticles across the vessel cross-
section after injection was quantified using the Index of Particle
Spread (IPS (%), Eq. 5.1). A square reference grid with a uni-
form cell length of 0.1 mm was defined for each vessel cross-section
under study (see Fig. 5.3). The total number of grid cells within the
cross-sectional plane of the arterial lumen (‘plane grid cells’) is given
by Nplane. The total number of grid cells through which at least one
particle passed (‘particle grid cells’) is given by Nparticle. The IPS is
then given as:

IPS(%) = Nparticle
Nplane

· 100 (5.1)

Essentially, a low IPS means particles are confined to a small
portion of the plane, while an IPS of ∼100% indicates that particles
have spread (almost) over the entire plane. We only apply IPS in
arteries and outlets with significant flow (>1% of total outflow). The
particle spread is visualized in spread maps (see Fig. 5.3, Fig. 5.5)
where the plane grid cells where no particles pass through are shown
in grey and the particle grid cells are displayed in a color varying
between white and red, depending on the number of particles that
passed through the cell. Hence, the larger the grey region, the smaller
the IPS.

To determine whether particles have spread out across the cross-
section in a uniform manner or not, the number of particles passing
through each grid cell was counted and computed as a percentage of
the total number of particles passing through the cross-sectional grid
(pij, being the percentage of particles passing through a grid cell in the
ith row and jth column of the grid). Then, this particle distribution
across the particle grid was compared against a hypothetical, uniform
particle distribution U for each particle grid cell, where U = 100

Nparticle

represents that 100% of the particles are uniformly distributed over
all particle grid cells. For each grid, the sum of the absolute per-
centual differences between pij and U gives the dissimilarity between
the actual particle distribution and the hypothetical uniform particle
distribution (numerator in Eq. 5.2).
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For example, if all particles pass through one grid cell, and none
pass through the remainder of the grid, the dissimilarity between the
actual and uniform particle distribution is (Nparticle − 1)U + (100 −
U), or, alternatively, (Nparticle − 2)U + 100. Since the case where
all particles pass through one grid cell is considered the most non-
uniform distribution, this dissimilarity is also considered the maximal
dissimilarity. By normalizing the actual dissimilarity over the max-
imal dissimilarity (denominator in Eq. 5.2), the Uniformity Index of
Particle Spread of Eq. 2, or UIPS (%), gives a relative indication of
the maximum uniformity of spread (0-100%).

UIPS(%) = 100 −
|
∑

i

∑
j pij − U |

(Nparticle − 2)U + 100 · 100 (5.2)

For a UIPS of 0%, all particles pass through one grid cell; for
a UIPS of 100%, the particle distribution is perfectly uniform. Im-
portantly, since the UIPS is a measure of spread uniformity, we only
applied it when the IPS is significantly high (>33%). The UIPS is
illustrated in Fig. 5.3, where particle grid cells are assigned a color
based on pij on a linear color scale between white (0%) and red (≥2%)
(see Fig. 5.3). Hence, the more uniform the color, the more uniform
the spread.

5.2.7 Temporal spread indices
To quantify whether spread is a time-dependent phenomenon, we cal-
culated the temporal IPS (tIPS (%), 5.3) for specific injection ‘bursts’
of 0.2 s; here, (Eq. 5.1) still holds, but only particles which pass
through the plane during a specific time interval of 0.2 s are con-
sidered for Nparticle, given by Nburst. (The sensitivity of tIPS towards
the choice of the interval length was also investigated; see Section
5.3.5). High fluctuations in tIPS indicate a high time-dependency of
spread. Spread maps were made for a selection of time intervals, as
seen in Fig. 5.5.

tIPS(%) = Nburst
Nplane

· 100 (5.3)

By summarizing the tIPS of each burst b weighed with the ab-
solute number of particles in that burst (Pb), we get the weighted-
averaged IPS (WIPS):

WIPS(%) =
∑

b tIPSb · Pb∑
b Pb

(5.4)

99



5. The Hybrid Model for Selective Injection and
Quantification of Particle Spread Phenomena

It is crucial to give the bursts with higher Pb higher weight, since
these bursts will be more important for the particle distribution.
Here, high WIPS indicates high spread for a high number of particles;
low WIPS indicates mostly low spread for a high number of particles
(and possibly high spread for a lower number of particles).

5.3 Results

In Section 5.3.1, an overview of the cycles needed for convergence
of the particle distribution is given for each simulation. Next, the
suitability of down- and upstream truncation for selective RHA and
LHA injection is discussed in Sections 5.3.2 and 5.3.3, respectively.
In Sections 5.3.4 and 5.3.5, the global (IPS, UIPS) and temporal
spread indices (tIPS, WIPS) are evaluated for PHA, RHA and LHA
injection.

5.3.1 Particle progression
For injection in the RHA, 8 flow cycles (since the start of the simu-
lation) were needed to reach particle exit convergence for Geometry
3, while 10 cycles were needed for Geometries 1 and 2, with the
particle exit percentages stabilized at 92%-95%. For Geometries RU1
and RU3, 7 flow cycles were needed, while for Geometry RU2 8 flow
cycles were needed. The particle exit percentage stabilized at ∼94%.
For LHA injection, 10 flow cycles were needed for the truncated Geo-
metry 3, while 14 cycles were needed for Geometry 1–2. In both cases,
the particle exit percentage stabilized close to 80%. For Geometries
LU1-LU2, 9 flow cycles were needed to reach a stable particle exit
percentage around 80-85%; 13 flow cycles were needed for Geometry
LU3 to reach a stable particle exit percentage of 95%.

5.3.2 Downstream truncation
For injection in the RHA (Sim. 1–3), the 5th percentile, median and
95th percentile outlet-specific differences in microparticle distribution
between Geometry 1 and the truncated Geometry 2 were 0%, 0.27%
and 1.4%, respectively, with a maximum difference of 1.7%. The 5th
percentile, median and 95th percentiles differences between Geometry
1 and Geometry 3 were 0.012%, 0.32% and 3.7%, respectively (max-
imum: 11%). Comparing Geometry 1 to the pre-imposed flow distri-
bution yielded the following differences: 0.11% (5th-percentile), 1.5%
(median), 13% (95th-percentile) and 26% (maximum). For injection
in the LHA (Sim. 4-6), the 5th percentile, median and 95th percent-
ile differences in microparticle distribution between Geometry 1 and
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Figure 5.3: Particle progression in domain.

2 were 0%, 0.19% and 0.60%, respectively (maximum: 1.0%). The
5th percentile, median and 95th percentiles differences between Geo-
metry 1 and the heavily truncated Geometry 3 were 0.0046%, 0.40%
and 3.0%, respectively (maximum: 4.2%). Comparing Geometry 1
to the pre-imposed flow distribution yielded the following differences:
0.34% (5th-percentile), 0.87% (median), 7.6% (95th-percentile) and
24% (maximum).

5.3.3 Upstream truncation
Inspecting the particle distributions, the median differences between
Geometry 3 and the upstream truncated geometries were 0.090%,
0.18% and 0.77% for Geometries RU1, RU2 and RU3, respectively.
The maximum differences were 0.35%, 0.78% and 7.7%, respectively.
For LHA injection, the median differences with Geometry 3 were
0.26%, 0.22% and 0.50% for Geometries LU1, LU2 and LU3, re-
spectively. The maximum differences were 1.57%, 1.94% and 9.0%.
Fig. 5.4 shows the impact of upstream truncation on the near-tip
hemodynamics after RHA and LHA injection, respectively. Contour
plots of velocity magnitude at peak systole are shown for an arterial
cross-section close to the catheter tip (‘plane’) in Geometries RU1–3.
Additionally, a line profile of velocity magnitude at peak systole is
shown and compared between the four geometries. From Fig. 5.4, it
is clear that near-tip hemodynamics are very similar for Geometries
U1–U2 but significant differences occur for U3.
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Figure 5.4: Near-tip hemodynamics for (a) RHA (centered tip) and (b)
LHA (off-center tip) injection at peak systole. Geometry shows the eval-
uation plane where section plots were made to illustrate the differences
between Geometry U1-U2 and Geometry U3; the section plots show where
the line profiles were taken.

5.3.4 Global particle spread
For both injection scenarios, the IPS, UIPS, spread maps and spread
uniformity maps are shown in Fig. 5.5. For PHA injection (Fig.
5.5A), the IPS increased from 2.5% to 88% from the plane right after
the catheter tip to Plane 3, and then remained more or less stable
(84-88%) for Planes 4–6. For RHA injection (Fig. 5.5B), the IPS was
again very small after catheter ejection (≈2%, Plane 1), but increased
to 25% at Plane 2 and plateaued at ≈ 80% for Planes 3-6. For LHA
injection (Fig. 5.5C), the IPS was lowest right after catheter ejection
(23%, Plane 1), increased to 59% for Plane 2 and 91% for Plane 3,
before dropping slightly for Plane 4–5 (81%, 89%). For PHA injection
(Fig. 5.5A), the UIPS increased from 39% to 73% from Plane 1 to 4,
and remained at 73%-74% for Planes 5–6. For RHA injection (Fig.
5.5B), the UIPS was 46% for Plane 3 and increased to 66% for Plane
4, plateauing at 62% and 65% for Plane 5–6, respectively. For LHA
injection (Fig. 5.5C), the UIPS was 54%-58% for Planes 2–3 and
60-63% for Planes 4–5, showing a slight increase.

5.3.5 Temporal particle spread
For PHA and RHA injection, the IPS maps for 4 specific time inter-
vals of interest (i.e. around the highest peak) in Planes 3 and 6, and
the tIPS evolution in function of time for Planes 3 and 6 (with the
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Figure 5.5: Particle spread maps and particle spread indices (IPS, UIPS,
WIPS) for a selection of planes (indicated on the left) for Geometry 1 in
case of (a) PHA injection, (b) LHA injection and (c) RHA injection. Both
IPS and UIPS clearly increase from the catheter tip onward; after which the
reported values evolve towards a plateau value for the most distal planes
(3–6). The WIPS drops distally after reaching the maximum around Plane
3.

indicated dots corresponding to the middle of each time interval) are
shown in Fig. 5.6. For both planes, the tIPS shows 3-4 high peaks
before dropping. For PHA injection (Fig. 5.6A), the maximum peak
tIPS is 58% at the 3.4–3.6 s interval (Plane 3) and 59% at 5.0-5.2
s (Plane 6). For RHA injection (Fig. 5.6B), the maximum peak is
49% (3.2–3.4 s, Plane 3) and 40% (5.0–5.2 s, Plane 6). For LHA
injection (Fig. 5.6C), maximum peaks occur of 80% (3.2–3.4 s, Plane
3) and 60% (5.0–5.2 s, Plane 6). Inspecting WIPS for PHA injec-
tion (Fig. 5.5A), WIPS peaks at Plane 4 (43%) and decreases more
distally, to 30–34%. For RHA injection (Fig. 5.5B), the WIPS peaks
at Plane 3 (37%), then decreases to 19–24%. For LHA injection (Fig.
5.5C), WIPS peaks at Plane 3 (57%), decreasing to 33-37% more
distally. The interval length (0.2 s) was chosen to be smaller than
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the cycle length (0.8 s); otherwise, cyclical events disappear. For
smaller lengths (0.1 s, 0.05 s), it was noted the temporal values can
increase (more particles are included in the bursts), but qualitative
trends remain: 3-4 high peaks appear in time, and the values drop
distally after the peak.

Figure 5.6: Particle spread maps for four time intervals of interest and
plots of temporal spread index (tIPS) in function of flow time for two planes
for Geometry 1 in case of (a) PHA injection, (b) LHA injection, and (c)
RHA injection. tIPS clearly varies in time, with maximum peaks around
3.3-3.5 s (Plane 3) and 5.1 s (Plane 5, 6).

5.4 Discussion

In Section 5.4.1, we discuss how effectively computational cost can be
decreased by down- and upstream truncation. Next, the suitability of
down- and upstream truncation for selective RHA and LHA injection
is evaluated in Sections 5.4.2 and 5.4.3. In Sections 5.4.4 and 5.4.5,
we overview trends regarding global and temporal spread. Finally,
in Section 5.4.6, we discuss the novelties and limitations of the work
and future steps that can be undertaken to further improve the work.
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5.4.1 Simplicity gain
For severe downstream truncation, the reduction in geometry size
for both RHA and LHA injections resulted in less flow cycles neces-
sary to reach convergence of the particle distributions, and hence,
a shorter simulation time. However, for upstream truncation, this
trend was not consistently noticeable since Geometry LU3 needed
4 flow cycles more to reach convergence than Geometries LU1-LU2.
This is explained by the fact that the particle distribution in Geo-
metry LU3 differs significantly from the particle distributions in Geo-
metry LU1-LU2 (see Section 5.3.3); in LU3, particles were pushed
towards outlets with very low flows (<1%). These low-flow outlets
lead to slower convergence (as these particles simply need more time
to reach these outlets). This observation is notable, because it shows
that, while geometry reduction is usually favorable for faster conver-
gence, the current particle exit convergence criterion also depends on
the particle distribution itself (i.e. which outlets receive particles),
which makes the relationship between geometry size and convergence
time more complicated.

Hence, the gain in computational simplicity with model trunca-
tion lies in (1) the reduced number of flow cycles necessary for particle
exit convergence, here mostly observed for severe downstream trun-
cation, (2) the reduction in mesh size, observed for all truncated
models, and (3) the reduction in outlets, requiring less manual work
during geometry construction, as observed for all truncated models.

5.4.2 Downstream truncation
For RHA injection, the median differences in particle distributions
compared to Geometry 1 were similar for Geometry 2–3 (∼0.30%) but
the maximal differences were much higher for Geometry 3 (3.7% and
11%, respectively) than for Geometry 2 (1.7%). For LHA injection,
the same trend was reported: between Geometry 1–2 and 1–3, the
median difference was acceptable (0.19% and 0.40%, respectively)
but the maximal difference was significantly larger for Geometry 1–3
(4.2%) than 1–2 (1.0%).

While the severely truncated Geometry 3 is still a considerable
improvement over just the flow distribution (there, very high maximal
differences of ∼25% are reported in both RHA and LHA scenarios),
the maximum differences are still considerable (>4%), indicating a
decrease in surrogate model fidelity. Hence, medium truncation (Geo-
metry 2) is more reliable than severe truncation (Geometry 3).
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5.4.3 Upstream truncation
While the median differences for upstream truncation were very lim-
ited (<1%) for the highest degree of upstream truncation for both
RHA and LHA injection, the maximum differences with Geometry 3
were significantly high (∼8%). This shows that the highest degree of
truncation is not a suitable simplification strategy. However, the first
two degrees of upstream truncation only presented with a maximum
difference of ∼0.4% for RHA injection and ∼1.9% for LHA injection,
respectively, while in both cases median differences were always sig-
nificantly smaller than 1% (∼0.2%). This suggests that upstream
truncation can be performed reliably if an entrance length of ∼50
mm is preserved; a length of ∼20 mm is too short. Interestingly,
Lertxundi et al. [124] investigated upstream truncation lengths of 10
and 30 mm, confirming our results that the smallest entrance lengths
(∼10 mm) can lead to substantial errors, but that larger entrance
lengths (∼30 mm) are more reliable.

5.4.4 Global particle spread
Previously, we hypothesized that particle spread across the cross-
sectional favorably impacts alignment of the particle distribution with
the flow distribution, and hence, the accuracy of the hybrid model. In
other work, Aramburu et al. [11] studied particle spread as a function
of cross-sectional area, with particles spreading to maximally ∼30%
of the cross-sectional area in the ∼20 mm after the catheter tip. Here,
we elaborated upon this analysis by (1) not only quantifying particle
spread, but also uniformity of spread, and time-dependency of spread,
(2) investigating this particle behavior throughout the full tree, (3)
and comparing between superficial and selective injections.

First, we investigated how the spread (IPS) evolved after ejection.
For all three injections, the IPS rose significantly between Planes 1–3,
before stabilizing at a high plateau value (∼80-90%) from Plane 3
onward. Logically, smallest maximum spread appears closest to the
catheter tip, and values increase further away from the tip. Com-
paring injections, the highest maximum IPS was reached for PHA
and LHA injections (88%-89%, compared to 81% for RHA injec-
tion). This shows that while IPS increases with distance from the
catheter tip, the plateau value is not specifically higher for more
superficial injections, and likely still depends on other factors. We
also investigated the uniformity of particle spread across the cross-
section throughout the arterial tree. For each injection separately
(PHA, RHA and LHA), the UIPS increased (37%–73%, 46%–63%,
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58%–63%, respectively) from the most proximal to most distal plane,
although not always as significantly. Again, this shows the impact
of distance from the catheter tip on the UIPS. The plateau value
reached was similar for RHA and LHA injection (65% and 63%, re-
spectively) and slightly higher for PHA injection (74%). Generally,
UIPS seems to stabilize more distally than IPS.

Interestingly, the maximum difference of 4.2% between Geometry
1–3 for LHA injection was found for outlet 20* in Geometry 3, which
was the result of truncating outlets 20-21 from Geometry 1–2 (2 out-
lets after Plane 5, see Fig. 5.5C). Importantly, this point of trunca-
tion was situated after Plane 5, by which IPS and UIPS had already
reached their maximal or plateau value. This shows that while a lack
of particle spread can cause an important mismatch between particle
and flow distribution proximal to the catheter tip, distal mismatch
between flow and particle distribution can still arise independent of
high and uniform IPS and UIPS, and cause errors in the hybrid model
after truncation.

5.4.5 Temporal particle spread
While IPS and UIPS give a global view on the spread that is achieved
over time, tIPS clearly shows that particle spread can also vary in
time, with 3 to 4 high peaks before dropping to 0. The reported
rises and drops of the temporal spread indices appear to be cyclical,
repeating every ∼0.8 s. Additionally, inspecting WIPS, we see an
initial increase after the catheter tip, a peak around Plane 3, and
then again a distal drop. This is a significant difference from IPS
and UIPS, which reached a distal plateau. This underlines that total
IPS in the downstream vessels can be high and more or less con-
stant, but temporal IPS can be lower and still varying, both in space
and time. Since lower spread can be indicative of a misalignment
between particle and flow distribution, this stresses the importance
of modeling microparticle behavior, and truncating only moderately
downstream.

Comparing the most distal WIPS to the maximum WIPS, we see
drops of 9% for PHA injection, 13% for RHA injection, and 20% for
LHA injection. This is also clear visually from Fig. 5.6, where the
tIPS peaks drop more from Plane 3 to Plane 5–6 for RHA and LHA
injection than for PHA injection. Possibly, higher distal drops in
particle-weighted spread for the selective injections could explain why
the hybrid model (assuming that the particle flow follows the blood
flow distribution downstream from the outlets onward) performs less
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accurately in these cases, but this effect is severely under-studied,
and we need much more simulated data to find actual correlations.

5.4.6 Novelties, limitations and future work
In this study, we showed that moderate upstream and downstream
truncation can be applied to reduce the simulation geometry, while
the hybrid modeling approach still allows to estimate the full-tree
particle distribution with high fidelity. The strengths of the hybrid
particle-flow model were already explained before. Aside from study-
ing the hybrid-particle flow model for realistic injection scenarios and
the impact of upstream truncation, the other novelties of this work
lie in the invention of novel spread measures and their application to
investigate particle spread over the arterial tree. We showed that dif-
ferences between flow and particle distribution can still arise distally,
even if the spread and spread uniformity of all injected particles is
high. However, spread can also drop to low values at specific time
points, indicating that spread is a very time-dependent phenomenon
and not constantly high far away from the catheter tip. Import-
antly, this particle behavior in the downstream vessels cannot be
captured by flow modeling, and might induce differences between the
hybrid and full-particle approach. To further simplify the model-
ing approach, we can also explore the impact of modeling blood as a
Newtonian (instead of non-Newtonian) fluid in these larger truncated
vessels.

Overall limitations of the CFD modeling approach are discussed
in Section 11.1. Importantly, the results presented here cannot be
generalized yet to other patients. Regarding study design, sensitivity
of the spread measures towards the exact location and orientation of
the plane should be studied, as it is a non-trivial task to replicate
the same plane in different computational geometries. Additionally,
a strong link between (particle-weighted) spread and particle flow-
alignment has not been shown yet, as the sample size was much too
small to make strong conclusions. To do that, spread measures should
be compared between truncated versions of geometries where the hy-
brid model is valid (particle-flow alignment is high), and truncated
geometries where it is not. We did show that mismatch between
flow and particle distribution can still arise despite relatively high
non-weighted spread values, showing that is not an ideal indicator of
alignment. Whether higher particle-weighted spread values lead to
higher particle-flow alignment, or if there are other important con-
tributors to particle-flow alignment that were not considered here, is
currently still unclear (and non-trivial).
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5.5 Conclusion

The goal of this work was to determine whether we can simplify
CFD models of selective injection of radioactive microparticles to
become less computationally costly. We applied the hybrid particle-
flow model in four truncated geometries (moderate and severe up-
and downstream truncation) for two selective injection scenarios and
evaluated whether they are suitable surrogate models for the particle
distribution in the full hepatic arterial tree. We showed that severe
truncation in both downstream and upstream scenarios introduced
significant errors and can only be applied for superficial injection.
However, we also showed that, for selective injection, both moder-
ate upstream and downstream truncation can still be applied with
limit risks, and with the added merit of reducing the mesh size from
∼11 million to ∼5 million elements. Hence, by combining the hybrid
particle-flow model with upstream truncation, we have shown that
we can reduce simulation complexity significantly while maintaining
information on intrasegmental particle distributions, paving the way
towards sensitivity analyses and surgical planning for TARE.
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6
Advanced Simplification

Strategies for Particle
Distribution and Tumor Dose

Predictions

Positioning of the chapter

In Chapters 4, and 5, we showed that reduction of the physical geo-
metry is an appropriate simplification strategy for complex 3D CFD
simulations of blood flow and drug transport, albeit that severe trun-
cation is only applicable to superficial injection (and selective in-
jection should be limited to moderate truncation). In this chapter,
we aim to explore other simplification strategies (and more broadly,
strategies to reduce computational time) to predict tumor doses un-
der patient-specific conditions.

This chapter is based on the publication Simplification strategies
for patient-specific CFD models of drug transport during liver radi-
oembolization (T. Bomberna et al, Computers in Biology and Medi-
cine, 2024) [21].

6.1 Introduction

In clinical practice, 3D CFD simulations could enable personalized
preoperative planning and better tumor targeting. However, the high
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computational cost of these 3D CFD models is still limiting, and does
not allow point-of-care advice or global sensitivity analyses (yet). Re-
cently, the use of deep learning or surrogate model-based approaches
to cheaply replace complex CFD simulations has become more im-
portant. Aside from general advances in computing power, GPU-
based computation can also accelerate flow simulations considerably
[131]. However, currently, there still exists an important trade-off
between computational complexity and computational time. Hence,
result acceleration can also occur through model simplification, which
has only been studied to a very limited degree for 3D CFD simula-
tions of transarterial particle delivery.

Regarding model simplification, Lertxundi et al. [124] introduced
a pruning approach, in which the hepatic arterial vessels were trun-
cated both up- and downstream of the catheter tip, removing all
intrasegmental vessels. They showed that reliable predictions of seg-
mental radioactivity can still be made after truncation (based on
3 patient-specific geometries). Alternatively, we suggested that in-
trasegmental activity can still be predicted with a different trunca-
tion algorithm, by assuming that particles follow the blood flow dis-
tribution downstream of the truncated outlets (see Chapter 4). This
hybrid particle-flow model was verified in both superficial (i.e. be-
fore the first intrahepatic bifurcation) and selective (i.e. before the
second intrahepatic bifurcation) injection scenarios. For superficial
selection, it was shown that both moderate and severe truncation for
the hybrid particle-flow model could produce reliable predictions of
the intrasegmental particle distribution. However, for selective in-
jection, only moderate truncation proved to be reliable. Notably,
these findings were only verified in 1 patient-specific geometry, and
should be replicated for more patient-specific geometries in the future.
Additionally, other simplification strategies than domain truncation
were not yet tested, which leaves ample room to explore more diverse
strategies. We also theorize that there might be a difference between
sensitivity analysis and accurate tumor dose prediction. Hence, we
suggest that more drastic CFD simplification strategies might be pos-
sible if the goal is to perform a reliable sensitivity analysis of injection
parameters, rather than an accurate prediction of tumor dose, as was
the case before.

Within this study, we quantify the trade-off between computa-
tional time and accuracy for 3D CFD simulations of transarterial
particle delivery. We identify five alternative simplification strategies:
(i) severe downstream truncation, (ii) steady flow instead of time-
dependent flow, (iii) coarsening the grid, and (iv) running less flow
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cycles, and evaluate whether they can be used for (G1) accurately pre-
dicting the particle distribution and tumor dose (accuracy), and (G2)
quantifying sensitivity of injection parameters towards particle distri-
bution and tumor dose. We report on which simplification strategies
we advise for goals (G1) and (G2) going forward, whether simulations
can be simplified more drastically if we focus only on sensitivity, and
whether there is significant difference in the advised simplification
strategy when focusing on tumor dose as output parameter instead
of the full downstream particle distribution. Third, we also note on
how much computational times can be decreased by model simplific-
ation. Additionally, we evaluate how much computational times can
be decreased by GPU-based computation.

Notably, this is the first study in which a broad range of simplific-
ation strategies are directly compared for these 3D CFD simulations
of intrahepatic blood flow and particle transport, and where their im-
pact on computational time is investigated. As long as the trade-off
between computational time and complexity exists, model simplific-
ation will remain crucial to decrease computational cost, accelerate
analysis, and make clinical transfer more likely.

6.2 Methods

In Section 6.2.1, the study design is explained. In Section 6.2.2, we
explain how we use CFD to convert medical images into a prediction
of patient-specific particle distribution and tumor dose. Then, in Sec-
tion 6.2.3, we define the evaluation metrics that are used to compare
the particle distributions and tumor doses between different simpli-
fied models and the baseline model. Successively, in Section 6.2.4,
we define the evaluation metrics that are used to assess whether the
simplified models are similarly sensitivity to injection parameters as
the original, baseline model.

6.2.1 Study Design
This study aims to evaluate the suitability of different simplification
strategies for two goals: (G1) accurate prediction of tumor dose and
downstream microparticle distribution, and (G2) sensitivity of the
tumor dose and microparticle distribution towards specific injection
parameters. To evaluate (G2), we will perform a local sensitivity
analysis towards one representative injection parameter, namely in-
jection flow rate, the time-dependent catheter injection mass flow
rate (kg/s), varying from 2.04 · 10−5 kg/s to 1.92 · 10−4 kg/s (∼0.019
cc/s to ∼0.1810 cc/s; these values were chosen to mimic a range of
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clinically realistic injection flow rates, as identified by clinicians as
between ∼0.05 cc/s and ∼0.2 cc/s). In Chapters 4, and 5, moderate
up- and downstream truncation was identified as a suitable simpli-
fication strategy for accuracy purposes (G1). For both the original-
complexity CFD model and each of the 5 simplification strategies,
we run 8 CFD simulations as a ‘simulation batch’ (Table 6.1). In
each batch simulation, the injection mass flow rate of the catheter
fluid is set at one of 8 equidistant points between (and including) the
minimum and maximum mass flow rate (2.04 · 10−5 kg/s, 4.49 · 10−5

kg/s, 6.93 · 10−5 kg/s, 9.38 · 10−5 kg/s, 1.18 · 10−4 kg/s, 1.43 · 10−4

kg/s, 1.67 · 10−4 kg/s, 1.92 · 10−4 kg/s).

First, we run the simulations with varying injection mass flow
rate for the original CFD model; this batch serves as the baseline
batch (labeled ‘B’ in Table 6.1) for comparison. The simplification
strategies are: (i) severe downstream truncation (simulation batch
labeled as ‘T’ in Table 6.1), (ii) steady inflow (‘S’ in Table 6.1),
(iii) using a more coarse grid (‘C’ in Table 6.1), (iv) using an extra
coarse grid (‘XC’ label in Table 6.1), and (v) combining the coarse
grid with a reduced number of simulated cardiac cycles (‘Cm’ label
in Table 6.1). Hence, in total, we run 48 simulations (6 batches of
8 simulations). Except for the S-batch, all simulations were time-
dependent.

Table 6.1: Overview of the simplification strategies (S, T, C, Cm and XC)
and the baseline batch (B). In total, 48 simulations were run (6 batches of
8).

Simulation batch Simplification strategy
B01-B08 (Baseline)
S01-S08 Steady flow
T01-T08 Severe truncation
C01-C08 Coarse grid

Cm01-Cm08 Coarse grid with less flow cycles
XCO1-XC08 Extra coarse grid

6.2.2 Computational Fluid Dynamics
6.2.2.1 Pre-processing
Conebeam CT images of a HCC patient treated by TARE were col-
lected from UZ Leuven (as approved by the Ethical Committee of
University Hospitals Leuven) and segmented based on contrast differ-
ence between arteries and the surrounding tissue using Mimics (Ma-
terialise, Belgium). This initial geometry is shown in Figure 6.1A.

114



6.2. Methods

A microcatheter with an internal diameter of 0.7 mm was embedded
in the RHA using SpaceClaim (Ansys, USA). As shown before, the
hepatic arterial geometry can be moderately truncated up- and down-
stream for selective injection, truncating the 27 original outlets of the
LHA into 1 LHA outlet, and 21 original outlets of the RHA into 15
RHA outlets. In total, the number of physical outlets of the reduced
geometry is 16. The newly truncated geometry can be seen in the
second panel of Figure 6.1A. For the severe truncation simplification
strategy explained in Chapter 4, the number of RHA outlets was fur-
ther reduced to 5, bringing the total number of physical outlets to 6
(this geometry can be found in Chapter 5).

Figure 6.1: (A) As previously shown, geometries can be reliably simpli-
fied by moderately truncating outlets up- and downstream of the catheter
tip, reducing the number of outlets from 48 to 16. (B) A local sensitivity
analysis of injection flow rate (varying between 0.02-0.2 ml/s) is carried out
to evaluate the suitability of the various simplification methods.

The mesh sensitivity study of the catheter-containing geometries
focused on optimizing the sizing of the volume elements of the arterial
and catheter lumen, in that order. The criterion was assuring con-
vergence of specific hemodynamic-related parameters, such as wall
shear stress, pressure over the entire volume, and cross-sectional ve-
locity profiles at the first bifurcation (threshold of <5% difference in
average and 95-percentile values between successive meshes) and the
particle distribution at the outlets (<1% difference between success-
ive meshes). Both bodies were meshed using tetrahedral elements for
the bulk of the volume; three prism boundary layers were enabled
near the walls. The target mesh size for the arterial and catheter
bodies were 3 · 10−4 and 7 · 10−5 m, respectively. The target size at
the catheter inlet was 3 · 10−5 m. The final mesh contained 4.96 · 106

elements; this mesh was used for the baseline (B) and steady (S) mod-
els. Using the same meshing parameters, this resulted in 3.37 · 106

elements for the truncated (T) model. For the coarse mesh (C), the
volume sizings were set at 6.00 · 10−4 m for the arterial body and
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1.40 · 10−4 m for the catheter body, resulting in 2.43 · 106 elements.
This mesh was used for the coarse model and coarse model with less
flow cycles (Cm). For the extra coarse mesh (XC), the volume sizings
were set at 1.00 · 10−2 and 5.00 · 10−3 m for the arterial and catheter
bodies, respectively, resulting in 1.36 · 106 elements.

6.2.2.2 Multiphysics model
For the CFD model in Fluent (Ansys, USA), blood flow was modeled
as laminar fluid flow, with a density of 1060 kg/m3 and modeling the
shear-thinning viscosity behavior with a simplified Quemada model
(see Chapter 4 for mathematical details of the fluid flow implementa-
tion). Using the Discrete Phase Model, microsphere trajectories were
calculated using Newton’s second law (see Chapter 4 for details on
the forces acting on the particles). At the proper hepatic artery inlet,
a time-dependent flow rate waveform with a period of 0.8 s was im-
posed (minimum-maximum: 88.1-566 ml/min, see Chapter 4 for the
waveform shape derived from a 1D model of the arterial circulation
[127]). The catheter mass flow rate was varied between 2.04 · 10−5

kg/s to 1.92 · 10−4 kg/s, as specified above. At the outlets, outflow
fractions were applied using an algorithm that determined the flow
percentage in each outlet according to the volume and type of tissue
perfused by each outlet. To do so, three types of arteries were con-
sidered: tumor-feeding arteries, arteries which feed only the healthy
tissue, and arteries located at the periphery of the tumor mass feed-
ing both healthy and tumor tissue. To determine the tumor flow
contribution, a region growing algorithm was used to calculate which
fraction of the tumor mass was fed by each artery, using the arterial
outlets as seed points (details on the algorithm specified in [125]).
To calculate the healthy flow contribution, outlets were attributed
to one of the eight hepatic segments based on the CT scan, and the
total segmental flow (proportional to the segmental volume) was dis-
tributed across the different intrasegmental arteries, with blood flow
splitting evenly across bifurcations. Both the inlet and outlet bound-
ary condition methodology are explained more in detail in Chapter
4.

Time-dependent simulations were run for a priori unknown num-
ber of flow cycles, where the simulation was stopped when <1.5% of
the total number of injected particles exited in the latest flow cycle.
An alternative criterion (<10%) was used for the simulation strategy
with the reduced number of flow cycles (Cm). The time step size was
alternated between 0.5 and 1 ms. For each time step, either abso-
lutely scaled residuals of at least 10−5 or relative drops of at least 3
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orders of magnitude were reached. Solver settings were identical as
in Chapter 4.

6.2.2.3 Post-processing
The particle exit percentage for outlet i (PEPi, Eq. 6.1) can be
calculated as the fraction of particles exiting through outlet i (Ni)
over the total number of exiting particles (Nexit).

PEPi(%) = Ni

Nexit
(6.1)

Importantly, this can only be done for the physical outlets con-
tained in the domain; not for the outlets which were removed during
(moderate or severe) truncation. For these outlets i∗ outside of the
physical domain, the hybrid particle-flow is used (see Chapter 4):
since particles are assumed to distribute downstream of the trun-
cated outlet i according to the flow distribution, PEPi∗ is multiplied
with the flow percentage flowing from the outlet i to the removed
outlet i* (FPi∗). This value is known a priori because the flow distri-
bution is imposed as an outlet boundary condition, and equals just
1 for the outlets contained within the geometry (i=i*). Hence, the
particle exit percentage for outlet i* outside of the geometry (PEPi∗,
Eq. 6.2) was calculated as:

PEPi∗(%) = Ni

Nexit
· FPi∗ (6.2)

The tumor dose (TD (%), Eq. 6.3) can be simply calculated
by an extension of the hybrid model: downstream of all outlets i*,
a specific percentage of the flow flows to the tumor (TFi∗, 100%
for tumor-feeding arteries, 0% for the arteries feeding the healthy
tissue), which was previously determined through the region growing
algorithm for each outlet. Hence, by multiplying the TFi∗ with the
PEPi∗ and summarizing over all outlets, we obtain the total tumor
dose (%).

TD(%) =
∑
i∗

PEPi∗ · TFi∗ (6.3)

6.2.3 Accuracy measures
While CFD simulations of intrahepatic blood flow and particle trans-
port are complex and produce many possible output parameters, we
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choose to focus here on two relevant output parameters to steer clin-
ical decision-making: the particle distribution in each of the down-
stream vessels, and the tumor dose. As mentioned, we study both
the accuracy of and sensitivity to the particle distribution and tumor
dose to determine the optimal simplification strategy, which results
in four different metrics by which the simplification strategies will be
evaluated and compared.

6.2.3.1 Accuracy of the particle distribution
For each outlet i, we calculated the absolute difference (Db,i (%),
Eq. 6.4) between the particle exit percentage for a simulation of
the baseline batch B (PEPB,i) and the corresponding simulation of
the simplification batch b (PEPb,i) (i.e. simulation with the same
injection mass flow rate) as:

Db,i(%) =
∣∣∣PEPB,i − PEPb,i

∣∣∣ (6.4)

The larger the difference Db,i, the higher the drop in accuracy
for outlet i. We calculated the average difference, Dave, and the
maximum difference in accuracy, Dmax, over the 21 RHA outlets.
We calculated these values for each batch b and for each injection
mass flow rate, resulting in 8 values for Dave and 8 values for Dmax

for each of the 5 batches (40 values in total).

6.2.3.2 Accuracy of the tumor dose
We also compared the absolute difference (Ddose (%), Eq. 6.5)
between a simulation of the baseline batch B (TDB) and the
simulation of batch b with the same injection mass flow rate (TDb):

Ddose(%) = |TDB − TDb| (6.5)

The larger Ddose (%), the higher the drop in accuracy. We did
this comparison between batches for each injection mass flow rate,
resulting in 8 values for Ddose for each of the 5 batch comparisons
(40 values in total).

6.2.4 Sensitivity measures
6.2.4.1 Sensitivity of the particle distribution
The minimum-maximum range in particle exit percentage for a spe-
cific outlet i in simulation batch b (∆PEPb,i (%), Eq. 6.6) as a con-
sequence of varying injection mass flow rate was reported in absolute
percentage (%):
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∆PEPb,i(%) = max(PEPb,i) − min(PEPb,i) (6.6)

∆PEPb,i is interpreted as an indication of sensitivity to injection
mass flow rate; with a high range indicating a significant impact of
injection mass flow rate (high-impact parameter), while a low range
indicates a low-impact parameter. Comparing different simulation
batches (and, hence, different simplification strategies), similar values
of ∆PEPb,i indicate similar sensitivities to injection mass flow rate.
Hence, for each outlet i, we compared the sensitivity of the baseline
batch B (∆PEPB,i) and the sensitivity of the simplification batch
b with the same injection flow rate (∆PEPb,i), giving the similarity
in sensitivities for outlet i (∆∆PEPb,i (%), Eq. 6.7) in absolute
percentage (%):

∆∆PEPi(%) =
∣∣∣∆PEPB,i − ∆PEPb,i

∣∣∣ (6.7)

A low value of ∆∆PEPi indicates a similar sensitivity
as the baseline batch, and hence, a reliable simplification
strategy. Here, we compute the average and maximal ∆∆PEPi

(∆∆PEPave, ∆∆PEPmax) over all outlets as an indication of
the similarity in sensitivity, giving 1 value for ∆∆PEPave and
∆∆PEPmax for each batch comparison (5 in total).

6.2.4.2 Sensitivity of the tumor dose
Similarly as above, the minimum-maximum range in tumor dose
(∆TDb (%), Eq. 6.8) was calculated as the difference between the
maximum tumor dose attained in one simulation batch and the min-
imum attained in the same batch, indicating the sensitivity of the
tumor dose to injection mass flow rate:

∆TDb(%) = max(TDb) − min(TDb) (6.8)

We compared the sensitivity to the tumor dose of the baseline
batch (∆TDB) and the simulation of the simplification batch (∆TDb)
to compute the similarity of sensitivities (∆∆TD (%), Eq. 6.9) in
absolute percentage (%). Hence, a low value of ∆∆TD indicates a
similar sensitivity and hence, a reliable simplification strategy. In
total, we obtain 5 values, 1 for each batch comparison.

∆∆TD(%) = |∆TDB − ∆TDb| (6.9)
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6.2.5 Sensitivity of the tumor dose
Due to the importance of computational cost in the study, we will
note on both the computational times for the baseline simulation
and the speedup factor offered by the viable simplification strategies
identified in this study. The speedup factor is defined as the com-
putational time needed for the baseline simulation divided by the
computational time needed for the simplified simulation, both com-
puted on a AMD EPYC HPC cluster with 94 CPU cores.

Additionally, we aimed to quantify the possible speedup offered by
GPU-based computation. Since GPU-based computation for Ansys
Fluent (Ansys, USA) is still in development, we used a simplified
reference simulation to evaluate the GPU solver available in Fluent
2023 R1. For the reference simulation, the following assumptions
were made: (1) the same geometry was used, without a catheter,
(2) blood was modeled as a Newtonian fluid with a density of 1060
kg/m3 and a viscosity of 0.00309 kg/m ·s, (3) no microparticles were
injected, (4) a constant steady inflow of 0.12 m/s was defined. The
same simulation was run on a HPC cluster with 24 and 96 AMD
EPYC CPU cores, and 1 and 2 NVIDIA Volta GPU cores. The
speedup factor was defined with respect to the 96 CPU cores.

6.3 Results

In Section 6.3.1, an overview is given of how many flow cycles are
needed to reach particle distribution convergence for each simplific-
ation strategy. Next, in Section 6.3.2, we evaluate the simplification
strategies for (G1) accuracy and (G2) sensitivity of the particle dis-
tribution and the tumor dose.

6.3.1 Particle progression
As a result of the particle distribution convergence criterion, for the
baseline batch, 10 cardiac cycles were run for the lowest injection
mass flow rate (B01), and 9 cardiac cycles for the higher velocities
(B02—B08). In Figure 6.2, the fraction of exiting particles over the
total number of injected particles (exit percentage, %) was plotted for
the baseline, truncated, coarse and extra coarse batches. As is clear
from Figure 6.2, the exit percentages increased from 69% to 87% from
lowest to highest injection flow rate. For the truncated batch, 8 flow
cycles were run for the 2 lowest injection flow rates (T01, T02) and 7
for the higher flow rates. There was a clear increase in exit percentage
from lowest to highest flow rate (72%-91%). For the coarse batch, 9
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flow cycles were run for each flow rate. Exit percentages increased
from lowest to third-to-last highest flow rate (68%-84%), with the
two highest flow rates dropping slightly around 82%. For the extra
coarse batch, 10 flow cycles were run for the lowest flow rate, and 9
cycles for the higher flow rates. The exit percentages increased from
70% to 86% from the lowest to fourth-to-last highest flow rate, then
dropping slightly for the three highest flow rates (82%-84%).

Figure 6.2: Particle progression in domain for (A) the baseline batch, (B)
the truncated batch, (C) the coarse batch, and (D) the extra coarse batch.
Clearly, lower injection flow rates result in lower exit percentages, and a
longer flow time necessary to reach a stable particle exit distribution (see
red line in A-D). Truncating the geometry also needs to a lower necessary
flow time.

6.3.2 Evaluation of the simplification strategies
6.3.2.1 Accuracy of the particle distribution
In Table 6.2, we report the minimum-maximum ranges in the aver-
age and maximum differences in particle distribution of the 8 simula-
tions when comparing corresponding injection flow rates between the
baseline batch and the chosen simplification strategy (Dave, Dmax,
computed over 21 outlets). For the sake of brevity, we only discuss the
maximum values of Dave and Dmax in the section below. The highest
average and maximal differences (Dave, Dmax) calculated over all out-
lets are 5.66% and 59.4% for the steady model, 1.04% and 9.27% for
the truncated model, 0.579% and 3.02% for the coarse model, 0.622%
and 4.38% for the coarse model with less flow cycles, and 1.599% and
14.9% for the extra coarse model.

6.3.2.2 Accuracy of the tumor dose
Using the tumor dose as the output parameter of interest instead
of the full particle distribution, Ddose gives the difference range for
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Table 6.2: Comparing accuracy (G1) between the simplification strategies
(S: steady, T: truncated, C: coarse, XC: extra coarse, Cm: coarse with
less flow cycles) and the baseline for both the particle distribution and the
tumor dose. The minimum and maximum values of the average difference in
particle distribution over the outlets (Dave), maximal difference in particle
distribution over the outlets (Dmax), and tumor dose are given.

Batch Dave (%) Dmax (%) Ddose (%)
S 3.61-5.66 28.4-59.4 5.59-19.8
T 0.346-1.04 2.11-9.27 0.269-3.65
C 0.322-0.579 1.23-3.02 0.0544-1.40

Cm 0.308-0.622 1.30-4.38 0.227-0.834
XC 0.505-1.599 2.58-14.9 0.534-5.00

each of the 8 simulations when comparing corresponding simulations
between the baseline batch and a specific simplification strategy.
Again, the full ranges can be found in Table 6.2, while we limit
ourselves to the discussion of the maximum values here. For the
steady model, the maximum difference between the steady and
baseline tumor dose was 19.8%; for the truncated model, this
difference was 3.65%; for the coarse model, 1.40%; for the coarse
model with less flow cycles, 0.834%; for the extra coarse model,
5.00%. Hence, Ddose is the smallest for the coarse model and coarse
model with less flow cycles (<1.5%).

6.3.2.3 Sensitivity of the particle distribution
First, we zoom in on the two main arterial feeders of the tumor
(mentioned as feeder 1 and 2 below, and as indicated in Figure 6.1),
contributing 11% and 20% of the total tumor perfusion (determined
via region growing, as explained more in detail in Chapter 4) re-
spectively. In the baseline model, the fraction of exiting particles
flowing to feeder 1 varied between 0.143%-4.32% for the 8 injection
flow rates (∆PEP : 4.08%, see light blue curve in Figure 6.3A) and
the fraction flowing to feeder 2 varied between 29.6%-44.3% (∆PEP :
14.7%, see light blue curve in Figure 6.3B). Visually, it is already
clear from both Figure 6.3A-B that the steady flow model is not
an appropriate simplification strategy, since the total range of vari-
ation over injection flow rate (∆PEP ) is very dissimilar to both the
baseline batch and other simplification strategies (0% for feeder 1,
much larger range of 33.4% for feeder 2). Considering all simplific-
ation strategies, ∆PEP for feeder 1 was 0%, 3.10%, 1.69%, 2.04%
and 1.75% for the steady, truncated, coarse, extra coarse and coarse
with less flow cycles batches, respectively (see Figure 6.3A). Hence,
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∆∆PEP for feeder 1 was lowest (0.99%) for the truncated batch and
highest (4.08%) for the steady batch. Additionally, ∆PEP for feeder
2 was 33.4%, 3.68%, 11.7%, 12.4% and 12.8% for the steady, trun-
cated, coarse, extra coarse and coarse with less flow cycles batches,
respectively (see Figure 6.3B). Here, ∆∆PEP for feeder 2 was low-
est (1.82%) for the coarse model with less flow cycles and highest
(18.75%) for the steady model.

Table 6.3: Comparing sensitivity (G2) between the simplification
strategies (S: steady, T: truncated, C: coarse, XC: extra coarse, Cm: coarse
with less flow cycles) and the baseline for both the particle distribution
and the tumor dose. The average (∆∆PEPave) and maximal (∆∆PEPmax

(%)) differences in sensitivity towards the particle distribution are given, as
well as the difference in sensitivity towards the tumor dose ∆∆TD (%).

Batch ∆∆PEPave (%) ∆∆PEPmax (%) ∆∆TD (%)
S 2.68 26.2 10.1
T 1.08 11.0 3.33
C 0.597 2.98 0.68

Cm 0.576 2.53 1.63
XC 1.33 11.8 1.95

Considering all outlets instead of only the main tumor feeders, we
report average and maximal values of ∆PEP and ∆∆PEP below
and in Table 6.3. The average and maximal ∆∆PEP calculated
over all outlets are 2.68% and 26.2% for the steady model, 1.08%
and 11.0% for the truncated model, 0.597% and 2.98% for the coarse
model, 1.33% and 11.8% for the extra coarse model, and 0.576% and
2.53% for the coarse model with less flow cycles.

6.3.2.4 Sensitivity of the tumor dose
In the baseline model, the tumor dose decreases from 55% to 51%
from low to high injection velocity, respectively (∆TD: 4.2%). As
is clear from Figure 6.4, ∆TD is 14.4%, 0.892%, 4.91%, 2.27% and
5.86% for the steady, truncated, coarse, extra coarse and coarse with
less flow cycles batches, respectively. Hence, when comparing to the
baseline batch sensitivity, ∆∆TD is smallest for the coarse batch
(0.68%) and largest for the steady batch (10.1%).

6.3.3 Computational times
Using 96 AMD EPYC cores, the baseline simulation took roughly
1487 minutes to run. For the optimal simplification strategies, we
noted a decrease to 820 minutes (speedup factor of 1.81) for the
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Figure 6.3: Plotting particle exit percentages (PEP, %) for the 8 injection
flow rates of each simulation batch (baseline, truncated, steady, coarse, extra
coarse and coarse with less flow cycles) for the two main tumor feeders,
(A) outlet 36, and (B) outlet 40. The total range in variation gives the
sensitivity, ∆PEP. Note that the range of the Y-axis is much smaller for
outlet 36 (A) than for outlet 40 (B).

Figure 6.4: Comparing the sensitivity of injection flow rate towards the
tumor dose for the different simulation strategies. Both the coarse and
coarse model with less flow cycles approximate the baseline sensitivity the
best; the steady and truncated models perform the worst.
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coarse strategy, and a further drop to 580 minutes (total speedup
factor of 2.56) for the coarse with reduced flow cycles strategy.

Additionally, we explored the impact of hard- and software im-
provements on the computational time, most notably the use of the
Native GPU solver for Ansys Fluent. As shown in Figure 6.5, for 24
and 96 CPU cores (AMD EPYC) on the HPC cluster, a simulation
wall clock time of 671.9 s and 257.4 s was noted. A slightly higher
computational time of 304.3 s was noted for the single GPU core
(NVIDIA Volta V100), but a significant drop was noted for the 2
GPU cores, with a time of 119.6 s (speedup factor of 2.15 compared
to the 96 CPU cores).

Figure 6.5: Comparing CPU-based computation with 24 and 96 AMD
EPYC cores on a HPC cluster with GPU-based computation with 1 and 2
NVIDIA Volta V100 cores.

6.4 Discussion

In Section 6.4.1, we discuss the impact of injection flow rate and the
chosen simplification strategy on the number of flow cycles needed for
particle distribution convergence. As we conclude Chapter 6 and the
discussion on simplification strategies in the entirety of Part II, we
discuss the optimal simplification strategies for accuracy and sens-
itivity in Section 6.4.2 and overview limitations and future steps in
Section 6.4.4.

6.4.1 Particle progression
Figure 6.1 clearly shows that lower injection flow rates are correl-
ated with lower exit percentages for the current particle distribution
convergence criterion, although the difference is maximally 1 cycle

125



6. Advanced Simplification Strategies for Particle
Distribution and Tumor Dose Predictions

(e.g. B01 compared to B02–B08). This effect was noted in both the
baseline, truncated and extra coarse batch. Additionally, truncation
of the physical domain also cut down the number of cardiac cycles
necessary to meet the convergence criterion, resulting in a maximum
flow time of 5.6–6.4 s, while it was 7.2–8.0 s for the baseline, coarse
and extra coarse batches.

6.4.2 Selection of the optimal strategy
Based on accuracy, the coarse model and coarse model with less car-
diac cycles performs best. As shown in Table 6.2, the average dif-
ference in particle distribution is small for both simulation strategies
(maximum value considerably smaller than 1%). Studying the tumor
dose, the coarse model with less cardiac cycles performs slightly bet-
ter than the coarse model (maximum difference of 0.834% compared
to 1.40%). However, studying the maximum difference in particle dis-
tribution, the coarse model performs slightly better (maximum value
of 3.02% compared to 4.38%). For all other strategies, the average
and maximum differences in particle distribution increase signific-
antly (maximum values larger than 1% and 5%, respectively), and
the accuracy in tumor dose decreases (maximum difference larger
than 2%). It should be noted that a maximum difference in particle
distribution of 3.02% in one of the outlets (as is the case of our coarse
model) is larger than the maximum difference we allowed for our mesh
sensitivity study (1%) and explains why our mesh sensitivity study
led to a higher mesh density than the coarse model considered here.
Hence, coarsening the mesh is possible, but it is associated with a
considerable decrease in accuracy for the particle distribution. At
the same time, a tumor dose accuracy less than 1.5% difference with
the baseline value should be acceptable. Importantly, this shows
that judging the suitability of the simplification strategy is depend-
ent on the specific output parameter(s) considered (particle distri-
bution versus tumor dose). Additionally, the stringency on accuracy
(i.e. whether or not a maximum difference in particle distribution
of 3.02% is acceptable or not) will likely depend on both the even-
tual application and the persons designing and using the application.
Summarizing the above, the coarse model performs best, but there is
a drop-off in accuracy, as was already evident from our original mesh
sensitivity study.

Based on sensitivity, the coarse model performs best (see Table
6.3), as it is the only strategy with both very similar sensitivities
to tumor dose (<1% difference) and very similar sensitivity to the
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particle distribution (average difference over all outlets <1%, max-
imum difference <3%). The next best alternative is the coarse model
with less cardiac cycles, which performs slightly worse for the sens-
itivity to tumor dose (difference of 1.63% with the baseline, see Fig-
ure 6.4). For all other strategies, the maximum difference over all
outlets is always at least 10%. The extra coarse batch is the only
strategy which still has acceptable sensitivity to tumor dose (1.95%
difference with the baseline, see Figure 6.4); for the other strategies,
it is already significantly higher (3.33% and 10.1% difference with
the baseline for the truncated and steady strategies, respectively).
Clearly, the steady strategy performs the worst overall. From the
above, we conclude coarsening the mesh is the optimal strategy for
sensitivity purposes.

Notably, when focusing on specific arterial feeders, different con-
clusions can be made on the suitability of simplification strategies.
For example, as was shown in Figure 6.3 for feeder 1 and 2, the
truncated and extra coarse batch were identified as the most suitable
strategies, respectively. Again, this shows that the output parameter
considered has a significant impact on the choice of the simplification
strategy of interest. However, focusing on only one arterial feeders
would be too narrow (feeder 2 itself only still contributes 20% of
the total tumor perfusion). Hence, we choose to focus on the global
picture (tumor dose and full particle distribution) when deciding on
the best simplification strategy. We advise not to focus only on tu-
mor dose but also to consider particle distribution, since tumor dose
(as considered here) is essentially a weighted average of the particle
distribution, and the particle distribution is the underlying physical
parameter informing the tumor dose.

There is not a very distinct difference in performance when eval-
uating these simplification strategies for accuracy or sensitivity. For
example, the maximal difference in particle distribution for one out-
let with the coarse model was reported as 3.02% (accuracy), and the
maximal difference in sensitivity in one outlet for the coarse model
was reported as 2.98% (sensitivity) (see Table 2). However, by design,
accuracy is a more stringent goal than sensitivity, since the goal of
the latter is typically to either rank parameters from high to low
impact, which is typically a tool for model diagnosis, while the first
aims to give a reliable prediction of the output parameter of interest.
Additionally, much more simulations are also needed for extended,
global sensitivity analyses, increasing the need for shorter computa-
tional times more than for accuracy purposes. Crucially, we tracked
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the computational cost for the simulations with the highest injection
mass flow rate (run on separate days on a High Performance Comput-
ing system using 94 cores of an AMD EPYC 7552 2.2 GHz processor
with RHEL 8 operating system). Here, we noted a 45% decrease
in computational time for the full simulation for the coarse model
(compared to the baseline) and a 60% decrease for the coarse model
with less cardiac cycles. Combining the arguments above (sensitivity
studies require much more simulations, and are less stringent than ac-
curacy studies), we advise to use mesh coarsening (and reducing the
number of cardiac cycles) for sensitivity analysis first and foremost,
and for accuracy only when strictly necessary.

6.4.3 Computational time vs complexity
Importantly, computational complexity and computational time are
not the same thing; for a given complexity, the computational time
depends highly on the hardware used, which (non-trivially) depends
on the resources available to the user. Here, we mainly opted for a
High Performance Computing system and noted computational times
could be decreased with a speedup factor of 2.56 by using a coarsened
mesh with a reduced number of flow cycles. Additionally, we also ex-
plored GPU-based computing using the Native GPU Fluent solver
(available in Fluent 2023 R1). With 2 GPU cores, we noted a speed
increase with a factor of 2.15 compared to 96 CPU cores, indicat-
ing the high potential of GPU-based computation. The improvement
for using 2 GPU cores instead of 1 was of a factor of 2.54, showing
good parallelization and indicating that using a higher number of
cores could decrease computational times even further. Other work
confirms that for similar biomedical cases, such as air flow in the air-
ways, GPU-based computational offers significant acceleration [131].
Importantly, these computational times are only valid for the refer-
ence, steady-flow simulation, which we showed in this study is not an
accurate predictor of the time-dependent tumor dose or microsphere
distribution. Therefore, as shown in this study, model simplification
cannot make a bridge towards GPU-based computation yet, since
significant steps still need to be made to run more complex models
via GPU-based computation. Currently the trade-off between com-
putational time and computational complexity still exists for our 3D
CFD simulations, and model simplification is still an important, valid
strategy to decrease computational cost.

6.4.4 Limitations and future work
From the modeling point of view, several limitations arise, which
are explained more in detail in Section 11.1. Specifically, for the
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purpose of this study, there are other notable limitations. This com-
putational study was done in only 1 patient-specific geometry. Al-
though the injection scenario was realistic (selective injection in the
RHA), more injection scenarios, patient-specific geometries and can-
cer scenarios should be investigated before generalizing the conclu-
sions made here. Additionally, we judged the suitability of specific
simplification scenarios by studying sensitivity towards one specific
parameter, i.e. injection mass flow rate. Ideally, it should be in-
vestigated whether the conclusions regarding suitability of the coarse
mesh model for sensitivity are translatable to other varying para-
meters. If so, we can use these significantly simplified models for
sensitivity studies. These sensitivity studies are crucial to determine
the most influential clinical and numerical model input parameters
(e.g. boundary conditions). Importantly, the evaluation of the cur-
rent strategies only applies for the chosen two output parameters (tu-
mor dose and particle distribution); if other parameters are deemed
relevant by other users to inform clinical decision-making, the con-
clusions should be re-evaluated. Of course, other strategies still exist
which might drive down computational time even further while still
allowing reliability. Recently, data-driven surrogate modeling has be-
come popular, although sufficient high-fidelity training samples are
still needed to train the model, whose computational cost is far from
trivial. While we used a ‘brute-force’ grid coarsening approach here,
adaptive mesh refinement in certain sensitive regions (i.e. near the
catheter tip) might allow to decrease the total number of mesh ele-
ments. Since the study emphasized the added value of GPU-based
computation with regards to computational times, other numerical
techniques (e.g. Lattice Boltzmann) might offer additional accelera-
tion, although their performance was not considered in the current
study.

Once validated, these patient-specific models and sensitivity ana-
lyses of influencing injection parameters can play an important role
in preoperative planning. They can help to improve tumor targeting
and reduce the need for invasive pre-treatment. Specifically, sim-
plified models which are not computationally too complex are more
likely to be successfully translated to clinical practice.

6.5 Conclusions

In Chapters 4 and 5, we already showed that moderate up- and down-
stream truncation is possible while still allowing sufficient accuracy.
In Chapter 6, we showed that coarsening the mesh (and possibly
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reducing the number of flow cycles) are the most suitable simplifica-
tion strategies, especially for sensitivity (accuracy only if we are less
strict, which depends on the application and the preferences of the
user). Throughout the dissertation so far, we named the high com-
putational cost of 3D CFD models of intrahepatic drug transport
the main reason why global sensitivity analyses (which require many
model evaluations) are not feasible. While the current simplification
strategies (i.e. coarse model with less flow cycles) can cut down the
computational cost by roughly 60%, these simplified models are from
simplified enough to run hundreds or thousands simulations within
a reasonable time frame. Hence, we will use these simplified models
as a starting point, and explore other strategies, such as data-driven
surrogate modeling, to further drive down computational time.
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What a frightening thing is the human,
a mass of gauges and dials and registers,

and we can only read a few
and those perhaps not accurately.

J. Steinbeck
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7
Uncertainty Quantification

With Uncertain Injection
Position

Positioning of the chapter

In Part II, we focused mainly on identifying reliable simplification
strategies of patient-specific 3D CFD simulations. In this part, we
will use simplified CFD models as a starting point to perform uncer-
tainty quantification and sensitivity analysis. For our application of
drug transport during TARE, uncertainty quantification and sensit-
ivity analysis are especially relevant because we consider two types
of uncertain parameters. First, specific clinical injection parameters
introduce uncertainty because they are uncontrollable (e.g. cross-
sectional injection position) or difficult to quantify or keep constant
(e.g. injection flow rate). Second, uncertain numerical input para-
meters (e.g. boundary conditions) also introduce uncertainty. Here,
we will illustrate uncertainty quantification of both clinical and nu-
merical parameter types. In Chapter 7, we will quantify uncertainty
in the tumor dose caused by an uncertain, uncontrollable in vivo
cross-sectional position of the catheter tip using a low fidelity CFD
model. In Chapter 8, we will explore surrogate models to perform
sensitivity analysis of the inlet waveform. By the end of Chapter 8,
the goal is to have shown feasible methods of performing uncertainty
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quantification and sensitivity analysis for a wide range of uncertain
clinical and numerical parameters, despite the initial complexity of
our 3D CFD simulations.

This chapter is based on the publication A Hybrid Particle-Flow
CFD Modeling Approach in Truncated Hepatic Arterial Trees
for Liver Radioembolization: A Patient-Specific Case Study (T.
Bomberna et al, Frontiers in Bioengineering and Biotechnology,
2022) [19].

7.1 Introduction

In previous work, the microsphere distribution was typically calcu-
lated deterministically, with fixed clinical parameters serving as in-
put for the CFD model [10, 15]. Similary, in Chapters 4 and 5, the
particle distributions were calculated for a fixed catheter tip posi-
tion, axial injection location, catheter flow rate, etc. Additionally, in
Chapter 6, the tumor dose resulting from this particle distribution
was calculated, again deterministically.

However, Chapter 6 also introduced the notion of tumor dose
range, where an input parameter (injection flow rate) was varied
across a realistic range, and the resulting spread in tumor dose val-
ues was quantified. This notion is similar to Monte Carlo approaches,
because it treats a parameter as stochastic (that was in other work
considered deterministically) [132]. As a result, a large spread in the
tumor dose output indicates a high sensitivity towards this varying
parameter, a low spread indicates a low sensitivity. Specifically, in
Chapter 6, the spread (for the baseline model, B) was between 50.8
% and 55.0% (from high to low injection flow rate). Hence, the total
tumor dose range was 4.22%.

Importantly, the more controllable parameters are, and the more
they are fixed at or near a specific value, the smaller this tumor
dose range becomes. At the start of injection, injection flow rate is
typically easy to set, while it might become more difficult during the
procedure as the downstream vascular resistance increases. Other
clinical parameters can be even more difficult to control, such as
the catheter tip position. Hence, in this chapter, we will quantify
uncertainty in the tumor dose caused by an uncertain, uncontrollable
cross-sectional position of the catheter tip.

We will vary the tip position across a specific axial injection plane,
and calculate the resulting tumor dose ranges. However, because the
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forward CFD model is costly, and repeatedly calculating the tumor
dose resulting from many different catheter tip positions will be very
expensive, we introduce a simplifying approach to generate the tumor
dose ranges much more cheaply. We will also compare the tumor
dose ranges generated from the moderately and severely truncated
geometries from Chapter 4 to inspect the impact of truncation.

7.2 Methods

In Section 7.2.1, we discuss the study design of this chapter. Next,
in Section 7.2.2, we introduced a simplified CFD model which can
cheaply compute tumor doses resulting from a varying catheter tip
position. We refer to this approach as a low fidelity CFD model since
it requires strong simplification of the forward CFD model for cheap
computation.

7.2.1 Study Design
For this study, we re-use Simulations 1–3 (see Table 4.1) from Chapter
4. In summary, this study considers the same planar injections as in
Chapter 4 (i.e. with the axial location superficially before the first
bifurcation) for the full-complexity hepatic arterial geometry (Geo-
metry 1) and two arterial geometries with different levels of trunca-
tion (Geometry 2 & 3; see Section 4.2.2.2). However, as discussed
below, we post-process the results differently.

7.2.2 Low Fidelity-based Tumor Dose Range
The meshing, blood flow and particle physics, in- and outflow bound-
ary condition methodology and solver settings were all identical to the
settings explained in Chapter 4. Additionally, in Section 4.3.3.2, it
was explained how the grid-based particle distribution could be com-
puted with the planar injections, resulting in the CFs (cell fractions)
of Geometry 1 or the TCFs (truncated cell fractions) for the trun-
cated Geometries 2-3. Since we use the hybrid-particle flow model
to assume particles distribute proportionally to the flow distribution
downstream of the truncated outlets, both CFs and TCFs result in
48 values, one for each outlet of the original Geometry 1. With this
method, CFs and TCFs can be easily compared.

However, the goal is to mimic catheter injection using our planar
injections. To do this, the (T )CFx is not calculated for the full cross-
section (as in Chapter 4), but also for a small section of the grid
that would coincide with the catheter tip exit location for a catheter
injection. This catheter-associated (T )CFx offers an estimation of
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the particle distribution after catheter injection for a hypothetical
catheter injection location.

The tumor dose (TD in Equation 7.1) can then be estimated
by multiplying the (T )CFx with the fraction of particles flowing to
the tumor for outlet x (calculated as the ratio of the tumor flow
contribution, Qt,x, as defined in Equation 4.15, over the total flow in
the outlet, Qt,x + Qh,x) and adding together these contributions for
all 48 outlets. This gives a measure of the total number of particles
flowing to the tumor (i.e., total “tumor dose”):

TD =
48∑

x=1
(T )CFx · Qt,x

Qt,x + Qh,x
(7.1)

When the small, catheter-associated grid section is shifted ran-
domly across the injection plane to represent randomly sampled cath-
eter injection locations (see Figure 7.1A), the tumor dose distribu-
tion shows how much the tumor dose changes for random injection
locations within the injection plane. Essentially, this tumor dose dis-
tribution can offer a direct quantification of the differences between
the different (C)PRGs obtained for the simulations as listed in Table
4.1, since similar (C)PRGs should lead to similar tumor dose dis-
tributions. Accordingly, the tumor dose distribution is also a direct
indicator of the impact of cross-sectional catheter tip position: if the
impact of this varying tip location would be small, the resulting tu-
mor dose distribution should be limited in range; if the impact is
large, the dose distribution should be significantly larger in range.

Here, the sampling over the plane was done in Matlab (Math-
Works, United States), with a uniform distribution for all grid cells
included in the sampling set. However, grid cells that were located
too close to the periphery (i.e., when catheter tip placement was
not possible) were not deemed “appropriate” and excluded from the
sampling set. Essentially, these were grid cells where a 7×7-square
(i.e., with sides of 7 · 10−4 m) could not be placed around the central
cell.

7.3 Results

Studying the tumor dose ranges (minimum-maximum) based on the
low fidelity modeling approach, the sampled grid cells (the same for
all three geometries) are given in Figure 7.1A. The tumor dose dis-
tribution for these 50 randomly sampled catheter injections in each
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geometry are given in a violin plot in Figure 7.1B, with the colored
area surrounding the boxplot representing the sample density. The
median tumor doses are 43.1, 44.0, and 44.6%, respectively. The
ranges in tumor dose are 31.9%–47.9% for Geometry 1, 34.6%–48.4%
for Geometry 2, and 37.5%–49.9% for Geometry 3. Hence, the sens-
itivity to the varying parameter, ∆TD (as defined in Chapter 6), for
Geometry 1 is 16.0%.

Comparing the impact of truncation, we see that the sensitivity
similarity parameter ∆∆TD (as defined in Chapter 6) for Geometry
2 is 2.2% compared to the baseline Geometry 1, and ∆∆TD for
Geometry 3 is 3.6%. In general, the tumor dose distribution is slightly
more concentrated for Geometry 3, while the bell-like distribution
shapes for Geometry 1 and 2 are more similar to each other.

Figure 7.1: (A) The full sampling set of appropriate grid cells (grey) and
50 sampled grid cells (red) to simulate particle injection from these catheter
tip locations. (B) Low Fidelity-based distribution of tumor dose (TD) for
50 randomly sampled catheter injection locations in each geometry. The 3
bars denote the minimum, median and maximum, respectively. The violin
plot for Geometry 3 looks slightly different than for Geometries 1 and 2,
but the medians are very similar.

7.4 Discussion

First, we discuss the most important results regarding the tumor
dose distributions: the impact of cross-sectional tip position on the
tumor dose in Section 7.4.1, and the impact of truncation on the
sensitivity in Section 7.4.2. Afterwards, the limitations of this low
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fidelity CFD modeling approach are discussed, showing the clear need
for a more broadly applicable simplifying framework for uncertainty
quantification in Section 7.4.3.

7.4.1 Expected dose and sensitivity
Judging the tumor dose distribution for the baseline Geometry 1, the
median dose is 43.1%. This can be interpreted as an indication of the
expected dose, if we are not able to control the catheter tip position
within the plane. Additionally, the tumor dose range resulting from
this varying catheter tip position is 16%. In comparison, the tumor
dose range resulting from the varying injection flow rate in Chapter 6
was 4.22%. These results indicate that, under these patient-specific
conditions, the tumor dose is considerably more sensitive to catheter
tip position than it is to injection flow rate.

7.4.2 Impact of truncation on sensitivity
As is clear from Figure 7.1B, the overall tumor dose range is highest
for Geometry 1 (16.1% instead of 13.8% for Geometry 2 and 12.4%
for Geometry 3). This discrepancy for Geometry 3 is most likely
due to the increased truncation level. Importantly, this means that
the predicted sensitivity of the tumor dose to catheter tip location
is slightly larger for Geometries 1 and 2 (i.e. Geometry 1–2 have a
larger ∆TD). In comparison, the computed ∆∆TD for Geometry
2-3 was 2.2–3.6% (with Geometry 1 as the baseline), which is of a
similar order of magnitude as the ∆∆TD of 3.33% for the severely
truncated model when we considered injection flow rate as the vary-
ing input parameter in see Chapter 6. Importantly, these values for
∆∆TD are also still considerably larger than the ∆∆TD for the
coarsened model in Chapter 6. This seems to confirm our results
form Chapter 6, where we already noticed that truncation has a clear
impact on sensitivity, and we preferred coarsening the mesh as the
optimal strategy instead.

However, the impact on the medians of the distribution is limited
(43.1% for Geometry 1, 44% for Geometry 2, and 44.6% for Geometry
3). Also, even given small variations because of truncation, the tumor
dose ranges for the truncated geometries when varying cross-sectional
tip position are still significantly larger than when varying injection
flow rate, as in Chapter 6. That means, even though truncation
induces differences in sensitivity, we still would have made the correct
conclusions regarding which of the two is the highest-impact clinical
parameter. Hence, truncation might also be an appropriate third-
choice simplification strategy for sensitivity. However, we still need
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to be careful in generalizing this, as it is likely that we will encounter
clinical parameters in the future which might not differ so much in
sensitivity as the two parameters compared here.

7.4.3 Limitations and future work
With catheter tip position as the only varying clinical parameter,
the low fidelity-based tumor dose range approach based on 1 planar
injection is a cheap uncertainty propagation method. Importantly,
the validity of the low fidelity CFD modeling approach was veri-
fied for several catheter tip locations, but not for the entire range
of locations considered here. Hence, instead of 1 planar injection
and 50 samples processed after the simulation, 50 different catheter
locations (i.e. 50 different geometries and meshes) and 50 different
simulations would have to be run to verify whether explicitly mod-
eling 50 different catheter tip locations or using 50 samples of the
planar injection results in a similar tumor dose distribution. How-
ever, both the manual work and computational time would explode
significantly. While this simplifying approach might be a likely as-
sumption for standard microcatheters, this might differ significantly
for other catheter types which significantly alter the near-tip hemody-
namics. Since Kleinstreuer et al. [9] already emphasized the import-
ance of catheter presence, we cannot underestimate the importance
of explicitly modeling the catheter, which is not done here. Addi-
tionally, this simplifying approach only works well when the varying
parameter of interest is the catheter tip position, and would not work
when we want to vary other clinical parameters. Hence, we conclude
from the above that to have an uncertainty quantification framework
that generalizes well, a new approach will be needed.

7.5 Conclusions

In Chapter 6, we already quantified the sensitivity of the tumor dose
towards varying injection flow rate, and introduced the notion of tu-
mor dose ranges because of uncertainties in clinical input parameters.
Here, we quantified the tumor dose range or sensitivity for varying
catheter tip location, using a simplified low fidelity CFD modeling
approach. Importantly, the tumor dose range was of the order of
16%, which indicates a clinical parameter of high importance. This
is crucial, since it is currently technically unfeasible to accurately
control the catheter tip location in vivo, and determining the tumor
dose distribution or expected dose for a given axial plane may help
to quantify the uncertainty regarding catheter tip location for that
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plane. However, since the approach used here had strong limitations,
we will explore more broadly applicable uncertainty quantification
approaches (such as surrogate modeling) in the next chapter.
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8
Sensitivity Analysis of the

Inflow Waveform Shape

Positioning of the chapter

In Chapter 7, we introduced a simplifying modeling framework to
quantify the uncertainty in the tumor caused by an unknown cross-
sectional catheter tip position. However, there are many more clinical
parameters, and additional numerical model-based input parameters,
whose uncertainty cannot be quantified using planar injections. Addi-
tionally, we do not only want to perform uncertainty quantification,
but also global sensitivity analysis, where multiple parameters are
varied at once (as in clinical practice) and the most impactful para-
meters can be identified. Hence, in this chapter, we rely on surrogate
models to introduce a broad framework for sensitivity analysis of all
types of input parameters, while still considering the high computa-
tional complexity of our 3D CFD multiphase simulations.

This chapter is based on the publication Adaptive Design of Ex-
periments to Fit Surrogate Gaussian Process Regression Models Al-
lows Fast Sensitivity Analysis of the Input Waveform for Patient-
Specific 3D CFD Models of Liver Radioembolization (T. Bomberna
et al, Computer Programs and Methods in Biomedicine, 2024) [22].
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8.1 Introduction

CFD studies have shown that many different injection parameters
which vary in clinical practice, such as infusion flow rate [12, 15, 92],
size and density of the microspheres [14], microcatheter type [10, 90,
133], microcatheter axial tip location [130], microcatheter tip loca-
tion within in the arterial cross-section [113, 116], etc. significantly
impact the downstream microsphere distribution. Since treatment
success also wildly varies for TARE [100], the impact of these many
clinical parameters on the treatment outcome is preferably studied
on a patient-specific basis.

Preliminary evidence shows that these clinical injection paramet-
ers strongly interact, making sensitivity analysis (SA) more com-
plex. For example, Taebi et al. [130] showed that the sensitivity
of the particle distribution towards the cross-sectional injection po-
sition was much higher for an injection plane close to a bifurcation
than far away from it. This underlines that local SA does not suf-
fice to capture these interaction effects. Importantly, next to clinical
parameters, many model-related numerical input parameters, such
as boundary conditions, are also uncertain because they are often es-
timated through imperfect measurements or mathematical modeling,
which can introduce extra uncertainty in model outcomes [118]. For
example, Taebi et al. [134] investigated the impact of outlet bound-
ary conditions on hemodynamics and blood flow distribution, varying
two parameters of the 3-element Windkessel models applied at the
outlets: the summation of the distal and proximal resistance (total
resistance), and the ratio between the distal and proximal resistance.
They noted that mainly the choice of the total resistance impacted
model outcomes. Hence, we should use global SA to determine the
most impactful clinical and numerical input parameters.

For SA, forward uncertainty propagation techniques are used to
estimate the effect of uncertainties in model inputs on the outputs
[135]. However, repeatedly running 3D CFD simulations for uncer-
tainty propagation is costly. To reduce computational cost for global
SA, both the CFD model and the uncertainty propagation technique
can be simplified. Regarding CFD models, we previously identified
three strategies for reliable simplification: truncation of the down-
stream vessels, coarsening the mesh significantly and running a re-
duced number of flow cycles (see Chapter 6). However, the computa-
tional cost of a single CFD simulation remains high, and low-fidelity
approaches are not always applicable (see Chapter 7). Luckily, sev-
eral other techniques exist to further reduce the computational cost
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of uncertainty propagation techniques, such as the use of surrogate
models [136]. Currently, examples of surrogate models are severely
lacking for our application of 3D CFD models of intrahepatic drug
transport. As an only example, Yuan et al. [137] developed a convo-
lutional neural network (CNN) to predict the drug distribution field
in a 2D branching geometry with 1 inlet and 5 outlets, which al-
lowed them to speed up the prediction time by a factor of 132,935
compared to the numerical simulation. However, it should be noted
here that that training samples for the CNN are still relatively cheap
to compute for 2D simulations. For complex 3D arterial geomet-
ries, generating surrogate models becomes even more of a challenge,
because the high computational cost limits the number of available
training samples.

Hence, in this study, we illustrate the feasibility of designing a
surrogate model specifically for SA of complex 3D CFD simulations
with a limited number of samples. As an illustrative but relevant case,
we will perform SA of the tumor dose output towards three shape
parameters of the inlet mass flow waveform boundary condition: the
peak systolic height, the ratio between the duration of systole and
diastole, and the heart rate. To the authors’ knowledge, uncertainty
quantification towards inlet boundary conditions is very limited in
this domain. If successful, these methods can be translated to other
SA problems, such as quantifying the sensitivity of the tumor dose
towards more clinical and numerical parameters.

8.2 Methods

In Section 8.2.1, we explain the goal of this chapter and the study
design. In Section 8.2.2, a brief overview is given of how we use
patient-specific CFD modeling to convert medical images into tumor
dose predictions. Next, in Section 8.2.3, we explain how a surrogate
model can be used to fit a relationship between CFD inputs and
outputs. We illustrate the suitability of using this surrogate model
to reliably obtain sensitivity indices for the example Ishigami function
in Section 8.2.4. Finally, in Section 8.2.5, we apply these techniques
to our waveform sensitivity problem.

8.2.1 Study Design
Previously, we used patient-specific 3D CFD simulations of blood flow
and drug transport to predict the tumor dose after drug infusion. In
this study, we want to perform a global SA of the tumor dose towards
three specific shape parameters of the input mass flow rate waveform:
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the peak systolic mass flow rate, the ratio between the duration of
systole and diastole, and the heart rate. We aim to do this using a
computationally cheap surrogate model (a Gaussian process regres-
sion model, GPR), which is fit on a (limited) number of complex 3D
CFD model evaluations. We optimize the GPR to perform SA reli-
ably by a novel adaptive design of experiments (ADOE) algorithm,
which adds additional model evaluations to the initial design of ex-
periments (DOE) if the GPR is not sufficiently sensitive yet. The
study consists of several parts:

• First, a multiphase CFD model "M" is defined, which calculates
the tumor dose from patient-specific imaging data.

• Second, we introduce the novel ADOE algorithm to appropri-
ately fit the surrogate GPR for our purpose of SA. We will
illustrate and optimize the design of our ADOE algorithm us-
ing the example Ishigami function [138], and use this function
to optimize several ADOE hyperparameters.

• Third, we apply the ADOE to our waveform problem and fit
our surrogate GPR, M.

• Finally, we use M to determine the sensitivity of the tumor dose
towards the three shape parameters using the Sobol variance-
based method [139].

More details on each part are given below.

8.2.2 Physics-based Tumor Dose Model
Below, the CFD approach to convert patient-specific images into
a tumor dose prediction is briefly described (more details on the
approach can be found in Chapter 4). A patient-specific hepatic
arterial tree with a microcatheter tip position in the right hepatic
artery was reconstructed based on a conebeam CT dataset from UZ
Leuven (Leuven, Belgium) (see Figure 8.1A). The mesh consisted
of 2.43 · 106 volume elements, with tetrahedral elements in the bulk
of the domain and three prism layers enabled near the boundaries
(the optimal mesh density was determined in Chapter 6). We used
a multiphase approach in Fluent (Ansys, USA) to model the con-
tinuous intra-arterial blood flow and discrete microsphere behavior.
Blood was modeled as a shear-thinning fluid with a density of 1060
kg/m3. The microspheres were modeled as inert spheres (diameter of
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40 µm, density of 1600 kg/m3). With regards to boundary conditions,
a time-dependent mass flow rate was applied at the inlet (specified
later) and a flow distribution was applied at the outlets as constant
flow fractions. Each time-dependent simulation was run for 9 flow
cycles, with a time step size of 0.1 ms. Convergence (either abso-
lutely scaled residuals of at least 10−5 or relative drops of at least
10−3) was reached in each time step.

To convert the particle distribution into a tumor dose, the particle
exit fraction at each arterial outlet was multiplied with the fraction
of the outlet flow flowing to the tumor (100% for internal tumor-
feeding arteries, 0% for the arteries feeding healthy tissue; assuming
that microspheres downstream of the computational domain follow
the flow distribution). By summing the microsphere fractions flowing
to the tumor for each arterial outlet, we obtain the tumor dose, as
explained more in detail in Chapter 4.

Figure 8.1: (A) Hepatic arterial geometry with 16 outlets, with the inlet
50 mm away from the catheter tip, and the catheter tip embedded in the
right hepatic artery. The left hepatic artery is reduced to 1 outlet. (B)
Original waveform (red) and 100 additional waveforms generated by Latin
hypercube sampling of three shape parameters (x1 − x3) within 75%-125%
of their original (red) values.

8.2.3 Fitting of the surrogate model
Below, we explain how we fit a surrogate GPR, M, compute a cheaper
relationship between inputs and outputs of the complex model, M.

8.2.3.1 Gaussian Process Regression Model
A GPR is a probability distribution over possible functions that fit
the observed (training) data. As input, the GPR uses the inputs and
outputs of the complex model, M, and a specific covariance function
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(kernel k, Eq. 8.1). As output, it reports the mean function of the
outputs as well as the probability ranges of the predicted outputs; we
use these probabilities in the ADOE. Our kernel was a radial basis
function (RBF) which took the form:

k(xi, xj) = σ2exp(− 1
2l

∣∣xi − xj

∣∣2) (8.1)

In Eq. 8.1, xi and xj are points in input space, l is the length-
scale, and σ is the variance. Hyperparameters of the GPR such
as the length-scale l and variance σ are learned from the data dur-
ing the training process. The GPR model was implemented in Py-
thon (Python Software Foundation, USA) using the sklearn package
(https://scikit-learn.org/stable/)

8.2.3.2 Sobol Sensitivity Method
After fitting the GPR, M, we use M to predict the tumor dose output
for 8.192 Saltelli sampled inputs [139], based on which we compute
Sobol’s sensitivity indices. In short, Sobol’s variance-based sensitivity
method decomposes the variance of the model output into contribu-
tions from individual input parameters and their interactions, which
allows us to understand which input parameters have the most sig-
nificant impact on the model output [139]. The first-order indices
(S1) quantify the total impact of each input parameter individually
(Eq. 8.2). Here, V[Y] denotes the total variance of the output (Y,
tumor dose), and V [E[Y |Xi]] the variance in the expected value of
the output, given that one parameter, Xi, is known. If V [E[Y |Xi]] is
large, the variance reduction made possible by knowing Xi is large,
and, hence, Xi, is an influential parameter with a large sensitivity
index, Si.

Si = V [E[Y |Xi]]
V [Y ] (8.2)

Higher-order Sobol indices include interaction effects between dif-
ferent parameters. Since the sum of all Sobol indices for Xi (in-
cluding interactions with other parameters) equals 1 by construction,
the total effect of Xi, including interactions with other parameters,
can be quantified with the total-order index, STi (Eq. 8.3). Here,
V [E[Y |X¬i]] is the variance in the output caused by variations in all
uncertain parameters except Xi. Notably, the sum of the total-order
indices of all parameters is larger than 1 for non-additive models.
Again, a high STi indicates a high influence of parameter Xi. The
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Sobol indices were calculated in Python using the SALib package
(https://salib.readthedocs.io/en/latest/).

STi = 1 − V [E[Y |X¬i]]
V [Y ] (8.3)

8.2.3.3 Design of the ADOE algorithm
Since it is a priori unknown how many model evaluations are needed
to appropriately fit the GPR and because of the high computational
cost of every single CFD model evaluation, our ADOE actively tries
minimize the number of necessary CFD model evaluations while still
reliably performing SA. To fit M, we need to sample the input para-
meters across input space (design of experiments, DOE) and compute
the true outputs using M for the full set of samples. As shown in Fig-
ure 8.2, the ADOE works as follows:

• First, we define an initial design of experiments (DOE) of Ninit

samples for 3 input parameters using Latin Hypercube sampling
(LHS). This generates a Ninit-by-3 matrix.

• Second, we evaluate the complex model, M, for each point of
the DOE, and then use these in- and output pairs to fit our
GPR.

• Third, we use LHS to generate 10.000 new samples in the 3D
input parameter space (10.000-by-3 matrix). We use the sur-
rogate GPR, M, to predict both the output and the uncertainty
on the output for each of the 10.000 samples. Then, we divide
each input parameter axis of the 3D input parameter space into
B bins, and determine the most uncertain predictions in each
bin (resulting in B3 bins, see Figure 8.2), and determine the
most uncertain prediction in each bin (B3 points out of the
10.000 candidate points).

• Fourth, we use the complex model, M, to calculate the true
output for the B3 uncertain predictions from the previous step,
and add these in- and output pairs (‘batch’) to the DOE. We
re-fit the GPR, including the extra batch of input-output pairs.
After one extra batch, the DOE has a size of (Ninit + B3)-by-3.

• Fifth, we use the Sobol method to calculate the 3 first-order
sensitivity indices and calculate the absolute change (∆) in the
indices with respect to the previous iteration. We continue
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adding batches of B3 points to the DOE until the sensitivity
indices have converged (∆<0.02).

Figure 8.2: The initial design contains Ninit points. Using Ninit complex
model evaluations, we fit a surrogate Gaussian process regression model,
which we use to compute the sensitivity indices using the Sobol method.
We strategically add points to the DOE in batches of B3 points until the
sensitivity indices have converged.

It should be noted that both the 8.192 Saltelli input space samples
generated to calculate the sensitivity indices with M, and the 10.000
LHS input space samples generated to calculate the most uncertain
predictions, are hyperparameters of the ADOE that can be adapted
easily by the user. Since these samples are only evaluated with M,
their computational cost is negligible.

8.2.4 Testing ADOE with Ishigami
To test the suitability of the ADOE, we use it on the Ishigami func-
tion (Eq. 8.4) [138], which contains three inputs (x1,x2,x3, varying
between -π and π; a and b are constants, typically taken as 7 and
0.1):

f(x) = sin(x1) + a · sin2(x2) + b · x3
4 · sin(x1) (8.4)

The Ishigami function (SALib Python package) is a useful test
case because the sensitivity indices are known a priori (Sx1=0.31,
Sx2=0.44, Sx3=0.00, as in salib.readthedocs.io), and the cost of a
single model evaluation is very low.
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8.2.4.1 Sensitivity
For different sizes of Ninit (50, 100, 150, 200), we compared the per-
formance of the 2-bin and 3-bin ADOE (resulting in 8 bins and 27
bins in total, respectively) to a rigid DOE (RDOE) algorithm, where
only the Ninit total model evaluations were used to define the DOE.
Note that the eventual number of model evaluations for the ADOE
will be higher than Ninit depending on how many batches are added
to reach convergence; for the 2-bin ADOE, the batch size is 8 simu-
lations, while for the 3-bin ADOE, the batch size is 27. To assess the
suitability of the 2-bin ADOE, 3-bin ADOE and RDOE, we run 20
repeats of both ADOEs and RDOE, report the absolute error on Sx1
and Sx2 (since Sx3=0.00, absolute errors on the sensitivity indices are
too low to be considered a relevant evaluation criterion). We eval-
uate the ADOE mainly to reach an absolute maximum error <0.1,
but also for a performance largely independent of Ninit. The latter is
specifically useful for SAs of costly novel problems (such as ours), for
which the number of model evaluations necessary to compute reliable
sensitivity indices is a priori unknown.

8.2.4.2 Accuracy
We also tested the suitability of our ADOE-based GPR to accurately
predict the output of the Ishigami function and the CFD model. This
is non-trivial since the ADOE is an optimization algorithm for pre-
dicting sensitivity (not accuracy). We did this by using the ADOE-
based GPR to predict the output of M(Y) for 10 previously unseen
test samples (randomly sampled in input space) and comparing with
the true output of M(Y). We normalized the output vector,

∣∣∣Ŷ − Y
∣∣∣,

by taking the mean and dividing by the mean of |Y |, and reporting
the relative error e in % (Eq. 8.5).

e(%) =
∑

10

∣∣∣Ŷ − Y
∣∣∣∑

10 |Y |
(8.5)

8.2.5 Sensitivity analysis of the input waveform
Finally, we apply the ADOE to our waveform sensitivity problem.
Therefore, we determined nominal values of three shape paramet-
ers, x1−3, from the input waveform, which we extracted from a one-
dimensional model of the arterial circulation [127], as explained in
Chapter 4:

• x1: peak systolic mass flow rate (kg/s): 0.01 kg/s
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• x2: heart rate (bpm): 75 beats/minute

• x3: ratio between the time needed to reach the systolic peak
and the full cycle period [%]: 27.375%

For each input shape parameter x, we sampled values, xsample,
within a lower limit of 75% of the nominal value and an upper limit
of 125% of the nominal value, xnominal(given above). This is done
by generating normalized LHS samples between 0 and 1, LHSsample,
which define the spread between the lower and upper limit:

xsample = (0.75 + 0.5 · LHSsample) · xnominal (8.6)

As a result, x1 varied between 0.075–0.125 kg/s, x2 varied between
56.25–93.75 bpm (leading to periods between 0.64-1.07s), and x3 var-
ied between 20.53–34.22%. For the initial set of 100 simulations used
in the ADOE, 100 parameter combinations resulted in the 100 dif-
ferent waveforms visualized in Figure 8.1B. We computed the tumor
dose using M for each unique waveform. Then, after using the ADOE
to fit our surrogate GPR, we compute the Sobol indices.

8.3 Results

In Section 8.3.1, the suitability of the ADOE to compute reliable
Sobol indices is illustrated with the example Ishigami function. Next,
in Section 8.3.2, we use the ADOE to determine the Sobol indices of
the three waveform shape parameters in our current patient-specific
model.

8.3.1 ADOE performance using Ishigami
8.3.1.1 Sensitivity
For different sizes of Ninit (50, 100, 150, 200), we quantified the error
on the sensitivity indices of the Ishigami function for 20 repeats of the
2-bin and 3-bin ADOE. We compared this error range to the RDOE
with Ninit total model evaluations (50-200). The maximum errors
are 0.178, 0.0537, 0.0511, 0.0186 for Sx1 and 0.309, 0.136, 0.0637,
0.0251 for Sx2 for 50, 100, 150, 200 evaluations, respectively (Figure
8.3A). For the 20 repeats of the 2-bin ADOE , the maximum errors
are 0.173, 0.050, 0.316 and 0.0114 for Sx1, and 0.364, 0.0846, 0.442
and 0.0249 for Sx2 (Figure 8.3B). The median number of 2-bin ADOE
model evaluations necessary for each Ninit was 82 (Ninit = 50), 108
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(Ninit = 100), 158 (Ninit = 150) and 208 (Ninit = 200). The errors
of the 3-bin ADOE were much lower, even for a small Ninit (Figure
8.3C): the maximum errors were 0.0838, 0.0533, 0.0278 and 0.010 for
Sx1, and 0.142, 0.0792, 0.0259 and 0.0222 for Sx2, respectively. The
median number of model evaluations for the 3-bin ADOE were 185
(Ninit = 50), 154 (Ninit = 100), 177 (Ninit = 150), and 227 (Ninit =
200).

Notably, lower Ninit does not necessarily correspond with lower
number of final model evaluations. For the final number of model
evaluations for the 3-bin ADOE, the initial DOE was either large
enough or already too large (i.e. only one extra batch was added) for
0/20 cases with Ninit = 50 and 100, 12/20 cases for Ninit = 150, and
19/20 cases for Ninit = 200. Hence, preferably, Ninit is chosen small
enough to avoid as much unnecessary model evaluations as possible.
Because of its superior performance, we set the number of bins at 3
for the remainder of the study.

Figure 8.3: For both the RDOE and 2-bin ADOE, the absolute error
on the sensitivity indices still depends on the size of the initial set. This
dependency becomes much smaller for the 3-bin ADOE, with much smaller
maximum errors already reported for an initial set of 50 model evaluations.

8.3.1.2 Accuracy
Since the ADOE optimizes the surrogate GPR for sensitivity ana-
lysis and not a true output prediction, it is paramount to distinguish
between performance on sensitivity and accuracy. For the Ishigami
function, we compared the predicted output (M) with the true out-
put of the Ishigami function (M) by constructing the relative error
e (in %). For a specific GPR based on the 3-bin ADOE (initial size
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of 100, final size of 154), the maximum reported error on 10 unseen
samples was 13% (meanwhile, all first-order sensitivity indices were
predicted with an absolute error well below 0.1).

8.3.2 Sensitivity analysis of the input waveform
Applying the ADOE to our waveform sensitivity problem, we set
Ninit at 100 and the number of bins at 3. The final number of model
evaluations necessary to reach convergence was 181. In these 181
simulations, the tumor dose varied between 49.2%-60.0%. Judging
the evolution of Sx1−x3 during ADOE: after Ninit (100) simulations,
Sx1−x3 are 0.045, 0.041, 0.30, respectively; after 121 simulations,
Sx1−x3 are 0.076, 0.058 and 0.38; after 154 simulations, Sx1−x3 are
0.058, 0.023, 0.41. Finally, Sx1−x3 are 0.055, 0.019 and 0.41, respect-
ively. Considering also interaction effects, STx1−x3 are 0.41, 0.44 and
0.73, respectively. In Figure 8.4, the final Sx1−x3 and STx1−x3 are
shown.

Figure 8.4: The final first-order and total-order indices show the high
impact of x3 (systolic duration).

For the waveform sensitivity problem, for a separate GPR fit with
all 181 samples computed previously via the 3-bin ADOE, the max-
imum reported error on 10 unseen samples was 5.44%.

8.4 Discussion

As above, we first evaluate ADOE performance for the Ishigami func-
tion in Section 8.4.1, and then apply the ADOE to our waveform sens-
itivity problem in Section 8.4.2. Finally, we discuss the limitations
and future work of the current chapter in Section 8.4.3.
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8.4.1 ADOE performance for Ishigami function
In Figure 8.3A, for the RDOE, we clearly see that both median and
maximum error for Sx1 and Sx2 decrease with increasing DOE size
(50 to 200). Acceptable maximum errors for both indices (<0.1)
are reported only for 150 model evaluations onward. For the 2-bin
ADOE, the median errors for Sx1 and Sx2 also clearly decrease with
increasing Ninit, but the maximum errors do not, showing no clear
improvement over the RDOE.

However, as seen in Figure 8.3C, the 3-bin ADOE is clearly su-
perior to both the RDOE and the 2-bin ADOE. First, the maximum
errors are much lower for low Ninit (0.142 for Sx2 compared to 0.364
and 0.309 for the 2-bin ADOE and RDOE, respectively). Second,
the maximum errors are smaller than 0.1 for both Sx1 and Sx2 from
Ninit = 100 onward, which was not the case for the 2-bin ADOE and
RDOE. Note that the high maximum errors for the 2-bin ADOE seem
to indicate the importance of distributing new DOE points across in-
put space, which is enforced by increasing the number of bins.

Of course, the important trade-off is that of computational cost:
for example, the maximum error for Ninit of 50 might be lower for
the 3-bin ADOE, but the median number of simulations necessary to
reach this low error is considerably higher than for the 2-bin ADOE
and RDOE. Importantly, we cannot ignore the impact of the num-
ber of considered model evaluations. Looking at Ninit = 100 for the
3-bin ADOE, we see that the maximum error for Sx2 is 0.0792, for
a median number of 154 model evaluations. Instead of comparing to
the RDOE with 100 final model evaluations, as we did before and in
Figure 3 (where the maximum error is 0.136, and hence, significantly
higher), it is more fair to compare to the RDOE with 150 final model
evaluations. Here, the maximum error is 0.0637, which is slightly
better than the ADOE. This makes clear that the ADOE is not spe-
cifically more accurate when compared to an RDOE with a similar
number of final model evaluations. However, for RDOE, it is difficult
to know its optimal size a priori.

Hence, the crucial advantage of the 3-bin ADOE is in its much
lower dependency on Ninit, with reliable performance even for the
lowest Ninit, which was definitely not the case for the 2-bin ADOE
and RDOE. Hence, for novel problems, where the optimal size of
the DOE is unknown, the 3-bin ADOE algorithm can be expected
to produce reliable sensitivity indices, even if a random DOE size is
chosen.
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With regards to accuracy, the 3-bin ADOE for the Ishigami func-
tion resulted in a DOE size of 154 simulations, with still a relatively
large error of 13% on the unseen output. First, this shows that the
ADOE can predict sensitivity indices beneath our error limit (<0.1)
while not performing optimally on accuracy. Hence, we advise to
differentiate between goals of sensitivity and accuracy, and only to
use the current ADOE for sensitivity analysis problems where model
evaluations are costly.

8.4.2 Sensitivity analysis of the input waveform
From Figure 8.4, Sx1 and Sx2 are low (0.0550 and 0.0191, respect-
ively), indicating a low impact of peak systolic flow rate and heart
rate. However, Sx3 is much higher (0.407), indicating that the systolic
duration ratio is by far the most impactful parameter to quantify in-
dividually. Interestingly, the much higher impact of the duration
ratio compared to the heart rate and peak height is already clearly
noticeable from the first iteration of the ADOE, indicating that a
rougher, more qualitative sensitivity analysis might already be pos-
sible at even lower computational cost. Notably, this is only possible
because the difference between low- and high-impact parameters was
so outspoken for this illustrative case; for other cases, where sensit-
ivity indices are closer together, this might not be possible.

In addition, the total-order indices, STx1−x3, are significantly
higher than the first-order indices, indicating high interaction effects.
Especially due to the high first- and total-order sensitivity indices of
the systolic duration parameter, the interaction effects between the
peak flow rate and heart rate with the duration parameter are likely
to be considerable. For the sake of completeness, it should also be
noted that these indices are only valid for the considered 75%-125%
parameter variation range; in higher or lower ranges, sensitivities
might vary.

8.4.3 Limitations and future work
Limitations on the CFD modeling approach are explained in Section
11.1. We used the Ishigami function to verify our ADOE perform-
ance, which is especially relevant in our case because it is also a
strongly non-linear function with three input variables, similar to
our waveform sensitivity problem. Regarding the definition of our
waveform sensitivity problem, we introduced shape variations in our
waveform somewhat artificially by varying the three shape paramet-
ers within 75%-125% of their nominal values. In the future, we can
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use the 1D arterial circulation model [127] to generate more physiolo-
gically realistic waveform shape ranges by varying patient statistics
such as age and weight, and perform statistical shape analysis to ex-
tract the most relevant shape parameters (which were assumed here).

Nonetheless, several important limitations regarding the ADOE
arise. The maximum error threshold of 0.1 by which we compared
RDOE and ADOE, can be chosen by the user, depending on the ac-
curacies that need to obtained (here, we prioritized fast, rough SA).
Since the convergence criterion for the ADOE (∆<0.02) was abso-
lute, it is likely that the estimation of the sensitivity indices is slightly
more reliable for the larger sensitivity indices. Currently, only the
stability of the first-order indices is considered as a convergence cri-
terion; this could be easily expanded to include also the total-order
indices. Clearly, the ADOE can be further improved upon; for ex-
ample, for the 3-bin ADOE, computational cost could be reduced
by not including all 27 bins in the DOE update, but prioritizing the
most uncertain bins. Regarding the surrogate modeling approach,
a Gaussian Process Regression model was opted, but other surrog-
ate model types might be suitable as well. An ensemble approach
could be tried, where multiple surrogate model types are fitted on
subsets of the DOE using bootstrapping. Additionally, we choose
here to use Sobol’s variance-based method to compute the sensitivity
indices, while in future work, we can also explore computationally
less expensive methods, such as Morris sensitivity measures, for our
analysis [140].

Although we focused here on three key waveform shape para-
meters, many other clinical and numerical model parameters can
influence the CFD prediction of tumor dose. Likely, both outflow
boundary conditions (Taebi et al. [134] previously studied this), the
hepatic arterial network (by parametrizing the geometry such as in
[141]), and tumor size and location are critical parameters, next to
the inflow waveform parameters studied here. As more of these para-
meters are studied in global SAs, the number of input space dimen-
sions grows significantly. This will make the ADOE more useful,
since DOE size becomes both more difficult to predict and more crit-
ical to optimize (with regards to computational efficiency) for these
large-dimensional problems. While applicable to a broad range of
problems, global SA supported by ADOE is specifically useful for
CFD modeling of radioembolization, where large-dimensional sensit-
ivity analysis is a necessary for model validation, and differentiating
between high- and low-impact injection parameters will be crucial for
peri-operative treatment optimization.

157



8. Sensitivity Analysis of the Inflow Waveform Shape

8.5 Conclusion

In Chapters 4, 5 and 6, we have tested the feasibility of physics-based
reduction measures (domain truncation, mesh coarsening, reducing
the number of flow cycles) to reduce computational time for expensive
sensitivity analysis. Sensitivity analysis and parameter ranking is a
crucial aspect of model diagnosis.

In this chapter, we illustrated how to use surrogate modeling to
perform fast sensitivity analysis of complex models with (1) a lim-
ited number of complex model evaluations, and (2) a priori unknown
optimal size of the design of experiments. We used an illustrative
case where we quantified the sensitivity of the tumor dose towards
three characteristic shape parameters of our input waveform: peak
systolic mass flow rate, heart rate, systolic to total cycle duration ra-
tio. Using a Gaussian process regression model fit on 181 CFD model
evaluations, we found that the systolic duration ratio was by far the
most influential parameter. We tested this workflow on the Ishigami
test function, allowing us to predict Sobol’s sensitivity indices with
a maximum error below 0.1. (For the interested reader, more in-
vestigation into the impact of systolic duration is done in Appendix
A).

In future work, these methods can be translated to other SA prob-
lems, quantifying the sensitivity of the tumor dose towards clinical
and more numerical parameters. While there are likely to still be
small errors on the sensitivity indices, they are reliable enough to ful-
fill their goal of model diagnosis (i.e. identifying the most impactful
numerical input parameters) and clinical optimization (i.e. identify-
ing the most impactful clinical parameters). The current study was
an illustrative case where we only varied waveform shape, while many
other parameters (e.g. injection location) that likely strongly interact
with the waveform shape parameters were still kept constant. Includ-
ing even more varying parameters is an added level of complexity we
did not consider here, although the ADOE paves the way for this.
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Patient-Specific Validation

Positioning of the chapter

As Part III focused on uncertainty quantification and sensitivity ana-
lysis, this part will focus on the third crucial aspect of the VVUQ
principles, validation. Specifically, we will illustrate how current in
vitro validation techniques can be replicated in complex 3D patient-
specific hepatic arterial geometries.

This chapter is based on the publication Transarterial Drug
Delivery for Liver Cancer: Numerical Simulations and Experimental
Validation of Particle Distribution in Patient-Specific Livers (T.
Bomberna et al, Expert Opinion on Drug Delivery, 2020) [18].

9.1 Introduction

In the context of investigating transarterial therapies such as TARE
and TACE, experimental in vitro studies can be carried out to (1)
perform parameter analyses experimentally, or (2) validate CFD
findings. An overview of experimental parameter analyses (1) was
given in Section 2.4.1. Conversely, experimental work to (2) validate
CFD findings has been very limited. As explained in Section 2.4.1,
Richards et al. [84] showed the high impact of cross-sectional
injection position with their experimental set-up, and compared
these results with CFD findings. Although there were significant
discrepancies between both CFD and in vitro results, a large number
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of injection zones still agreed between the two. In a different
study, Aramburu et al. compared outcomes of their 0D-model
with an experimental set-up of a balloon-occluding microcatheter
[83]. Additionally, these experimental analyses have been carried
out in planar, simplified hepatic arterial geometries. Therefore, we
aimed to perform the first experimental study of transarterial drug
delivery in a patient-specific hepatic arterial geometry, based on
patient-specific imaging, to compare the numerical and experimental
particle distribution.

9.2 Methods

The goal of this study is to compare CFD with experimental results.
First, it is explained in Section 9.2.1 how we obtained micro-CT im-
ages of a cirrhotic liver discarded for transplantation. Next, more
details of the CFD approach are given in Section 9.2.2, while the
experimental set-up is explained in 9.2.3.

9.2.1 Data generation
A patient-specific hepatic arterial geometry of a cirrhotic liver was
used. As originally approved by the Ethical Committee of the Uni-
versity Hospitals Leuven (Belgium) and by the Belgian Liver and
Intestine Committee, these datasets were previously generated by
Debbaut et al. [142] and Peeters et al. [143] using a two-step pro-
cess. First, a vascular corrosion cast of the livers was made resulting
in a polymer vascular replica. Secondly, micro-CT scanning resulted
in detailed images of the liver casts with a resolution of 110-128 µm.
More detailed information on these methodologies can be found in
[142, 143]. The hepatic arteries of the cirrhotic liver geometry were
segmented in Mimics software (Materialise, Leuven, Belgium). Only
arteries up to the 4th generation were considered for computational
purposes. The 3D reconstructions of the arterial trees were further
processed (i.e. smoothing, truncating the outlets etc.) in Mimics and
3-matic (Materialise, Leuven, Belgium) resulting in the 3D simulation
geometries of Fig. 9.1.

9.2.2 Computational fluid dynamics
9.2.2.1 Pre-processing
For the cirrhotic liver geometry, a good quality surface mesh was
generated in 3-matic. ICEM CFD (Ansys Inc., Canonsburg, USA)
was used to generate volume meshes using the Octree method. The
bulk of the volume elements were unstructured tetrahedral elements,
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Figure 9.1: Illustrations of the simulation geometries. 3D models of the
arterial network of the cirrhotic liver. The particle release map (PRM) of
the baseline model is also shown with respect to the model orientation. The
colored sections of the PRM show through which branches the particles exit
if they are injected in that specific section (see color bar). Particles that do
not exit the domain are denoted in black. Schematic 2D representation of
the branching topology of the cirrhotic liver with 21 outlets is shown.

complemented by three prism layers at the boundaries to ensure a
smooth transition between the walls and the fluid domain. Mesh
densities were increased at the bifurcations to locally capture more
complex flow patterns. Mesh sensitivity analyses were performed to
determine the most optimal mesh density for the CFD simulations,
leading to meshes of 9.1 · 106 volume elements. Minimum and max-
imum volume of the elements were 2.7 · 10−16 m3 and 4.9 · 10−12

m3.

Figure 9.2: (A) Indication of the hepatic arteries (in pink) on the CT scan.
(B) Reconstructed arterial geometry (C) Indication of the surface mesh at
the first bifurcation.

9.2.2.2 Simulation details
The Discrete Phase Model (DPM) in ANSYS Fluent (Ansys Inc.,
Canonsburg, USA) was used to model the mass transport of the dis-
crete phase (microparticles) dispersed in the continuous phase (blood
flow) following a Euler-Lagrangian approach. The DPM was chosen
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because the particle-fluid mixture can be considered as a dilute sus-
pension. Here, we used water in the experimental set-up instead of
blood. Water flow was modeled as laminar flow using the Navier-
Stokes equations. Mathematical details were previously explained in
Chapter 4.

Particles were modeled as SIR-Spheres (Sirtex Medical,
Australia), which are typical treatment particles for TARE. A
representative particle diameter (40 µm) and density (1600 kg/m3)
was chosen. The trajectories of the discrete particles are calculated
by integrating the force balance of the particles (see Chapter 4).
Here, the gravitational force, drag force and pressure gradient force
were enabled. One-way coupling between the discrete and fluid
phase was enabled. Particle collisions at the walls were modeled
as elastic with zero slip at the walls. Particles were injected over
the entire inlet plane with a uniform velocity profile approximately
equal (<0.5% difference) to the inlet blood flow velocity.

The outlet BCs were set according to the arterial perfusion model
developed by Aramburu et al. [128]. Knowing the tumor and healthy
volume in each segment, the arterial perfusion of each segment can
be calculated as the sum of arterial perfusion contributions for the
healthy and cancerous tissue, as previously explained in Chapter 4.
Here, we specifically set the tumor size to 0 ml (we used a cirrhotic
liver, not a cancerous one) and only considered the healthy flow con-
tributions. By identifying which branches perfuse which segment and
assuming that flow splits occur symmetrically along bifurcations per-
fusing the same segment, the arterial perfusion of each branch in the
domain can be computed and imposed as an outlet flow fraction. The
branching characteristics of the cirrhotic liver are given in Fig. 9.1b,
and the flow split resulting from this is given in Table 9.1.

The inlet boundary condition (BC) was set to a constant flat velo-
city profile. From the total sum of outflows, we determined the inflow
(principle of mass conservation), which we translated into a velocity
(we considered a circular cross-section and an inlet plane diameter of
0.00737 m). This method resulted in a steady inlet velocity of 0.0977
m/s.

Regarding solver settings, the SIMPLE scheme was chosen for
pressure-velocity coupling. The spatial discretization schemes used
were Least Squares Cell Based for gradient, Standard for pressure
and Second Order Upwind for momentum. An automated particle
tracking scheme was chosen which switches automatically between
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Table 9.1: Overview of the outlets and flow fractions.

Outlet Flow fraction (%)
1 0.86
2 0.86
3 0.43
4 0.43
5 0.86
6 3.46
7 6.91
8 6.46
9 6.63
10 6.63
11 8.54
12 8.03
13 13.26
14 8.54
15 4.07
16 6.40
17 4.02
18 2.41
19 2.41
20 4.83
21 4.02

the high order trapezoidal scheme and the low order implicit scheme.
For all simulations, absolute globally scaled residuals of at least 2 ·
10−6 were reached.

9.2.2.3 Post-processing
Specific measures were analyzed to quantify the particle distribution.
The particle exit fraction (PEF) denotes the percentage of particles
that exit the domain through a specific outlet or larger vascular zone
(e.g. outlets draining the right or left lobe). The particle non-exit
fraction (PNEF) is the fraction of particles that do not exit the do-
main.

9.2.3 In vitro experiments
An in vitro set-up was built to validate the CFD modeling approach
by means of an experimental flow circuit using a 3D print. One
scenario for the cirrhotic liver was tested in the in vitro set-up in
order to study its feasibility and potential for future, more elaborate
validation studies.
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9.2.3.1 3D print
The 3D simulation geometry of the cirrhotic arterial tree was impor-
ted into Magics (Materialise, Leuven, Belgium) to prepare it for 3D
printing. First, an offset thickness of 1.5 mm was added to the outer
walls of the domain (only containing the lumen of the arteries) and
the geometry was hollowed out. Second, extensions (10-15 mm) were
added to the outlets; their outer diameters were adjusted to facil-
itate attachment to the downstream tubing. Stereolithography was
chosen to manufacture the 3D print using TuskXC2700T material
(Materialise, Leuven, Belgium), which is a transparent material that
is recommended for use in flow analysis experiments.

Figure 9.3: (A) 3D model of the cirrhotic liver arteries that was optimized
for 3D printing, adding outlet extensions which fit the PVC tubing. (B) 3D
print of the cirrhotic liver arteries. The resemblance with the 3D model is
a bit more difficult to see due to light reflections on the physical print.

9.2.3.2 Experimental set-up
The resulting 3D print (Fig. 9.3B) was subsequently mounted in the
experimental setup (Fig. 9.4). The water in the main reservoir (1)
was transferred with a DC circular pump (VERDER, The Nether-
lands) (2) to an elevated reservoir (3). The elevated reservoir was
set at a fixed height to mimic the inlet pressure at the PHA (approx.
100 mmHg). When the clamp (4) was released, water flowed down
from the reservoir through the 3D-printed geometry (5). The orient-
ation of the 3D print was set with the outlets oriented downwards,
so that gravity would facilitate fluid flow. Polyvinyl chloride (PVC)
connecting tubes (6) with tunable resistances (7) were attached to
the outlets leading into 10 collecting reservoirs (8). Before releasing
particles into the set-up, the boundary conditions were set manually
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by iteratively adapting the resistances at the PVC tubes until all out-
flows matched the computational boundary conditions (< 5% error
margin, see Table 9.1).

Figure 9.4: Experimental in vitro set-up and results. (A) schematic rep-
resentation of the set-up. 1: main reservoir. 2: DC pump. 3: Elevated
water reservoir. 4: Clamp. 5: 3D printed liver geometry (cirrhotic). 6:
PVC connecting tubes. 7: Collecting reservoirs. (B) Overview of the set-
up, showing the 3D model, the PVC tubing attached to the outlets, the
resistances used to tune the flow distribution and the collection reservoirs.
(C) Experimental set-up in the lab, showing the 3D model of the liver vas-
culature, the elevated reservoir and the collecting reservoirs at the outlets.

9.2.3.3 Experiments
Non-radioactive SIR-Spheres (typically used for training purposes,
Sirtex Medical, Australia) were mixed with water in the main reser-
voir for the first experiment. During the second experiment, particles
were manually injected with a syringe via side-branch of the inlet
branch leading to the PHA and then flushed with water. The 21 out-
lets were combined in 10 collecting reservoirs (see Fig. 9.4) and the
resulting particle-water mixture was collected in these reservoirs for
a total duration of 1 minute starting from the moment of injection.
Whatman paper of grade 2 and 3 (pore size 8 and 6 µm, respectively)
was used to filter the particles from the collected particle-water mix-
tures. After drying, the filters were weighed to determine the added
weight of the particles, and hence, the particle distribution among
the collecting reservoirs. The PNEF could not be considered in these
experiments (the sum of all PEFs at the outlets was assumed to be
100% of the particles).

9.3 Results

In Fig. 9.5, the flow distribution and particle fraction for each reser-
voir (reservoir exit fraction, or REF) was compared for the 2 exper-
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iments and the corresponding numerical simulation. The high simil-
arity between experimental and theoretical flow distribution (0.407%
difference per reservoir on average) shows that the implementation
of the outlet BCs through tuning of the resistances was successful.
However, after particle injection, the average difference per reservoir
between experimental particle and flow (PD, FD) distribution was
2.45% (min: 0.0784% – max: 5.44%) and 2.14% (min: 0.902% – max:
4.03%) for experiment 1 and 2, respectively. Moreover, the average
difference for a reservoir between numerical and experimental particle
distribution was 2.73% (min: 0.394% – max: 6.47%) and 2.97% (min:
1.21% – max: 6.17%) for experiment 1 and 2, respectively.

Figure 9.5: Experimental in vitro results. Results of the validation study.
The experimental and theoretical flow distribution (FD) are compared with
the particle distributions (PD) for Experiment 1 and 2, and the numerical
simulation.

9.4 Discussion

Since Simoncini et al. [121] and Roncali et al. [123] reasoned that
particle distribution is linearly proportional with the flow distribu-
tion, the similarity between flow-particle distribution is useful to con-
sider. In the validation study and numerical results, it was shown
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that flow distribution is not a perfect surrogate for particle distri-
bution, at least not for the complex patient-specific livers studied
(Figure 9.5). Note that flow distribution also does not consider the
non-exiting particles, which may be relevant because these can con-
tribute to offsite toxicity. Hence, we conclude from this experimental
study that particle distribution should preferably be studied instead
of only flow distribution. It should also be noted that particles were
added to the set-up either via a syringe or via mixing in the main
water reservoir, but not through a microcatheter, which might even
increase the discrepancy between particle and flow distribution (as
discussed in Chapter 4). In general, the conclusion to study particle
transport and distribution agrees with the findings from Chapter 4.

Regarding the feasibility of patient-specific validation, we showed
that generating patient-specific geometries for in vitro validation us-
ing 3D-printing is feasible. This is a completely novel step and sig-
nificantly adds to the state-of-the-art. In the future, we can obtain
hepatic arterial geometries from medical images instead of via vas-
cular corrosion casting. Aside from the fact that these geometries
better represent the patient population, geometries generated from
vascular corrosion casting can be slightly expanded compared to in
vivo conditions, but that shrinkage of the resin can also occur [144].
An important step for improvement is also to integrate pulsatile flow,
which is more realistic that the steady flow circuit used here.

Regarding the success of patient-specific validation, we showed
that there are still significant differences between the computational
and in vitro particle distribution (Figure 9.5), emphasizing the need
for further validation and finetuning of methods. Several steps can be
taken to improve the current in vitro set-up. First, we used training
vials of microspheres from Sirtex Medical (Sirtex, USA). Although
these microspheres have the advantage of being non-radioactive, they
also do not go through the same quality control as the microspheres
used for treatment of patients. Hence, we should verify particle di-
mensions to ensure that we are using the proper particle dimensions
in our CFD model. Second, the current method of measuring the
particle distribution (i.e. through measuring the added weight on
the filter paper) is very sensitive to noise (e.g. dust can easily gather
in the set-up, and influence the weight of the filter paper). Multiple
injections should be done to get an idea of the variations in the results
under constant injection conditions. Third, the method of injection
should be more accurately reproduced between simulation and exper-
iment. Now, a planar injection was used in the simulation, while in
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the experiments, particles were mixed in the main reservoir (experi-
ment 1) or injected through a syringe (experiment 2). In the future,
we should prioritize experimentally modeling realistic microcatheter
injection conditions. Illustratively, with the computational study in
Chapter 4, we showed that important differences can arise between
flow and particle distribution for catheter-based injections. This un-
derlines the importance of performing experiments under realistic
injection conditions.

9.5 Conclusion

In conclusion, the scope of the experimental study was currently
limited to a proof-of-concept for patient-specific in vitro validation
(which we regard successful). The experimental quantification of
microsphere distribution in a 3D-print of a patient-specific hepatic
arterial geometry was completely novel. In the future, such a set-
up could be improved upon and used to investigate the sensitivity
of the experimental particle distributions towards varying injection
conditions (e.g. catheter tip position, injection flow rate, varying in-
flow waveforms, etc.). For example, in Chapter 7, we quantified the
computational tumor dose range resulting from an uncertain, uncon-
trollable catheter tip position. This tumor dose range could be val-
idated experimentally by quantifying the microparticle distribution
after multiple injections at multiple cross-sectional tip locations. For
the interested reader, an example of a simplified experimental study
investigating the impact of cross-sectional tip position is illustrated
in Appendix B.
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Positioning of the chapter

As Part III focused on uncertainty quantification, and Part IV fo-
cused on validation, which are two crucial aspects of good simulation
practice, this dissertation also aims to give a view of how these CFD
models could be used in clinical practice. We showed in Part III
that CFD can give an idea of the tumor dose range. However, other
patient-specific aspects, such as vascular accessibility, must be con-
sidered as well in a patient-specific pretreatment workflow.

Previously, we stressed the computational complexity of these
CFD simulations. In Chapters 4, 5 and 6 and proposed multiple
CFD simplification strategies. However, if the proposed pre-operative
framework only works for hundreds or thousands of CFD simulations,
it is likely that high computational times will still limit clinical in-
tegration (even with the current simplification strategies). There-
fore, it is paramount to define how the use of CFD fits strategically
within a broader pre-operative optimization framework. Hence, Part
V exceeds the domain of CFD, and reframes these aspects within a
possibly valorizable, pre-operative optimization framework.
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10. Development of a Pre-Treatment Planning
Framework using 3D Personalized CFD

This chapter is based on a patent application (filing number EP
23177284.9) prepared together with UGent TechTransfer Office.

10.1 Introduction

Efficient resource allocation in cancer care should prioritize improv-
ing treatment outcomes and reducing intervention-related variations
impacting post-operative outcome [145]. Relevantly, transarterial
therapies such as TARE lack standardization, and a large discrep-
ancy in treatment response currently exists between patients, raising
the question of whether execution-related variations can be reduced
[146]. For example, computational fluid dynamics (CFD) studies
have shown catheter in-plane tip location to be an impactful inter-
ventional parameter, but its inability to be controlled in vivo is a
source of uncertainty [9, 113, 116], as we also showed in Chapter 7.
Additionally, the axial catheter injection site has been shown to be
very impactful as well, and is easier to control [15, 112]. At the end
of Chapter 7, we noted that both the expected tumor dose and tumor
dose ranges can be compared for both proximal and distal injection
locations to determine which injection location would be more likely
to be clinically successful.

However, tumor dose is not the only parameter to consider. For
example, while the expected tumor dose might be higher when inject-
ing in the tumor-feeding arteries, selective or super-selective injection
of microparticles in the tumor-feeding arteries is often restricted by
limited vascular access of these arteries [147]. Hence, a likely trade-
off exists between vascular accessibility and tumor dose, which has
not been quantified or considered before.

Hence, the goal of this work is to introduce a computational pre-
treatment planning framework to optimize the axial injection loca-
tion, considering the trade-off between target specificity and vascular
accessibility, and the uncertainty introduced by the catheter in-plane
tip location. Currently, no such framework exists according to the
authors’ best knowledge. (In Chapter 3, other frameworks such as
CFDose [123] were explained, although these lack consideration of
this important trade-off.)

10.2 Materials and Methods

First, we describe how we obtained patient data for the patient-
specific case study in this chapter in Section 10.2.1. Second, we ex-
plain the study design and the different injection locations considered
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in this study for comparison in Section 10.2.2. Finally, in Sections
10.2.3-10.2.5, the calculation of tumor coverage, vascular cost and
tumor dose range is explained in detail.

10.2.1 Segmentation and tumor perfusion
A patient-specific conebeam CT-dataset of the hepatic arteries of a
patient diagnosed with HCC was previously segmented and conver-
ted into a 3D-model by us, as described in Chapter 4. The resulting
hepatic arterial model contained 1 inlet at the level of the PHA and
48 outlets. A region growing algorithm was used with each of the
outlets as seed points to assign all voxels of the tumorous tissue to
its perfusing artery. Voxels were added in the six orthogonal direc-
tions iteratively to the centerline of the arteries generated in Mimics
(Materialise, Belgium). As a result, the volume percentage of tumor
tissue perfused by each computational outlet (tumor perfusion per-
centage, TPP) was known. Based on the TPPs and visual inspection
of the 3D-reconstruction (Figure 10.1A.), it was determined that 2
outlets fed only the tumor tissue (internal feeders), 17 outlets fed only
the healthy tissue, while the remaining 29 outlets fed both the tumor
and healthy tissue (peripheral tumor feeders) (see Fig. 1A for indic-
ative examples of the healthy and peripheral feeders, and indication
of the two internal feeders).

10.2.2 Study design
We identified four relevant injection locations: superficially (in the
PHA), selectively in the RHA and LHA, and super-selectively in the
RHA, which perfuses most of the tumor tissue (see Section 10.3.1).
These injection locations are indicated in Figure 10.1B.

For each injection location, four parameters were considered as
crucial for clinical decision-making: vascular accessibility (expressed
as a vascular cost, C, which is preferably low), expected tumor dose
(eTD, preferably high), in-plane tip uncertainty (∆TD, preferably
low), and tumor coverage (γ, preferably high).

10.2.3 Tumor coverage
The tumor coverage was determined as the maximally attainable tu-
mor dose, if all injected microparticles flow from the injection site
to the tumor (no off-site delivery). As determined with the region
growing algorithm, each tumor-feeding artery was associated with a
certain volume percentage of tumor tissue (TPP (%)). Hence, all
outlets downstream of the considered injection location (denoted by
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Figure 10.1: (A) Computational geometry of the hepatic arterial network
(red). Tumor mass added in purple. (B) (1-4) Four clinically realistic
injection scenarios at different axial injection locations.

index i in Equation 10.1) contributed to a total perfused volume
between 0-100%, which is deemed as the ‘tumor coverage’:

γ =
∑

i

TPPi (10.1)

10.2.4 Vascular accessibility
For each injection scenario, the relative vascular cost of the arterial
path leading up to a particular injection location was calculated us-
ing information on size of the vessel (diameter), the curvature and
tortuosity of the paths.

10.2.4.1 Cost parameters
The centerline of the hepatic arteries was generated using Mimics.
The diameters along this path were extracted at each point and col-
lected in D. The x-, y- and z- centerline coordinates of each point up
until the injection location were collected in R. Next, tortuosity of
the centerline (τ (-)) was calculated as the deviation of the centerline
from a straight line (Equation 10.2):

τ = Lcenterline

Lrectilinear
− 1 (10.2)

Here, Lcenterline was the sum of the Euclidian distances between
each successive point of R until the point of interest (i.e. the injec-
tion location under study), and Lrectilinear was the Euclidian distance
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between the start of R and the point of interest. Hence, for a straight
line, τ=0.

Additionally, the curvature (κ[mm−1]) of the centerline was cal-
culated for each point of R by computing the first and second de-
rivatives of the centerline position (approximated here using central
finite differences around the point of interest) (Equation 10.3):

κ =

∣∣∣Ṙ × R̈
∣∣∣∣∣∣Ṙ∣∣∣3 (10.3)

These mathematical definitions of tortuosity and curvature are as
expressed in [148].

10.2.4.2 Cost function
To calculate the (relative) vascular cost, C, the normalized costs of
diameter, tortuosity and curvature were added together. To com-
pute the normalized cost for tortuosity, the maximum tortuosity of
the arterial path was compared to the maximum tortuosity of all
paths (i.e. for all considered injection locations). For example, if the
path leading to the injection location of Scenario x had a maximum
tortuosity of 0.5, and the maximum tortuosity of the paths in all
other scenarios was 1, the relative cost (with respect to tortuosity) for
Scenario x would be 0.5. The same normalization could be done for
other vascular parameters. By adding together the normalized costs
of each parameter and dividing by the total number of considered
parameters (3), we achieved a resulting cost for each scenario as a
number between 0-1 indicating the relative vascular cost of each scen-
ario compared to the other scenarios (Equation 10.4). For example,
if we considered diameter, curvature and tortuosity as the relevant
parameters (with equal weights of importance), the cost function C
could be expressed as:

C =
min(D)allpaths

min(D)path
+ max(κ)path

max(κ)allpaths
+ max(τ)path

max(τ)allpaths

3 (10.4)

Hence, a vascular cost of 1 was only reached if it is the least
optimal for all parameters.
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10.2.5 Computational model
The parameters of expected tumor dose and in-plane tip uncertainty
were determined using computational fluid dynamics (CFD). A CFD
simulation was run for each injection scenario, with all settings and
parameters kept constant except the injection location and total sim-
ulation length (see below).

10.2.5.1 CFD details
After reconstruction in SpaceClaim (Ansys, USA), the hepatic ar-
terial geometry was meshed in Fluent Meshing (Ansys, USA). Us-
ing tetrahedral elements for the bulk of the domain and three prism
boundary near the walls, the optimal total number of elements was
determined through a mesh sensitivity study as 6.68 · 106. Next, the
mesh was imported into Fluent (Ansys, USA). A multiphase CFD
approach was used to solve the conservation of mass and momentum
equations for fluid flow, and the particle force balance to compute
the microparticle trajectories from inlet to outlets. In the particle
force balance, the virtual mass force and pressure gradient force were
enabled additionally to the drag and gravitational forces. Mathem-
atical details can be found in Chapter 4. One-way coupling between
the two phases was enabled, meaning the fluid phase exerted impact
on the discrete phase, but not vice versa.

With regards to boundary conditions, a time-dependent mass flow
rate waveform was applied at the inlet (see Chapter 4). According
to the methodology defined in Chapter 4, the outflow through each
artery can be determined as a summation of the healthy flow and
cancerous flow contributions. The healthy flow contribution was cal-
culated by scaling literature-based segmental flows to the patient-
specific liver mass, and by dividing the healthy flow to each seg-
ment equally across intrasegmental bifurcations. The tumor flow
contribution was determined based on the TPPs. The total feeder
flow of the peripheral feeders was the summation of the healthy and
tumoral flows terms, explained as above and derived mathematically
in Chapter 4. When outlets perfused only one type of tissue (i.e.
healthy or tumor), the other contribution was set at zero. These flow
terms were transformed into flow fractions and applied as outflow
boundary conditions in Fluent. Furthermore, a no-slip condition and
normal and tangential restitution coefficients of 1 were applied at the
wall.

Simulations were run for each injection for 13 flow cycles, 14
cycles, 11 cycles and 10 cycles, for PHA, LHA, RHA and super-
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selective injection, respectively, until <1.5% of the microparticles ex-
iting the domain in the final cycle in each case. Microparticles were
injected over the entire cross-section (see Figure 10.1) with a particle
time step of 10 ms throughout the 3rd cardiac cycle; the fluid time
step alternated between 0.5 and 1 ms. Convergence was attained
in each time step; globally scaled residuals dropped at least below
1 · 10−5. More details on the computational approach can be found
in Chapter 4.

10.2.5.2 Tumor dose calculations
In theory, the tumor dose (TD (%)) for one in-plane catheter tip
location could simply be calculated by modeling microsphere release
from a catheter embedded in the hepatic arterial geometry, and then
dividing the fraction of microspheres reaching the tumor (ntumor) by
the total number of ejected microspheres (ntotal) (full model, Mf )
(Equation 10.5):

TD(%) = ntumor

ntotal
· 100 (10.5)

However, to assess the impact of N in-plane catheter tip loca-
tions (and hence, the uncertainty associated with catheter tip po-
sition), Mf is too computationally heavy to run N times. There-
fore, in Chapter 7, a simplified low-fidelity framework was proposed,
Ms, where the catheter is not embedded in the geometry, but mi-
croparticles are released over the entire arterial cross-section, and
clusters of particle injection are sampled afterwards in the cross-
section (each cluster representing a ‘catheter tip location’) to gener-
ate a range of tumor doses, rather than a single, deterministic value.
This framework reduced the number of CFD simulations from N to 1,
resulting in tumor dose range of Nc samples (where Nc can be freely
chosen after the simulation), but disregarding the physical presence
of the catheter. Specifically, the cluster of particle injection locations
was determined by considering all injected particles within a radius of
0.3 mm of a certain central location (i.e. mimicking a catheter with
an internal diameter of 0.6mm). Nc was set at 100; these central loc-
ations were randomly sampled within the cross-section. This concept
is illustrated in Figure 10.2. The larger the tumor dose range for the
evaluated samples, the larger the catheter tip uncertainty. The mean
of the tumor dose range is referred to as the ‘expected tumor dose’.
The lower the (expected) tumor dose, the more embolic material flows
to the healthy tissue.
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Figure 10.2: Low-fidelity model from Chapter 7 to compute tumor dose
ranges: 100 central injection locations are sampled in the cross-section, and
the tumor dose is calculated for all points within <0.3 mm of the central
location, representing a catheter with an internal diameter of 0.6mm.

10.3 Results

In Sections 10.3.1-10.3.3, the results regarding tumor coverage, vas-
cular cost and tumor dose range are discussed, respectively, for each
of the injection scenarios.

10.3.1 Tumor coverage
The first parameter to compare between the four injection scenarios
was the tumor coverage. As seen in Figure 10.3, injection done super-
ficially in the PHA resulted in a tumor coverage of 100% (purple mass
in Figure 10.3A); advancing the catheter to RHA decreased the total
tumor coverage to 69.6% (green mass in Figure 10.3B); further ad-
vancing the catheter to inject super-selectively in the RHA decreased
the tumor coverage even further to 52% (blue mass in Figure 10.3C).
Alternatively, injection in the LHA lead to a tumor coverage of 30.4%
(orange mass in Figure 10.3D).

10.3.2 Vascular accessibility
The second parameter to compare was vascular accessibility. In Fig-
ure 10.4A, the centerline of the hepatic arterial geometry is shown.
For the four injection locations considered in this study, the two most
distal injection locations were reached for super-selective injection in
the RHA and selective injection in the LHA. In Figure 10.4B-D, we
zoom in on the region of interest of the centerline, and color this
region according to diameter, curvature and tortuosity, respectively.
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Figure 10.3: Fractions of the tumor mass perfused by the arteries down-
stream of each of the four injection locations: (A) PHA, (B) RHA, (C)
LHA, and (D) super-selective RHA.

As shown before, the exact injection locations can be found in Figure
10.1B.

Even for the most distal injection locations (selective LHA injec-
tion and super-selective RHA injection), the diameter was still >4
mm (Figure 10.4B). Hence, these locations are considered easily ac-
cessible, and diameter was not considered as a relevant parameter in
the cost function. As seen in Figure 10.4C, tortuosity steadily in-
creased from the PHA over the first bifurcation and along the RHA,
and made a significant jump in the LHA. From Figure 10.4D, we see
that curvature has a high local value at the first bifurcation into the
LHA, but is otherwise generally low. The resulting maximal values
for curvature and tortuosity for each of the four scenarios are given in
Table 10.1. The relative cost (C) is also given in Table 10.1. As can
be seen, the relative cost of PHA injection was 0, since this injection
location was located at the inlet of the hepatic arterial tree. Selective
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Figure 10.4: (A) Centerline of the hepatic arteries, region of interest
colored by (B) diameter, (C) tortuosity, (D) curvature

injection in the LHA had a relative cost of 1, due to maximal tortu-
osity and curvature values. Both selective and super-selective RHA
scenarios ranked in between.

Table 10.1: Maximum curvature and tortuosity values leading to calcula-
tion of the relative cost of each of the four injection scenarios.

Scenario max(κ) (mm−1) max(τ) (-) C (-)
Superficial 0 0 0

Selective (LHA) 1.0 0.49 1
Selective (RHA) 0.27 0.21 0.35

Super-selective (RHA) 0.34 0.33 0.5

10.3.3 Tumor dose and tip uncertainty
The two final parameters to consider were the expected tumor dose
and the in-plane catheter tip uncertainty. The expected tumor doses
were 42.9%, 48.7% and 50.8% for PHA, RHA and super-selective
RHA injection, respectively. For LHA injection, the expected tumor
dose is 41.7%.

In Figure 10.5, the tumor dose ranges are visualized. For PHA
injection, the tumor dose range varied between 30.2% and 50.5%; for
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RHA injection, the dose varied between 38.6% and 57.5%; for super-
selective RHA injection, the dose varied between 30.1% and 81.9%;
and between 25.7% and 64.1% for selective LHA injection.

Inspecting the super-selective scenario with the largest range more
closely, the in-plane tip location corresponding to the highest tumor
dose in the range (81.9%) occurred because 70.8% of particles flowed
to one of the two internal feeders of the tumor. In the most non-
optimal case (30.1%), only 7.11% flowed to the internal feeders; the
rest flowed to the peripheral feeders which also partly perfuse the
healthy parenchyma, explaining the large range.

Figure 10.5: Tumor dose ranges generated for 100 randomly sampled input
locations, for PHA injection, RHA injection, super-selective RHA injection
(RHA-SS), and selective LHA injection.

10.4 Discussion

In Section 10.4.1, the different injection scenarios are compared based
on the data generated above, and the optimal injection scenario is
chosen. Additionally, in Section 10.4.2, the limitations of the current
approach are discussed.

10.4.1 Scenario comparison
Regarding tumor coverage, the full tumor can only be targeted if two
successive injections are performed in the RHA and LHA, or if the
injection is done superficially in the PHA.

Regarding tumor dose, the expected doses all vary between 41.7%-
50.8%. However, much larger differences are found for the dose
ranges. For all scenarios, the minima are relatively constant (i.e.
within the range 25.7%-38.6%), but the maxima vary significantly
between 50.5%-81.9%. The highest maximum (81.9%) is reached for
super-selective RHA injection, but a total uncertainty of 51.8% is
also associated with this scenario, meaning the risk-reward trade-off
is high. Additionally, the lowest uncertainty is reported for RHA
injection (18.9%), with a maximum dose of 57.5%, making it a re-
latively safe injection scenario. Single LHA injection is associated
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with the lowest expected dose (41.7%) and high uncertainty (38.4%),
making it a generally unfavorable scenario.

Regarding vascular accessibility, the LHA location is least access-
ible due to the curvature of the first bifurcation, while the superficial
PHA injection location was most accessible. As expected, super-
selective RHA injection is less accessible than selective RHA injection
(since the latter is performed more upstream), but the difference is
only slight.

Overall, combining all decision criteria, selective RHA injection
seems most optimal, with high tumor coverage (69.6%), low uncer-
tainty (18.9%), a similar expected dose compared to other scenarios
(48.7%) and relatively high accessibility (0.35). Importantly, super-
ficial PHA injection has maximal tumor coverage (100%), but since
the expected dose is 42.9%, more than half of the injected material
flows to healthy parenchyma, which is (in this case) the full liver. Ad-
ditionally, it should be noted that, even though LHA injection is far
from optimal (high uncertainty; low accessibility), we can only reach
full tumor coverage by selective injection if we inject in the RHA and
LHA. Finally, there seems little advantage of super-selective RHA
injection over selective RHA injection at the current locations, due
to slightly worse accessibility (0.5), a similar expected dose (50.8%),
and much more uncertainty (51.4%).

These results of the multi-parameter-framework show that neither
super-selective RHA or selective LHA injection are more optimal than
RHA injection; the latter was performed in the clinic. Importantly,
these results show why the current injection locations are suboptimal,
and how this can inspire the search for alternative injection locations
and scenarios. For example, successive selective injections in the LHA
and the RHA can be done to obtain a combined tumor coverage of
100%. However, as stated above, LHA injection suffers from high
uncertainty and high cost. Therefore, using a flexible catheter to
enter the LHA would make the region of high curvature more access-
ible, and decrease the cost. To decrease uncertainty, super-selective
injection in the LHA can also be considered instead.

10.4.2 Limitations and future work
This example shows how our patient-specific framework can 1) com-
pare different injection scenarios based on multiple criteria, such as
vascular accessibility, tumor coverage, expected dose and tip uncer-
tainty; 2) propose new injection scenarios and illustrate which im-
provements they might offer over the more ‘conventional’ injection

186



10.5. Conclusions

scenarios (e.g. the combined RHA + super-selective LHA scenario
proposed here based on the current results); and 3) highlight import-
ant catheter properties for each patient-specific case (e.g. flexibility
for LHA injection), which should inspire the catheter choice on a
patient-specific bases. The consideration of all three parameters in a
full multi-parameter optimization problem is novel compared to the
state-of-the-art.

Verification, validation and uncertainty quantification (VVUQ)
are considered the core principles for the implementation of any simu-
lation technology in clinical practice, and their importance cannot be
understated here [120]. First, verification was performed in-house, in-
cluding grid convergence analysis, residual monitoring to assess solu-
tion history convergence, testing the sampling approach for catheter
tip position for other injection locations, testing the region growing al-
gorithm in other hepatic arterial and renal arterial geometries, visual
checks of the morphological measurements, among others. Second,
this chapter posits an uncertainty quantification framework for in-
plane catheter tip location, but uncertainty quantification of other
CFD-related model parameters (boundary conditions, etc.) will need
to be performed as well to understand the accuracy of the tool. Since
we suggested a very specific model design for pre-operative optimiz-
ation, this design offers more clarity on which inputs would be used,
which mathematical model would be used, and which outputs would
be predicted. Hence, we can apply uncertainty quantification (and
validation) to this specific model design instead of a broader CFD
problem. Third, validation efforts are ongoing, both in vitro and ex
vivo, and are part of future work. Importantly, we only considered
one patient-specific case here, which means that these findings cannot
be generalized or transferred to other patients. Validation of the pre-
dicted tumor dose ranges and testing the current framework in more
patients, are currently needed before considering the transfer of this
technology to clinical practice. Hence, the current framework can
only be considered as proof-of-concept. For validation, the model
credibility level should also be clarified, and it is currently unclear
which credibility level is needed (and achievable) to appropriately
assist clinicians during decision-making.

10.5 Conclusions

As stated in Chapter 3, there is a large gap between using computa-
tional models for investigative purposes (such as discussed in Section
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3.3) and using computational models in clinical tools for preoper-
ative optimization (which was broadly discussed by Kleinstreuer et
al. [9] as the Computational Medical Management Program). Here,
we decreased that gap considerably, and suggested a very specific
model design, which is a necessary stop to perform specific uncer-
tainty quantification and validation. Importantly, when used in the
clinic, this decision analysis tool should not be used as a sole source
of information, but an additional source next to the clinician’s own
view and insights.
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Conclusions and Perspectives

While the idea of using computer simulation in healthcare has been
around for longer, Kleinstreuer et al. [9] suggested the Compu-
tational Medical Management program as a clinical workflow in-
tegrating computer simulations for the optimization of drug deliv-
ery of both microspheres in the hepatic arteries and aerosols in the
lungs. Since then, multiple modeling studies (mostly CFD) have
shown the non-negligible impact of injection parameters on the tu-
mor dose for transarterial therapies. Although these findings open
a window for patient-specific pre-operative optimization of injection
parameters, this will remain complex due to several practical com-
plications. These complications include, but are not limited to, high
computational times, uncertain model input parameters, and limiting
factors not considered with CFD. Hence, despite the initial roadmap
provided by Kleinstreuer et al. [9], many obstacles remain. In this
dissertation, we aimed to make significant strides towards a holistic
pre-operative optimization workflow which integrates, but is not lim-
ited to, CFD. This was done throughout Parts II, III, IV and V.

In this final chapter of the dissertation, we will discuss global lim-
itations of the CFD modeling approach. Of course, these limitations
already inspire future work. Next, we summarize the key results and
findings obtained throughout this PhD dissertation, and we compare
them with similar results from literature where relevant. We also
discuss which future work can help to verify these results, and build
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upon them. Additionally, we overview the most significant future
steps that will be needed to realize our pre-operative workflow and
integrate it in the clinic. Finally, we discuss whether this dissertation
has made significant strides in answering the clinical questions first
posited in Chapter 2, and to which insights it has led.

11.1 Limitations of the modeling approach

First, we want to discuss global limitations of the current CFD mod-
eling approach, which apply to Chapters 4-10. More detailed lim-
itations regarding study design etc. were given at the end of each
individual chapter.

Importantly, the CFD model we introduced has significant limit-
ations. First, the catheter was modeled as thin-walled and massless,
and the fluid inside the catheter was modelled as blood. The same
approach is used throughout literature [10–12, 15, 106]. While we
estimate that the influencing of adding a wall thickness is likely to
be small, the properties of the carrier fluid inside the catheter might
not be negligible. In clinical practice, the fluid inside the catheter
is an aqueous solution, such as saline, with distinctly different prop-
erties than blood. Hence, the interactions between blood and the
catheter fluid will likely play an important role, and these differ-
ences are currently underestimated with our single fluid phase ap-
proach. To mitigate this, a third phase (i.e. second fluid phase)
can be introduced in the current multiphase set-up (e.g. using the
Eulerian-Eulerian volume of fluid model, as in [149]). Initially, we
chose to limit ourselves to a dual-phase approach for the sake of sim-
plicity. However, recent in vitro validation experiments conducted in
collaboration with the University of Twente have suggested an non-
negligible effect of the second catheter fluid phase. Should future
model validation confirm this potential epistemic error, then appro-
priately modeling the catheter fluid properties and its interaction
with the blood phase should be a priority.

Second, for a given cross-sectional tip position, typically only one
microcatheter direction was considered. As shown in [15], the cath-
eter direction can play a role in downstream microsphere distribution.
In a future study, we could use CFD simulations to show whether the
tumor dose ranges resulting from unknown catheter tip position as
computed in Chapter 7 are significantly impacted by considering dif-
ferent catheter directions or not. When explicitly modeling catheter
presence, investigating the sensitivity of the reported outputs towards
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varying microcatheter directions would make the modeling approach
more robust.

Third, blood was modeled as a single fluid with the Quemada vis-
cosity model [126], which captures the hematrocrit-dependent shear-
thinning behavior of blood. The particulates which partly make up
the composition of blood (mainly red blood cells) were not considered
at the individual level. This might be a relevant point of study later
on as the size of red blood cells (∼ 8µm) is not that much smaller than
the smallest microspheres used for TARE (diameter of ∼ 20 − 40µm)
and might interact. Again, this would make the modeling approach
more complex, adding a third phase (e.g. a second discrete phase)
to the current multi-phase approach (e.g using a Eulerian-Lagrange
model as in [150]).

Fourth, microspheres were modeled as inert spheres, with one-way
coupling enabled between the fluid and discrete phase, and no interac-
tions between the particles. Additionally, microsphere concentration
was not specifically set realistically in this simulation, as the micro-
sphere distribution was always calculated as a relative fraction with
respect to the injected dose. Interestingly, in a patient-specific com-
putational study, Lertxundi et al. [151] noted that, with increasing
microsphere concentration in the vial, the peak microsphere concen-
tration in the blood also increased, possibly increasing the chances
of clogging [151]. Hence, microsphere concentration might be a para-
meter of interest under conditions where clogging events are more
likely. While not case for the current set-up, when smaller vessels
and larger microspheres are considered, setting a realistic concen-
tration and modeling particle-particle interaction effects will become
much more important.

Fifth, several key assumptions were made regarding boundary
conditions. While realistic injection flow rates were set for the cath-
eter, they were set constant in time. However, as the vascular down-
stream resistance increases, it might become more difficult to inject,
hence reducing the flow rate. Additionally, when manual injection
is performed (i.e. not through the use of a syringe pump), injection
flow rate can be more subject to variations. Similarly, the outflows
imposed at each outlet were constant in time, but with progress-
ive embolization, the flow distribution (and hence, outflow fractions
at the outlets) will likely change over time as well. Of course, the
boundary condition methodology to calculate the tumor flow con-
tributions in each outlet is based on an in-house developed region
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growing model, as was first introduced in Chapter 4 [125]. This re-
gion growing model is currently being validated for predicting renal
perfusion zones. Preferably, it should also be validated for use in the
liver. The boundary condition methodology to calculate the healthy
flow contributions (as explained in Chapter 4) was based on the ap-
proach by Aramburu et al. [128]. Preliminary in vivo validation for
a small number of patients has already shown that these boundary
conditions can work [16].

With regards to the inflow boundary conditions, a realistic al-
beit not patient-specific waveform was applied. Based on [128], the
total inflow was calculated a posteriori from the outflow distribution,
and the waveform shape (which we extracted from [127]) was scaled
to this inflow. Hence, as explained mathematically in Chapter 4,
this made that the total inflow was very dependent on the volume of
liver parenchyma and tumor mass(es), which were computed patient-
specifically, and the healthy and cancerous perfusion constants, which
were generalized values [128]. Consequentially, it should be concluded
that both our in- and outflow boundary conditions should be con-
sidered patient-inspired rather than patient-specific. However, they
are currently our best solution in the absence of reliable patient-
specific measurements. More studies like the waveform shape sensit-
ivity study such as in Chapter 8 are needed to determine the exact
impact of the boundary conditions, and the parameters from which
the boundary conditions are computed, on the tumor dose output.

Finally, regarding the used geometries and segmentation
approach, the inlet was artificially extruded in a straight manner
to obtain a fully developed flow profile (which was symmetric by
design). In reality, it is possible that the inlet flow profile is more
skewed, due to bends in the hepatic arterial geometry preceding
the computational inlet, which might impact the (C)PRGs and
downstream particle distribution. This is a limitation of the current
segmentation approach, where high-quality contrast differences
between the arteries and the surrounding parenchyma are often
not available upstream of the catheter tip. Additionally, the walls
of the hepatic arterial vasculature were modelled as rigid, which
is, of course, not the case in the human body. An example of a
fluid-structure interaction approach, and how this relates to CFD
results in this specific domain of drug delivery in the hepatic arteries,
was already discussed in Chapters 3 [113] .

Importantly, while the emphasis of this PhD dissertation was on
patient-specific modeling, only 2 patient-specific geometries were con-

194



11.2. Key Results and Future Work

sidered (1 cancerous liver in Chapters 4-8 and Chapter 10 and 1 cir-
rhotic liver in Chapter 9). Hence, all results (as overviewed below
and in the individual chapters) should be interpreted as difficult to
generalize (at this moment). The results should be verified in more
patient-specific geometries before generalizing the conclusions made
here.

11.2 Key Results and Future Work

The research results of this PhD dissertation were divided in four
parts: (1) Simplification of complex 3D CFD simulations of intra-
arterial blood flow and drug transport, (2) Uncertainty quantification
of the tumor dose, and sensitivity analysis of model input parameters,
(3) Feasibility study of patient-specific in vitro validation, and (4) In-
tegration of CFD in a valorizable, pre-treatment planning framework
for treatment optimization.

Below, we will discuss the most relevant results for each part,
and how they relate to the state-of-the-art. Additionally, we discuss
future work and perspectives: how our results may be replicated and
verified, and to which crucial insights or concrete tools they can lead.

11.2.1 The hybrid particle-flow model and particle spread
In Chapter 4, we introduced the hybrid particle-flow model, which
used a novel truncation algorithm that was more strict than the trun-
cation algorithm developed by Lertxundi et al. [124] because it still
aimed to accurately predict intrasegmental events. In Chapters 4
and 5, we showed that severe truncation (i.e. more distal) was ap-
plicable to superficial injections, but only moderate truncation (i.e.
less distal) was appropriate when the injection was done more down-
stream. The most important future work regarding the hybrid model
is the verification in more patient-specific geometries.

In Chapter 5, we introduced novel particle spread measures, in-
cluding two time-dependent spread measures, which also included one
particle-weighted spread measure. We introduced spread measures to
assess the underlying assumption of the hybrid particle-flow model,
i.e. that particles mix with the blood as they travel downstream,
and spread over the cross-sectional area. Previously, Aramburu et
al. [11] quantified global particle spread very proximal to the cath-
eter tip (no bifurcations were encountered) and noted that spread
also depends on injection velocity. While we did not study the de-
pendency on injection velocity, we studied both the time-dependency

195



11. Conclusions and Perspectives

and uniformity of spread, and investigated this throughout the tree
(encountering many bifurcations). Importantly, we showed that the
maximum degree to which particles spread increases more distally,
but that spread is very time-dependent, leading to parts of the cycle
where microspheres are still very localized within the arterial cross-
section. We showed this in one patient-specific geometry, but for
multiple (superficial and selective) injection scenarios.

Regarding future work, these spread measures may be used as
evaluation metrics for novel catheter types. Specific designs, such as
the microslit catheter design, are designed to promote particle spread
and alignment with the blood flow, which can now be verified using
our novel spread measures. If these novel designs are successful and
are confirmed by our spread indices to increase flow-particle align-
ment, these and other novel catheter types can help to decrease the
impact of injection parameters (such as injection position and injec-
tion velocity) and steer microspheres towards regions with higher flow
(ideally, tumors).

11.2.2 Simplification
Aside from the truncation suggested by Lertxundi et al. [124], no
specific simplification strategies had been forwarded in the context of
TARE modeling. Hence, in Chapter 6, we forwarded grid coarsening
and reducing the number of flow cycles as the first and second best
simplification strategies for sensitivity studies. The same conclusions
hold when simplifying with a focus on accuracy, but this depends
highly on the accuracy required or preferred by the user. For a mod-
erately truncated, coarsened mesh, we ended up with ∼2.4 · 106 ele-
ments (much lower than our original mesh sensitivity study allowed).

11.2.3 Uncertainty quantification
Uncertainty quantification and sensitivity analysis are crucial ele-
ments of VVUQ, and play an important role in model diagnosis.
However, to make this type of analysis feasible for complex models,
we need to reduce the computational times necessary for forward un-
certainty propagation. This can be done by simplifying the forward
model itself, and by using surrogate models. These ideas are not
novel and are well reported in literature (e.g. in [152–154]).

However, we suggested that these techniques are not only useful to
apply to numerical input parameters, but also to clinical parameters
which can impact the outcome of TARE. For example, in Chapter
7, we quantified the uncertainty on the tumor dose (∼16%) because
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of an uncertain catheter tip location using a low-fidelity modeling
approach. In Chapter 6, we quantified the uncertainty on the tumor
dose because of uncertain injection flow rate as much lower (∼4.2%).
Additionally, in Chapter 8, we showed that specific surrogate models
can help reduce computational complexity of performing sensitivity
analysis. Although we applied the ADOE on the sensitivity analysis
of input waveform shape, we can easily extend the input parameter
range to wider ranges of clinical and numerical parameter sources.
To make our conclusions more robust, we should also consider more
patient-specific geometries (and more cancer scenarios).

11.2.4 Validation
The discussion of validation, another tenet of VVUQ, was limited in
this dissertation to Chapter 9. Specifically, we focused on the applica-
tion of in vitro validation in patient-specific geometries, and used this
set-up to highlight important differences between flow and particle
distribution under the current conditions. Improvements over the
state-of-the-art include building a patient-specific 3D-printed model
of the hepatic arterial network, and tuning outlet boundary con-
ditions in the in vitro set-up to a predetermined flow distribution.
While we also attempted to compare both the numerical and exper-
imental particle distribution, the current set-up was not finetuned
enough to allow a highly quantitative comparison. For example, the
microspheres used were training spheres (Sirtex, Australia), which
are not tightly controlled for size and density (which are important
CFD input parameters). Additionally, follow-up research showed that
the current quantification method of the particle distribution (i.e.
through weighing filter paper) is sensitive to dust, which can collect
in the circulating fluid [155]. We have explored other alternatives
than high-precision weighing (e.g. Coulter counter) which should be
more investigated in further research [156].

However, we did show the feasibility of performing patient-specific
in vitro experiments of hepatic arterial drug delivery. While this
method is far from trivial to carry out, and improvements are still
necessary (see above), we could use this set-up to test novel catheter
types [156], or specific injection parameters, and evaluate their im-
pact. For example, the in vitro validation set-up could be used to
verify whether specific injection parameters (e.g. cross-sectional tip
position, injection flow rate) result in a similar size of tumor dose
range when compared with the simulation. In vitro validation is also
very useful for bench testing of novel catheter designs [156]. Before
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and in Chapter 3, we studied particle spread to assess where differ-
ences between particles and flow could arise, and suggested they could
be used to assess whether specific catheter types promote particle-
flow alignment. Given that particle distribution measurements can
be performed more reliably for the in vitro set-up, our in vitro ex-
periments could also be used to investigate the impact of catheter
type on particle-flow alignment (as also studied computationally by
Ortega et al. [133]). However, since boundary conditions are fixed
a priori in the in vitro set-up through the tuning of resistances to
reach a specific outflow distribution, the in vitro set-up is not fit for
to judge whether the CFD model can accurately predict the tumor
dose (range) in actual patients.

To assess the validity of CFD to accurately predict the tumor
dose (range), in vivo validation techniques are likely to be more ap-
propriate. The particle distribution itself is an artificial parameter,
because it is a CFD result, but not a health outcome in patients.
Hence, using the CFD-based particle distribute to estimate where
microspheres will lodge in the smaller downstream vessels and how
radioactivity will spread from these sources will be a crucial step of
in vivo validation. The importance of simulating to health outcomes
is discussed more in detail below.

To conclude, we propose using specific validation techniques for
specific purposes: (1) in vitro validation for investigating the impact
of injection parameters and bench testing novel catheter designs, and
(2) in vivo validation for comparing patient-specific health outcomes
to model outcomes and testing the validity of the model.

11.2.5 Valorization
Treatment planning for TARE is a multi-objective optimization pro-
cess. If we were to compute the optimal treatment conditions based
on CFD outcomes alone, a likely conclusion would be to inject as close
as possible to the tumor, selectively in each tumor-feeding artery.
However, other problems stand in the way. The axial injection pos-
ition can be controlled, but depends highly on vascular accessibility.
Additionally, even if we can determine the exact impact one injec-
tion parameter has on the treatment outcome, some parameters re-
main largely uncontrollable. Think of the cross-sectional injection
position, or the injection flow rate (which is largely impacted by the
downstream vascular resistance). Our pre-operative workflow aims to
consider governing uncertainties (due to uncontrollable parameters)
and barriers to optimization (such as vascular access). This has trans-
formed TARE planning from a single-objective optimization process
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(maximizing tumor dose) to a multi-objective optimization process
(maximizing tumor dose under specific constraints).

Notably, the current framework of Chapter 10 likely only works
for standard microcatheter types and microsphere injection velocities
similar to blood flow velocities. This is because the employed CFD
model was not a catheter-based injection, but a planar injection.
Planar injections do not account for presence of the catheter, which is
likely only to be negligible for standard microcatheters (for example,
balloon-occluding microcatheters have a great impact on the near-tip
blood flow velocity and pressure drop). Similarly, planar injections
do not account for the velocity or properties (viscosity, density) of
the injectate fluid, which have been shown to be relevant [92]. Likely,
two-way coupling between the microspheres and the blood flow may
help solve the velocity problem, as the inertia of the microspheres will
be taken into account. Whether the impact of a different density and
viscosity of the injectate is low enough to warrant the use of planar
injections, will need to be shown in future work.

The development of a valorization framework is important be-
cause model diagnosis and validation is much more relevant to carry
out when the relevant output parameters are known. Given compu-
tational and time restraints, performing uncertainty quantification
and validation towards hemodynamic parameters that would not be
considered during therapy planning, seems like a waste. Hence, the
CFD output parameter of interest of the current pre-operative frame-
work is the CFD tumor dose range resulting from a planar injection.
Hence, regarding future work, we quantified the impact of waveform
shape on the tumor dose in Chapter 8 for a catheter-based injection,
but it would be relevant to investigate the uncertainty introduced
by waveform shape on the planar-based tumor dose range as well.
While the impact on the catheter-based tumor dose was significant,
the impact on the planar-based tumor dose range might be different,
and can show whether waveform shape is an important parameter
to finetune and quantify for the current pre-operative framework. If
the increase in tumor dose range due to varying waveform shape is
limited compared to the uncertainty due to unknown cross-sectional
tip position, more generic waveforms might be applied at the in-
let. If it is shown that waveform shape cannot be quantified, or
other clinical parameters prove to be completely uncontrollable, they
can be included in the tumor dose uncertainty range currently con-
sidered during optimization. However, the more parameters that can
be quantified or fixed, the smaller this uncertainty range (and the
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more certain our prediction) can become, which stresses the need for
uncertainty mitigation.

11.3 Future Steps for Our Pre-operative Workflow

Above, we already discussed our key findings for each part of this PhD
dissertation, and the future work inspired by these findings (further
simplification, more extensive uncertainty quantification and sensitiv-
ity analysis of a wider range of parameters, using our spread measures
to evaluate novel catheter designs, etc.). However, we have not yet
provided a roadmap for the future, which would allow to make the
bridge between the current state of our work, and the eventual goal
of integrating our pre-operative workflow in clinical practice. Here,
we give a global overview of future steps we deem necessary to bridge
that gap.

11.3.1 Simulating to health end-points
Notably, simulating to a health end-point that is measurable in the
clinic (such as a spatial radioactivity distribution) instead of a some-
what artificial particle distribution (as is done now) allows proper
in vivo validation based on SPECT- and PET-CT scans. The arti-
ficiality of the current particle distribution arises from the fact that
the outlets of the computational geometry through which the micro-
spheres exit, do not physiologically represent their final fate. Specific-
ally, in the body, the microspheres will travel further downstream and
lodge in the smaller, more downstream vessels of the hepatic arterial
network, where they will release high-intensity β-radiation through
radioactive decay of the radiotracer. To mitigate this problem, Si-
moncini et al. [121] showed that smaller generations of the hepatic
arteries (beyond what current medical images allow us to visualize
and segment) can be generated using vascular tree models. Hence,
to more accurately determine the location of the microsphere sources
using the current methodology, the hybrid particle-flow model should
be complemented with additional steps: after using CFD to calcu-
late the particle distribution in the truncated geometry, (1) the vas-
cular tree model can be used to estimate the spatial distribution of
the downstream vessels, (2) and then the particle distribution at the
geometry outlets can be distributed over the newly generated down-
stream vessels (assuming that particles follow the bloodstream).

To convert the current particle distribution (i.e. microsphere
sources) into a radioactivity distribution over tissue and simulate
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to health end-points, Roncali et al. [123] showed how radioactiv-
ity originating from microsphere sources in water medium can be
modeled using Monte Carlo simulation. In [157, 158], this model-
ing approach was improved upon by modeling radioactive emission
from microsphere sources in realistic, heterogeneous tissue. Attempts
were already made in [157, 158] to validate the spatial radioactivity
distribution in the liver with PET-CT scans, albeit in only 2 patients.

An alternative health end-point that is measured in the clinic
is the total tumor dose over the dose delivered to healthy tissue,
e.g. the T/N ratio. This was also calculated and compared with
in vivo data in [158]. Although this gave promising results, this
validation was only done for 1 patient, and uncertainty quantification
was not yet done. Of course, when calculating only global parameters
(such as the T/N ratio) instead of spatially heterogeneous parameters
(such as the spatial radioactivity distribution), the added value of
using Monte Carlo simulation and generating downstream arterial
bifurcations should be investigated. The disadvantage of using global
parameters as health end-points is that they offer a much less detailed
analysis (it depends on clinicians which level of detail they prefer to
support their decision-making); the possible advantage is that the
modeling approach might necessitate less complexity, as illustrated
above.

In short, the totality of simulating to health outcomes (e.g. T/N
ratio, radioactivity distribution) and validation of these health out-
comes based on clinical in vivo data represents a crucial step to in-
crease model reliability, which is currently lacking.

11.3.2 Inter-subject variability
This dissertation used patient-specific hepatic arterial geometries for
both the computer modeling and in vitro experimental studies. While
we have noted that it is difficult to generalize our findings because of
their likely patient-specific nature, the exact inter-subject variability
is unknown. Importantly, there exists an important diversity in not
only the anatomy of the hepatic arterial geometries (which vary com-
monly among humans), but also the tumor size(s) and location(s).
In the future, a much wider range of patient-specific anatomies and
cancer scenarios should be considered to replicate our findings and
truly grasp the inter-subject variability with regards to impact of
clinical parameters, downstream particle-flow alignment, etc. This
is especially relevant because it could show under which conditions
inter-subject variability might decrease. For example, Feng et al.
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[159] showed that, for small particles between 500 nm and 2 µm,
inter-subject variability to predict the total deposition of particles
within the lungs was negligible, meaning that one upper airway model
could be used to represent an entire subpopulation of patients. If the
conditions under which inter-subject variability is low are signific-
ant in scope, this means not all results should be computed patient-
specifically (such as the identification of low- and high-impact para-
meters), which would be helpful to reduce computational times in the
clinic.

11.3.3 Towards real-time prediction
While the main focus of Part II was to simplify complex 3D CFD
simulations, current computational times might allow sensitivity ana-
lysis, but they are far from allowing real-time (or near real-time)
prediction of treatment outcomes, which would be desirable in the
clinic. Real-time prediction for drug distribution fields was done by
Yuan et al. [137], but only for 1 simple pre-trained 2D geometry.
Currently, the main method to achieve real-time prediction would be
through the use of deep learning and reduced-order modeling, by pre-
training a library of drug distribution and tumor doses with specific
input features, such as hepatic arterial anatomies, cancer scenarios
and high-impact clinical parameters, and then computing patient-
specific results using this deep learning framework in a matter of
seconds. Importantly, this cannot only be done for real-time tumor
dose prediction in complex hepatic arterial anatomies, but the same
framework was suggested by Feng et al. [160] to be used to predict
aerosol distribution in patient-specific airways.

11.4 Clinical Implications

In Chapter 2, this PhD dissertation and its goals were framed around
two crucial clinical questions regarding the possible improvement of
treatment outcomes of transarterial therapies. Of course, as we dis-
cussed above, this dissertation provided key results in specific sub-
domains, but was not able to answer these clinical questions in their
completeness. To that end, more future work is needed. However,
the key results from this dissertation do provide us with more insight
into how we might (and should) answer these questions in the future,
and how these questions might have changed after the dissertation.

11.4.1 1st Clinical Question
The first clinical question as outlined in Chapter 2 was:
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• Question 1: Can we reliably predict the tumor dose before the
procedure, and, use this prediction to adapt treatment paramet-
ers where necessary?

Of course, the underlying assumption is that we need a reliable
prediction of tumor dose to optimize the treatment. Apart from our
approach, other efforts regarding optimization might focus on peri-
operative optimization, such as image guidance. Roosen et al. [161]
have focused on using Holmium-microspheres that are visualizable
with MRI during the treatment to assess whether microspheres are
flowing to their downstream target. While image guidance is ex-
tremely valuable, this technique is still invasive and physical, and
we previously made the point that non-invasive, virtual finetuning
of injection conditions before the procedure has considerable merit
(and lower cost). Ideally, both methods (pre-procedural finetuning
and intra-procedural image-guided feedback) can continue to be de-
veloped in parallel and supplement each other in the clinic in the
future.

Regarding the reliability of prediction, we made several advance-
ments in this dissertation. Specifically, we suggested computing tu-
mor dose ranges instead of specific tumor dose values. These ranges
arise because of uncontrollable parameters such as the cross-sectional
catheter tip position, or because of uncertain numerical input para-
meters. For these numerical parameters, identification is key. Low-
impact parameters can be set at generalized values (parameter fixa-
tion), while for high-impact parameters, either more efforts should be
done to measure these parameters (e.g. for the systolic duration para-
meter, 4D-flow MRI can be an option) or their uncertainty should be
included in the tumor dose range prediction. While quantifying these
uncertainties might decrease certainty on the prediction, this also in-
creases its reliability. Of course, we already stated the importance of
in vivo validation to confirm the ability of the CFD model to predict
tumor dose ranges.

Regarding the optimization of clinical parameters, identification
by sensitivity analysis is again of crucial importance. Low-impact
clinical parameters should not be considered in the pre-operative
workflow because they only increase the computational time. High-
impact parameters should be considered in the pre-operative work-
flow if they are controllable; if they are not, their uncertainty should
be included in tumor dose range, as discussed above.
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Knowing these results, we should probably re-frame Question 1
as follows: Can we reliably predict the tumor dose range before the
procedure, and, use this prediction to adapt high-impact, control-
lable treatment parameters where necessary?

11.4.2 2nd Clinical Question
The second clinical question as outlined in Chapter 2 was:

• Question 2: Can we decrease variable outcomes in TARE
and TACE by optimizing the clinical injection parameters pre-
operatively, given a reliable prediction of treatment outcome?

Even with the advancements made by this PhD dissertation,
Question 2 remains largely uncertain, mainly because future
prospective clinical studies would be needed to fully answer this
question. However, it is important to consider what Question 2
implies, and that it might not be the only route towards better
health outcomes.

Relevantly, the CMMP as forwarded by Kleinstreuer et al. [9]
considers that treatment parameters are highly controllable, and fix-
ing them at their optimal values will lead to better health outcomes.
The most remarkable example of this is their suggestion of the Smart
Microcatheter [9], which fixes the cross-sectional catheter tip position
at its most optimal location, as identified by computer simulations.
This (undeveloped) invention considers the the cross-sectional cath-
eter tip position as a controllable parameter, while currently, clinical
practice proves otherwise. The Smart Microcatheter might solve this
problem, but it will have to be able to stabilize the microcatheter tip
in a dynamic environment such as the blood flow, with expanding
and contracting walls, making it far from a trivial technological task.
At this point, the question of controllability becomes almost a philo-
sophical one, imbued with one’s view on scientific progress, on what
will be possible in the future, and what might remain impossible (des-
pite our most valiant efforts). This school of thought, which considers
that all parameters will eventually be controllable and optimizable in
clinical practice, is further referred to as the school of control. This
school of control is shown as the blue zone in Figure 11.1.

Of course, the Smart Microcatheter as conceptualized by Klein-
streuer et al. [9] is not the only example of the school of control. In
fact, most CFD studies in this domain, which fix parameters such
as catheter direction and injection velocities, at fixed, deterministic
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values and compute tumor dose as single values resulting from these
fixed set of input conditions fit within this train of thought. Addi-
tionally, other, ongoing research also fits within this philosophy. For
example, Michaud et al. [162] demonstrated the feasibility of mag-
netic resonance navigation to steer magnetized microspheres towards
specific arterial branches, with the aim of achieving selective embol-
ization. This clear example of the school of control was shown in
a simple bifurcation phantom. Importantly, a balloon-occluding mi-
crocatheter was used to decrease the magnitude and pulsatility of the
circulating fluid.

Interestingly, a different route towards optimization than the
school of control can be considered as well. Instead of firmly fixing
the injection conditions at their optimized values (given a reliable
prediction by computer simulations), efforts can also be made to
decrease the impact of these injection conditions. For example,
high mixing of the microspheres with the blood flow could decrease
the impact of cross-sectional position, and increase the agreement
between flow and particle distribution. In case of tumors which
have a high blood flow demand, this might be near an optimal
scenario, as particles following the blood flow distribution are
already preferentially led towards the tumor. Several novel catheter
designs, such as the microslit or sidehole catheter [133, 163, 164],
aim to increase mixing, and may decrease the impact of certain
injection parameters. Perhaps, it is possible that we decrease the
variability in outcomes, not by gaining a deeper understanding of the
impact of injection parameters, but by decreasing their impact on
the final particle distribution. This antithetical school of thought, of
increased mixing and decreased control, is referred to as the school
of mixing. This school of mixing is shown as the pink zone in Figure
11.1.

To be inclusive, Question 2 is probably best reframed as: Can
we decrease variable outcomes in TARE and TACE by optimizing
the clinical injection parameters pre-operatively, given a reliable pre-
diction of treatment outcome by computer simulations, or by de-
creasing the impact of clinical injection parameters, using
specifically developed tools?

11.5 Final Thoughts

In the past decade, generalized CFD approaches have been applied to
the domain of transarterial therapies and provided insights that were
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Figure 11.1: The blue zone represents the school of control, where all
injection parameters are controllable. The pink zone represents the school
of mixing, where the impact of all injection parameters is decreased to ensure
microparticles follow the flow distribution.

more difficult to quantify experimentally or in vivo. These import-
ant foundations were laid by several people and their research teams,
including (but definitely not limited to): Clement Kleinstreuer, Yu
Feng, Emily Childress, Christoper A. Basciano, Andrew Kennedy,
Jorge Aramburu, Raul Antón, Emilie Roncali and Amirtahà Taebi.
Perhaps, the research field has matured enough at this point to de-
velop more specific modeling strategies, finetuned to the precise clin-
ical questions that we outlined earlier in this dissertation, and the
precise problems that undermine outcome optimization in transar-
terial therapy planning. As George Box eloquently (or cynically)
put it: All models are wrong, but some are useful. Such a specific
transarterial modeling strategy, such as our own valorization frame-
work, might not even belong to the school of mixing or the school of
control, as considered above, but sits firmly between the two.

In context, this PhD dissertation walks a fine line between the
school of mixing and the school of control. Since it is currently not
clear which philosophy is more realistic to lead to optimal outcomes
in transarterial therapy planning, it makes sense that these lines in-
tersect regularly in research works such as these. Our pre-operative
workflow considers uncontrollable clinical parameters and the uncer-
tainty that arises from these parameters, which is already a much
looser interpretation of the school of control than Kleinstreuer et al.
[9] posited before. Since exact control of all influencing injection para-
meters might not be possible, the consideration of uncertain tumor
dose ranges might be the most relevant development in this work.
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With this in mind, we return to John Steinbeck, the great American
novelist who once wrote: What a frightening thing is the human, a
mass of gauges and dials and registers, and we can only read a few
and those perhaps not accurately. Although mechanistic views on the
human body pre-date Steinbeck (Descartes said that everything in
nature occurs mathematically), Steinbeck’s suggestion that the com-
plexity of man partly originates from our inability to read all inputs
into the system properly, resonates hard with those of us who engage
in computer modeling of biological systems. For example, as shown
in Figure 11.2, the waveform shape is an impactful input parameter
which cannot be controlled (because it is inherent to the patient).
Hence, because we do not know the exact shape, the uncertainty this
introduced on the output must be considered in the final tumor dose
prediction, as we quantified previously.

Figure 11.2: The clinical parameters of injection flow rate and injection
position and the numerical parameter of inflow waveform shape can both be
plotted on the controllability-impact grid. If the controllability cannot be
increased, such as for injection position, perhaps novel catheters can help
decrease the impact on the tumor dose, and minimize negative outcomes.
For parameters which remain high-impact but uncontrollable, which is the
case mainly for the injection position and waveform shape, the uncertainty
they introduce on the tumor dose output should be included in the simula-
tion results.

As shown throughout this dissertation, the inability to control all
clinical parameters perfectly, or to accurately determine all numer-
ical input parameters, introduces uncertainty. However, uncertainty
ranges that are too large can make our simulations unusable in prac-
tice, and undermines the school of control. Hence, we also introduced
spread measures to quantify mixing of microspheres with the blood,
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and suggested them as possible evaluation metrics for future novel
catheter designs (such as the microslit catheter suggested by Ortega
et al. [133]) to increase particle-flow alignment. If successful, mixing
could help decrease the impact of injection conditions, especially for
uncontrollable parameters, reducing the uncertainty ranges on the
tumor dose prediction. This is shown in Figure 11.2. It was stated
previously that it is difficult to enhance the controllability of high-
impact parameter of injection position. Hence, reducing its impact
might be necessary to minimize possible negative outcomes of an
uncontrollable injection position. This might help to reduce the un-
certainty that is introduced by an unknown, uncontrollable injection
position, as seen in Figure 11.2. To summarize these considerations,
limited controllability or predictability might induce uncertainty, but
uncertainty might be mitigated by mixing (or other clever solutions).

As is clear, both strategies of the school of mixing and the school
of control have considerable merit, but it might be more interesting to
combine them rather than to choose between them. Going forward,
we might call this dual approach the school of uncertainty quantific-
ation and uncertainty minimization. Our pre-operative workflow to
optimize axial injection location under governing uncertainties (such
as the range introduced by an uncertain catheter tip position) might
present a first step in this specific direction. These final thoughts
make this dissertation both a culmination of the work that came be-
fore it, a re-contextualization of ideas that have circulated in this field
for over a decade, as well as - if we are lucky - a stepping stone for
future modeling efforts to optimize health outcomes in liver cancer.

208



11.5. Final Thoughts

and the end of all our exploring
will be to arrive where we started

and know the place for the first time.

T.S. Eliot
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The Appendices as presented here are solely meant as supplement-
ary material for the interested reader. They are typically not peer-
reviewed, are smaller in scope, and contain larger methodological
gaps than the main body of the dissertation. Hence, they should be
seen more as exploratory and preliminary results. Because of this
reason, it was chosen not to add them to main body, as their more
obvious limitations would distract from the overall narrative. How-
ever, they are added here as appendices because they do supplement
results from the main body, present interesting (if not incremental)
findings on their own, and give an idea of other ongoing and future
work.

In Chapter 8, the duration of systole was identified as an im-
pactful inflow waveform shape parameter. In Appendix A, the near-
tip hemodynamics and microsphere distribution for three waveforms
which vary only in systolic duration are investigated, zooming in in
more detail on how high differences in downstream microsphere distri-
bution might arise from varying durations. This work was presented
at the 7th International Conference on Computational and Mathem-
atical Biomedical Engineering (27-29 June, 2022, Milan, Italy).
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A. The Impact of Systolic Duration on Microsphere
Distribution

A.1 Introduction

The aim of this appendix is to further investigate the impact of
systolic duration on the microsphere distribution, which was shown
in Chapter 8 to be a very impactful parameter.

A.2 Methodology

The same patient was used as before (Geometry 3 in Chapter 4, see
Fig. A.1). At the inlet, a spatially uniform and time-varying velocity
profile was imposed (same profile as in Chapter 4.) The original pro-
file was derived from a 1D model of the arterial circulation [127]. Two
alternate profiles were developed by prolonging the systolic sections
of the cardiac waveform by scaling factors of 1.5 and 2, respectively,
keeping total cycle length constant at 0.8 s (waveform 1–3 in Fig.
A.2A).

Two different geometries, one with a microcatheter and one
without (to generate a planar injection), were generates. To study
the impact of systolic duration, four CFD simulations were run.
For the model with the catheter, three different simulations were
run, with either waveform 1, 2 or 3 imposed at the inlet. For the
model without the catheter, waveform 1 was imposed at the inlet,
and particles were released over the entire cross-section (i.e. at the
same axial plane where the catheter tip was located in the other
simulations).

The mathematical implementation was the same as in Chapter 4.
Using the Discrete Phase Model in Fluent (Ansys, USA), the trans-
port problem of a discrete phase (i.e. radioactive microparticles)
dispersed in a continuous phase (i.e. blood) was solved. Here, micro-
particles were modeled as inert spheres with a diameter of 40 · 10−6

m and a density of 1600 kg/m3. Blood was modeled with a density of
1060 kg/m3 and a viscosity according to a simplified, shear thinning
Quemada model with a minimum dynamic viscosity of 3.04 · 10−3

kg/(ms). At the outlets, a flow fraction was imposed, which was
either a healthy flow contribution for the non-tumor outlets or the
sum of a healthy and cancerous flow contribution for the tumor out-
lets. Mathematical details behind the multiphase approach as it was
implemented here can be found in Chapter 4.

Microparticles were injected with injection bursts every 0.01 s
throughout the third cardiac cycle with an injection velocity of 0.12
m/s. For the models with the catheter, the catheter fluid (modeled
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here as blood) was also injected at a constant velocity of 0.12 m/s.
One-way coupling was enabled between blood and microparticle flow.
Simulations were run on a cycle to cycle basis: when <1.5% of the
injected particles exited the geometry during the latest cycle, the
simulation was halted. The time step size was varied between 0.5 ·
10−3 and 1.0 · 10−3 s during each simulation. Absolutely globally
scaled residuals lower than 1 · 10−5 were attained during every time
step.

Figure A.1: (A) 3D-reconstructions of the full-complexity and simplified
hepatic arterial tree and tumor mass, B) Solid model of the simplified tree
with microcatheter

To study the microparticle behavior in the catheter models, the
particle distribution was calculated by dividing the number of micro-
spheres exiting through outlet x of the geometry by the total number
of particles released into the bloodstream via the catheter tip (deemed
as the exit fraction or EF for outlet x). The EF can be calculated
globally (i.e. for the entire duration of injection) or for specific in-
jection bursts at specific injection timings. Additionally, the EF was
also calculated on a lobe-specific level, giving the right lobe and left
lobe EFs. Consequently, by dividing the right lobe EF by the left lobe
EF, the right-over-left lobe fraction ratio (RLF) was attained. For
the model without the catheter, Particle Release Maps (PRMs) were
generated for each injection burst to visualize the impact of in-plane
injection location on particle fate (Fig. A.2C).

A.3 Results

Inspecting the global particle distribution after the first bifurcation
(i.e. towards the right or left lobe) in Fig. A.2D, the left lobe global
EF increased from 27.8% to 33.0% and 37.9% when the systolic sec-
tion was prolonged by a factor of 1.5 and 2, respectively. At the same
time, the global RLF dropped from 2.32 to 1.77 and 1.42, respect-
ively. The right lobe blood flow divided by the left lobe blood flow

215



A. The Impact of Systolic Duration on Microsphere
Distribution

(imposed by the outlet BC, and thus the same for each waveform)
is 2.02, which shows that the particle and flow distribution do not
entirely agree in these patient-specific CFD simulations. Inspecting
the particle distribution on an outlet-specific basis, the changes in
EFs between the different waveforms were limited for most outlets
(<2.5%), but largest for outlets 6, 38, 40 and 45 (see Fig. A.2D).
Notably, from waveform 1 to 3, the EF for outlet 6 increased from
3.72% to 13.61% and the EF for outlet 40 decreased from 27.12% to
20.24%.

Figure A.2: (A) Three input waveforms. B) Right lobe fraction (RLF) for
the three different waveforms. C) Particle Release Grids generated for the
median exit time of particle injections at 1.74 and 2.22s. D) Global particle
distribution for three different waveforms.

Investigating the particle distribution for specific injection tim-
ings, the RLF is plotted for each injection burst occurring through-
out the third cycle in Fig. A.2B. Clearly, the RLF did not remain
constant throughout the injection cycle. Inspecting the differences
between the three waveforms, the minimum RLF was 0.387, 0.291
and 0.244 for waveforms 1, 2 and 3, respectively, while the maximum
RLF was 19.0, 14.0 and 9.68 for waveforms 1–3. The change in RLF
for the 3rd waveform is also shown clearly by plotting the particle
tracks for the particles released at 1.74 s and 2.24 s, showing prefer-
ential flow towards the right lobe (i.e. higher RLF) for the particles
released at 1.74 s, and a much more balanced outflow for the particles
released at 2.24s. These findings indicate that both waveform shape
and injection timing have a considerable impact on the particle dis-
tribution.
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Looking at the results for waveform 1 (blue curve in Fig. A.2A),
the median catheter ejection timings (i.e. the median time when
particles exit the catheter) for the two injection bursts at 1.74 s and
2.22 s were calculated as 2.19 s and 2.67 s, respectively. Then, PRMs
were generated at 2.2 s and 2.7 s to show the distribution of injection
zones at the axial injection plane around the median ejection time.
These PRMs confirm the findings above: for the particle front re-
leased at 1.74 s (and ejection time ∼2.2 s), the catheter tip is located
well within the right lobe targeting region (red zone), leading to a
high RLF (see blue RLF curve at 1.74s in Fig. A.2B). However, it
should be noted that this only reflects the PRM generated at the me-
dian ejection time, meaning that a considerable number of particles
exit the catheter before and after this timing. This explains why, for
a catheter tip clearly located within the right lobe region at 2.2 s,
some particles injected at 1.74 s still exit the left lobe. Conversely,
for the particle front released at 2.22 s (with median ejection time
∼22.7 s), the catheter tip is located in an unclear transition region,
with particles traveling to both the right and left lobe (red and green
zone), leading to an RLF more reflecting of the flow distribution (see
blue RLF curve at 2.22 s in Fig. A.2B).

A.4 Discussion

From the results above, it is clear that there are two competing phe-
nomena determining particle fate: the blood flow distribution, and
the catheter tip location. When injection velocity is high (relatively
compared to blood velocity, i.e. during diastole), the inertial effects
of the injected particle stream temporarily dominate over the iner-
tial effects of the bloodstream, leading to high peaks in RLF. On the
other hand, when injection velocity is low (relatively compared to
blood velocity, i.e. during systole), the inertial effects of the blood-
stream dominate, and the RLF approaches the level imposed by the
blood flow distribution (∼2.2). This is reflected by the RLF curves in
Fig. A.2B: for the waveforms with delayed systolic peaks (i.e. longer
periods of relatively low particle injection velocity during systole),
the RLF maxima are lower. After the RLF maxima, the RLF curves
in Fig. A.2B tend to coincide (1.75s-2.2s), indicating that the impact
of input waveform is not as great for all injection timings. However, it
is difficult to directly relate the input waveform with the RLF curve,
as particles tend to arrive at the catheter exit at different timings.

Remaining challenges with the study set-up are that only a lim-
ited range of waveforms were tested, that blood was modelled as the
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catheter fluid, and that the impact of waveform shape was only eval-
uated with regards to particle distribution and not a more relevant
clinical parameter such as tumor dose. Future work should focus
on tackling these challenges and validating these findings in a wider
range of waveforms and more patient-specific geometries.

A.5 Conclusions

In conclusion, injection timing, input waveform, catheter tip location,
and injection velocity all impact the particle distribution, but are
best understood in accordance with each other. The catheter tip loc-
ation will determine the direction of the injected particle stream, but
the relative difference between injection velocity and the surrounding
blood velocity will determine which inertial effects are most impact-
ful at each timepoint. These results generate additional insight into
the results of Chapter 8, and why the parameter of systolic duration
is so important. They also emphasize the importance of carrying out
global sensitivity analyses of a wide range of parameters: once the
highest-impact parameters have been identified, their impact can be
investigated and verified in more focuses parameter analyses where
only the most important parameter is varied, such as this study.

218



A
p

p
e

n
d

ix B
Qualitative In Vitro

Experimental Study of the
Impact of Cross-Sectional

Injection Position

In Chapter 9, the possibility of using in vitro validation techniques to
perform experimental parameter analyses in a patient-specific set-up
was discussed. Here, the patient-specific in vitro experimental set-
up is used to investigate the impact of cross-sectional injection posi-
tion. This work was developed by Heather Boudry, Laura Burgelman,
Marthe De Smet and Matthias Pex, who were at the time Bach-
elor students in Biomedical Engineering, during the course Cross-
Disciplinary Project.

B.1 Introduction

In the current study, color dye experiments are executed to visualize
the flow from the catheter tip through a patient-specific 3D-print of
the hepatic arteries and collected in downstream reservoirs. The goal
is to assess the impact of two different cross-sectional tip locations
(top, bottom) visually. This is the first time such an experimental
parameter study was conducted in a patient-specific geometry, al-
beit with injection of color dye instead of microspheres. Below, the
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methodology of this proof-of-concept study is explained, and the pre-
liminary results are visualized and discussed.

B.2 Methodology

First, the same 3D-print of the patient-specific hepatic arterial geo-
metry was used as in Chapter 9; the process to generate the 3D-print
based on imaging data was also previously explained there. Second,
two different 3D-printed designs were created in SpaceClaim (Ansys,
USA) to fix the catheter tip position: one with a central fixation po-
sition, and one with a fixation position at the periphery (which could
be rotated to fix at different top and bottom positions, etc., see Fig.
B.1A). Regarding design parameters, axial thickness of the design is
6 mm (lower thickness led to tilting of the design due to the flow),
wall thicknesses of 0.35 mm (lower thicknesses were not feasible for
printing). The outer diameter of the model (6 mm) was designed
to roughly correspond with the inner diameter of the hepatic artery
3D-print before the first bifurcation.

During the experiments, the 3D design was inserted first, after
which the pump was turned on. A pulsatile flow was generated using
a ViVitro Superpump (ViVitro Labs, Canada). Next, the microcath-
eter was inserted. During each injection, a dye-water mix was injected
through the fixed microcatheter. Each mix consisted of 10 ml of dis-
tilled water and two drops of color food dye (blue). The 21 outlets
of the hepatic artery print were combined with PVC tubing into 9
collecting reservoirs. The contrast difference between the reservoirs
is used to give a (qualitative) indication of dye distribution. The
contrast is only comparable if all reservoirs contain roughly the same
volume of water, so the resistances at the PVC tubing were adapted
to allow equal outflow to all reservoirs.

B.3 Results

Here, two cross-sectional tip positions are compared: one at the bot-
tom of the cross-section (see Fig. B.1C for the orientation) and one
at the opposite, top side. In Fig. B.1D, we focus mainly on container
C2, which is connected to the left hepatic artery outlets. It is clear
that, for the bottom position, there is significantly less color dye in
container C2 than for the top position. Judging B.1C, this seems
realistic: for the bottom position, the color dye visually only flows
through one side of the bifurcation, avoiding the outlets which lead
to container C2 (that side of the bifurcation is oriented upwards).
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For the top position (which is closer to the point where the left hep-
atic artery branches off upwards), the opposite is true, and color dye
flows through both sides of the bifurcation, also leading to color dye
deposition in C2.

Figure B.1: (A) 3D design developed for 3D-printing which fits the hepatic
artery 3D-print and allows catheter tip fixation. (B) In vitro placement of
the catheter tip using a 3D design to fix the tip at the center before the first
bifurcation (red circle). The red arrow indicates how the left hepatic artery
branches off from the top, leading to container C2. (C) Streamline visualiz-
ation of the color dye during injection at the top position. Clearly, the color
dye only flows through one side of the first bifurcation. (D) Downstream
color dye distribution in the reservoirs show a high contrast difference in
container C2 for the bottom vs top position.

B.4 Discussion

It is clear that the study above is only qualitative. However, des-
pite the obvious limitations, this study does show that it is possible
to stabilize the catheter tip position in vitro, and to inspect result-
ing differences in color dye contrast in downstream reservoirs. The
impact of catheter tip position can be mostly explained by the direc-
tion of the arteries after the first bifurcation; further, more detailed
analysis was not conducted.

Several important limitations limit this study. First, the exact
flow characteristics of the pump (i.e. the exact inflow waveform
shape) were not measured, and are unknown. This is not trivial,
because if the flow would be unrealistically high, turbulence could
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cause higher color dye dispersion than under more physiological cir-
cumstances (i.e. laminar flow). Second, color dye was injected instead
of microspheres, which have significantly different biophysical prop-
erties. Third, it is difficult to replicate the exact same axial injection
position between different experiments, as the 3D design is removed
and added from the set-up for each experiment. Of course, another
limitation of the current set-up is that the fixation device can disturb
the flow, which might introduce a discrepancy between in vitro and in
vivo flow conditions. he added value of color dye is that streamlines
following catheter ejection can be easily visualized, which is much
less the case for microspheres. In the future, a combined approach
of injecting microsphers embedded in color dye can be of interest.
Future work could focus on using a spectrophotometer to quantify
the contrast differences.

B.5 Conclusions

This proof-of-concept study invented a novel in vitro fixation device,
which could be used to stabilize the catheter tip position in vitro,
albeit with some slight flow disturbances near the device. A bench
test evaluating a bottom and top catheter tip position showed dif-
ferences in the downstream distribution that were deemed logical by
inspecting the flow behavior near the first bifurcation. In the futre,
more locations should be tried, the downstream distribution should
be quantified, and the repeatability of the results should be verified
at measured, physiological flow conditions.
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If I’d have to compare doing a PhD to anything, I’d say it was eerily
similar to a revolving door – a manual one, where you have to push
the door ahead yourself. The moment you step in that door, the
people who entered before you are already in the process of their own
revolution. They might become a good friend, a mentor. The further
you progress, the closer those people come to exiting the door – such is
the nature of starting a project that is finite by nature. At the same
time, new people start entering behind you. They might become
your friend, you might become something resembling a mentor for
them. As a result, doing a PhD feels like a constant symphony of
goodbyes and welcomes. And as time goes on, you find everyone
who is caught in the door together with you doing the same thing:
doubting, wondering, trying, thinking, failing, repeating. And, most
importantly: gently turning, in that door, pushing ahead.
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Late September 2019, Patrick welcomed me at Blok B for the very
first day of my research career. My first office constellation (in the
now derogatorily used ‘old building’) consisted of Annette, Federico
and Matthias (give or take a couple of Cubans who were really into
Bohemian Rhapsody). Federico, I remember your Italian-ness and
your kindness most of all, making sure to explicitly invite me to
lunch on my first day (the new kids wouldn’t understand this, but
back then there was no crazy person yelling ‘LUNCH!’ in the hallway
to gather everyone). You also gave crucial information from ‘ground
zero’ (Italy in March 2020), correctly predicting that we would all be
working from home ‘soon’. It’s a shame the panini hit us around that
time, because you’re one of the people I feel like I didn’t get to spend
enough time with during our short period together. Matthias, my
big bear, you would continue to sit with me in that office for years
to come, my stable beacon in the most turbulent times. I remember
the thing we bonded over initially was The National at my Starter’s
Party. While it took both of us some time to let each other in, I
see you now as one of my dearest friends. I’m very happy that, even
after you left the office, we remained neighbors (more or less) and can
still share the occasional espresso martino. Hope we can talk more
soon about your school and that I can give you many, many more
dilemma’s to overthink. Annette (emphasizing the final ‘e’ here in
text, because I never remember to do it in real life, for which I can
only apologize), with time you would become my go-to mentor, and
I’m incredibly grateful for all the times you let me pop in to your
office for some ‘quick advice’ (which typically turned into at least
1-hour conversations). I know you were always incredibly busy, but
I’ve cherished your advice like holy scripture throughout the years.
Notably, you’re also just a very nice person to hang out with, a strong
leadership figure and an incredible scientist! (I know this, not only
from my own judgement, but from the way the people who work with
you talk about you!)

In those early days, I remember being intimidated by quite a lot
of people, especially the people who were in the office before me (even
only by a couple of weeks). One of those people was Amith. You
dazzled me with Fluent knowledge, always ready to give your advice;
the definition of an academic older-brother-figure. We bonded over
Liverpool/Arsenal and Indiana Jones, while also teaching quite a lot
together. Next to being just a straight-up great guy, I honestly don’t
think the lab would have functioned at all without you: both me
and Sarah desperately needed you at times, and without your wits
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my PhD would’ve gone a lot less smooth. We did not have many
postdocs at the lab, but you were a true ‘postdoc’ in spirit. Lise, I
also look up to/was intimidated by you, as you were always extremely
well-prepared and insightful, and displayed a level of professionalism
I strived to for years (but never quite reached). I thoroughly enjoyed
our lunch BBB sessions (after they were done) and watching you
speed by in the swimming pool. Undoubtedly, my favorite moments
were with you and Sarah during Ingenieursproject. Every company
or school to hire you will be lucky to have an exemplary figure as
yourself among their ranks. I also sincerely want to thank Ghazal,
my OG thesis supervisor, for helping me with the transition of student
to PhD. All three of you were important role models for me during
those early moments, and I would not be where I am today without
your guidance.

Next to these role models, there were also a lot of Starters start-
ing their own trajectories alongside of me. Sarah, I wholeheartedly
apologize for ‘putting you on the rooster’ every lunch. It was a pleas-
ure hosting Ingenieursproject and heart dissections with you. You
are an intelligent person with your heart in the right place, both at-
tributes that you will get you very far during your adventure abroad.
I wish you all the best for what lies ahead! Jens, fellow Starter, I
also apologize to you, mainly for all the hugs you were involved in
that you probably didn’t want to be involved in. You were always
someone who I felt connection to because our journeys were so similar
with respect to timing and future prospects, and I’m really grateful
to have shared that with you. You’re a very nice and kind person
and I’m very happy for you that you have a great imaging team to
work with at Medisip! Gert, I’m glad that, while I’m writing this, I
can congratulate you with your PhD and the work that you did - it
really is impressive. We didn’t see you that often but it was always a
pleasure having you around. Ashkan, another fellow Starter, I’m not
sure whether we can actually be considered colleagues because I still
don’t know why you were actually located on our floor, but you’re
probably the most hard-working, driven person that I know, and the
trajectory you’ve been on with Exoligamentz is truly inspiring. In
addition to that, the bond you have with your family is beautiful,
and you never forgot to pass by my office when you were around,
which I really appreciated. Bro, I hope that we keep running into,
and fist bumping, each other for the foreseeable future.

Milan, Gerlinde, Charlotte T., Mariele, Emma C., you are
all people who were at the lab way before me, and just as I said with
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Federico, I would’ve liked to spend more time together, but I feel like
we didn’t get to do that because of the panini. You made feel very
comfortable during those early-day lunch conversations, for which I
am very grateful! Other OGs, Mohammad (the first colleague I
went to a conference with) and Hooman, I feel like we would’ve
seen even less of you if you wouldn’t have come to steal our water
once every day, but it was always nice to talk to you and I really
appreciated the discussion we had about future plans. Next to being
nice guys you also give solid career advice! Mathias, prof. Peirlinck,
it was an honor to inherit your seat in Blok B; I sincerely want to
thank you for the help that you offered regarding the first draft of ‘De
Medische Revolutie’ and my FWO application. I am also sure that
you didn’t actually need my help for your PhD Cup write-up but I’m
very grateful that I could still give you some pointers, because that
was definitely a confidence booster!

As hinted above, we only spent a couple of months together before
a Chinese bat started to wreak havoc. It was March 2020 and I had
just handed in my FWO application when we received the news that
we would have to work from home for ‘a couple of weeks’. This
marked the end of the first phase of my PhD life, and brought us into
an entirely new era.

We would spend the next year-and-a-half mostly indoors, holding
virtual coffee breaks and experiencing the highs and (mostly) lows of
Microsoft Teams. I consider the Covid period until early 2023 the
second phase of my PhD because I formed some key friendships there,
even if they were stalled a bit by the circumstances. It was during
the panini that I first started to go on walks with Jolan. Despite
your small hands, I consider you one of my best friends (top 4?), and
the partnership we formed during lunch conversations was absolutely
horrifying for everyone but us. Those walks were also around the
time you bought a canoe, which is not super relevant here, but I just
think it’s funny you bought a canoe. Your YOLO sunk-cost attitude
to finances would become a theme in the next years, and my favorite
most unnecessary expense of yours is definitely that Christmas troll
(the second XL Christmas tree being a close second). Next to being
incredibly caring, you’re one of the smartest persons that I know
(even though you will never admit that, you silly goose!). Of course,
another topic that (regrettably) came up often during walks and talks
was your turbulent love life, which seamlessly brings me to my next
point.
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In the second part of 2020, Saar joined the lab. We taught quite
some courses together, including Ingenieursproject and CBFM (to
a lot of future colleagues), which gave rise to some all-time quotes
(‘sebietjes’, ‘ke me vant weekend eki gesmeten ip die pomp’). The
first of many races we ran together was the Blaarmeersen Trail Run
in late 2021; in the next years, many Exploots, a 10 Miles and a 20
km van Brussel, and of course many, many training sessions, would
follow. In you, I found a partner in crime, and having you around was
a life-saver for my mental health. Maybe not even my mental health
alone, since you apparently diagnose long-term illnesses better than
most doctors. That being said, you would also throw me in front
of rabid dogs to save yourself if you had the chance so I guess that
more or less evens out. Regrettably, a topic that also came up often
during our many runs was also your love life, which peaked from the
Starters Party 2023 onwards. Highlights for the three of us definitely
include the Dune tri-costume cosplay at Saar’s Starters Party and
the after-running Kantien sessions.

Not so long after Saar, Emma also joined the lab. Emma, the
words-per-minute ratio increased significantly after you joined our
lives; your office (or oven) would become a crucial office-hang-out
spot; and I look back very fondly to our Christmas raclettes and
brunches. You are one of the most resilient persons that I know, and
I hope that you can find some rest in the years to come. From Bor-
deaux, London to Sicily, the four of us made quite some unforgettable
trips together. Other highlights I have to include is our White Lotus
binge and Big Lebowlski team-up at the Personeelskampioenschap
Bowlen.

Another lab legend Simeon, who also joined the Ingenieurspro-
ject team (who didn’t actually?). I can only thank you sincerely,
Simeon, for your additions to the office lore. From FMK Office to
top-3s (or top 10 arrows?) to ‘least woke moment of the weekend’,
from Draakklaps to Bourgondiëklaps, you were the heart and soul of
many, many social events. You’re the kind of guy who’s always got
a weekend story in store, a fact to share or a joke to tell - if I could
take anyone to my next office, it would definitely be you. When you
are done building walls, I hope you and those carotid signals finally
work it out, because I think what you can have together is beautiful.
Ar-te-ry!

The panini was not without its academic highlights (my first pub-
lication, receiving funding for four years by the FWO), but I was more
than eager to return to the office whenever we were given the chance.

227



Acknowledgements

The string of office parties and Baracita Fridays that followed the end
of the panini (or was it?) was undoubtedly the one of the wildest office
life streaks we had. By that time, the office had changed quite a bit,
with Federico graduating, Annette moving offices, and Bhawna and
Yousof moving in. Bhawna, your taste in music is great and I still
listen to our shared playlist now and then! I look back very fondly on
the fun times we had together (Baracita especially!). Yousof, since I
don’t have peripheral vision, it was extra scary sharing an office with
you for so many years because I never knew where you were stand-
ing exactly. That being said, you brought an energy and enthusiasm
to the office that was unmatched, and office life would have looked
entirely different without you. Another legend to spice up office life
was Samaneh; while it took some time for you to warm up to our
ways (and the other way around), I’m so glad you were part of our
lab because it was so much fun going out with you (the policeman
is a core memory). Additionally, Wouter, your Morty impressions
will haunt me until the day I die, and your Word of the Day scheme
enriched my life to the point that I am now aware of the importance
of carcinization.

Over the years, we also welcomed a lot of interns to the office.
Melissa, you broke the mold of what an intern could be; it still
amazes me to this day how you charmed everyone and formed such
great bonds over such a short period. From the moment you left, I
knew you were destined to join us again, and I’m very happy that we
could be colleagues for all those extra years. I also want to shout out
Vlada, broad-shouldered Nino, Parisian chef Solene who prepared
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a four-course meal on her goodbye party, Swiss Paula who made
an unexpected but very welcome return, Portugal 1 and 2 David
and Maria, the kindest OG Portugal Goncalo, and Master student
Robin. During your periods, you formed an integral part of lunch
conversations, afterworks and the social tapestry of office life.

The third and final phase started halfway 2023, with a tumultuous
move out of Blok B and many ex-students joining the lab as col-
leagues. Jessie, it was already clear when I was teaching CBFM to
you, but now that we’re colleagues I’m 100% sure you’re one of the
smartest people I know. Together with Ashkan, I would also consider
you the most driven person that I know and you’ve also very fun to
hang around and sit on a Flibco bus with (even if your social battery
is running low). However, your navigation skills are questionable, and
I just hope you never get the death penalty because your final meal
would be the most saddening final meal ever. I promise I will make
you chili con carne once and you will like it! Jellis, I can only say
it’s been an extreme honor being colleagues with someone who will
either become the first president of Belgium or go to jail for a failed
secession - whatever it will be, best of luck! And even though we have
a different vibe politically, we agreed on many other things, such as
the amount of alcohol that should be consumed in-flight during a pro-
fessional trip. Ariana, honestly, when I look at you (academically),
I see much of my younger self. That being said, you also have a lot of
good qualities: you’re very smart, motivated, sportive and very nice
to talk to! I see in you a natural successor to our top-3 shenanigans,
but you will have some competition for the leader role (see below).
In you, I found a great swimming partner; I will miss our weekly
outings! Beatrice, grawzie millee for showing us around Taormina
and giving us the full Sicilian-American experience, you’re one of the
most fun persons I have ever met! I’m glad that we could overcome
our initial teacher-student relationship and I hope you never have to
ignore me on a plane to Milan again. Cala cala cala! For all four of
you, I’m absolutely sure your PhD stories will be a success, but next
to that, I also hope you enjoy and relax during your time here.

Of course, there were also some additional new faces who I never
taught. Elias, Bambino, Pilsken, even though you’re a bit scared
of me, I thoroughly enjoyed having you around (and sharing a bed
with you of course); you have a great career ahead of you and I’m
sure you will make Flemish Charleroi proud. If you would spend a
little bit less time scrolling through Instagram Reels and a little bit

229



Acknowledgements

more time taking over the lunch conversations, you would already be
a group leader! Nicole, not everyone was always sure who you were
during meetings, and it was only in Edinburgh that I really got to
know you as well, but our discussions about the top 5 pop girlies and
your IAESTE stories were definitely the highlight of that conference.
Sina, I have no idea what you’re actually working on, but you’re a
very nice guy and you gave us an all-time scientific bio moment when
you taught us how to uncook an egg! It was probably the only time
we discussed something during an scientific bio that was useful in
practice.

At long last, an important shout-out to my Corelleagues, Sarah,
Rosalie, Winter and Simon (among others). Leaving Blok B for
The Core was one of the best work-related changes that happened
during the PhD, and the many kitchen conversations and Corefter-
works were true highlights. Coref wiedersehen?

Of course, a huge shout-out my colleagues from Medisip. Zoé,
I hope you stay strong and never succumb to peer pressure! I’m
already looking forward to some new klaps that we can do. Rabia,
the 8 minutes I had to lie down in your scanner when you were doing
tests were the only 8 peaceful minutes of my PhD; I am forever in-
debted to you for that. Maya, I enjoyed looking forward to and then
critically analysing the Taylor Swift Eras Tour with you. I hope you
never get over your chips addiction because chips are awesome. Mr.
Amir, you truly are a ray of sunshine that lit up our office, please
never change. And say hi to your daughter from me! But enough
breaks now, let’s get to work, OK? To Jolan and Amir! Boris, your
Norwegian cheesecake is life-altering, and it’s because of that that I
forgive you for always eavesdropping every time we talk about you.
It’s just not very polite! You’re also my secret style king, always
wearing something that makes me want to copy your fits. Florence,
Romance, I am still waiting for the invite to your Restarters Party!
Why do you keep going to the US and coming back? Don’t you like
us? Meysam, I will never forget the look of instant regret on your
face when you were joking that I was late one morning and I replied
that I just came back from my psychologist. It’s OK, king! I will
miss your kind spirit!

From the end of 2023 onwards, I stopped most of my analyses and
start working on writing this little book here. I completed the first
version in March 2024 and saved the acknowledgments for the end,
as a little treat for myself. I knew that I would enjoy looking back
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on all these memories and people throughout the years. You were
not only colleagues but companions, in easy and hard times; all of
us working toward similar goals, wondering, trying, thinking, failing,
starting over. All of you were instrumental in making my time here
a core memory.

Of course, I also want to thank all of my friends and family for
their unwavering support. Your enthusiastic response to things I told
you about my PhD often helped me to see my own project again
through different, often less analytic eyes, which can really help if
you’ve been stuck in the grind. I’ve made a non-exhaustive list
here: Katrien, Marc, Silke, Frieda, Daniël, Liesbet, Steven,
Jasper, Hannelore, Willy, Leen, Dina, Fien, Eline, Céline.
Additionally, I want to thank the many students I encountered (also
the ones I didn’t name in the preface) because teaching you was by
far my favorite part of the job. A special thank you also has to go out
to Eline Van Herreweghen for providing me with these beautiful illus-
trations. Finally, I want to thank the team at AZ Maria Middelares
for taking care of me and always being available.

My other main thank you can only go out to my constant com-
panion, Nele. I’d like to think I’m good with words, but still then
it’s difficult to express in words the impact you have had on my life
(the few words I do have for that I’m saving for a different occa-
sion, so I’m not wasting them here). You have been so intertwined
with this process from its very beginning: In the summer of 2019, we
were discussing whether I should pursue a PhD or not while walking
along the cliffs in sunny Spain. In the winter of 2022, when we came
back from celebrating Christmas, we were discussing everything that
I think was going wrong in my PhD. We celebrated the highs and
dealt with the lows and now we’ll be celebrating this milestone to-
gether for many times, I’m sure! In the six-and-counting years that
we have been together, you’ve helped me grow as a person, and the
book I put down here is a result of that. From the moment this book
is printed, the lines I’ve written on all of these pages will belong to
everyone, but everything that’s between the lines will belong to us,
and us alone.

And so, you might ask, after all this: How does someone think back
on a PhD? For me, it’s mainly all of the people I’ve listed here. This
book is a product of its circumstances, and it would be impossible
to think about my PhD without thinking about all of you. And
yes, sometimes it was hard. There were times that I had to push
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the door, push hard, to keep things moving. On the one hand, you
want to keep things moving for yourself, because you really want to
finish that paper, that presentation, that class. On the other hand,
sometimes you push when you feel there’s lots of work to do around
you, so others don’t have to push as hard. Because when you push,
you can make space for others to get in behind you. And that’s where
the magic kicks in - keep things moving long enough, and you’ll find
that those revolving doors might not even need you that much. Years
fly by; and after a while, with enough critical mass inside, you can
start to let your grip off the handle, softly at first. You notice that
the door keeps turning, one person after another, one generation after
another, everyone pushing at their own rhythm and writing their own
stories, and you feel that you can finally let go. And the beauty of
that? It goes on turning, round and round again.
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